Geometric inequalities for manifolds with Ricci curvature in the Kato class
Résumé
We obtain an Euclidean volume growth results for complete Riemannian manifolds satisfying a Euclidean Sobolev inequality and a spectral type condition on the Ricci curvature. We also obtain eigenvalue estimates, heat kernel estimates, Betti number estimates for closed manifolds whose Ricci curvature is controlled in the Kato class.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
licence |