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Abstract:

Background error covariances can be estimated from an ensemble of forecast differences. The finite size of the ensemble induces a

sampling noise in the calculated statistics. It is shown formally that a wavelet diagonal approach amounts to locally averaging the

correlations, and its ability to spatially filter this sampling noise is thus investigated experimentally.

This is first studied in a simple analytical one dimensional framework. The capacity of a wavelet diagonal approach to model the

scale variations over the domain is illustrated. Moreover, the sampling noise appears to be better filtered than when only using a

Schur filter, in particular for small ensembles.

The filtering properties are then illustrated for an ensemble of Météo-France Arpège forecasts. This is done both for the ”time-

averaged correlations”, and for the ”correlations of the day”. It is shown that the wavelets are able to extract some length scale

variations that are related to the meteorological situation.
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1 Introduction

Most data assimilation schemes seek to provide an optimal

combination of observations and of a background given

by a short-term forecast. The optimal analysis is basically

derived from statistical estimation theory. In such a theory,

the two sets of information are associated with covari-

ance matrices corresponding to their respective errors.

The error covariance matrices determine the respective

weights given to each piece of information in the analy-

sis. However, the correct specification of those statistics

remains a major challenge in data assimilation systems.

The estimation of background error covariances is a

particularly difficult problem since in operational practice

the background state is a vector of dimension 105 − 107.

In that case, it is not only intractable to handle such a

huge corresponding error covariance matrix, but it is also

impossible to specify it exactly, since there is a lack of

available statistical information (Dee 1995).

To overcome these difficulties, a statistical model for

the background error covariances has to be defined. Such

a model often relies on the hypothesis that the background

error correlations are homogeneous and isotropic (Gaspari

and Cohn 1999). This assumption is equivalent to con-

sidering that the background error correlation matrix is

∗Correspondence to: Météo-France CNRM/GMAP, 42 av. G. Coriolis,
31057 Toulouse Cedex France. e-mail: olivier.pannekoucke@meteo.fr

diagonal in spectral space (Courtier et al 1998) and thus

facilitates the representation of background error statis-

tics.

One technique for specifying the background error

covariance matrix is to use an ensemble of assimilations,

obtained by a perturbation of observations and of the

background (Houtekamer et al. 1996). This procedure

has recently been applied at ECMWF and Météo-France

for specifying the stationary component of background

error covariances (Fisher 2003; Belo Pereira and Berre

2006). In that case, the covariances are computed over

several weeks and the hypothesis of homogeneity is often

assumed. Such an approach is also partly related to the

Ensemble Kalman Filter (EnKF), originally proposed by

Evensen (1994), where flow-dependent covariances are

calculated from the ensemble.

The hypotheses of homogeneity and isotropy, are

known to be rather crude representations for the ”real”

error structures. Lönnberg (1988) suggested that horizon-

tal and vertical correlations vary geographically: horizon-

tal scales tend to be broader in the tropics than at high lat-

itudes because of atmospheric dynamics (Ingleby 2001).

Bouttier (1993, 1994) also showed that correlation scales

depend on the meteorological situation and on data den-

sity.

Using an ensemble of assimilations, Belo Pereira

and Berre (2006) have shown such heterogeneities and

Copyright c© 2007 Royal Meteorological Society

Prepared using qjrms3.cls [Version: 2007/01/05 v1.00]



364 O. PANNEKOUCKE ET AL.

anisotropies in the background error correlations by using

a new economical algorithm for estimating the correlation

length scales.

The EnKF is one approach for obtaining heteroge-

neous and flow-dependent background error correlations.

However, due to the relatively small sampling size, covari-

ances are noisy and have to be filtered by an additional

treatment. A Schur product (Houtekamer and Mitchell

2001) is generally applied to the raw statistics. The use of

the Schur product in EnKF has been discussed by Lorenc

(2003).

From a different point of view, Fisher (2003) has

recently introduced the idea to use wavelets on the sphere

to improve the representation of background error corre-

lations, and in particular to allow some heterogeneity in

the description of those errors. Such a formulation is now

operationally applied at ECMWF to represent stationary

but heterogeneous correlations, with for example larger

correlations in the Tropics. A similar approach has been

considered by Deckmyn and Berre (2005) for a limited

area model.

The wavelet representation of background error

covariances implemented at ECMWF has been obtained

by using an ensemble of analyses over several weeks,

which is expected to provide valid statistics. Moreover,

there is scope to combine the use of wavelets and ensem-

bles in order to obtain at the same time heterogeneous and

flow-dependent background error correlations.

The aim of the paper is to show that wavelets provide

an effective tool to allow some variability in the correla-

tions, but also to filter the noise due to the small size of an

ensemble. These properties of the wavelet formulation are

in particular investigated by using the diagnostic of the

local correlation length scale proposed by Belo Pereira

and Berre (2006). It may be also mentioned that some

analogous filtering effects are under investigation at the

Meteorological Service of Canada (Buehner and Charron

2006), through spectral and spatial localization.

The structure of the paper is the following. In section

2, we explain that a wavelet diagonal approach amounts to

applying a local spatial averaging of covariance functions.

This allows the sample size to be increased and to preserve

the representation of geographical variations. The ability

of wavelets to extract useful information from a small

ensemble is first discussed in section 3 for a toy analysis

problem on a circle. Section 4 shows the application of

the same wavelet representation in 2D on the sphere,

with actual background errors provided by an ensemble of

forecasts from the Météo-France Arpège system. Results

are produced both over a long period, and on a single date

with only a few members. Conclusions are given in section

5.

2 Wavelet spatial averaging of covariance functions

2.1 Local covariance functions

For the sake of simplicity, we will consider a 1D cyclic

domain in this section. Derivations are also valid in a

2D cyclic domain, by considering horizontal positions as

vectors with two components (x and y). They can be also

generalized easily to 2D spherical domains and to 3D

contexts (by including the appropriate metrical terms in

the formulae).

