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ABSTRACT
The ADM-Aeolus is primarily a research and demonstration mission flying the first Doppler wind lidar in space. Flex-
ible data processing tools are being developed for use in the operational ground segment and by the meteorological
community. We present the algorithms developed to retrieve accurate and representative wind profiles, suitable for as-
similation in numerical weather prediction. The algorithms provide a flexible framework for classification and weighting
of measurement-scale (1–10 km) data into aggregated, observation-scale (50 km) wind profiles for assimilation. The
algorithms account for temperature and pressure effects in the molecular backscatter signal, and so the main remaining
scientific challenge is to produce representative winds in inhomogeneous atmospheric conditions, such as strong wind
shear, broken clouds, and aerosol layers. The Aeolus instrument provides separate measurements in Rayleigh and Mie
channels, representing molecular (clear air) and particulate (aerosol and clouds) backscatter, respectively. The combin-
ing of information from the two channels offers possibilities to detect and flag difficult, inhomogeneous conditions. The
functionality of a baseline version of the developed software has been demonstrated based on simulation of idealized
cases.

1. Introduction

The Atmospheric Dynamics Mission, ADM-Aeolus, is the fourth
of ESA’s Earth Explorer Missions1 (ESA, 1999; Stoffelen et al.,
2005a). ADM-Aeolus is scheduled for launch in mid-2009 and
has a projected lifetime of three years. Its objective is to demon-
strate the capability to measure wind profiles from space using a
Doppler Wind Lidar (DWL). The need for such data, with high
accuracy and good vertical resolution, has been identified as a pri-
ority for the global observing system (WMO, 2004). The mission
objectives and observation requirements have been designed to
meet scientific goals in user communities in climate research, at-
mospheric modelling and numerical weather prediction (NWP).
The polar orbit facilitates the global data coverage that is re-
quired, providing data also over the oceans which are currently
poorly observed. The DWL will provide layer-averaged wind

∗Corresponding author.
e-mail: david.tan@ecmwf.int
DOI: 10.1111/j.1600-0870.2007.00285.x
1ESA Earth Explorers web site: www.esa.int/esaLP/LPearthexp.html.

measurements and observations2 in 24 layers with configurable
vertical distribution that can be modified in flight. The current
baseline configuration will provide 1000 m vertical resolution
through most of the atmosphere (from 2 to 16 km), 500 m below
2 km, and 2000 m between 16 and 26 km (Fig. 1).

The schematic in Fig. 1 shows the DWL instrument viewing
from a low-altitude (∼400 km) polar orbit in the direction per-
pendicular to the satellite track. Measurements are made in two
receiver ‘channels’: Rayleigh for molecular returns and Mie for
particulates. There is information on the horizontal line-of-sight
(HLOS) wind component only (line-of-sight wind velocity di-
vided by the cosine of the local elevation angle ∼53◦), which
is close to east–west except at high latitudes. The unobserved
wind component and the mass field will have to be statisti-
cally inferred within the data assimilation process (Riishøjgaard
et al., 2004; Žagar, 2004; Stoffelen et al., 2005b; Žagar et al.,
2005; Tan et al., 2007). The instrument will provide 50 km along-
track average winds, separated by 150 km data gaps (Fig. 1);
this is to ensure minimal error correlation between consecutive

2The term ‘measurement’ is used for instrument data characterized by
horizontal scales of between 1 and 10 km, whereas ‘observation’ is used
for aggregated data at horizontal scales of 50 km.
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Fig. 1. Line-of-sight viewing geometry and

proposed vertical distribution of the range

bins (layers) for the ADM-Aeolus satellite,

showing the aerosol (Mie) and molecular

(Rayleigh) channels separately. Courtesy of

ESA.
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Fig. 2. Schematic showing main inputs to the ADM-Aeolus wind retrieval algorithm and the output L2B data. Unshaded boxes indicate that

geolocation information is used to determine the locations of auxiliary meteorological data.

observations (Stoffelen et al., 2005a) and maximize the infor-

mation content while conserving the energy consumption of the

instrument. The accuracy of the ADM-Aeolus wind measure-

ments and observations will depend primarily on the intensity

of the backscattered laser light, which in the Mie channel de-

pends on the presence and optical thickness of clouds, and the

concentration of aerosol (Marseille and Stoffelen, 2003), and in

the Rayleigh channel it depends mainly on the concentration of

molecules (i.e. the density of air) and attenuation by overlying

aerosol and cloud. The expected yield and accuracy of Aeolus

winds has been studied through detailed simulation (Tan and

Andersson, 2005), based on model clouds (from the European

Centre for Medium-Range Weather Forecasts, ECMWF) and cli-

matological aerosol (Vaughan et al., 1995, 1998) distributions.

