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Abstract: This article presents different formulae to estimate correlation length-scales, and an evaluation of their qualities for

practical diagnostic applications. In particular, two new and simple formulae are introduced, which only require the computation

of correlation with a single point for a given direction. It is then shown in a 1D heterogeneous context that all formulations lead to

similar realistic length-scale values, and that they represent geographical variations rather well.

The estimation of length-scales within a finite ensemble is also studied. While a positive bias occurs when the ensemble size is too

small, the standard deviation of the length-scale estimation is shown to be the main influence on the estimation error. The spatial

structure of sampling noise is then diagnosed, and effects of spatial filtering techniques on the bias and standard deviation are

illustrated.

Finally, an ensemble of perturbed forecasts from a global NWP model is used, showing a real application example.
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1 Introduction

In order to objectively determine initial conditions for

numerical weather prediction, modern data assimilation

schemes rely on specified error statistics to obtain an

approximately optimal combination of observations and

a background given by a short-range forecast. This near-

optimal analysis is derived from statistical estimation

theory. In this framework, the two sets of information are

associated with covariance matrices corresponding to their

respective errors. The error covariance matrices determine

the respective weights given to each piece of information

in the analysis. However, the correct specification of those

statistics remains a major challenge in data assimilation

systems.

The structure of correlation functions is particularly

important, as it determines how the observed information

is filtered and propagated spatially. Typically, when the

background error structure is large scale, the correlation

functions are relatively wide. This implies that small scale

observed details tend to be filtered out in the analysis

step, and that locally observed information is propagated

on large spatial distances (Daley, 1991). Diagnostics of

the length-scale of background error correlation functions

are often used as an approximate indicator of the degree

∗Correspondence to: Météo-France CNRM/GMAP, 42 av. G. Coriolis,
31057 Toulouse Cedex France. e-mail: olivier.pannekoucke@meteo.fr

of spatial smoothing. Following the classical definition

of a differential length-scale by Daley (1991, p110),

the length-scale diagnosis describes the curvature of the

correlation functions near their origin. Thus, the smaller

the length-scale is, the faster the correlation decreases

with distance.

As illustrated by several authors (Hollingsworth,

1987; Bouttier, 1993; Rabier et al., 1998; Ingleby 2001,

Belo Pereira and Berre, 2006; Deckmyn and Berre, 2005),

this length-scale diagnosis also gives information about

atmospheric dynamic (Ingleby, 2001) and data density

effects (Bouttier, 1993) on the background error spatial

structures. Therefore, it is attractive to be able to diag-

nose and to interpret length-scales at different locations.

This is all the more important as ongoing research is

devoted to the representation of existing heterogeneities

and anisotropies (e.g. Fisher, 2003; Buehner, 2005).

In this paper, the local length-scales have been

approximated by different formulae. A first purpose of the

paper is thus to evaluate the ability of these various for-

mulae to diagnose the geographical variations of the local

length-scales.

In addition, with the availability of forecast ensem-

bles, it is possible to calculate flow-dependent background

error covariances ”of the day” (Kalnay, 2002). However,

the finite size of the ensemble induces a sampling noise,

which is detrimental for the covariance estimation.
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Regarding correlations, the sampling noise has been

studied mostly with respect to long distance correla-

tion values, which were identified as particularly noisy

(Houtekamer and Mitchell, 2001). By contrast, relatively

little is known about the level of noise in the estimated

local length-scales. A second purpose of the current paper

is thus to study this sampling noise in length-scale esti-

mates.

The current paper deals with the length-scale as a

diagnostic of exisiting correlation estimates. The focus

is not on modelling correlation functions on the basis of

estimated length-scales, althaugh this is another potential

application in the future.

The structure of the paper is as follows. In sec-

tion 2, different formulae for length-scale are derived from

Daley’s definition. Experimental results are illustrated in

section 3, in a simple 1D analytical framework. Section 4

shows the sensitivity of length-scale estimation to the

ensemble size and the spatial structure of sampling noise.

Section 5 presents the comparison of two length-scale for-

mulae, in the spherical case, using an ensemble of per-

turbed forecasts from the French NWP model Arpège.

2 Length-scale formulae

One of the main issues for a data assimilation system is

to better specify the background error covariance matrix

B = E(εbε
T
b ), where εb is the forecast error assumed

unbiased. In order to characterize the curvature of the cor-

relation functions near their origin, length-scale diagnosis

is often introduced.

The differential length-scale is defined in data assim-

ilation following Daley (1991, p110). The definition is

similar to the turbulent microscale. In this section, the

Daley length-scale is reviewed, and formulae are derived

to approximate it.

