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Abstract. The hydrometeorological model SIM consists in a meterological8

analysis system (SAFRAN), a land surface model (ISBA) and a hydrogeo-9

logical model (MODCOU). It generates atmospheric forcing at an hourly time10

step, and it computes water and surface energy budgets, the riverflow at more11

than 900 rivergauging stations, and the level of several aquifers. SIM was ex-12

tended over all of France in order to have a homogeneous nation-wide mon-13

itoring of the water resources: it can therefore be used to forecast flood risk14

and to monitor drought risk over the entire nation.15

The hydrometeorologival model was applied over a 10-year period from 199516

to 2005. In this paper the databases used by the SIM model are presented,17

then the 10-year simulation is assessed by using the observations of daily stream-18

flow, piezometric head, and snow depth. This assessment shows that SIM is19

able to reproduce the spatial and temporal variabilities of the water fluxes.20

The efficiency is above 0.55 (reasonable results) for 66 % of the simulated21

rivergages, and above 0.65 (rather good results) for 36 % of them. However,22

the SIM system produces worse results during the driest years, which is more23

likely due to the fact that only few aquifers are simulated explicitly. The an-24

nual evolution of the snow depth is well reproduced, with a square correla-25

tion coefficient around 0.9 over the large altitude range in the domain. The26

streamflow observations were used to estimate the overall error of the sim-27

ulated latent heat flux, which was estimated to be less than 4 %.28
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1. Introduction

Interfacing a Soil Vegetation Atmosphere Transfert Scheme (SVAT) with streamflow29

routing model permits the assessment of the water and energy budgets simulated by30

SVAT schemes, and the identification of their main qualities and defects. This has been31

done extensively in order to assess global and regional climate models (Miller et al., 1994,32

Benoit et al., 2000), as well as in SVAT intercomparison experiments. For instance, the33

Pilps2c experiment (Wood et al., 1998, Lohmann et al., 1998) showed the importance of34

the parameterization of subgrid runoff for simulating a realistic hydrograph. The Rhone-35

Agg intercomparison study (Boone et al., 2004) showed that in the Alps, the SVATs36

that use explicit snow schemes (with an explicit simulation of the energy budget of the37

snowpack) obtain better results than those using composite snow schemes (i.e. one single38

energy budget for both the snow-free and snow covered part of the ground surface).39

Results of the DMIP1 (distributed model intercomparison model, Reed et al., 2004) show40

that among the participant distributed hydrological models, the few that simulated both41

the water and the energy budgets (NOAH, Chen et al., 1997; VIC-3L, Liang et al., 1994;42

and tRIBS, Ivanov et al., 2004) obtained similar results in terms of the simulation of43

the riverflows as the others. Thus, although SVAT schemes were originally dedicated to44

providing surface energy fluxes to an atmosphere model, they are now also able to make45

an accurate estimation of the hydrological cycle at both short and long time scales.46

Several studies focusing on the soil moisture assimilation for numerical weather predic-47

tion models have used SVAT off-line simulations (i.e. uncoupled to the atmosphere) forced48

by observed data, in combination with satellite and/or surface atmospheric data assimi-49
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lation to estimate mesoscale soil moisture over large areas (ELDAS, European Land Data50

Assimilation System, Van den Hurk et al., 2005, NLDAS, North-American Land Data51

Assimilation System, Mitchell et al., 2004). One key aspect of such studies is the retrieval52

of the best surface near-realtime atmospheric forcing. However, both studies include a53

retrospective period in order to test the ability of the method to compute consistent sur-54

face fluxes and riverflow over long time periods. In NLDAS, the SVAT schemes are also55

coupled to a hydrological routing model in order to assess the SVAT scheme simulations56

of the water budget over large areas, through comparison with observed riverflows.57

The CNRM-GAME has been developing SVAT scheme and soil moisture assimilation58

techniques for over the last ten years, in order to provide surface boundary conditions59

to the atmosphere models. For instance, CNRM-GAME takes part in the ELDAS and60

CALDAS (Balsamo et al., 2006) projects using the ISBA surface scheme. It has also,61

in association with the Mining school of Paris, developed the SIM hydrometeorological62

model that is used both for realtime estimation of the soil moisture, and for retrospective63

studies of the water and energy budgets for a region covering all of France.64

The SIM (SAFRAN-ISBA-MODCOU) model is the combination of three independant65

parts: i) SAFRAN (Durand et al., 1992), which provides an analysis of the atmospheric66

forcing, ii) ISBA (Noilhan et Planton 1989, Boone et al., 1999), which computes the surface67

water and energy budgets, and iii) MODCOU (Ledoux et al., 1989), which computes the68

evolution of the aquifers and the riverflow.69

The SIM system was first tested for large French catchments: the Adour (Habets et70

al., 1999c), the Rhone (Etchevers et al., 2001), the Garonne (Voirin-Morel, 2003) and the71

Seine basins (Rousset et al., 2004), and the Maritsa river basin in Bulgaria (Artinyan et72
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al., 2007). It has been used to quantify the influence of the snowpack, groundwater, soil73

moisture, and urbanised areas on certain flood events of the Seine basin (Rousset et al.,74

2004). SIM has also been used to study the evolution of the water resources in a climate75

change prospective (Etchevers et al., 2002, Caballero et al., 2007).76

SIM was extended over all of France in 2002, and it has been used operationally at77

Meteo-France since 2003 in order to monitor the water resources at the national scale in78

near real-time. In order to assess the quality of the SIM system over France, a retrospective79

run was made for the period 1995 to 2005, and the goal of this article is to present the80

results of the SIM hydrometeorological model over this period. First, the SIM system81

is presented, with a summary of the main innovations compared to the previous studies.82

Then, the database is presented, with a special emphasis on the atmospheric data, which83

is critical in terms of the quality of the entire system. The assessment is based on observed84

riverflow, piezometric head, and snow depth. Finally, the spatial and temporal evolutions85

of the water and energy fluxes on the main basins are presented.86

2. The SIM hydrometeorological model

The SIM (SAFRAN-ISBA-MODCOU) system consists in 3 independent modules (figure87

1):88

• The SAFRAN analysis system (Durand et al., 1992) was developed in order to provide89

an analysis of the atmospheric forcing in mountainous areas for the avalanche forecasting.90

SAFRAN analyses 8 parameters: the 10m wind speed, 2m relative humidity, 2m air91

temperature, cloudiness, incoming solar and atmospheric radiations, snowfall and rainfall.92