The literature cited above has noted that ADM-Aeolus of-

fers substantial complementarity to existing wind observing

Tellus 60A (2008), 2
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Fig. 3. Optical receiver architecture for the Aeolus DWL instrument. Courtesy of Astrium Satellites.

systems—to radiosondes, wind profilers and aircraft data by pro-

viding global coverage especially over oceans and away from

the principal flight routes, and to atmospheric motion vectors by

providing profiles with good vertical resolution. Complemen-

tarity to mass/temperature observing systems, that is, radiance

and temperature data, has also been noted—this is regarded as

particularly valuable for determining atmospheric motion on

sub-synoptic scales and in the Tropics, that is, for regimes in

which temperature data and conventional mass/wind balance

relationships are inadequate (both empirically and from theo-

retical/dynamical arguments). Weissman and Cardinali (2007)

showed that DWL observations taken in the North Atlantic from

an airborne platform had a significant positive impact on analyses

and forecasts of the ECMWF forecast system. Increasingly, sim-

ulated Aeolus data are being evaluated against real observations

in NWP data assimilation/forecast experiments. For example,

Tan et al. (2007) developed a technique based on the spread of

an ensemble of data assimilations, to compare the expected im-

pact of Aeolus data to that of the radiosonde and wind profiler

network. They found that Aeolus can be expected to reduce anal-

ysis and short-range forecast uncertainty by an amount compa-

rable to the radiosonde/wind profiler network, with the benefits

being most apparent over oceans and in the Tropics. An underly-

ing assumption of such studies is that the data processing chain,

from raw instrument data up to Level-2B and including the gen-

eration of calibration/characterization data, is able to produce

sufficiently accurate products (errors in HLOS wind estimates

should be below 2 ms−1 throughout most of the atmosphere).

In this paper we describe the ADM-Aeolus Level-2B (L2B)

wind retrieval algorithms which form part of the ADM-Aeolus

data processing chain. The purpose of these algorithms is to ob-

tain representative and accurate winds suitable for use in NWP.

Level-1B (L1B) wind retrievals are not suitable for use in NWP

for a number of reasons, the principal one being that L1B al-

gorithms do not account explicitly for temperature and pressure

effects on the response of the molecular (Rayleigh) channel of

the instrument (see companion paper Dabas et al., 2008). The

L2B algorithms use NWP information to take these effects into

account. The design of the L2B algorithms takes account of the

technical capabilities and constraints of the instrument, for exam-

ple with respect to vertical and horizontal sampling, instrument

pointing stability and zero wind calibration. Quality control and

Tellus 60A (2008), 2
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product confidence indicators are important items that will be

provided with the wind retrievals. In broken cloud scenes, it is

envisaged that separate wind retrievals will be derived for clouds

and clear air. This will be done through selective averaging of

measurement-scale data in the layers of clear air above clouds,

from cloud-top layers, from layers in and below thin clouds,

and from layers with sufficient aerosol in the lower parts of the

atmosphere.

The ADM-Aeolus is primarily a research and demonstration

mission that will provide many opportunities for assessing the

benefits of space-based wind profile information, and for defin-

ing the steps towards future operational DWL missions. Given

the experimental nature of the mission, it has been recognized

that data processing needs to have sufficient flexibility to explore

the full potential of the mission data. The L2B wind retrieval

algorithms discussed herein are likely to evolve during the mis-

sion. The evolution is expected to be relatively minor, but of

course any changes will be thoroughly documented. The L2B

software will be freely available to the meteorological commu-

nity. The software has been designed to be portable, and specifi-

cally to run in three different contexts: (1) real-time processing at

NWP centres with an interest to assimilate ADM-Aeolus winds

within their own forecasting systems; (2) operational processing

at the ECMWF to produce wind retrievals for delivery to ESA

shortly after real time and (3) re-processing at ESA for situa-

tions in which delays in data delivery prevent processing within

the ECMWF operational schedule, and to accommodate future

algorithm improvements and upgrades.