The decomposition of covariances into standard devi-

ations and correlations is common e.g. in variational

schemes. This is appropriate if standard deviations and

correlations do not vary much on scales smaller than the

correlation length-scale.

2.1 Daley formula

For a smooth and isotropic correlation function ρ at the

origin, the Daley length-scale is given by

LD =

√

− 1

∇2ρ(0)
, (1)

in one dimension and LD =
√

− 2
∇2ρ(0) in two dimen-

sions. This length-scale is proportional to the turbulent

(or Taylor) microscale which is similarly defined. This

formula is obtained from a Taylor expansion of the cor-

relation at the origin ρ(0):

ρ(δx) ≈ ρ(0) +
δx2

2

d2ρ

dx2
(0) = 1 − δx2

2L2
D

. (2)

The isotropic assumption is required in order to ensure

the continuity of the second order derivative at 0, i.e.
d2ρ
dx2 (0−) = d2ρ

dx2 (0+). A geometrical interpretation of this

definition of length-scale is given as the scale for which

the tangential parabola at the origin is equal to 0.5.

This is illustrated in the top panel of Fig. 1, where a

correlation function (solid line) and its tangential parabola

at the origin (dashed line) are represented. The length-

scale deduced from the above geometrical interpretation

is LD = 250 km, for this particular correlation function.

The length-scale is also related to the curvature of the

correlation function, at the origin. The radius of curvature

of the correlation function at the distance r is defined by

R(r) =

“

1+( dρ
dx (r))

2
”3/2

d2ρ

dx2 (r)
. At the origin, dρ

dx (0) = 0 leading

to R(0) = 1
d2ρ

dx2 (0)
= −L2

D.

Note that the Daley length-scale does not give infor-

mation about the correlation anisotropy. Moreover, it

requires the knowledge of the second order derivative

of the correlation function. The calculation of this sec-

ond order derivative can be rather costly, as ideally it

should involve the calculation of the whole correlation

function. The next subsections will thus describe conve-

nient approximations of this formula.

2.2 Belo Pereira-Berre formula

Belo Pereira and Berre (2006) (hereafter noted B&B)

have proposed a relatively costless formula for the com-

putation of length-scale. Under local differentiability and

local homogeneity assumptions, the variance of the spa-

tial derivative of the forecast error can be approximated

by (σ(∂xεb(x)))
2

= (∂xσ(εb(x)))
2 − (σ(εb(x)))

2
∂2

xρ(0),
where ∂x = ∂

∂x is the derivative along the coordinate.

From the Daley length-scale definition, it follows:

LB&B =

√

(σ(εb(x)))
2

(σ(∂xεb(x)))
2 − (∂xσ(εb(x)))2

, (3)

where σ (εb(x)) is the standard deviation of εb(x). This

formula method requires the computation of forecast error

standard deviation, its gradient and also the standard

deviation of the gradient of forecast error. In the case of

a periodic domain, the computation of the gradient can be

done either in grid-point space or in spectral space.

2.3 Parabola-based and Gaussian-based formula

As suggested by equation (2), a direct discretization of

the Laplacian appearing in Eq. (1) leads to a simple

expression of the length-scale

LPb =
δx

√

2 (1 − ρ(δx))
. (4)

This length-scale is called hereafter the parabola-

based length-scale (Pb). It is based on the approximation

of the correlation function by a parabolic function, as rep-

resented in Fig. 1. As suggested by the example shown in

Copyright c© 2008 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 134: 497–511 (2008)
DOI: 10.1002/qj



BACKGROUND ERROR CORRELATION LENGTH-SCALE ESTIMATES AND THEIR SAMPLING STATISTICS 499

C
o

rr
e
la

ti
o

n
 v

a
lu

e
C

o
rr

e
la

ti
o

n
 v

a
lu

e

Distance (km)

Distance (km)

LD

0 100 200 300 400 500 600 700 800 900 1000

0.0

0.5

1.0

0 100 200 300 400 500 600 700 800 900 1000

0.0

0.5

1.0

Figure 1. Top panel : Gaspari and Cohn (see section 3.1) correlation

function (solid line) and its tangential parabola (dashed line).

Bottom panel : Parabolic (dashed line) and Gaussian (dash-dotted

line) approximations at the origin of the correlation function (solid

line), determined by its value for δx = 248km, on a regular grid

(crosses).

the bottom panel of Fig. 1, for some separation distances

(those smaller thant the chosen distance δx), the parabolic

function may decrease less quickly (from the origin to the

chosen distance δx) than the true correlation function.