A detailed description and assessment of the SAFRAN analysis over France is presented93

in Quintana-Segúı et al., 2007, so that only the main aspects are summarized herein.94

D R A F T June 20, 2007, 4:07pm D R A F T



X - 6 HABETS ET AL.: THE SIM MODEL APPLIED OVER FRANCE

The main hypothesis of SAFRAN is that the atmospheric variables are considered to be95

homogeneous over some well-defined areas, within which they can only vary according96

to the topography. In France, these areas correspond to the Symposium homogeneous97

climate zones which are used at Meteo-France for weather forecast bulletins. There are98

about 600 homogeneous climate zones, each with an average area around of 1000 km2, so99

that each zone contains at least two raingages and one surface meteorologic station.100

SAFRAN takes into account all of the observed data in and around the area under study.101

For instance, there are more than 1000 meteorological stations for the 2m temperature and102

humidity, and more than 3500 daily raingages, which corresponds to about 6 raingages103

for each climate zone. For each variable analysed, an optimal interpolation method is104

used to assign values to given altitudes within the zone. According to the altitude of the105

observations, SAFRAN provides a single vertical profile of the variable within the zone106

with a vertical resolution of 300m.107

The analysis are computed every 6 hours, and the data are interpolated to a hourly time108

step.109

The incoming radiative fluxes, and the precipitation (liquid and solid) are treated differ-110

ently.111

The precipitation rate is estimated daily using 3500 daily raingages, and then interpolated112

hourly, based on the evolution of the air relative humidity (precipitation is constrained113

to occur when the relative humidity is high). The partition between snowfall and rainfall114

is based on the 0.5oC isotherm: the precipitation is considered as snowfall if the air115

temperature is below 0.5oC.116
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The radiation scheme of Ritter and Geylen (1992) is used to compute the incoming ra-117

diation fluxes since there are few in-situ observations available. The method requires an118

estimate of the cloudiness which is analysed using, as a first guess, the operational analysis119

of Numerical Weather Predicition model, and in-situ observations.120

Once the vertical profile of the atmospheric parameters have been computed in each121

homogeneous zone, the values are interpolated in space as a function of the altitude of122

each gridcell within each homogeneous zone.123

• The ISBA land surface scheme (Noilhan et Planton, 1989, Noilhan and Mahfouf,124

1996) is used in the NWP, research and climate models at Meteo-France. In order to125

fulfill all its applications, the ISBA surface scheme is quite modular. In the SIM system,126

the 3-layer force restore model is used (Boone et al., 1999), together with the explicit127

multi-layer snow model (Boone et al., 2001). Moreover, the subgrid runoff (Habets et128

al., 1999b) and subgrid drainage schemes (Habets et al., 1999a) are used. This last129

parametrisation is quite simple, and allow to indirectly take into account the impact of130

unresolved aquifers on the low riferflows based on a single parameter.131

The soil and vegetation parameters used by ISBA are derived from the ECOCLIMAP132

database (Masson et al., 2003, see section 3.2). Only two parameters in ISBA are not133

directly defined by the soil and vegetation classification: the subgrid runoff parameter134

and the subgrid drainage parameter, wdrain.135

The subgrid runoff parameter was assigned the default value in the current study as

was the case for the other SIM applications. Only the subgrid drainage parameter was

calibrated in this application. In previous simulations, this subgrid parameter was either

set to a default value (Habets et al., 1999a), or calibrated to optimize the Nash criteria
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(Etchevers et al., 2001), or the discharge for the summer low flow period (Caballero et al.,

2007). In the France application, it is calibrated using the method presented in Caballero

et al., (2007) in order to sustain the observed Q10 quantile of the riverflow. The subgrid

drainage parameter is simply set using the expression

Q10 =
∑

i

C3i/τ × wdrain × di × Si

where i represents the gridcells that belong to the upstream area of the rivergage under136

study, C3i is the gravitational drainage coefficient for the gridcell i, di the soil depth for137

the gridcell i, Si is the surface of the gridcell i that belong to the upstream area of the138

rivergage under study, and τ a time constant of one day. In this expression, C3i and139

di only depend on the soil and vegetation database, and Q10 is set at each simulated140

rivergage using the statistics provided over the entire observation period for each station.141

Thus, the value of the subgrid drainage coefficient is defined using observed data and the142

physiographic database, and is thus unique once these databases are defined. Therefore,143

there is no iteration for the calibration, and thus, no ”calibration period”144

The surface scheme is linked to the MODCOU hydrogeological model by the ISBA output145

soil water fluxes: The drainage simulated by ISBA is transfered to MODCOU as the input146

flow for the simulation of the evolution of the aquifer, while the surface runoff computed by147

ISBA is routed within the hydrographical network by MODCOU to compute the riverflow.148

• The MODCOU hydrogeological model computes the spatial and temporal evolution149

of the piezometric level of multilayer aquifers, using the diffusivity equation (Ledoux et al.,150

1989). It then computes the exchanges between the aquifers and rivers, and finally it routes151

the surface water within the river, using a simple isochronism algorithm (Muskingum), to152

compute riveflows. In the SIM-France system, the riverflow is computed at a 3-hour time153
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step (instead of daily as in the previous applications), and the evolution of the aquifer is154

computed daily.155

ISBA snowpack, soil temperature and soil moisture values are initialised using a one year156

spin-up (the first year is repeated twice), whereas, the initial conditions of the aquifers157

are taken from the Rhone and Seine basin applications.158

In the next section, a short description of the database is presented.159

3. Databases used

The databases for the SIM-France application use the Lambert II projection, which has160

the advantage of preserving the surface area. SIM uses input data that have different161

spatial resolutions: a regular 8 km grid is used by SAFRAN and ISBA, and irregular162

embedded gridcells varying in size from 1 to 8 km are used by MODCOU (the highest163

resolution is associated with rivers and basin boundaries).164

3.1. Hydrogeologic database

The hydrographic network was derived from the USGS GTOPO30 elevation database165

at a 1 km resolution. The slope is used to derive the direction of the flow, and to compute166

the drainage area of each cell.167

The topography at the 8 km resolution, the river network, and the main basins are shown168

in figure 2. The river network extends over approximately 42000 km, which represents169

about 12% of the 194000 mesh points of the hydrographic network.170

More than 900 rivergages are taken into account in the riverlfow simulations, with an171

upstream area ranging from 240 km2 to 112000km2.172
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Currently the aquifers of only two basins have been simulated: the 3 aquifer layers of173

the Seine basin, and the single aquifer layer of the Rhone basin (figure 3). The aquifer174

parameters were calibrated by Gomez et al., (2003), and Golaz et al., (2001), respectively,175

and were already used in previous applications of SIM for these basins.176

However, aquifers are more widespread in France. The main aquifers defined in the177

