Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles - SAGAG
Article Dans Une Revue Annals of Statistics Année : 2008

Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles

Résumé

This paper is devoted to the introduction of a new class of consistent estimators of the fractal dimension of locally self-similar Gaussian processes. These estimators are based on convex combinations of sample quantiles of discrete variations of a sample path over a discrete grid of the interval $[0,1]$. We derive the almost sure convergence and the asymptotic normality for these estimators. The key-ingredient is a Bahadur representation for sample quantiles of non-linear functions of Gaussians sequences with correlation function decreasing as $k^{-\alpha}L(k)$ for some $\alpha>0$ and some slowly varying function $L(\cdot)$.
Fichier principal
Vignette du fichier
LestH4HAL.pdf (424.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00005371 , version 1 (15-06-2005)
hal-00005371 , version 2 (08-02-2007)

Identifiants

Citer

Jean-François Coeurjolly. Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. Annals of Statistics, 2008, 36 (3), pp.1404-1434. ⟨10.1214/009053607000000587⟩. ⟨hal-00005371v2⟩
93 Consultations
217 Téléchargements

Altmetric

Partager

More