The separation s between two positions x and x” is

defined as the difference s = x” − x. Note that s can be

positive or negative: the absolute value |s| is the separation

distance, while the sign of s corresponds to the orientation

of the separation. (In a 2D cyclic context, the separation

direction is given by the argument of s, when seeing s as a

complex number: s = sx + isy = |s| exp(i arg(s)), where

sx and sy are the x and y components of s).
The local error covariance function fx(s) at a refer-

ence point x is often calculated from an ensemble of Ne

forecast differences ε, according to the following equation

(in a horizontal context) :

fx(s) = ε(x)ε(x+ s) =
1

Ne

∑

k

ε(x, k)ε(x+ s, k),

where ε(x, k) is a forecast error realization at position

x, s is the separation value between the two considered

points, k is the ensemble member index, and the overline

is the ensemble average. This ensemble average is thus

calculated over Ne members of the ensemble.

The sampling size is thus equal to Ne only. A first

problem is that the finite size of the sample induces a

noise, which often renders necessary the use of e.g. a

Schur filter (Houtekamer and Mitchell 2001). A second

important problem is that the sample covariance matrix

will be rank deficient if the sample size is too small.

This will limit the analysis increments to lie in a low-

dimensional subspace in the analysis. In the remainder of

the study, we will focus on the first problem (sampling

noise).

2.2 Spectral diagonal approach: a global spatial averag-

ing

It is possible to represent the background error covari-

ance matrix B in spectral space (e.g. Courtier et al 1998).

Under the assumption of horizontal homogeneity, the

spectral covariance matrix is simply a diagonal matrix (or

block-diagonal in a three-dimensional context, with verti-

cal covariances in the diagonal blocks). The diagonal of

B contains the variances of the error spectral coefficients.

Equivalently, it can be shown (see appendix A) that

this spectral diagonal approach amounts to calculating
1

Ng

∑

x′ fx′

(s), which is the global spatial average of the

covariance functions (Ng is the number of gridpoints in

the domain). The resulting local covariance functions,

noted fx
S
(s), where the subscript S refers to the spectral

diagonal approach, are all equal to this global spatial

average:

fx
S(s) =

1

Ng

∑

x′

fx′

(s),

or equivalently

fx
S(s) =

1

Ng Ne

∑

x′

∑

k

ε(x′, k)ε(x′ + s, k).
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The globally averaged covariance function is thus

estimated as an average over a number of pairs of error

realizations, which is equal to N = NgNe (instead of

N = Ne when estimating the local covariance functions).

Such a huge increase of sample size has an obvious

counterpart: the global spatial average does not allow one

to represent any geographical variations. Therefore, one

may wonder if it is possible to consider a local spatial

average, in order both to increase the sampling size and to

represent some geographical variations.

2.3 Wavelet diagonal approach: a set of local spatial

averages

The direct and inverse wavelet transforms, which are used

by Fisher (2003), are defined as follows: ε̂j = ε⊗ψj and

ε =
∑

j ε̂j ⊗ψj , where ⊗ is the convolution product in

physical space for both expressions, and ψj are radial

band-pass functions for different scales j (see Courtier

et al 1998 for the properties of the convolution with

radial functions on the sphere). It may be mentioned that

such functions ψj are not orthogonal, and different from

traditional wavelets, which instead are orthogonal with

respect to integer dilation and translation on a regular

lattice.

The functions ε̂j and ψj can be represented in grid-

point space. Some examples of wavelet functions ψj are

shown in a one dimensional framework (Fig. 1) and can be

compared with spectral functions. Note that each wavelet

function has both a specific position and a specific scale.

The associated coefficients ε̂j,xj(i) of the transformed

error field correspond to the error values at scale j and

at position xj(i) on a grid whose resolution depends on j
(with i = 1, Nx(j)).

In a horizontal framework, the wavelet diagonal

approach for B consists in calculating variances of these

wavelet coefficients ε̂j,xj(i). As each wavelet function

contains information both on position and scale, the

wavelet variances contain information on the local shape

of the covariance functions.

Moreover, it can be shown (see appendix A) that

this wavelet diagonal approach amounts to computing a

set of weighted local spatial averages of the covariance

functions. The resulting local covariance functions, noted

fx
W

(s) with the subscript W refering to the wavelet

diagonal approach, can be expressed as follows:

fx
W (s) =

∑

x′,s′

fx′

(s′)Φx,s(x′, s′),

where Φ(x,s)(x′, s′) is defined by

∑

j

Nx(j)
∑

i=1

ψj(x
′ − xj(i)) ψj(x

′ − xj(i) + s′)

ψj(x− xj(i)) ψj(x− xj(i) + s)

and can be seen as a weighting coefficient in the calcula-

tion of the spatial average.
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Figure 1. Some wavelet functions ψj(x− xj(i)) for different

scales j and different points xj(i).

As expected, Φx,s(x′, s′) will give more weight to

positions x′ in the neighbourhood of x, and to separation

values s′ that are close to s. Figure (2) represents two

examples of function Φx,s(x′, s′), for x = 121 and s =
s′ = 20, and for two choices of wavelet bands. The larger

weight given to position x′ close to x is illustrated by the

larger values of Φx,s(x′, s′) when x′ is near x.

As in the spectral approach, the implied functions

fx
W

(s) are the result of a spatial average. The spatial

sample size is nevertheless likely to be smaller than in the

spectral case, because the weighting functions Φx,s(x′, s′)
have values close to zero except in the neighbourhood of

x (as illustrated in fig. 2).