French Hydrogeological Reference database (BD RHF, http://sandre.eaufrance.fr ) and178

those simulated are shown in figure 3. In those areas where an aquifer is present but not179

explicitly simulated (grey shaded areas in figure 3), the subgrid drainage parameter was180

calibrated in order to sustain the summer riverflows. Everywhere else, the parameter is181

set to 0.182

3.2. Soil and Vegetation parameters for ISBA

The ISBA parameters are derived from the ECOCLIMAP database (Masson et al.,183

2003). However, an improved version of the ECOCLIMAP database was developed for184

the SIM application.185

This database uses a Lambert II projection at a 1 km resolution for both the vegetation186

and the soil parameters (as opposed to approximately 10km for the soil map in the global187

ECOCLIMAP database).188

The vegetation classification (figure 4) is based on the Corine Land Cover CLC 1990189

database, associated with a climate map (Masson et al., 2003). This database is quite190

accurate for the forested areas, vineyards and urban areas, but it does not distinguish191

the various crops that are aggregated into a single class and distributed over very large192

domains. In order to be able to distinguish winter and summer crops, as was done in the193

Adour study (Habets et al., 1999b), it was decided to better define the crop classes, using194
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the 10-day NDVI (Normalised Vegetation Index) archive of SPOT/VEGETATION for the195

year 2000 at a 1km resolution. Using differences in the NDVI profiles, the crop classes196

of Corine were split into 20 subsets (referred as C1, C2, .. to C20 in the following). The197

distribution of these crop types within the main basins is presented figure 4. Among the198

large basins, the Seine basin is the most cultivated, with 60 % of the surface covered by199

crops. The Loire and Adour-Garonne basins have about the same crop surfaces (54 and200

51 %, respectively), whereas the Rhone basin is the least cultivated large basin (31%),201

primarily because the eastern part of the basin is mountainous.202

The crop partition is different within each basin: the 2 dominant crop types represent203

half of the cultivated area of the Seine basin, while in the other basins, it represents only204

one fifth (figure 4) .205

The 10-day NDVI cycles of the dominant crop types are presented in figure 5. The206

NDVI cycle cannot be used to directly identify the type of the crop class, however the207

class C7, which is dominant in the Adour-Garonne basin with a maximum NDVI from208

July to September, is representative of summer crops, especially Maize. In contrast, the209

C1 class, with a very narrow cycle, and which is mostly present in the North of France, is210

associated with winter crops, such as wheat, as well as the classes C8 and C9 dominant211

in the Seine and Loire basins.212

In order to derive the ISBA vegetation parameters, the ECOCLIMAP correspondence213

tables were used. The annual LAI (leaf area index) cycle is based on the 10-day NDVI214

tendencies, with the extreme values of the LAI fixed for each vegetation type (from 0 to 4215

m2/m2 for crops). Then the 10-day evolution of the vegetation fraction, roughness length,216

and albedo are derived using the formulations given by Masson et al., 2003. For the other217
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vegetation types, the annual cycle was re-computed at a 10-day time step instead of the218

monthly time step used in the ECOCLIMAP global database.219

The soil map used in the Ecoclimap France database is taken from the INRA 1km220

soil geographical database (Base de données géographique des Sols de France -BDGSF-221

www.gissol.fr/programme/bdgsf/bdgsf.php). Only the percentages of sand and clay are222

used to define the soil parameters for ISBA (Noilhan and Lacarrère, 1995).223

3.3. Atmospheric database

Data from more than 1000 surface meteorological stations and more than 3500 daily224

raingages were analysed by the SAFRAN system. SAFRAN has been used to produce225

an atmospheric database at an hourly time step over the France domain, for the period226

starting in August 1995 and ending in July 2005. A detailed presentation and assessment227

of the 8 variables analysed by SAFRAN for the years 2001-2002 and 2004-2005 can be228

found in Quintana-Segúı et al., 2007. Therefore, only the main characteristics of the229

10-year precipitation database are presented here.230

The mean annual precipitation over the 10-year period is shown figure 6. As can be231

expected, precipitation is abundant in the mountains, and also, along the Atlantic coast.232

The south-eastern border of the Massif Central experiences heavy rainfall primarily in the233

fall season which leads to significant annual precipitation totals.234

The Seine and Loire basins in the North receive less precipitation (802mm/year235

and 835mm/year, respectively) than the southern basins that are more mountainous236

(944mm/year and 1186mm/year for the Garonne and Rhone basins, respectively). The237

year 2000-2001 is the wettest for all of the basins, and the year 2001-2002 is the driest for238

all basins except the Seine (encapsulated graphs in figure 6). Snowfall, is shown in the239
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top of the histogram in figure 6. It is a key component of the Rhone basin precipitation240

and comprises 29% of the total. Despite the presence of the Pyrenees mountain range,241

snowfall is less significant in the Adour-Garonne basin, where it represents only 5.7% of242

the total precipitation. It represents less than 3% in the two other basins.243

The monthly cycle of precipitation presents a similar pattern for almost all the basins on244

average over the 10 years. Precipitation has two maxima in the year: one in winter, and245

one in spring (figure 7). The cycle is less pronounced for the northern basins, where the246

average rainfall ranges from 1.58 to 3.2 mm/day in March and November, respectively,247

than in the southern basins where it ranges from 2 to 5 mm/day.248

4. Evaluation of the hydrometeorological modelling

The 10-year integration of the SIM system was assessed using various data, either local249

or spatially integrated, and either instantaneous or averaged over a certain time period.250

This section presents the comparison of the simulation with the daily observed riverflows,251

the piezometric levels and the snow depths.252

4.1. Comparison with observed riverflow

Figure 8 presents the daily riverflows at the rivergages located closest to the outlet of the253

4 largest rivers of France which are not affected by the tide (the location of the rivergages254

can be seen figure 10). The observed riverflows are plotted using dark circles, and the255

simulation is represented by the continuous lines. The Garonne at Lamagistere has the256

smallest upstream area (50430 km2), and logically has the lowest average discharge, but257

it has higher flood peaks than the Seine basin at Poses (wich has an upstream area of258

