Cylindrically bounded constant mean curvature surfaces in $\mathbb H^2\times\mathbb R$
Résumé
In this paper we prove that a properly embedded constant mean curvature surface in H^2*R which has finite topology and stays at a finite distance from a vertical geodesic line is invariant by rotation around a vertical geodesic line.
Domaines
Géométrie différentielle [math.DG]Origine | Fichiers produits par l'(les) auteur(s) |
---|