The two examples in fig. (2) differ by the choice

of wavelet bandwidths. It may thus be noticed that the

spatial average will tend to be more localized when the

bandwidth is larger. This is related to the fact that the

bandwidth determines the trade-off between spatial and

spectral resolutions, as will be further discussed in section

2(e).

It may also be mentioned that the calculation, rep-

resentation and spatial filtering of the matrix B remain

efficient with a wavelet diagonal approach. It only requires

the calculation of a diagonal matrix, which contains the

wavelet variances. This is much cheaper than calculating a

full gridpoint covariance matrix, and then applying a spa-

tial averaging operator.

To summarize, the wavelet approach is similar to the

spectral approach, in the sense that the local covariance

functions are averaged spatially. This potentially allows

one to reduce the level of sampling noise, compared to the

Copyright c© 2007 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 133: 363–377 (2007)
DOI: 10.1002/qj



366 O. PANNEKOUCKE ET AL.

W
ei

g
h
t 

m
ag

n
it

u
d
e

Geographical position x’
0° 90° 180° 270° 360°

−1

0

1

2

3

4

5

6

7

 x1e4

Figure 2. Representation of Φx,s(x′, s′) for x = 121 (corresponding to 180 ◦) and s = s′ = 20 (corresponding to 30 ◦) and for two

different choices of wavelet bands, as defined by the cutoff wave numbers {Nj} (see section 2(e)) : a set of relatively tight bands {Nj} =
{0, 1, 2, 3, 5, 7, 10, 15, 21, 30, 42, 63, 120} (solid line) and a set of relatively wide bands {Nj} = {0, 4, 8, 12, 20, 28, 40, 60, 84, 120}

(dashed line).

estimation of the local covariance functions. Moreover, as

the spatial averaging is local instead of global, it remains

possible to represent some geographical variations of the

covariance functions.

These two features (spatial filtering and geographical

variations) will be studied experimentally in two different

frameworks, in sections 3 and 4 respectively.

2.4 Isotropy of wavelets and of covariance averaging

As illustrated in fig. (1) on the circle and in Fisher (2004)

on the sphere, the band-pass functions ψj are radial.

This implies that the corresponding local averaging of

covariances tends to be isotropic. In other words, covari-

ances along different separation directions are averaged

together, for a given separation distance.

On the one hand, this may be seen as a drawback, as it

prohibits the representation of possible anisotropies. This

limitation has been illustrated and discussed by Deckmyn

and Berre (2005) with Meyer wavelets. On the other hand,

averaging over several directions allows the sample size

to be further increased, which can reduce the amplitude

of sampling error. In other words, if the covariances are

nearly isotropic, this isotropic averaging may rather be

beneficial.

The balance between these pros and cons will thus

depend on the degree of anisotropy of the actual covari-

ances and on the available ensemble size. Another related

point is that part of the covariance anisotropies arises from

the geographical variations of the background error stan-

dard deviations. The latter can be represented in gridpoint

space, while modelling correlations in wavelet space, as

in Fisher (2003).

2.5 Details of the wavelet diagonal approach

The concept of local averaging of covariance functions

has been introduced in the previous section. This con-

cept can also be considered for correlation functions, by

applying the equations to the background error normalized

by the gridpoint standard deviations, namely ε′(x, k) =
ε(x, k)/σb(x), with σb(x) = ( 1

Ne

∑

k ε(x, k)
2)1/2. This

will be the approach used in the remainder of the paper,

in order to have a similar covariance formulation as Fisher

(2003) and Deckmyn and Berre (2005). The formulation

ofB is often determined by the design ofB−1/2, which is

detailed in appendix B. Thus, in a horizontal context, the

square root of the wavelet-modelled gridpoint covariance

matrix can be written

B1/2
w = ΣgΣsW

−1D1/2
w , (1)

where Σg is a diagonal matrix of gridpoint standard devia-

tions, Σs corresponds to a multiplication by spectral stan-

dard deviations, and D
1/2
w is a diagonal matrix of wavelet

standard deviations. Matrices W and W−1 correspond

respectively to the direct and inverse wavelet transforms

(note that W is a rectangular matrix, and that W−1 is the

left inverse of W ).

The particular wavelet functions ψj introduced by

Fisher (2003) on the sphere are band-limited and defined

in spectral space as follows. For (Nj)j∈[0,J], with Nj <
Nj+1, the spectral coefficients of functions ψj are given

by, for j 6= 0 (n being the total wave number in the spheri-

cal case): 1√
2n+1

ψ̌j,n =
√

n−Nj−1

Nj−Nj−1
for Nj−1 ≤ n <

Nj ,
√

Nj+1−n
Nj+1−Nj

for Nj ≤ n < Nj+1, and 0 otherwise.

For j = 0, the definition is the same, except that the range
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Figure 3. Spectral coefficients of wavelet functions ψj(x) for different scales j (there is one curve for each function) and truncation

T = 120. The spectrum associated with a particular ψj(x) function (j = 10) is shown in bold.

Nj−1 ≤ n < Nj is replaced by 0 ≤ n < N0, for which
1√

2n+1
ψ̌j,n = 1.

It is possible to define equivalent wavelets

in a one dimensional Fourier space. The corre-

sponding Fourier spectral coefficients ψ̌j,n are

represented in Fig. 3 , for the following set

{Nj} = {0, 1, 2, 3, 5, 7, 10, 15, 21, 30, 42, 63, 120}. This

set has been chosen in order to be similar to Fisher

(2003). Ways to define an optimized choice for this

set may be explored in future studies. In particular, as

discussed by Fisher and Andersson (2001), it is the

choice of the bandwidths which determines the trade-off

between spectral and spatial resolution. When the bands

are broader, the spectral variations are smaller, but the

geographical variations are allowed to be larger. This is

connected to the discussion of Figure 2 in section 2(c).

The spatial averaging is more localized when the bands

are broader, which allows more geographical variations

to be represented.