65686 km2). This is due to the fact that the Garonne encompasses part of the Pyrennees259
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and Massif Central mountains, where heavy orographically enhanced precipitation can260

occur, while the Seine basin overlays a widespread aquifer, which tends to reduce the261

winter flood peaks and to sustain the summer low flow. The Loire at Montjean sur Loire,262

which has the largest upstream area (110356 km2) has an average discharge almost two263

times lower than that of the Rhone at Beaucaire, which has a smaller contributive area264

(96412 km2). This results because the Rhone basin encompasses part of several mountain265

ranges, notably the Alps. The Rhone rivers had 2 large flood events during the period266

under investigation, in December, 2002, and December, 2003. Unfortunately, observed267

discharge data have not been available at Beaucaire since 2003.268

SIM is capable of representing the dynamic of the flows measured at these 4 rivergages.269

However, some deficiencies can be seen. For instance, SIM tends to underestimate the270

summerflow of the Rhone at Beaucaire. This is mainly due to the fact that the model271

does not take into account the numerous dams used for hydro-electricity power in the272

Alps which tend to sustain the summerflow. As for the Garonne and Loire rivers, the273

recession of the flood peaks are too fast in the model. This is partially due to the fact274

that the main water tables are not simulated in those 2 basins.275

To quantify the ability of the SIM system to represent the daily riverflows, two statistical276

results are used: the discharge ratio (qsim/qobs) and the efficiency, E, (Nash and Suttcliff,277

1972). These statistical criteria were computed at a daily time scale over the full period278

with available observations. The SIM system is able to simulate the riverflows at the279

outlet of these 4 main basins with a good accuracy, corresponding to an efficiency ranging280

from 0.68 to 0.88, and an error on the discharge ranging from −10% to +6%.281
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Figure 9 presents the results obtained by SIM over 610 rivergages with available data,282

as a function of the surface of the rivergage basin. Each circle represents a rivergage, and283

the linear regression line is shown (it appears as an exponential, due to the log x-axis284

unit). Of course, there are more stations with a small area (below 1000km2), than with285

a large area (above 10000 km2). The index of agreement (Willmot, 1981) is above 0.8 for286

most of the rivergages, and there are few river gages with an index of agreement below287

0.6. In general, the bad results for these stations are due to the fact that either the river288

is influence significantly by dams (e.g. Durance and Isere rivers), or that they are have289

non-negligible interaction with a large aquifer that is not explicitly taken into account290

(e.g. Somme and Leyre rivers). There is a clear link between the quality of the simulation291

and the surface of the river basin: Figure 9 shows that the average efficiency is close292

to 0.5 for the small riverstations, while it is around 0.7 for the larger ones. Moreover,293

there is a larger ratio of rivergages with a very good efficiency (above 0.8) for the larger294

basins. There are several factors that lead to the overall better results for the large basins.295

One key point is that the forcing data has larger errors for small basins (essentially the296

precipitation). In the large basins, some errors in the upstream basin can be compensated297

for downstream, leading to overall better results. The same kind of compensation can298

occur for the description of the geological and surface properties. An additional reason299

could be that the human activities (dams, derivation, pumping, ...) can have relatively300

larger effect on the small basin discharge. Finally, larger errors may be due also to the301

faster hydrologic response of those basins which cannot be reproduced by the relatively302

simple river routing model used herein.303
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The encapsulated graph presents the histogramm of the efficiency. The maximum of304

the histogramm is reached for an efficiency between 0.6 and 0.7 (121 rivergages). 101305

rivergages have an efficiency above 0.7, and only 20 have values above 0.8. That implies306

that more than 36% of the rivergages was associated with a daily efficiency over the full307

period that can be considered as ”rather good” (E > 0.6) , and 16% as ”fair” (E > 0.7).308

Another 30 % of the rivergages have an efficiency that can be considered as reasonable309

(0.55 < E < 0.65). There are 97 stations with an efficiency below 0 (very poor, not shown310

in figure 9), which represents 15% of the rivergages, and is comparable to the large scale311

study by Henriksen et al. (2003). This subset includes all of the rivergages which are312

significantly affected by dams.313

The discharge error is close to zero on average, but is more scattered for the small314

basins than for the larger basins. The encapsulated histogram is centered on zero, which315

is consistant with the results of the regression fit.316

Figures 10 and 11 present the spatial repartition of the efficiency and of the discharge317

ratio, with the results at each gage and their associated river network. As expected, the318

results are quite good for the main rivers. Nonetheless, some areas have poor results in319

terms of efficiency: notably the Alps and the Northern portion of the domain. For the320

Alps, this is mainly due to the fact that this region is used to produce hydropower, and the321

natural riverflows are perturbed by numerous dams. To a lesser extent, some of the water322

is also used for irrigation or drinking water. Similar results were also found in previous323

studies in the Rhone and Garonne basins (Etchevers et al., 2001a,b,2002, Habets et al.,324

1999, Morel 2003). In the upper mountains, there is relatively little water extraction, and325

most of the water is simply stored in reservoirs for hydropower. This is not the case in the326
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lower Durance, where a significant part of the water is diverted for irrigation and drinking327

water. It can be seen in figure 11 for the Alps that although the efficiency is poor, the328

discharge is well estimated with an error below 10%. Poor results in the two rivers in the329

northern part of France are due to the fact that a large aquifer which is closely connected330

to the rivers is not yet simulated by SIM. The discharge is underestimated in one of the331

2 rivers, and it is estimated quite well for the other one. Except for these 2 regions, the332

results are quite homogeneous over all of France.333

As the simulated period covers contrasting climates, it is of interest to look at the time334

evolution of the statistical results. In order to be able to compare the statistics from335

year to year, it is essential to have a homogeneous set of rivergage time series. Therefore,336

the rivergages with more than 200 days of observations available each year were selected.337

Moreover, in order to be able to aggregate the results, another criteria was added: the338

efficiency should be positive each year. There are 140 rivergages that fit these criteria.339

The corresponding results are presented in figure 12 for 5 large basins, and on average340

for all of France. The discharge ratio and the efficiency are shown, together with their341

regression fits which give the overall tendency. The statistical results vary from year to342

year. In addition, they also vary from one basin to the next, but, there are some common343

characteristics when looking at the efficiency: the best results are obtained in the year344