The scope and purpose of the L2B wind retrieval processor is

described in Section 2. Detailed descriptions of the algorithms

are given in Section 3. Examples illustrating the behaviour of

the retrieval, classification and error estimations are provided in

Section 4, followed by concluding remarks in Section 5.

2. The scope and purpose of the Aeolus wind
retrieval algorithms

The algorithms outlined in this paper are involved in calculating

the L2B HLOS wind observations at the 50 km scale based on

ADM-Aeolus measurements and instrument performance data.

They were derived primarily to form part of a piece of software

that creates the ADM-Aeolus Level-2B (L2B) data products.

Based on the calibrated measurements (L1B) as inputs, they ap-

ply the modifications, corrections and additions required to ob-

tain accurate and representative HLOS winds suitable for assimi-

lation by NWP systems, as well as the appropriate quality control

flags and uncertainty estimates. Key features of Aeolus prod-

ucts are summarized in Table 1. The so-called Level-2C (L2C)

product is a superset of the L2B product and will be described

elsewhere. Briefly, it contains additional output from ECMWF

assimilation of L2B data, that is, ECMWF analysed winds at

the Aeolus data locations. Thus, L2B products are intermedi-

ate between L1B and L2C data. Level-2A products (information

on aerosol and cloud layer optical properties) are described by

Flamant et al. (2008).

The operational production of L2B data will be done at

ECMWF slightly behind real time, just before the assimilation

(and production of L2C) is carried out. The L2B processing uses

a priori information on the state of the atmosphere at the time

and place of the Aeolus L1B measurements. This information

is best provided by the background fields of the NWP system,

that is, the fields predicted by the forecast model run from the

previous analysis. Meteorological background data, interpolated

in the vertical plane along the flight track will also be created and

delivered to ESA to facilitate re-processing of the Aeolus L1B

data at a later time, and for off-line calibration tasks. Figure 2 is

a schematic diagram showing the various data sets involved in

creating the L2B data. It is envisaged that for their own purposes,

many meteorological centres other than ECMWF will produce

L2B data with local background inputs, and according to the

timeliness constraints of their own operational NWP systems.

2.1. The ADM-Aeolus instrument

The payload of the ADM-Aeolus mission is a single DWL in-

strument. The instrument is a high-spectral resolution lidar oper-

ating in the ultraviolet, at wavelength λ0 = 355 nm. The Doppler

frequency shifts �ν of the returned (elastic backscatter) atmo-

spheric signals provide profile information on wind velocity

along the instrument’s line-of-sight vLOS,

�ν = −2
vLOS

λ0

(1)

while the signal amplitudes provide information on particle lay-

ers and their optical properties. The signal amplitudes also pro-

vide product confidence data, including error quantifiers, for the

wind and particle information.

Although more details on the measurement principles under-

pinning the instrument are given in other papers from this vol-

ume (Dabas et al., 2008; Flamant et al., 2008) and elsewhere

(Reitebuch et al., 2006), we summarize here the points most rel-

evant for understanding the Level-2B wind retrieval algorithms.

The solid curve in fig. 1 from Dabas et al. (2008) shows a nom-

inal frequency spectrum measured by the instrument while the

dashed curve shows how the spectrum is shifted in the presence

of a 50 ms−1 LOS velocity. The spectral return from particles

(aerosol, cloud) contributes the sharp narrow peaks and the spec-

tral return from molecules contributes the broad portions (nearly

Gaussian but modified by temperature and pressure effects). The

instrument includes both a Mie receiver and a Rayleigh receiver

designed to detect, respectively, the particulate and molecular

return signals (Fig. 3). The Mie receiver is based on the fringe

imaging technique with a Fizeau interferometer used in a mode

where it forms an interference fringe whose spatial position is

wavelength dependent, that is, a Doppler shift translates into a

lateral displacement of the fringe. The Rayleigh receiver is based

Tellus 60A (2008), 2
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Table 1. The main ADM-Aeolus data products

Typical size

(Megabytes per

Product level Description orbit) Comments

Level 1B Engineering-

corrected

HLOS winds

21–70 Near-real-time product. Spectrometer data at

measurement scale, HLOS wind profiles using

algorithms that do not account explicitly for

scene classification nor for Rayleigh-Brillouin

(pressure/temperature) effects.