It may also be mentioned that each wavelet field ε̂j

can be represented exactly on a low-resolution grid, which

corresponds to a truncation equal to Tj = min(Nj+1, T ),
T being the maximum truncation, associated to the orig-

inal full resolution grid (T = 120 in the example above).

The direct wavelet transform is thus applied as follows:

ε̂ =





.
ε̂j

.



 = Wε =





.
GjΨ̌jSj

.



 ε,

where Ψ̌j is the diagonal matrix containing the ψ̌j,n spec-

tral coefficients, Sj is the spectral transform associated

with truncation Tj , and Gj is the corresponding inverse

transform onto a grid that corresponds to truncation Tj .

The inverse wavelet transform is conversely defined by

ε = W−1ε̂ = GJ

∑J
j=1 Ψ̌jSj ε̂j , where GJ is the full

resolution inverse spectral transform (since TJ = T ). A

representation of an example of wavelet field ε̂ will be

shown in figure 4.

3 Wavelet filtering properties in a 1D analytical

framework

3.1 A simple 1D analytical case with varying length

scales

A simple 1D analytical framework has been considered

to highlight the filtering properties of wavelets. In this

framework, the geographical domain is supposed to be

an earth great circle of radius a, and the coordinate x is

the geographical position varying from 0 ◦ to 360 ◦ in

terms of angle (or 0 to 2πa in terms of distance). On

this circle, only one field is considered. A homogeneous

covariance matrix is obtained from a radial correlation

function fx
H(s) = e

− s2

2L2
H , where x is a point on the circle,

s is a separation value, and LH is the length scale, which

is here arbitrarily set equal to 250 km.

Then, a heterogeneous correlation is computed using

a c-stretching Schmidt transformation (Courtier and

Geleyn 1988), adapted to the circle and defined by

h(x) = a
[

π − 2Atan
(

1
c tan(π

2 − 1
2

x
a )

)]

with c = 2.4 (the

Schmidt transformation is used for a different purpose in

the Arpège global stretched model to obtain a variable res-

olution). The resulting correlation function is:

fx(s) = f
h−1(x)
H (h−1(x+ s) − h−1(x)).

The associated matrix obtained, noted Ba, is character-

ized by heterogeneous correlations which are relatively
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sharp around 180 ◦ and broad around 0 ◦. This is illus-

trated in the top panel of Fig. 4, which represents the local

correlation length scales L(x) at point x, approximated by

(Belo Pereira and Berre 2006)

L2(x) =
σ(ε)2(x)

σ(∂xε)2(x) − (∂xσ(ε))2(x)
, (2)

where σ(ε)(x) is the standard deviation of ε(x), and ∂x is

the derivative along the coordinate.

In the 1D framework, evaluating the length scales

that are implied by the formulation (1) involves appli-

cation of the gradient operator and its adjoint to the

covariance matrixBw. For instance, the covariance matrix

B′
w,xx of ∂xε corresponds to

B′
w,xx = (∂xε)(∂xε)∗ = ∂xεε∗∂

∗
x = ∂xB∂

∗
x (3)

The diagonal of B′
w,xx then provides the variances of ∂xε

that are used in the length scale equation.

3.2 Randomization of Ba and Schur product

In order to examine the effects of the sampling noise, ran-

dom perturbations ε have been generated from Ba: ε =

B
1/2
a ζ, where ζ is a random sample of a normal distribu-

tion with zero mean and the identity as a covariance matrix

(Fisher and Courtier 1995). This allows one to obtain

an ensemble covariance matrix Be = 1
Ne

∑

k ε(k)ε(k)
T ,

where Ne is the ensemble size.

The middle panel of Fig. 4 shows an example of

random error realization. One may notice that this field

presents shorter variations near 180 ◦ (Z1 region) than

near 0 ◦ (Z2 region), in accordance with the local length

scales of the specified covariance function (upper panel

of Fig. 4). These varying length scales are expected to be

captured by the wavelet diagonal approach, with a larger

amplitude of small scale wavelet variances in Z1 than in

Z2.

This is supported by the bottom panel of Figure 4,

which shows the amplitudes of the wavelet coefficients of

the error field example. As expected, the amplitudes of

small scale coefficients (for j ≥ 10) tend to larger in Z1

than in Z2.

The ensemble covariance matrixBe can be compared

to the exact covariance matrix Ba to examine the effects

of the sampling noise, and also to the corresponding

wavelet ensemble covariance matrixBw defined by equa-

tion (1). Sampling noise is a particularly important issue

in assimilation schemes such as the Ensemble Kalman

filter, and makes the use of a Schur product appropriate

(Houtekamer et al 2001). The Schur product corresponds

to an element-wise product with a matrix FLs
. A filtered

ensemble covariance matrix BLs
e can be obtained with

BLs

e = FLs
◦Be,

where FLs
is the matrix which corresponds to a

compactly-supported correlation function. In this paper, a

fifth-order piecewise rational function (Gaspari and Cohn

1999, Eq. (4.10)) is used, as in Houtekamer and Mitchell

(2001).

The Schur filter ensures that the long distance cor-

relations are set to zero, at the expense of an artificial

sharpening of the correlation functions in the intermediate

distances.

This filter does not change the local variances them-

selves, while they are also affected by sampling noise.

A normalization by the diagonal values of BLs
e is there-

fore applied in addition, to ensure that BLs
e becomes a

valid correlation matrix. This procedure allows us to con-

centrate on the sampling noise effects on the correlation

functions.

The impact of FLs
on the final correlation is sensi-

tive. If Ls is too short (left panels of Fig. 5, which cor-

respond to Ls = 200 km), the exact correlation functions

are replaced by an excessively homogeneous and sharp

correlation function. In this case, the correlation related to

the short length scale area Z1 (grid-point 121) is well rep-

resented, but the correlation function in the large length

scale area Z2 (grid-point 1) is shorter than it should be.