2002-2003, while the worst are found in one of the 3 following years: 1995-96 2001-02345

or 2004-05. The results are less homogeneous in terms of the discharge ratio. It tends346

to decrease during the entire time period for the Loire and Garonne basins, leading to a347

reduction of the error on the Loire, and to an increase on the Garonne. There is no clear348

signal in the Rhone and Seine basins. Over all of the France, there is a slight tendency349
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for the discharge ratio decrease, with an underestimation around 8% at the end of the350

period. In general, there is no clear relation between the efficiency and the error in the351

discharge of a given year. However, it appears that the model obtains worst results in352

terms of efficiency during the dryest years. This is clearly seen in figure 13 where the353

observed annual discharge is shown along with the resulting efficiency on the average for354

each of the 5 basins and for all the selected stations. The difficulty with dry periods can355

have several explanations: i) the low flows are sustained by the various water tables, and356

only a few of them are explicitly represented in SIM ii) processes associated with dryness357

or low soil moisture are perhaps poorly simulated by the SIM model, and iii) part of the358

error is probably due to the human management of the river (not taken into account by359

SIM), since both the effect of the dams, and the pumping in rivers or from the watertables360

have more impact during the period of low flow. However, figure 13 shows that although361

the results tend to improve when the observed discharge increases, the best results are362

not obtained for the wettest year.363

4.2. Comparison with observed piezometric head

Piezometric head is thoroughly monitored in France, and numerous data are available.364

For the Seine basin, the piezometric gages were selected in order to keep only the rep-365

resentative ones, i.e., those that are not impacted by pumping, and those that are not366

too close to a river. Thus, 43 observation sites were chosen, with data available for the367

10 year study period. Such a selection was more difficult in the Rhone basin because368

the watertable is along the river: therefore only 8 gages were retained. The location of369

the selected piezometric gages as well as the average bias between the simulation and the370

observation of the piezometric head are shown in figure 14. There are some points where371
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the absolute bias is above 10m, especially for the Rhone basin. However there are 20372

gages for which the absolute bias is lower than 2m. One such gage is located in the Rhone373

basin, and the other ones are spread over the 3 aquifer layers of the Seine basin. Figure374

15 presents the comparison between observed and the simulated piezometric head for the375

4 gages encircled in figure 14. The amplitude of variation of the Rhone aquifer at Genas376

is rather weak, because the aquifer level is constrained by the river. For the Seine basin,377

the annual amplitude varies from gage to gage. However, for almost every gage, there is378

an increase of the piezometric head during the wet year 2000-2001, and a clear decrease379

in 2003-2004. These evolutions are well captured by the model.380

4.3. Comparison with the observed snow depth

The snow accumulation and melt are key components of the water and energy budgets.381

The comparison with observed and simulated snow depths is possible at some meteorologic382

observing stations and at numerous mountain sites. In order to be sure of the quality of the383

observed data set, only the stations that observed at least 30 days of non-zero snow depth384

during the 10-year period are selected. Moreover, the comparison between observations385

and the simulation are made only if the altitude of the grid cell is close to that of the386

station (less than 150m difference). With this selection criteria, 505 stations with snow387

depth measurements were selected. As the snow cover depends mostly on the altitude388

in France, figure 16 presents the daily comparison between observed and simulated snow389

depths for altitude bands. The number of station varies for each level from 19 for the390

upper level (above 2000m) to 179 for the level 250-750m. However, the observations are391

not available each day at all stations, so that the number of stations used to compute392

the average varies from day to day (with a minimum of 2 stations). As expected, the393
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snowpack generally lasts longer and is deeper as the altitude increases. The snowpack394

has large interannual variations which vary at each level. However, the plotted evolution395

is affected by the number of gages used to compute the average which vary each day. In396

order to be able to estimate the temporal evolution of the snow pack, the snow depth397

simulated by SIM on average for all the stations selected for each level is presented in398

the bottom left panel of figure 16. In this figure, the same number of points are used399

everyday, thus leading to a real temporal evolution. The bias and the squared correlation400

between observation and simulation are given in figure 16. The model is able to reproduce401

the observed evolution of the snowpack. The bias is rather low on average (around 3cm402

up to 10cm at the highest level), even if the error can be large at times. The squared403

correlation is low for the lowest level where the snowpack does not last long, and reaches404

0.7 at the highest level. Figure 17 presents about the same data set, but on an annual405

basis. The annual evolution of the snow pack is well estimated by the model, with the406

squared correlation which reaches 0.9 for all levels except the lowest one. However, there407

are systematic errors in the two highest levels: an underestimation of the snow depth from408

January to February for the level 1250m-2000m, and, in contrast an overestimation of the409

snow depth from September to January for the level above 2000m, and during the melting410

period in May-June. It is difficult to estimate how such systematic error may affect the411

water budget and the simulation of the streamflows, since those results are affected by412

the availability of the observations. For instance, it can be seen on the lower right panel413

that the maximum snow depth is simulated in February, whereas it appears to be in early414

May in the comparison with the observations for the upper level.415
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4.4. Water and energy budgets at the basin scale

The simulated annual water and energy budgets can be partially assessed using the416

comparison between observed and simulated discharges. For that, there is a focus only on417

the largest subbasins, using the rivergages with the longest observation periods. Figure 18418

presents the results for the 4 main basins (Rhone at Beaucaire, Seine at Paris, Garonne419

at Tonneins and Loire at Nantes). For these basins, the discharge error for the whole420

period represents +63, +24, -15 and +50 m3/s, which corresponds to an average error in421

mm/year of +26,+18,-10,+14, respectively (see Table 1). The error for the Rhone basin422

is the largest. This is due in part to the large anthropogenic impact, which consists in423

numerous dams and canals in the Durance and Isere river basins. For instance, in 2003424

in the Durance subbasin, the total quantity of water derived to sustain human activities425

(irrigation, drinking water, cooling of energy plants, ...) was 37m3/s, which represents426

approximately half of the error at Beaucaire for this single subbasin (data available on427

the web site www.rhone-mediterrannee.eaufrance./telechargement/index.php). However,428

it is difficult to estimate which part of this water is going back to the river network.429