Level 2A Aerosol and cloud

layer optical

properties

7–10 Off-line product. See Flamant et al. (2008)

Level 2B Meteorologically-

representative

HLOS winds

13–18 Shortly after near-real-time for operational

products (generated at ECMWF), potentially

near-real-time for other meteorological

centres (depending on schedule). HLOS wind

profiles using algorithms that (a) group

measurements according to a

scene-classification procedure and (b) account

explicitly for Rayleigh-Brillouin

effects—making use of NWP estimates of

atmospheric temperature and pressure,

typically from a short-range forecast. Subset

of Level 2C products.

Level 2C Aeolus-assisted

wind vectors

19–24 Superset of Level 2B products. Adds ECMWF

analysed winds (2 horizontal components) at

the ADM-Aeolus locations, and

supplementary product confidence data

derived during assimilation of Level 2B data

at ECMWF. The analysed winds take into

account other atmospheric observations and

the ECMWF forecast model through the data

assimilation scheme.

on the double-edge technique with a sequential Fabry-Perot, it-

self including two band-pass filters ‘A’ and ‘B’ which produce

two signal outputs that are then used in ecartometry mode to

estimate the Doppler shifts. The two filters are centred on the

edges of the backscattered molecular spectrum and placed sym-

metrically with respect to the laser central wavelength. Using

the reflection on interferometers and polarization optics to per-

form the spectral separation, the atmospheric return signal first

enters the Mie receiver and subsequently the Rayleigh receiver.

The detector used for both channels is an Accumulation Charge

Coupled Device (ACCD) with a 16 by 16 pixels useful image

zone and optimized for ultraviolet sensitivity.

2.2. Measurements, observations and wind retrievals

L1B data are the instrumental input to the L2B processor. The

L1B data set contains Aeolus measurements and observations

and associated auxiliary parameters of one orbit, typically con-

sisting of about 200 independent observations. Both the L1B and

L2B observation scale wind retrieval are computed from N Mie

and Rayleigh measurements, each measurement itself being the

result of the on-board analogue accumulation of P laser returns

with an ACCD detector (see Fig. 4). In the standard operating

mode of the Lidar, N = 14 (up to 20 if laser warm-up pulses

are considered) and P = 50, defining what is called the ba-

sic repeat cycle (BRC). Given the satellite ground-velocity of

∼7.6 km s−1, and a pulse repetition frequency (PRF) of

100 s−1, one measurement integrates the atmospheric return

over a horizontal distance of (P = 50) × (7.6 km s−1)/

(PRF = 100 s−1) = 3.8 km. The N contiguous measurements

that make up one observation are representative of the wind field

over a horizontal distance (N = 14) × 3.8 km ≈ 50 km (or

≈70 km if warm-up pulses are kept and N = 20). Note that

the starting points of two consecutive observations are separated

by 200 km, that is to say there is a 150 km data gap between

consecutive 50 km observations.

Tellus 60A (2008), 2
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Fig. 4. Diagram showing the geometry of ADM-Aeolus measurements and observations. During one basic repeat cycle (BRC) of the laser, N
measurements are acquired each resulting from the on-board analogue accumulation of P atmospheric returns generated by P laser pulses. One BRC

corresponds to 50 km on the ground (Fig. 1).
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km) into several partial or complete wind profile retrievals (right). The grey shading represents a broken cloud layer and the coloured squares

represent classification of individual measurements in categories: green represents measurements above the broken cloud layer, yellow are the cloud

top returns, red are between broken clouds, and blue are cloud free.

The L2B processor has access to the L1B data at mea-

surement scale (3.8 km). This gives essential information on

the heterogeneities of the atmosphere within one observation

(50 km) and can help detect those situations which may lead

to large measurement or representativeness errors in wind re-

trievals. In order to create representative averages within an ob-

servation, the measurements may be grouped into several cat-

egories each containing a profile of Mie and Rayleigh winds

measured in similar homogeneous conditions.