Therefore, Ls may be increased (here to 1000 km),

in order to preserve the large length scale in the Z2 area.

However, in the Z1 area, some spurious oscillations in the

short distances are no longer filtered in this case (Fig. 5,

right panels).

The scale Ls has thus to be chosen judiciously.

This optimal value depends also on the ensemble size

(Houtekamer and Mitchell 2001, Lorenc 2003).

A Schur filter is also applied to provide a filtered

version of the wavelet ensemble covariance matrix:

BLs

w = FLs
◦Bw.

The relative necessity of this Schur filter for the

wavelet approach and its effect are illustrated in Figure 6.

It is a comparison between correlations calculated from a

10 member ensemble, either directly (solid line) or based

on a wavelet diagonal approach (dashed line). Zeroing

spurious long distance correlations remains desirable for

the wavelet approach in this example, although this is

much less marked than in the direct estimation. The effect

of a Schur filter with Ls = 6000 km on the wavelet-

based correlations is illustrated (bold solid line). It sets

large distance correlations to zero. The possibility to

avoid applying this Schur filter may be explored in future

studies, for instance by using bandwidths that are broad

enough to make the correlations sufficiently local.

In the remainder of the paper, BLs
e and BLs

w will be

simply refered to as the ensemble and wavelet correlation

matrices respectively.

3.3 Wavelet filtering of the correlation functions and of

their variations

The wavelet filtering properties can be examined by com-

paring the left and right panels of Figure 7, which have

been produced withLs = 6000 km andNe = 10 elements.

A large value of Ls is chosen to illustrate the typical

amplitude of sampling noise. The left panels show the raw
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ensemble correlations at gridpoints 1 (top panel) and 121

(bottom panel). The corresponding right panels are for the

wavelet-based correlations at these gridpoints. The sam-

pling noise is quite visible in the ensemble correlations,

with many large and spurious oscillations. Such artefacts

are much less marked in the wavelet correlations.

The wavelet formulation thus appears to partly filter

the sampling noise. This is expected knowing that the

wavelet diagonal assumption amounts to locally averaging

the covariance functions, which implies an increase of the

total size of the sample. A wavelet illustration of these

filtering properties is also discussed in appendix C.

Fig. 8 illustrates the effects on the length scale vari-

ations of the sampling noise and of the wavelet filtering.

The case Ne = 10 (top left panel) is the most spectacu-

lar. The raw length scales exhibit some large and spurious

small scale oscillations, and the largest length scale values

are often much exagerated (e.g. with 800 km raw values

around 70 ◦, while the exact value is around 400 km).

In contrast, the wavelet implied length scales have rela-

tively smooth variations and accurate values. The wavelet

approach thus appears to be able to capture and represent

the main geographical variation of interest (increase of

length scale towards 0 ◦) from a small ensemble with only

10 members.

Again the wavelet local averaging reduces the effects

of sampling noise. These beneficial effects decrease when

the size of the ensemble increases.

3.4 Data assimilation experiments

Assimilation experiments on the circle have also been

performed. As the true correlations are known, the true

solution can be computed, and can be compared with that

of the correlation model.

In these experiments, the true state is taken as being

zero everywhere. The background error is generated from

the true correlation matrix (remember that the standard

deviation is equal to 1) with B
1/2
a , while observations

are generated with R1/2 (which is the square-root of the

observation error covariance matrix R). R1/2 is assumed

to be a diagonal matrix σoI where I denotes the iden-

tity matrix (thereafter σo = 0.95 : the observations are
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assumed to have a similar quality as the background).

There is one observation every five gridpoints.

Root Mean Square (RMS) errors (averaged over the

domain) of analysis can be calculated for three differ-

ent covariance approximations: the direct ensemble esti-

mation, the homogeneous formulation (i.e. the spectral

diagonal approach), and the wavelet formulation. These

RMS can then be compared with the RMS corresponding

to the true covariances. Fig. 9 corresponds to the differ-

ence RMS −RMS(true), for different Schur scales Ls

and for different ensemble sizes Ne. In this figure, every

curve has the same behaviour (similar to Lorenc 2003):

the shape is convex with a minimum that determines an

optimal Ls value.

For the direct ensemble estimation (dashed line), the

smaller the ensemble is, the larger the RMS is, and the

shorter the scale Ls has to be. Such dependencies of the

RMS and optimal Ls on the ensemble size are much

smaller for the wavelet approach (full line). Moreover, the

wavelet results are relatively good even for a small ensem-

ble size such as Ne = 10. This illustrates the beneficial

impact of wavelet filtering.

Compared with the direct ensemble estimation,

another attractive result of the wavelet approach is that

the RMS slope is small beyond the optimal choice for Ls.

This means that the analysis quality will be less affected
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by a suboptimal Schur scale than in the direct ensemble

estimation.

As expected, analyses produced with the wavelet

approach are closer to optimality than those produced with

the homogeneous formulation. On the other hand, it is

interesting to notice that for Ne = 10, the homogeneous

approach can give better results than a direct ensemble

estimation, if the Schur length is too large. This is another

illustration of the importance of sampling noise in small

ensembles, and of the potential benefit of spatially aver-

aging the ensemble covariances in this case.

It is also possible to compare geographical variations

the lengthscales, when the optimal Schur lengths are used.

The results are illustrated in Fig. 10. The wavelet implied

length scale values still appear to be more accurate,

and their variations are smoother. This is particularly

noticeable for small ensembles.

It may be mentioned also that, compared to Figure
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Figure 9. Differences between analysis RMS error and true analysis RMS error, as a function of the scale of the Schur filter Ls and of the
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analysis (solid line), analysis with homogeneous formulation (dotted line) and analysis with raw ensemble covariances (dashed line). All

analyses are performed with one observation every 5 gridpoints.