A simple estimation of the evaporation error at the basin scale can be made by assuming430

that all of the discharge error only results from evaporation. This implies several stong431

hypotheses: i) there is no error in the precipitation at the basin scale, ii) there is no error432

in the observations of the riverflow iii) there is no error in terms of the estimation of the433

water storage in the soil, the snowpack, the aquifers and the rivers at the annual scale,434

and iv) the water storage in the dams is not significant on a annual scale. Using this435

estimated error, it is possible to analyse the spatial and temporal evolution of the water436

and energy budgets.437
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The annual evaporation is quite similar for the 4 bassins, ranging from 573 mm/year on438

average for the Seine basin to 634 mm/year on average for the Garonne, with an annual439

amplitude of about ±100mm/year (which is quite smooth over the 10-year period: table440

1). On average over the 10-year period, the estimated evaporation error represents about441

4% of the annual flux. However it varies from year to year, and can reach 8% of the442

annual evaporation and even 15% in the Rhone basin in 2000-2001 (table 1). The Rhone443

basin is the only large basin for which the total runoff is about the same magnitude as444

the evaporation (about 590mm/year). For the other basins, the total runoff is about two445

times lower than the evaporation. The evolution of the annual runoff is less smooth than446

the annual evaporation and more closely follows the annual variation of the precipitation.447

In terms of the energy budget, only the latent heat flux error can be estimated, and one448

cannot determine how this error affects the sensible, ground heat and the net radiation449

fluxes. Thus, the estimated latent heat flux error is presented independently of the other450

energy budget terms. This error, expressed in W/m2, varies from −0.8W/m2 in the451

Garonne basin to 1.7W/m2 in the Rhone basin. It is striking that the error estimated on452

the latent heat flux roughly accounts for 10% of the sensible heat flux, and that they are453

of the same order of magnitude in the Rhone basin in 2000-2001. Indeed, the averaged454

annual sensible heat flux ranges between 15.3W/m2 in the Rhone basin to 19W/m2 in the455

Loire basin. Its annual evolution can be rather smooth as in the Rhone basin (from 10456

to 20 W/m2) or more pronounced as in the Seine basin (from 6 to 30 W/m2). The net457

radiation is 10 % larger in the Garonne basin than in the Seine or Rhone basins. But for458

all of the basins, the annual evolution of the net radiation is quite smooth, with a total459

amplitude of ±6%.460
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Figure 19 shows maps of the Bowen ratio and the ratio of the evaporation to precipi-461

tation. The two maps show large contrasts over France. The largest value of the Bowen462

ratio are along the southern Alps (where the snowfall is significant, thus limiting the463

evaporation, but where the incoming radiation fluxes are large), along the Mediterranean464

coast (including Corsica), and for two areas along the west coast. Half of the areas where465

the Bowen ratio is above 0.75 correspond to areas where the average annual rainfall is466

below 650mm/year or where the net radiation is above 80W/m2. The residual is mostly467

located in Corsica and along the eastern Mediterranean coast, and corresponds to the468

regions where the precipitation can be intense. Here, relatively few rain events produce469

large amounts of precipitation primarily during the fall season, and they produce large470

proportion of runoff, thereby reducing the evaporation rate. This is also the reason why471

the evaporation in this Mediterranean region represents less than 75% of the precipita-472

tion, even in areas where the precipitation is lower than 650 mm/year, as is the case for473

instance in the ”Bouches du Rhone” site indicated in figure 19. In contrast, the area in474

the Vienne department (cf flag on the maps) has both a large value of the Bowen ratio and475

of the ratio of the evaporation to precipitation. The other areas, where at least 75 % of476

the precipitation evaporates, are located around the Seine basin and the Garonne Valley.477

Such results are consistent with those obtained by Rousset et al., (2004) and Voirin-Morel478

(2003), respectively, for different time periods than examined in the current study.479

Figure 20 shows the time evolution of the soil wetness index for the 3 points indicated480

in figure 19. In addition to the sites in the Vienne and Bouches du Rhone departments,481

one site in the Creuse department was selected as being representative of a weak Bowen482

ratio and an average E/P ratio . The 10-year average value of the fluxes for these483
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3 sites are given in table 2. The soil wetness index is computed from the expression484

SWI = (wtot − wwilt)/(wfc − wwilt), where wtot is the volumetric water content of the485

simulated soil column, wfc is the field capacity, and wwilt the wilting point. Thus, a value486

of the soil wetness index above 1 indicates that there is no evaporative water stress, and a487

value of 0 indicates that plant transpiration has ceased. At Creuse site the minimum value488

of the SWI in summer is the highest (just below 0.25 in 2003 and close to 0.5 in 1997),489

which indicates a moderate water stress for the vegetation. On the other hand, the water490

stress is significant in summer at the Bouches du Rhone site, with a SWI below 0.1 during491

4 years out of 10, and a minimal value below 0.02 reached during the exceptionally hot492

and dry summer of 2003. At the Vienne site, the summer value of the SWI is around 0.17,493

with a minimum value of 0.12 in 2005 after a dry winter. In winter time, the maximum494

value of the SWI is below 1, meaning that there is a water stress in winter 5 years out of495

10 in the Bouches du Rhone site, and 2 years out of 10 in the Vienne site. Such a pattern496

does not occur at the Creuse site.497

The encapsulated graph in figure 20 represents the mean annual evolution of the soil498

moisture. The Creuse and Vienne sites have similar temporal evolutions, with a drier499

soil at Vienne (0.55 on average) compare to Creuse (0.75 on average). The temporal500

evolution of the SWI is sligthly shifted in the Bouches du Rhone site, with an increase501

of the SWI starting early September due to significant precipitation, and the maximum502

value is reached in November, with a 10-year average value of 0.5.503

Another interesting result which can be obtained with the SIM system is the evaluation504

of the total volume of the water that reaches the Mediterranean sea, via the large rivers505

but also the smallest. This is of interest since this component of the water budget of506
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the Mediterranean sea is not well-known. The simulated hydrographic network takes into507

account 80 rivers that flow to the Mediterranean Sea (30 are located in Corsica), and508

only 30 of them have a basin larger than 250 km2. According to the simulation, 2287509

m3/s flows to the Mediterranean sea on average every year. 80% of this flow is from the510

Rhone river, and 91% by the 10 largest Mediterranean rivers (2 being located in Corsica).511

Most of those Mediterranean rivers are located in mountainous regions, characterised by512

a significant snow cover in winter, leading to a smaller fraction of the precipitation that513

evaporates (55% on average).514

5. Conclusion

The hydrometeorological model SAFRAN-ISBA-MODCOU (SIM) was extended to all515

of France in order to have a homogeneous estimation nationwide of the water resource.516