An idealized meteorological situation that would result in sev-

eral separate wind retrievals within a 50 km Aeolus L2B obser-

vation is illustrated in Fig. 5. The N Mie (or Rayleigh) measure-

ments forming the observations are shown on the left. Single al-

titude, broken clouds can be seen in the left half, blocking some

(in this case every second) of the measurements while others

penetrate to the surface. The measurements in green above the

cloud layer are averaged level-by-level to form the first retrieval

containing only the three top-most levels. The cloud returns (yel-

low) are grouped into a second profile, in this case limited to a

single level. The measurements from clear air between or below

clouds (red) are averaged to form the third profile with valid

winds from the surface to the altitude of the cloud layer. Finally,

measurements from the second, homogeneous half of the scene

(blue) produce the fourth wind profile retrieval.

2.3. L2B processing

In this section, we describe the effects and influences that need

to be accounted for within the calculation of Aeolus L2B wind

retrievals.

2.3.1. Spatial coordinates. The vertical coordinate of Aeolus

L1B data is the height above the reference WGS84 ellipsoid

whereas NWP models typically work with heights above the

mean sea-level. The difference between the two altitudes may

be several tens of meters, which is less than the thickness of range

bins (250 m–2 km) but still cannot be neglected in contexts with

strong vertical gradients in the wind. A conversion has thus been

implemented which takes as reference the EGM96 geoid (see

http://cddisa.gsfc.nasa.gov/926/egm96/).

2.3.2. Cross-talk between the Mie and Rayleigh channels.
L2B processing of Mie channel data needs to account for contri-

butions from the broad returned Rayleigh spectrum; such contri-

butions are generally regarded as one component of background

light. L2B processing of Rayleigh channel data needs to ac-

count for temperature and pressure dependence of the molecular

backscatter (Rayleigh-Brillouin). It also needs to account for the

possibility that reflections from the Mie channel’s Fizeau inter-

ferometer enter the Rayleigh channel.

2.3.3. Temperature and pressure effects. L1B Rayleigh winds

are obtained by converting the response of the dual Fabry-Perot

Tellus 60A (2008), 2
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(defined by the difference of photons counted at the output of

Fabry-Perot A and B divided by their sum) into a Doppler shift

through the use of a response calibration curve. The true response

curve depends on the atmospheric conditions in the sensing vol-

ume via the shape of the temperature- and pressure-dependent

spectrum of the Rayleigh-Brillouin spectrum of the scattered

light. In the presence of aerosol and clouds, Mie signal contami-

nates the Rayleigh signal, thereby modifying the response curve

of the double Fabry-Perot. The Rayleigh winds must therefore

be corrected for pressure, temperature and residual Mie light ef-

fects. Details of the correction scheme are presented by Dabas

et al. (2008). As it requires prior knowledge on the actual temper-

ature and pressure inside the sensing volume, it will necessarily

be applied at L2B level which has access to NWP data. For each

Rayleigh wind, the output will be

(i) A Rayleigh HLOS wind corrected from pressure and

temperature effects, using prior estimates Pref and Tref.

(ii) The derivative aR of the corrected wind with respect to

the Rayleigh response (needed for error quantifier, see below).

(iii) The derivative aT of the corrected wind with respect to

the temperature.

(vi) The derivative ap of the corrected wind with respect to

the pressure.

These last two coefficients (sensitivities) permit optional further

refinement of the correction when incrementally improved tem-

perature and pressure estimates become available during NWP

assimilation of atmospheric observations:

vHLOS (T , P) = vHLOS (Tref, Pref)

+ aT (T − Tref) + ap (P − Pref) . (2)

It is worth noting that the use of meteorological parameters (tem-

perature and pressure estimates) in the L2B wind retrieval im-

plies some correlation of errors between the wind estimates and

the NWP model supplying the meteorological parameters. The

correlation is directly proportional to the sensitivity coefficients

reported in the L2B product, and is in fact rather small—as can

be inferred from figs. 5 and 7of the companion paper by Dabas

et al. (2008).