(8), the use of shorter Schur lengths Ls implies a shorten-

ing of the length scales. This is consistent with the fact that

the smaller Ls is, the faster the filtered correlation func-

tions will decrease (as a function of separation distance).

With respect to Eq. (2), this is linked with an increase

of σ(∂xε)
2, because small scale contributions are empha-

sized both in ∂xε (compared to ε) and when decreasing the

correlation length scale.

4 Application to an ensemble of Arpège forecasts

4.1 The ensemble data set of global Arpège forecasts

The Météo-France operational NWP system is based on

the Arpège model (Courtier and Geleyn 1988), and on a

4D-Var assimilation scheme (Rabier et al 2000, Veersé

and Thépaut 1998). The background error covariance

matrix is calculated by using an ensemble of perturbed

assimilation runs (Houtekamer et al 1996, Fisher 2003).

The detailed results for Arpège are described in Belo

Pereira and Berre (2006).

We propose to illustrate some typical results of

the wavelet covariance modelling on this kind of NWP

ensemble data. The formalism and the cutoff wave num-

bers are the same as those mentioned in section 2 (e) (and

Fisher 2003). The available ensemble consists in a set of

6 forecast differences for each day of the period from 9

February to 24 March 2002.

In this 2D high dimensional framework, local length

scales are calculated by using equation (2), with a specific

randomization technique for the wavelet-implied length

scales. In the latter case, a set of 1000 random vectors ε
has been generated from the square root of Bw (Fisher

and Courtier 1995), and the gradient operator ∂x has been

applied to these vectors ε. The variances of ∂xε are then

used in the length scale equation.

A first possible option is to temporally average the

spatial covariances, in order to examine the ”climatology”

of the error covariances. The total sample is made of

Ne = 264 elements in this case.

A second option is to study the covariances for a

particular date. The total sample is reduced to onlyNe = 6
elements in this case, which correspond to differences

between six perturbed forecasts, which are valid on 10

February at 12 UTC.

4.2 Local ”climatological” length scales

As shown in Fig. 11, the ensemble method provides

some interesting local information on the ”climatological”

correlations, which appear to be well represented by the

wavelet formulation of equation (1). The length scales are

smaller in the (data rich) Northern Hemisphere than in

the (data poor) Southern Hemisphere. Some local length

scale minima can be identified in the storm track region

of the Northern Atlantic, and near the Inter Tropical

Copyright c© 2007 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 133: 363–377 (2007)
DOI: 10.1002/qj



FILTERING PROPERTIES OF WAVELETS. 373

(c)

L
en

g
th

sc
al

e 
(k

m
)

L
en

g
th

sc
al

e 
(k

m
)

analytic ensemblewavelet

(b)

L
en

g
th

sc
al

e 
(k

m
)

(d)

L
en

g
th

sc
al

e 
(k

m
)

(a)

Ne=300 elements

Ne=30 elementsNe=10 elements

Ne=100 elements

Geographical position

Geographical position Geographical position

Geographical position

0° 45° 90° 135° 180°

100

200

300

400

500

600

0° 45° 90° 135° 180°

100

200

300

400

500

600

0° 45° 90° 135° 180°

100

200

300

400

500

600

0° 45° 90° 135° 180°

100

200

300

400

500

600

Figure 10. Same as figure 8, but with optimal Schur lengths Ls, chosen according to Fig. 9. For the wavelets, Ls is constant and equal to

4000 km. For the ensemble estimation, Ls depends on the size Ne : (a) (Ne = 10, Ls = 900 km), (b) (Ne = 30, Ls = 1250 km), (c)

(Ne = 100, Ls = 1600 km) and (d) (Ne = 300, Ls = 2050 km).

80°S

80°S

70°S

70°S

60°S

60°S

50°S

50°S

40°S

40°S

30°S

30°S

20°S

20°S

10°S

10°S

0°

0°

10°N

10°N

20°N

20°N

30°N

30°N

40°N

40°N

50°N

50°N

60°N

60°N

70°N

70°N

80°N

80°N

160°W

160°W

160°W

160°W

140°W

140°W

140°W

140°W

120°W

120°W

120°W

120°W

100°W

100°W

100°W

100°W

80°W

80°W

80°W

80°W

60°W

60°W

60°W

60°W

40°W

40°W

40°W

40°W

20°W

20°W

20°W

20°W

0°

0°

0°

0°

20°E

20°E

20°E

20°E

40°E

40°E

40°E

40°E

60°E

60°E

60°E

60°E

80°E

80°E

80°E

80°E

100°E

100°E

100°E

100°E

120°E

120°E

120°E

120°E

140°E

140°E

140°E

140°E

160°E

160°E

160°E

160°E

0

150

175

200

225

250

275

300

325

350

375

400

1000

0

150

175

200

225

250

275

300

325

350

375

400

1000

M
er

id
io

n
al

 L
en

g
th

sc
al

e 
(k

m
)

M
er

id
io

n
al

 L
en

g
th

sc
al

e 
(k

m
)

(a)

(b)

Figure 11. Meridional length scales (in km) for surface pressure, averaged over the 46 day period and the 6 ensemble members. (a): raw
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Convergence Zone (ITCZ) area in Western Africa. Length

scales are also smaller over orographic regions such as

the Himalaya and the Andes, and in the Southern part of

Africa. In contrast, some length scale maxima are visible

over tropical oceans.

In accordance with the results in section 33.3, these

behaviours on the whole globe confirm one of the main

advantages of a wavelet covariance formulation (com-

pared e.g. with a spectral formulation): it allows some

correlation variations to be represented, such as those that

are induced by atmospheric processes and by data density

contrasts.

It can be also noticed that the extreme variations

tend to be smoothed in the wavelet map. This is due to

the filtering properties of the wavelet diagonal approach.