The 10-year simulation was compared with daily riverflow, piezometric head, and snow517

depth observations. SIM obtained reasonable results (efficiency above 0.55) for more than518

66 % of the 610 rivergages simulated, and rather good results (efficiency above 0.65) for519

more than 36 % of them. It was found that worse results were obtained during the driest520

years, which is more likely due to the fact that only few aquifers are simulated explicitly.521

These comparisons show that SIM is quite robust both in space and time, and gives522

a good estimation of the water fluxes. As the ISBA surface scheme is used in weather523

forecast and climate models, it is important to estimate the quality of the simulated latent524

heat flux. The comparison with the observed riverflow, associated with some hypotheses,525

permits an estimation that the error is less than 4% on annual average.526

Since 2003, the SIM system has been used operationally at Meteo-France: for each D,527

it performs an atmospheric analysis and hydrological simulation of day D-1. It is the first528
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time that such a system is used to monitor the water budget of France in real time, and529

especially, to estimate the soil wetness. The soil wetness can be used to estimate the flood530

risk, or to monitor the spatial and temporal evolution of a drought. Such information531

is now part of the national hydrological bulletin of the French environnment ministry532

(www.eaufrance.fr), which is published monthly.533

The SIM operational application is also used to prescribe the initial condition for an534

ensemble riverflow forecasts system over all of France. The 10-day ensemble precipita-535

tion forecast are taken from the Eucopean Centre for Medium-Range Weather Forecasts536

(ECMWF), and then disaggregated in space. They are then employed as an input for the537

ISBA-MODCOU hydrometeorological system to make 10-day forecasts of the riverflows538

(Rousset et al., 2006 Rousset et al., 2007).539

As in the NLDAS and CALDAS projects (Mitchell et al., 2004, Balsamo et al., 2006),540

the operational hydrometeorological model SIM can also be used to prescribe the initial541

soil moisture conditions of a mesoscale weather model. Some first attempts have been542

made with the Meso-NH mesoscale model (Donier et al., 2003) and such an approach543

could be generalised in the near future.544

It is planned to increase the period of time covered by the SIM system in order to be able545

to use it for climatological and statistical analyses. For instance, in the Seine basin, 18546

years of the SAFRAN analysis were used with the ISBA-MODCOU hydrometeorological547

model in studies by Boé et al. (2006) and Boé et al. (2007) in order to disaggregate in548

space and time the simulation of a climate model. It was also used estimate the ability549

of this climate model to reproduce the observed present day conditions.550
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6. figures

Figure 1: The SIM hydrometeorological model consists in of three independant modules:675

the SAFRAN atmospherical analysis, the ISBA land surface model, and the MODCOU676

hydrogeological model677

Figure 2: Topography and hydrographic network678

Figure 3: Simulated aquifers (cells) and main aquifers as defined in the BDRHF (Base679

de Données sur le Référentiel Hydrogéologique Franais; http://sandre.eaufrance.fr) hydo-680

geolocical database (dashed)681

Figure 4: The main types of vegetation from the ecoclimap-france data base682

Figure 5: The 10-day evolution of the NDVI for the main crop types683
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Figure 6: Mean annual precipitation in mm/year. The encapsulated graph presents the684

annual precipitation for each year on average over the selected basin685

Figure 7: Mean monthly precipitation averaged on the main basin686

Figure 8: Daily observed (black circle) and simulated (line) riverflows at the outlet of687

the four main rivers. The scale vay for each gage. The title includes the mean observed688

discharge on the period Qobs, the discharge ratio Qsim/Qobs and the efficiency E.689

Figure 9: Efficiency (top), discharge error (middle), and index of agreement (bottom)690

for each simulated rivergages plotted versus the upstream area of the rivergages. The691

circles represent the rivergages, and the line is the linear regression (x-axis is log). The692

encapsulated graphs represent the histogramm of the statistical results.693

Figure 10: Spatial representation of the efficiency for each rivergage and the correspond-694

ing river network.695

Figure 11: Spatial representation of the discharge ratio for each rivergages and the696

corresponding river network.697

Figure 12: Evolution of the efficiency (circles) and discharge ratio (squares) on average698

on 5 large basins and on average for all of France. Only the rivergages with more than699

200 days available each year (and with positive values of the efficiency) were taken into700

account. Their number is indicated on the plots701

Figure 13: Relation between the efficiency and the observed discharge on average on702

the selected rivergages of each basin. The line correspond to the linear regression for a703

given basin704

Figure 14: Spatial distribution of the bias on the 10-year simulation of the piezometric705

head simulated by SIM706
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Figure 15: Evolution of the observed (symbol) and simulated (line) piezometric head707

for one given station over each layer of the Seine and Rhone aquifers708

Figure 16: Snow depth observed (black dots) and simulated (crosses) average on several709

gages according to their altitude (the average is computed each day on the stations with710

available data). The bottom right panel presents the evolution of the simulated snow711

depth on the selected stations of the 4 levels (the same number of stations is used each712

day to compute the average). Levels 750-1250m : black thick line; 1250-2000 gray line;713

over 2000m thin black line. The square correlation (R2) and the bias in cm (B) are given714

in the subtitle715

Figure 17: Same as previous figure but on average on an annual cycle716

Figure 18: Water and energy budgets over the 4 main basins. The thick black line is717

the total precipitation (Precip), and its thickness represents the snowfall. Evaporation718

(Evap), total runoff (Runoff) and latent heat flux (LEW) have an error bar that was719

estimated according to the error between the observed and simulated discharge. This720

error is shown in the energy budget pannel (bottom pannel) (Err) in order to compare721

with the net radiation (RN) and the sensible heat flux (H).722

Figure 19: 10-year average bowen ratio (H/LE) (left) and 10-year average ratio of the723

evaporation to precipitation (right).724

Figure 20: 10-day evolution of the soil water index (SWI) on the 3 sites plotted in figure725

19. The encapsulated graph is the annual average726

7. tables

table 1: Main characteristics of the water budget of the 4 main basins: E: mean annual727

evaporation, RO: mean annual total runoff, Err: averaged 10 years annual error computed728
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Table 1. Main characteristics of the water budget of the 4 main basins: E: mean annual evaporation, RO: mean annual
total runoff, Err: averaged 10 years annual error computed with the observed riverflow (in mm/year and in W/m2), Err/E:
percentage of the error compared to the mean annual evaporation, max Err: maximal annual error on the 10 years period,
estimated with the observed riverflow, max Err/E: percentage of this maximal error compared to the annual evaporation
of the year, year max: year where the error is maximal, RN: Net radiation, H: sensible heat flux, LE: latent heat flux.