This suggests that the quality of the parabolic length-

scale approximation may depend on the quality of the

correlation function approximation and on the considered

separation distance δx. Experiments indicate that the sen-

sitivity to the choice of δx is relatively small, and that

using a small value for δx provides a somewhat more

accurate estimate of the length-scale. In this paper, δx
corresponds to the resolution of the grid (i.e. the smallest

possible δx).

In order to study this sensitivity to the correlation

shape approximation, it is thus interesting to consider

another analytical model of the correlation function ρ
near the origin. By approximating the correlation at the

origin by a Gaussian, the following equation is obtained:

ρ(δx) = exp(− δx2

2 L2
D

). Inverting this equation to extract

the length-scale formulation, associated to correlation at

distance δx, brings

LGb =
δx

√

−2 ln ρ(δx)
. (5)

This length-scale is called hereafter the Gaussian-based

length-scale (Gb). This approximation of the length-scale

computation is easy to implement in real applications

and costless. The bottom panel of Fig. 1 illustrates the

Gaussian approximation at the origin of the discretized

correlation function.

Note that when the correlation is close to one, then

both Parabola-based and Gaussian-based length-scales are

equal. Let η = 1 − ρ, then a Taylor expansion leads to

LPb = LGb = δx√
2η

.

2.4 Directional length-scale

Formulae (4) and (5) can be defined along an arbi-

trary direction as follows. Let δx be the displacement

in a direction u = δx

|δx| of the domain (circle, plane,

2D-sphere, 3D-sphere,...). Then the vectorial parabola-

based and Gaussian-based length-scale are thus defined by

replacing δx by δx in equation (4) and (5). Thus it offers a

characterization of the correlation for different directions.

Similarly, formula (1) and (3) can be defined direc-

tionally for an anisotropic correlation function. For equa-

tion (1), it consists in replacing ∆ρ(0) by ∂2ρ
∂u2 (0+) =

limt→0+ 2 {ρ(t u) − 1} t−2, which is the second order

derivative, calculated in the oriented direction u, of the

anisotropic correlation function. For equation (3), the

directional length-scale is obtained by calculating the gra-

dients ∂uεb and ∂uσ(εb), where ∂u is the derivation along

u.

It should be noted that these length-scales can be

calculated whether the domain is bounded or not. Thus

such formulations are suitable in oceanography or for a

limited area model, as well as for a global meteorological

model.

In the particular case of a 1D domain, one can

define a directional parabola-based left length-scale as

LPb(−δx) and a right length-scale as LPb(+δx). A sim-

ilar definition is given for the directional Gaussian-based

length-scale. Thereafter, the left directional length-scale

is designed by a superscript − and the right one by the

superscript +. Note that the ratio L+

L−
is an indicator of

anisotropy.

2.5 Other length-scale formulae

The length-scale can be approximated in other ways, by

considering various analytical expressions for correlation

ρ(δx) = f(δx, LD). (6)

The main constraint is that the formula for f has to be

invertible. Thus the length-scale can be deduced from

the correlation value, associated to a particular grid, with

LD = f−1 (δx, ρ(δx)). The choice of a particular relation
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between correlation and length-scale may arise from esti-

mated correlation functions. It might depend on the physi-

cal field, or on the model used to represent the correlation

function in the system.

For instance, if a SOAR function (Daley, 1991, p117)

is a good model to approximate the correlation function,

then one has to invert Eq. (6), with f(δx, L) = (1 +
δx
L )e−

δx
L . This inversion can be achieved by using a

Newton algorithm to resolve F (L) = 0, with F (L) =
ρ(δx) − f(δx, L) where δx and ρ(δx) are given.

Moreover, it can be noticed that such development

may be applied on more complex diagnosis in 1D, 2D and

3D.

In the following, the 1D circle and the 2D sphere will

be considered in order to illustrate the theory.

3 Application in a 1D analytical heterogeneous

framework

3.1 A simple 1D analytical framework

Following Pannekoucke et al. (2007), a simple 1D ana-

lytical framework is considered to evaluate the quality of

the various formulations of length-scale explored in this

paper. In this framework, the geographical domain is sup-

posed to be the equatorial circle of radius a, and the coor-

dinate x
a is the angle of the geographical position, varying

from 0 ◦ to 360 ◦. On this circle, only one field is con-

sidered. A homogeneous Gaussian correlation tensor, is

produced following Bh(x, y) = e
− (x−y)2

2L2
H , where x and y

are two points on the circle, and LH is the length-scale,

which is here arbitrarily set equal to LH = 250km. More-

over, two non-Gaussian homogeneous correlation tensors

have been also defined. The first one is based on Gaspari

and Cohn (1999 Eq 4.10) as Ch(x, y) = ρL(x − y) with

ρL(r) =






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, L ≤ r ≤ 2L,

0, 2L ≤ r,

and L =
√

0.3LH in order to obtain the same theoretical

length-scale as in the Gaussian case. The second non-

Gaussian homogeneous tensor is similarly defined with

the Second Order Auto Regressive (SOAR) correlation

(Daley, 1991 p117) ρ(r) = (1 + r
LH

)e
− r

LH . The spectra

on the circle of these three correlations are represented in

figure 2.

