Asymptotic properties of the maximum pseudo-likelihood estimator for stationary Gibbs point processes including the Lennard-Jones model - SAGAG
Article Dans Une Revue Electronic Journal of Statistics Année : 2010

Asymptotic properties of the maximum pseudo-likelihood estimator for stationary Gibbs point processes including the Lennard-Jones model

Résumé

This paper presents asymptotic properties of the maximum pseudo-likelihood estimator of a vector $\Vect{\theta}$ parameterizing a stationary Gibbs point process. Sufficient conditions, expressed in terms of the local energy function defining a Gibbs point process, to establish strong consistency and asymptotic normality results of this estimator depending on a single realization, are presented.These results are general enough to no longer require the local stability and the linearity in terms of the parameters of the local energy function. We consider characteristic examples of such models, the Lennard-Jones and the finite range Lennard-Jones models. We show that the different assumptions ensuring the consistency are satisfied for both models whereas the assumptions ensuring the asymptotic normality are fulfilled only for the finite range Lennard-Jones model.
Fichier principal
Vignette du fichier
mpleGenHAL2.pdf (309.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00442750 , version 1 (22-12-2009)
hal-00442750 , version 2 (12-07-2010)

Identifiants

Citer

Jean-François Coeurjolly, Rémy Drouilhet. Asymptotic properties of the maximum pseudo-likelihood estimator for stationary Gibbs point processes including the Lennard-Jones model. Electronic Journal of Statistics , 2010, 4, pp.677-706. ⟨10.1214/09-EJS494⟩. ⟨hal-00442750v2⟩
252 Consultations
154 Téléchargements

Altmetric

Partager

More