Basin Rhone Seine Garonne Loire
Beaucaire Paris Tonneins Nantes

Surface (km2) 96412 43509 50430 112187
P (mm/year) 1189 820 956 834
E (mm/year) 590 573 634 574

RO (mm/year) 599 243 324 259
Err (mm/year) 26 18 -10 14

Err/E 4.4% 3.1% 1.6% 2.4 %
max annual Err (mm/year) 92 42 -51 49

max annual Err/E % 15% 8% -9% 8%
year max annual error 2000-2001 2003-2004 2004-2005 2000-2001

Err (W/m2) 1.7 1.5 -0.8 1.1
RN (W/m2) 63.0 61.8 68.7 64.5
H (W/m2) 15.3 16.4 18.4 19.1
LE (W/m2) 46.9 45.6 50.3 45.6

with the observed riverflow (in mm/year and in W/m2), Err/E: percentage of the error729

compared to the mean annual evaporation, max Err: maximal annual error on the 10 years730

period, estimated with the observed riverflow, max Err/E: percentage of this maximal731

error compared to the annual evaporation of the year, year max: year where the error is732

maximal, RN: Net radiation, H: sensible heat flux, LE: latent heat flux.733

table 2: Mean annual water and energy budget on the 3 gridcells indicated in figure734

19 Precip: total precipitation, Evap: evapotranspiration, H: sensible heat flux, LE: latent735

heat flux (same as Evap, but expressed in W/m2), RN: Net radiation, E/P: ratio of the736

evaporation over the precipitation, H/LE: Bowen ratio737
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Table 2. Mean annual water and energy budget on the 3 gridcells indicated in figure 19 Precip: total precipitation, Evap:
evapotranspiration, H: sensible heat flux, LE: latent heat flux (same as Evap, but expressed in W/m2), RN: Net radiation,
E/P: ratio of the evaporation over the precipitation, H/LE: Bowen ratio

Site Precip Evap H LE RN E/P H/LE
mm/year mm/year W/m2 W/m2 W/m2

Vienne 637 507 34 40 76 0.80 0.88
Bouches du Rhone 650 428 29 34 63 0.65 0.86

Creuse 1167 675 12 53 65 0.58 0.22

1) un peu de texte738
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Figure 1. The SIM hydrometeorological model consists in three independant modules: the SAFRAN atmospherical analysis,
the ISBA land surface model, and the MODCOU hydrogeological model
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Figure 2. Topography and hydrographic network
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Figure 3. Simulated aquifers (cells) and main aquifers as defined in the BDRHF (Base de Données sur le Référentiel
Hydrogéologique Franais; http://sandre.eaufrance.fr) hydogeolocical database (dashed)
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Figure 4. The main types of vegetation from the ecoclimap-france data base
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Figure 5. The 10-day evolution of the NDVI for the main crop types
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Figure 6. Mean annual precipitation in mm/year. The encapsulated graph presents the annual precipitation for each year
on average over the selected basin
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Figure 7. Mean monthly precipitation averaged on the main basin
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Figure 8. Daily observed (black circles) and simulated (lines) riverflows at the outlet of the four main rivers. The scale
vay for each gage. The title includes the mean observed discharge on the period Qobs, the discharge ratio Qsim/Qobs and
the efficiency E.
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Figure 9. Efficiency (top), discharge error (middle), and index of agreement (bottom) for each simulated rivergages plotted
versus the upstream area of the rivergages. The circles represent the rivergages, and the line is the linear regression (x-axis
is log). The encapsulated graphs represent the histogramm of the statistical results.
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Figure 10. Spatial representation of the efficiency for each rivergage and the corresponding river network.

D R A F T June 20, 2007, 4:07pm D R A F T



HABETS ET AL.: THE SIM MODEL APPLIED OVER FRANCE X - 47

Rhone at Beaucaire

Garonne at La Magistere

Loire at Montjean

Seine at Poses

Discharge ratio

Qsim/Qobs>0.9

0.9<Qsim/Qobs<1.1

Qsim/Qobs>1.1

resu_stat.bf_coul Events

Figure 11. Spatial representation of the discharge ratio for each rivergages and the corresponding river network.
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Figure 12. Evolution of the efficiency (circles) and discharge ratio (squares) on average on 5 large basins and on average for
all of France. Only the rivergages with more than 200 days available each year (and with positive values of the efficiency)
were taken into account. Their number is indicated on the plots
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Figure 13. Relation between the efficiency and the observed discharge on average on the selected rivergages of each basin.
The line correspond to the linear regression for a given basin
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Figure 14. Spatial distribution of the bias on the 10-year simulation of the piezometric head simulated by SIM
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Figure 15. Evolution of the observed (symbol) and simulated (line) piezometric head for one given station over each layer
of the Seine and Rhone aquifers
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Figure 16. Snow depth observed (black dot) and simulated (cross) average on several gages according to their altitude (the
average is computed each day on the stations with available data). The bottom right panel presents the evolution of the
simulated snow depth on the selected stations of the 4 levels (the same number of stations is used each day to compute
the average). Levels 750-1250m : black thick line; 1250-2000 gray line; over 2000m thin black line. The square correlation
(R2) and the bias in cm (B) are given in the subtitle
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2) un peu de texte739
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Figure 17. Same as previous figure but on average on an annual cycle
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Figure 18. Water and energy budgets over the 4 main basins. The thick black lane is the total precipitation (Precip), and
its thickness represents the snowfall. Evaporation (Evap), total runoff (Runoff) and latent heat flux (LEW) have an error
bar that was estimated according to the error between the observed and simulated discharge. This error is shown in the
energy budget pannel (bottom pannel) (Err) in order to compare with the net radiation (RN) and the sensible heat flux
(H).
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Figure 19. 10-year average bowen ratio (H/LE) (left) and 10-year average ratio of the evaporation over the precipitation
(right).
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Figure 20. 10-day evolution of the soil water index (SWI) on the 3 sites plotted in figure 19. The encapsulated graph is
the annual average
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