Then, a heterogeneous correlation is computed using

a c-stretching Schmidt transformation (Courtier and

Geleyn 1988), adapted to the circle and defined by

h(x) = a
[

π − 2Atan
(

1
c tan(π

2 − 1
2

x
a )

)]

with c = 2.4 (the

Schmidt transformation is used for a different purpose in

the Arpège global stretched model to obtain a variable

Wave number
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Figure 2. Spectrum of the Gaspari and Cohn correlation (solid line),

of the Gaussian correlation (dashed line), and of a SOAR correlation

(dash-dotted line).

resolution). Its inverse is denoted by h−1. The resulting

heterogeneous correlation tensor is

B(x, y) = Bh

(

h−1(x), h−1(y)
)

, (7)

which provides correlation functions that are relatively

sharp around 180 ◦, and broad around 0 ◦.

A discretized version of these correlation tensors on

a given grid leads to covariance matrices, that depend

on the resolution of the grid. For a given truncation T ,

the number of grid points is Ng = 2T + 1 and the homo-

geneous associated resolution is then δx = 2πa
Ng

. In this

paper, we will use T = 120 as an example. In this experi-

mental framework, an ensemble of generated background

errors is constructed following the method described by

Fisher and Courtier (1995) : εb = B1/2ζ, where ζ is a

Gaussian random realization with covariance matrix I and

mean equal to zero.

3.2 Computation of length-scales in a heterogeneous

case

For this numerical test, the term (σ(∂xεb))
2

that appears

in the B&B length-scale is formally computed as follows.

At a point index i, the term is

(σ(∂xεb)i)
2

= δT
i DBD∗δi,

with D the differential operator constructed in Fourier

space, and δi the Dirac vector whose value is set to one

at index i and set to zero otherwise. In a similar way, the

Daley length-scale is computed by a direct computation of

the Laplacian at the origin for each correlation function.

The Laplacian is computed in Fourier space.

In the 1D framework, the various formulations of

length-scale are represented in figure 3 for the hetero-

geneous G&C-based correlation tensor and for the het-

erogeneous SOAR-based tensor. The parabola-based and

Gaussian-based length-scales are computed as the mean

Copyright c© 2008 Royal Meteorological Society
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Figure 3. Local length-scales, computed with different formulae, for both G&C correlation tensor (top panel) and SOAR correlation tensor

(bottom panel), discretized on the T120 circle. Daley (solid line), Belo Pereira-Berre (dashed line), mean parabola-based length-scales

(dash-dotted line) and mean Gaussian-based length-scales (dotted line).

value 1
2 (L+ + L−). The Daley length-scale is considered

as being the numerical truth and thus the reference.

In the first experiment, represented in the top panel

of Fig. 3, the analytical tensor is the heterogeneous G&C-

based one. It appears that each length-scale formula is able

to represent the geographical variations of the correlation

structure : large length-scales near 0 ◦, and small ones near
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180 ◦. The differences between the various formulations

are small. The largest discrepancy is encountered for the

parabola-based length-scale.

In the second experiment, represented in the bottom

panel of Fig. 3, the analytical tensor is the heterogeneous

SOAR-based one. Again, all formulations lead to similar

realistic length-scale values.

In the two experiments of Fig. 3 , the parabola-based

results are somewhat less accurate than the Gaussian-

based length-scales. Moreover, in the bottom panel of

Figure 2, the B&B formula is more accurate than the

Gaussian-based formula. This indicates that the length-

scale diagnosis is slightly sensitive to the underlying cor-

relation function approximation (as mentioned in section

2.3).

Finally, it can be concluded that all formulations

lead to similar length-scale values, and the geographical

variations are thus well represented in these simulations.

