Logarithmic degenerations of Landau-Ginzburg models for toric orbifolds and global tt^* geometry - Fédération de recherche Mathématiques des Pays de Loire
Pré-Publication, Document De Travail Année : 2023

Logarithmic degenerations of Landau-Ginzburg models for toric orbifolds and global tt^* geometry

Résumé

We discuss the behavior of Landau-Ginzburg models for toric orbifolds near the large volume limit. This enables us to express mirror symmetry as an isomorphism of Frobenius manifolds which aquire logarithmic poles along a boundary divisor. If the toric orbifold admits a crepant resolution we construct a global moduli space on the B-side and show that the associated tt^*-geometry exists globally.
Fichier principal
Vignette du fichier
Mann_Reichelt-Log_deg_LG_model-final.pdf (870.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01653150 , version 1 (11-10-2023)

Identifiants

Citer

Etienne Mann, Thomas Reichelt. Logarithmic degenerations of Landau-Ginzburg models for toric orbifolds and global tt^* geometry. 2023. ⟨hal-01653150⟩
437 Consultations
30 Téléchargements

Altmetric

Partager

More