The correction of the impact of Mie residue in the Rayleigh

signals can be carried out at the same time. This requires informa-

tion on the amount of Mie light at the receiver. This information

cannot be obtained from the NWP model because the aerosol

backscatter is not a model parameter and it cannot easily and

reliably be related to existing model parameters: it must be esti-

mated from the measured signals themselves, which in principle

is possible by comparing the strength of the signals registered

on the Mie and Rayleigh channel (the former one being mostly

sensitive to particle backscatter while the latter one is mostly

representative of the molecular return). Note that, due to the low

sensitivity of the Rayleigh response to Mie contamination (see

companion paper Dabas et al. 2008), the estimation of the rela-

tive contribution of particle backscatter does not need to be very

accurate.

2.3.4. Effect of atmospheric heterogeneities. An essential

task of the L2B processor is the identification of the atmospheric

situations that are likely to produce large errors in the retrieved

wind velocities. Cloud and aerosol structures are often spatially

intermittent leading to potentially large signal differences from

one measurement to the next at the same height. Measurements

with relatively low signal-to-noise ratio can potentially deterio-

rate the wind estimate due to their high noise contributions. Here

signal-to-noise ratio is defined as the useful signal divided by the

detection noise associated with the useful signal and background

light. Data points with strong Mie returns may be flagged because

of the potential for the Mie returns to contaminate the detected

signal in the Rayleigh channels. Large variability of strong Mie

returns likely signals the presence of turbulence and vertical mo-

tion. In such cases, the optimal weighting of the strong and weak

Mie and Rayleigh measurements has to be done with great care to

ensure that spatially representative wind estimates are obtained.

Stratification of aerosol or cloud structures within a range

bin (layer) may cause strong vertical gradients in the extinction

profile resulting in vertically non-uniform contributions of laser

light returning from within that range bin. In such conditions

the retrieved wind would not represent the true mean wind over

the layer. Without knowledge about the detailed stratification the

wind retrieval can only be assigned to the mid-point of the layer,

potentially incurring a significant height assignment error. How-

ever, it may be possible to flag the conditions in which this type

of height assignment error is likely to occur, by careful scrutiny

of differences in returns between subsequent range gates in the

Mie and Rayleigh channels. Rayleigh signal height assignment

problems could also be tackled by redistributing the available

(24) Mie range bins to over-sample parts of the troposphere.

3. HLOS wind retrieval—the details

In this section we give details of the L2B wind retrievals from the

Mie and Rayleigh channels, together with their associated error

quantifiers. L2B products contain other ancillary parameters of

a more technical nature, which will be described elsewhere. For

the sake of brevity we do not include in this paper a number

of preliminary steps related to the quality control and screening

of Level-1B input data. Broadly speaking, these involve check-

ing that the various parameters of interest are within reasonable

bounds. Precise details, including the threshold values applied,

can only be given after the mission’s in-orbit commissioning

phase.

In the introduction we referred to the need for flexibility in the

data processing. This flexibility is manifested in the HLOS wind

retrieval algorithms through their formulation in terms of weights

wi,k given to range gate (or layer) i of measurement k. The two

indices are thus indicative of the two directions: i is in the vertical

and k in the horizontal. For clarity of exposition, we present the

Tellus 60A (2008), 2



198 D. G. H. TAN ET AL.

wind retrieval algorithms in terms of weights that are assumed

given. We follow this with a baseline specification for how these

weights are assigned for the examples presented in Section 4,

and indicate what we consider to be the most promising options

for alternative specifications to be explored during the mission

lifetime.

3.1. L2B Mie channel HLOS wind estimate

The Mie-channel retrieved HLOS wind (vHLOS) is computed

from the atmospheric return detected by the Mie channel (vATM)

and three correction terms. Two of these correction terms ac-

count for the laser internal reference path (vREF) and the satellite

velocity relative to the ground (vSAT). The third correction is

known as the ground wind (vG) correction term, and corrects for

instrumental offsets that arise even for an atmospheric volume

in which the wind velocity is zero, as expected for the range bins

that intercept the Earth’s surface. Consequently, the retrieved

Mie HLOS wind is obtained by

vHLOSi = vLOSi

cos ϕ
(3)

vLOSi = vATMi − [vREFi + vSATi + vG], (4)

where ϕ is the local elevation angle and i is the range-bin (or

layer) index.