4 Length-scale sampling statistics

4.1 Ensemble size effects in the circle framework

In practical applications, length-scales are usually esti-

mated from a finite ensemble (e.g. Belo Pereira and Berre

2006). Figure 4 represents the sampling effect on the esti-

mation of the length-scale LD for small ensembles. In this

experiment, the correlation tensor is the heterogeneous

Gaussian tensor on the circle. The true length-scale LD

(dashed line) is compared to estimated length-scales (thin

solid line) from 10 members (top) and from 30 members

(bottom). Length-scale variations are noised by high fre-

quency variations.

Each sample of N members leads to a particular field

of length-scale estimates LN , which can be considered as

a set of random variables. It is thus interesting to know the

expectation E(LN ) of these random variables, and their

other statistical characteristics (standard deviation σ(LN ),
sampling distribution, etc ).

The expectation function E is introduced as follows.

It is numericaly defined, for a field α, as E(α) ≈
1

Ns

∑

k αk where αk are Ns independent realizations of

α. For instance, if LN denotes the length-scale estimated

from N members, E(LN ) ≈ 1
Ns

∑

k LN
k , where LN

k is the

kth length-scale map estimated from the kth sample of N
members. Thereafter, Ns is large and is arbitrarly fixed in

order to ensure stable statistics.

Figure 4 shows that the estimated length-scale E(LN )
is biased : for 10 members, E(L10) 6= L, and the length-

scale bias near 0 ◦ is around 75km (12% of total). More-

over, the standard deviation illustrates an even larger dis-

tortion of the estimated length-scale, namely by 40% for

10 members (resp. 20% for 30 members).

In order to better understand how the finite size of the

ensemble influences the estimation, the sampling distribu-

tion of the length-scale can be computed experimentally.

In the particular case of Parabola-based and Gaussian-

based length-scales, the sampling distribution can also be

deduced analytically, from the sampling distribution of the

correlation ρN between two points separated by a distance

δx. This is shown in the appendix.

4.2 Gaussian-based length-scale sampling distribution

The experimental frequency distribution is represented in

figure 5 for N = 25. It shows that the sampling distri-

bution is positively skewed, and the existence of a bias

bN
Gb = E(LN

Gb) − L∞
Gb. These experimental results are con-

sistent with analytical studies, as shown in the appendix.

Positive skewness implies that large length-scale values

are often encountered with such ensemble sizes.

The full line in Fig. 6 represents the relative error

percentage associated to the bias
E(LN

Gb)−L∞

Gb

L∞

Gb
for a given

discretization δx. In that case, the T120 discretized circle

is considered (δx ≈ 166km) and L∞
Gb = 250km. The error

is large for a small ensemble and tiny for a large one. The

convergence to the infinite-ensemble value is relatively

fast, as it is in O(N−1). For 10 members, the bias ratio

is 10%.

However the standard deviation is larger as shown

now. Figure 6 shows the ratio
σN

LGb

L∞

Gb
where σN

LGb
=

√

E

{

(

LN
Gb − E(LN

Gb)
)2

}

. The behaviour in O(N−1/2) is

observed as expected (see the appendix). For 10 members,

the ratio is 40%. This illustrates the predominance of the

error standard deviation over the error bias in the length-

scale estimation.

4.3 Comparison with other length-scale formulae

Trying to find the sampling distribution of Daley or

B&B length-scale analytically is not easy, because it

depends on the shape of the function and not only on

one correlation. However, numerical experiments indicate

a similar behavior to that of the Pb and Gb cases. Figure 7

shows the sample distribution of length-scale for the four

formulations: Daley, B&B, Pb and Gb. These length-

scales are estimated from a 10 member ensemble. The true

correlation tensor used here is a homogeneous Gaussian

correlation tensor over the T120 discetized circle with

length-scale LH . It appears that the sampling distributions

are similar to each other. In particular, both Daley and

B&B length-scales present some bias.

4.4 The spatial structure of sampling noise

As illustrated in Fig. 4, the spatial variations of the

estimated length-scales tend to be random and spatially

uncorrelated, compared to variations of the exact length-

scales. This suggests that the estimated length-scale field

is affected by a sampling noise, whose amplitude is

relatively large in the small scales (compared to the exact

length-scale field).

In order to explore this issue, energy spectra have

been calculated for geographical maps of the exact length-

scales, of the ensemble-estimated length-scales and of the

corresponding estimation errors. The results are shown in

Fig. 8. As expected from Fig. 4, the ensemble-estimated
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Figure 4. Sensitivity of length-scale estimation to the ensemble size. The true length-scale map (thin dashed line) is compared with

the estimated length-scale (thin solid line) for N = 10 members (top panel) and N = 30 members (bottom panel). The curve of the

expectation E(LN ) (bold solid line) illustrates the existence of a bias, and the usual range E(LN ) ± σ(LN ) (bold dashed lines, where

σ(LN ) is the standard deviation of LN ) offers a representation of the expected range of values reached by the estimated length-scales.

length-scale maps spuriously contain much more small

scale energy than the exact length-scale map. This cor-

responds to the artificial contribution of sampling noise,

whose energy spectrum is close to a white noise.