These filtering properties will now be shown to be even

more important when the ensemble size is reduced to

Ne = 6.

4.3 Local length scales of a particular date

Fig. 12 shows the corresponding length scales for a

particular date, the 10 February at 12 UTC. The raw

length scales (top panel) appear to be very noisy, due to

the small size of the ensemble. In contrast, the wavelet

implied length scale map (bottom panel, superposed with

the background field of sea level pressure) is relatively

smooth and well structured. Large values appear clearly in

the southern circumpolar ocean and over tropical oceans,

as in the climatological case but in a more pronounced

way. Small length scales are visible over land. Some

other structures related to the local weather situation can

also be identified, such as small values in the vicinity of

some mid-latitude lows over sea (see e.g. the lows near

Scandinavia and south of Argentina). This is consistent

with results described by Thépaut et al (1995) for instance.

Such strong differences between the raw and wavelet

implied length scales, when the sampling size is small

(Ne = 6), are in agreement with the large length scale

differences found in the 1D framework with Ne = 10 (top

left panel of Fig. 8). They support the idea that the wavelet

formulation is able to capture and to represent the main

relevant length scale variations, from a small ensemble of

forecasts, thanks to local spatial averaging.

5 Conclusions

In this paper, the ability of a wavelet diagonal approach

to ensure a smooth representation of geographical vari-

ations of the correlation functions was studied. Repre-

senting the covariances by a diagonal matrix in wavelet

space amounts to locally averaging the covariance func-

tions. Due to this spatial averaging, the statistical estimate

is more sampled than when estimating the purely local

covariance functions. Moreover, as this spatial averag-

ing is local, the representation of geographical variations

remains possible. Such filtering properties look particu-

larly attractive when estimating error covariances from an

ensemble of forecasts. These aspects of wavelet covari-

ance modelling were made explicit formally, and they

were illustrated experimentally in two different frame-

works.

The first experimental framework is a simple 1D con-

text with varying length scales. The wavelet covariance

model was shown to be able to represent the local cor-

relation functions and their length scale variations, in a

smoother and more realistic way than when only using

a Schur filter. This is particularly noticeable when using

small ensembles with e.g. 10 or 30 members. The wavelet

formulation remains competitive with up to 100 members.

The second experimental framework consists in an

ensemble of global NWP forecasts. The wavelet approach

appears to represent well the ”climatological” variations

of the local length scales, which are induced by atmos-

pheric processes and by data density contrasts. Moreover,

a preliminary examination of the length scales of a partic-

ular day suggests that the wavelet approach allows some

important length scale variations to be extracted, which

are connected with the local weather situation.

These results are consistent with the expected filter-

ing properties of wavelets in terms of local spatial averag-

ing. They suggest that wavelets may be a promising tool to

estimate and represent flow-dependent covariances from a

small ensemble of forecasts.
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A Appendix A : Expressions of covariance spatial

averaging

It is shown, in the general layout of frames, that the diag-

onal covariance assumption leads to a weighted spatial

averaging of covariances.

A.1 Background error expansion in a frame

A frame (Daubechies 1992, Fisher 2004) is a family of

functions {φm,m ∈ M}, where M is a countable set.

This family is associated to a dual frame
{

φ̃m,m ∈ M
}

,

so that the error field ε can be analyzed as a set of frame

coefficients ε̂m with

ε̂m =
∑

x

ε(x)φ̃∗m(x), (4)

where the exponent ∗ stands for the conjugate transpose

operator. The signal is recomposed according to

ε(x) =
∑

m∈M
ε̂mφm(x),

or in vector form:

ε =
∑

m∈M
ε̂mφm.
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Figure 12. Meridional length scales (in km) for surface pressure on 10 February 2002 at 12 UTC, computed from 6 ensemble members.

(a): raw length scales. (b): wavelet implied length scales, superposed with the background field of sea level pressure.

A.2 Expansion of covariances in a frame under the

diagonal assumption

Using the previous frame decomposition, the covari-

ance matrix B = εε∗ can be expanded as B =
∑

m,m′ ε̂mε̂∗m′φmφ
∗
m′ . When using the diagonal assump-

tion in the frame space, covariances ε̂mε̂∗m′ are zero except

if m = m′. Then, the resulting covariance matrix Bd is

Bd =
∑

mBmmφmφ
∗
m, where Bmm = ε̂mε̂∗m is the vari-

ance for the frame coefficient m. Thus, the associated

covariance function fx
d at position x has the following

expression:

fx
d (s) =

∑

m

Bmmφm(x)φ∗m(x+ s),

where s is a separation value (in gridpoint space). From

(4), coefficients Bmm can be rewritten

Bmm =
∑

x′,s′

ε(x′)ε(x′ + s′)∗ φ̃∗m(x′)φ̃m(x′ + s′)

=
∑

x′,s′

fx′

(s′) φ̃∗m(x′)φ̃m(x′ + s′),

where fx′

(s′) = ε(x′)ε(x′ + s′)∗ is the local covariance

function at position x′ for the full covariance matrix B,

and then the resulting expression for fx
d (s) is

fx
d (s) =

∑

x′,s′

fx′

(s′)

(
∑

m

φ̃∗m(x′)φ̃m(x′ + s′)φm(x)φ∗m(x+ s)),

which can be in turn rewritten as

fx
d (s) =

∑

x′,s′

fx′

(s′)Φx,s(x′, s′),

with

Φx,s(x′, s′) =
∑

m

φ̃∗m(x′)φ̃m(x′ + s′)φm(x)φ∗m(x+ s).

The implied covariance function fx
d (s) may thus be seen

as a weighted spatial average of the local covariance

functions fx′

(s′), where the weights Φx,s(x′, s′), for a pair

{x, s}, are functions of position x′ and separation s′.