These results indicate that spatial filtering techniques

based on spectral or wavelet techniques may be worth

considering. This is illustrated in the next subsection.

4.5 Sampling noise reduction through spatial filtering

Background error correlation modeling is often based on

a spectral diagonal approach (Courtier et al., 1998). More

recently, Fisher (2003) has also defined an error corre-

lation modeling with a wavelet diagonal approach. As

discussed in Pannekoucke et al. (2007), using these tech-

niques amounts to spatially averaging the local correlation

functions.

In the spectral diagonal approach, this spatial averag-

ing is global, in the sense that it is calculated as a uniform
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average over the whole domain. In the wavelet diago-

nal approach, this spatial averaging is rather local. This

means that wavelets allow the size of the statistical sam-

ple to be increased, by introducing a local spatial sample

(multiplied by the ensemble sample), while keeping the
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possbility to represent geographical variations.

The efficiency of this wavelet filtering approach has

been illustrated by Pannekoucke et al. (2007) in a 1D

heterogeneous case. Here, we will focus on a 1D homo-

geneous case, in order to illustrate the effect of spatial

filtering on the bias and standard deviation of the length-

scale error.

This 1D case corresponds to a homogeneous Gaus-

sian correlation tensor, discretized on a T120 circle (asso-

ciated to Ng = 241 grid points), with a theoretical length-

scale equal to LH = 250km. An estimation of the cor-

relation matrix, with an ensemble of N members, leads

to a heterogeneous covariance matrix. At a given point

k, the Gaussian-based length-scale at this point is the

mean length-scale LN
e = (L+ + L−)/2. The correlation

modelled with the diagonal assumption in spectral space

is homogeneous, and corresponds to the average of the

Ng estimated correlation functions. The resulting Gaus-

sian based length-scale is thus Lds = (L(ρ̄+) + L(ρ̄−)) /2
where ρ̄+ = 1

Ng

∑

k ρ+
k and ρ̄− = 1

Ng

∑

k ρ−k .

Different random variables are also introduced: LN
ds

is the length-scale resulting from a spectral diagonal

assumption estimated with an ensemble of N mem-

bers ; LN
dw is the corresponding length-scale resulting

from a wavelet diagonal assumption. Relative errors

E(LN
e )/LH − 1 (solid line), E(LN

ds)/LH − 1 (dash-dotted

line) and E(LN
dw)/LH − 1 (dash line) are represented on

the top panel of Fig. 9 for ensemble size N ∈ [6, 200]. This

error corresponds to the bias normalized by the length-

scale LH . As shown in section 4.2, E(LN
e )/LH − 1 con-

verges as O(N−1), while E(LN
ds)/LH − 1 is close to zero

everywhere. E(LN
dw)/LH − 1 is small, although it remains

different from zero even for a large ensemble. This is due

to a known defect of the wavelet diagonal assumption :

length-scale can be under or over-estimated with as much

as 10% error (Pannekoucke et al., 2007).

Then to appreciate the accuracy of the estimation,

the ratios σN
e /LH , σN

ds/LH and σN
dw/LH are also repre-

sented (bottom panel of Fig. 9). These ratios represent

the error standard deviation normalized by the length-

scale LH . Again, σN
e /LH converges to zero as O(N−1/2).

σN
ds/LH converges at the same rate but with a factor close

to 1/17 ≈ 1/
√

Ng : for N = 6, σN
e /LH ≈ 50%, while

σN
ds/LH ≈ 3%. The convergence of σN

dw/LH is between

these two extreme convergences : it has the same rate as

the ensemble, but with a factor close to 1/5 : for N = 6,

σN
e /LH ≈ 50% while σN

dw/LH ≈ 10%.

These results illustrate the property of e.g. a wavelet

formulation to represent the length-scale values with a

better accuracy (here a factor 5) than the direct ensemble

estimation.
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the Gb estimation errors is represented by crosses, which are almost superposed with the Gb map energy, except for wavenumber 1. Note

also that the spectrum of the exact length-scales (solid line) reflects the predominance of wave number 1, in accordance with figure (3).

5 Application to an ensemble of NWP forecasts

An application to an ensemble of NWP forecasts has

been studied, by using an operational non-stretched ver-

sion of the Arpège model (Courtier and Geleyn, 1988),

whose assimilation system is a 4D-Var scheme (Rabier

et al., 2000; Veersé and Thépaut, 1998). The background

error covariance matrix is calculated by using an ensemble

of perturbed assimilation runs (Houtekamer et al., 1996,

Fisher 2003). The detailed results for this Arpège ensem-

ble are described in Belo Pereira and Berre (2006).

The available ensemble consists in a set of 6 fore-

cast differences for each day of the period 9 February to

24 March 2002, and time-averaged covariances are cal-

culated over this 49-day period. Figure 10 presents the

results obtained with the B&B zonal length-scale (top

panel) and with the Gaussian-based zonal length-scale

(bottom panel) for the logarithm of surface pressure. As

in the previous subsection, the zonal gradient in the B&B

length-scale is computed in spectral space. Each formu-

lation represents well the land-sea contrast, and the influ-

ence of the orography, with e.g. larger values over tropical

oceans and smaller values near the Andes. Actually there

are only slight differences between the two formulations

of length-scale. This supports the idea that the Gaussian-

shape assumption near the origin is acceptable, leading to

realistic length-scale values.

It may be mentioned that such maps of length-

scales provide a full vision of geographical variations in

the curvature of correlation functions. Such geographical

variations can thus be examined with more details than

when only plotting correlation functions at a few selected

points on the globe (as e.g. in Baker et al.(1987)). On the

other hand, it should be reminded that length-scales give

information about the correlation curvature near the origin

only, while full correlation functions provide information

about all separation distances. These two diagnostics are

thus to be seen as complementary.

6 Conclusion

Some approximations of the theoretical Daley (1991,

p110) length-scale have been discussed in this paper. In

particular, an economical estimation based on a Gaussian

assumption has been investigated. Firstly, it has been

shown in a 1D heterogeneous context that the different

length-scale formulae provide similar realistic length-

scale values and variations.

Secondly, a study of the sampling distribution of

the estimated length-scales has been carried out, both

analytically and experimentally. It has been shown that

the estimated length-scales are affected by a positive bias

when the ensemble size N is small. This bias converges

towards zero in O(N−1). This bias has been shown to be
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smaller than the estimation error standard deviation. The

latter converges towards zero in O(N−1/2).

In addition, the examination of length-scale geo-

graphical variations and of their energy spectrum indicates

that the sampling noise tends to be uncorrelated spatially

(typically like white noise). This suggest that local space

averaging techniques, such as those based on wavelets,

are worth considering in order to spatially filter sampling

noise.

Finally, the Belo Pereira and Berre formula has

been compared to the Gaussian-Based length-scale on a

2D spherical example from a NWP ensemble data set.

Length-scale values and variations appear to be similar

according to the two formulae. This indicates that the
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Figure 10. Zonal length-scale of the surface pressure logarithm, numerically computed with Belo Pereira-Berre (a) and Gaussian-based

(b) formulae. This is a ’climatological’ average, calculated over 49 days.

assumption that the shape of the correlation function is

Gaussian is reasonable in order to estimate the length-

scale (defined by Daley (1991)).

The possibility to calibrate a correlation model from

length-scale estimates is another potential application of

the considered formulae in this paper, even if this issue

has not been investiagated here. A relatively obvious

limitation is that the knowledge of the length-scales may

not be sufficient to determine an accurate model of the

whole correlation functions, e.g. because length-scales

characterize the curvature of correlation functions near

their origin only. With this perspective in mind, correlation

modelling based e.g. on wavelets may be more attractive

than modelling based e.g. on a Gaussian approximation

and on a specification of length-scales only.

7 Appendix

7.1 Approximation of the correlation sampling distribu-

tion

The Normal distribution of a correlated back-

ground error pair εb = (ε1, ε2) may be written as

fb(εb) = 1
2π|B|1/2 exp

(

−1/2||εb||2B−1

)

, where the

covariance matrix is B =

(

σ2
x ρσxσy

ρσxσy σ2
y

)

, whose

determinant is |B| and whose correlation is ρ. From N
sample values (ε1

1, ε
1
2) . . . (εN

1 , εN
1 ), the corresponding

sample variances are S2
1 = 1

N

∑

k εk
1
2
, S2

2 = 1
N

∑

k εk
2
2
,

and the sample correlation is C = 1
N

∑

k εk
1εk

2/(S1S2).
Of course, S2

1 , S2
2 and C are random variables.