A.3 Diagonal assumption in Fourier space

Let Ng be the number of grid points on a cir-

cle, and em(x) = exp(im 2πx
Ng

). Then, the family
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{

φm = 1√
Ng

em,m ∈ [0, Ng − 1]

}

is a frame whose

dual is simply φ̃m = φm. In this case, the weighting

coefficients are given by

Φx,s(x′, s′) =
1

N2
g

∑

m

e∗m(x′)em(x′ + s′)em(x)e∗m(x+ s)

=
1

N2
g

∑

m

em(s′ − s)

=
1

Ng
δ(s′ − s),

where δ(s′ − s) = 1 when s′ = s and δ(s′ − s) = 0 else-

where. This means that a zero weight is given to all values

fx′

(s′) such as s′ 6= s and that a uniform weight 1
Ng

is

given to all values fx′

(s′) such as s′ = s, whatever the

position x′ is. In other words, each implied covariance

function fx
d is simply a global spatial average of the local

covariance functions fx′

.

A.4 Diagonal assumption in wavelet space

For the wavelet case, M is a set of m = (j, {xj(i), i =
1, Nx(j)}), where j is a scale and xj(i) a position on a

subgrid associated to j. This defines a frame such that,

φm(x) = φ̃m(x) = ψj(x− xj(i)), where functions ψj are

Fisher’s wavelets. In this case, the weighting coefficients

Φ(x,s)(x′, s′) are given by

∑

j

Nx(j)
∑

i=1

ψj(x
′ − xj(i)) ψj(x

′ − xj(i) + s′)

ψj(x− xj(i)) ψj(x− xj(i) + s).

In contrast with the spectral case, the resulting weights

Φ(x,s)(x′, s′) will vary with the position x′. As expected,

numerical tests indicate that the weights Φ(x,s)(x′, s′)
tend to be maximum for positions x′ close to x and for

separation values s′ that are also close to s. In other words,

the implied covariance function fx
d may be seen as a local

spatial average of the covariance functions fx′

.

B Appendix B: Design of B−1/2
w and of B1/2

w

The formulation of B
1/2
w is determined by the design

of B
−1/2
w . The latter matrix is conceived as an operator

that transforms the background error variable ε into a

transformed variable, whose covariance matrix is close to

an identity matrix (see e.g. Deckmyn and Berre (2005) or

Gustafsson et al (2001)):

B−1/2
w = D−1/2

w WΣ
−1
s Σ

−1
g ,

where Σg is a diagonal matrix of gridpoint stan-

dard deviations of ε, Σ−1
s = S−1D

−1/2
s S corresponds to

a normalisation by spectral standard deviations of ε̌′ =
SΣ

−1
g ε (S being the spectral transform, and Ds is the

corresponding diagonal matrix of variances in spectral

space), and D
1/2
w is the diagonal matrix of wavelet stan-

dard deviations of ε̂′′ = Wε̌′. Matrices W and W−1

correspond respectively to the direct and inverse wavelet

transforms.

The associated expression of B
1/2
w is then B

1/2
w =

(B
−1/2
w )−1 = ΣgΣsW

−1D
1/2
w .

C Appendix C: A wavelet illustration of the filtering

properties

As mentioned in sections 2 and 33.3, the filtering proper-

ties of wavelets can be expected since the wavelet diag-

onal assumption amounts to locally averaging the covari-

ance functions. This may be considered as a ”gridpoint

vision” of the filtering properties, in the sense that grid-

point covariance functions are seen as being averaged

in gridpoint space. In this section, we will evoke two

other complementary visions of the filtering properties (in

wavelet and spectral spaces respectively).

Note that the full covariance matrix in wavelet space

represents the covariances between different scales at dif-

ferent locations. A ”wavelet vision” of the filtering prop-

erties at play is thus to note in particular that the wavelet

diagonal assumption implies zeroing off-diagonal terms,

which correspond to correlations between wavelet modes

at different positions (e.g. for a given scale j). The for-

mal examination of the associated equations (not detailed

here for the sake of conciseness) suggests the following

result: neglecting these wavelet off-diagonal correlations

prevents small scale distant modes from (spuriously) con-

tributing to the local covariance function (at a given refer-

ence position).

This interpretation is supported experimentally, as

illustrated in Fig. 13. This figure shows the amplitude

(absolute value) of the wavelet coefficients W f0 of the

local covariance function at geographical position 0 ◦,

namely f0. In the ensemble off-diagonal case (top right

panel), the amplitude of the small scale distant wavelet

modes (e.g. for j ≥ 10 near 180 ◦) can be spuriously

large (due to sampling noise), while the exact values

(top left panel) tend to be close to zero. In contrast,

the wavelet diagonal approach produces realistic small

values, even when a small ensemble is used (Ne = 10).

This is consistent with the implicit zeroing of correlations

between wavelet modes positioned around 0 ◦ and those

positioned around 180 ◦ for instance.

Finally, it may be also mentioned that a ”spectral

vision” of the wavelet filtering properties can be consid-

ered as well. It will not be detailed here for the sake of

conciseness. Briefly summarized, it consists in noticing

that zeroing cross-correlations between different wavelet

scales amounts to zeroing some small scale (noisy) contri-

butions to the geographical variations of covariances. This

is similar to the expected effect of a local spatial averaging

in gridpoint space.
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Figure 13. Amplitude of the wavelet coefficients of the local covariance function at geographical position 0 ◦. (a) exact covariance, (b)

ensemble approach with 10 members and a full covariance matrix (in gridpoint or wavelet space), (c) ensemble wavelet diagonal approach

with 10 members, and (d) analytical wavelet diagonal approach (equivalent to (c) but with an infinite number of members). The wavelet

scale index is j: large j values correspond to small scale wavelets.
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