Copyright c© 2008 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 134: 497–511 (2008)
DOI: 10.1002/qj



BACKGROUND ERROR CORRELATION LENGTH-SCALE ESTIMATES AND THEIR SAMPLING STATISTICS 509

Fisher (1953) has expressed the sampling distribu-

tion of C (Kendall et al., 1998, Hotteling, 1953). But this

formulation is in fact too complex, and some approxima-

tions of this sampling distribution must be used. For a

large ensemble, the distribution is close to Gaussian. For

a small ensemble, the distribution is not Gaussian, and its

skewness increases with the correlation value. When N is

not too small, typically N ≥ 25 members, Fisher has pro-

posed a suitable transformation, where the convergence

to Gaussianity of the new variable is accelerated. Then

the random variable Z = tanh−1C follows, with a good

approximation, a Gaussian distribution:

Z ∼ N
(

µZ(ρ,N), σ2
Z(ρ,N)

)

, (8)

with the mean µZ(ρ,N) = ζ + ρ
2(N−1) + ρ(5+ρ2)

8(N−1)2 +

ρ(11+2ρ2+3ρ4)
16(N−1)3 + O

(

N−4
)

where ζ = 1
2 ln

(

1+ρ
1−ρ

)

and

the standard deviation σZ(ρ,N)2 = 1
N−1 + 4−ρ2

2(N−1)2 +
22−6ρ2−3ρ4

6(N−1)3 + O
(

N−4
)

. A simple change of variable

leads to the sampling distribution of correlation

fC(c) =
1

(1 − c2)σZ(ρ,N)
√

2π

exp

{

−1

2

[Z(c) − µZ(ρ,N)]
2

σZ(ρ,N)2

}

,

(9)

where by definition P (C ∈ [c, c + dc]) = fC(c)dc, where

P is the probability measure. The top panel of figure 11

shows this sampling distribution (bold solid line) for N =
25 members and ρ = exp(−δx2/2L2

H) ≈ 0.8. An exper-

imental frequency distribution (solid line) is obtained

numerically for N = 25. It illustrates the accuracy of the

Fisher approximation.

As suggested by the above equations of µZ and of

σ2
Z , the bias and standard deviation of Z converge towards

zero in O(N−1) and in O(N−1/2) respectively. The rates

of convergence are similar for the correlation C.

7.2 Approximation of the Gaussian-based length-scale

sampling distribution

Applying the Fisher’s transformation to length-scale leads

to the sampling distribution of length-scales. The calcula-

tion is given for the Gaussian-based length-scale, knowing

that the parabola-based case is similar.

Actually, for the Gb, correlation must be positive.

Thus the correlation sampling distribution has to be lim-

ited to the positive correlation part. Let χ(0,1] be the

characteristic function defined on [−1, 1] ; it is equal

to one on (0, 1] and null otherwise. The random vari-

able associated to positive correlation is C+ = χ(0,1]C.

Its sample distribution is fC+(c) = Λ(ρ,N)−1fC(c), c >

0, where Λ(ρ,N) =
∫ 1

0
fC(c)dc is the normalization

term ; it can be approximated by Λ(ρ,N) ≈ 1 −
Γ(N)

Γ(N+1/2)
√

2π

(1−ρ2)N/2

ρ (Hotteling, 1953). The change of

variable C+ = exp
(

− δx2

2LN
Gb

2

)

, with LN
Gb the estimator of

the Gb length-scale calculated with a N member ensem-

ble, leads to the sampling distribution

fLN
Gb

(l) =
Λ(ρ,N)−1δx2

2l3 sinh( δx2

2l2 )σZ(ρ,N)
√

2π

exp

{

−1

2

[Z (ρ(l)) − µZ(ρ,N)]
2

σZ(ρ,N)2

}

,

(10)

with ρ(l) = exp
(

− δx2

l2

)

. The bottom panel of figure 11

illustrates the frequency distribution and approximation

of the sampling distribution for both Pb and Gb length-

scales. These results are obtained with the correlation

value ρ ≈ 0.8 of the previous section. It appears that the

analytical approximations of sampling distribution are in

accordance with the experimental frequency distribution,

with a sufficient accuracy.

In the case of an infinite ensemble, the expected

value is L∞
Gb = δx√

−2 ln(ρ))
. In the N -member case, the

resulting sampling distribution is positively skewed, and

LN
Gb is a positively biased estimator: bN

Gb = E(LN
Gb) −

L∞
Gb > 0. Again it can be deduced from the analytical

approximation of the sampling distribution that, when N
is large there is a convergence to zero in O(N−1) for the

bias, and in O(N−1/2) for the standard deviation.

This result is also valid for other length-scale for-

mulae under the assumption that background error distri-

bution is Gaussian.
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