The atmospheric and internal reference LOS velocities, vATM

and vREF, are computed from the Doppler shift δ by two similar

expressions:

vATMi = −1

2
λ0δATMi /sATM (5)

vREFi = −1

2
λ0δREFi /sREF. (6)

The factor −λ0/2, with the wavelength λ0 = 355 nm, converts

Doppler shifts into LOS wind velocities. The Doppler shift in

frequency units is given by the ratio of the Doppler shift in CCD

pixel units δ, and an instrument response parameter s (to the first

order equal to the frequency span γ = 1500 MHz of the CCD,

the so-called useful spectral range, divided by the useful number

n = 16 of CCD pixels). For the atmospheric path and the internal

reference path these are denoted by subscripts ATM and REF,

respectively. In an ideal instrument, the Doppler shift in pixel

units would be the pixel position of the peak of the interference

fringe output by the Fizeau interferometer and imaged onto the

accumulation CCD, which we denote by δm . However, to account

for non-ideal non-linear response of the actual instrument, the

Doppler shift in pixel units δ is computed from δm with a further

non-linearity correction E:

δATMi = δm
ATMi

− EATM

[
δm

ATMi

]
. (7)

δREFi = δm
REFi

− EREF

[
δm

REFi

]
. (8)

Non-linearities are characterized regularly by a proper calibra-

tion procedure. It remains to specify how δm
ATMi

and δm
REFi

are

computed. These are the result of applying the Mie core algo-

rithm (Reitebuch et al., 2006) to the spectrometer readouts r
(vector of the n = 16 numbers of photons counted by the n = 16

accumulation CCD pixels):

δm
ATMi

= Mie Core[rATMi ] (9)

δm
REFi

= Mie Core[rREFi ]. (10)

The inputs to the Mie Core algorithm are the weighted spectrom-

eter measurements (subscript k) for the atmospheric return and

the internal reference:

rATMi =
N∑

k=1

wi,krATMi,k ; rREFi =
N∑

k=1

wi,krREFi,k . (11)

The spacecraft LOS velocity vSAT is given by similarly weighting

the measurement-scale velocities:

vSATi =
N∑

k=1

wi,kvSATi,k (12)

3.2. L2B Rayleigh channel HLOS wind retrieval

The L2B retrieved Rayleigh channel HLOS wind accounts for

the atmospheric return detected by the Rayleigh channel and

three correction terms. As in the case of Mie wind retrieval, these

correction terms account for the laser internal reference path, the

satellite velocity relative to the ground and the offsets that arise

even for an atmospheric volume in which the wind velocity is

zero. Consequently, the L2B Rayleigh HLOS retrieval is defined:

vHLOSi = vILIADi − 1

cos ϕ

[
vREFi + vSATi + vG

]
. (13)

Here, v ILIAD represents the HLOS wind retrieval taking into ac-

count the temperature and pressure dependence of the molecular

backscatter (Rayleigh-Brillouin). The v ILIAD velocity is obtained

by applying the so-called ILIAD scheme to the Rayleigh channel

measurements. ILIAD takes the general form:

vILIADi = ILIAD[RATMi , ρi , Ti , pi ]. (14)

Details of the ILIAD scheme are given in Dabas et al. (2008)

so what is needed here is to specify the input parameters. These

parameters denote weighted values within the scattering volume,

for, respectively, the so-called instrument Rayleigh response

RATMi , the scattering ratio ρ = 1 + βa/βm (where βa and βm

are the particle and molecular backscatter coefficients, respec-

tively), the temperature T and the pressure p. The weighted val-

ues are obtained from a weighted average of the corresponding

quantities at the measurement-scale:

ρi =
N∑

k=1

wi,kρi,k, Ti =
N∑

k=1

wi,k Ti,k, pi =
N∑

k=1

wi,k pi,k . (15)
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Similarly, the weighted Rayleigh response needed as input to

ILIAD is given in terms of the weighted summation of useful

signals in channels A and B (numbers of photons counted at

the output of Fabry-Perot A and B corrected from background

noise), NA and NB:

RATMi = N A
i − N B

i

N A
i + N B

i

, (16)

where the weighted summation useful signal in channels A and

B are:

N A
i =

N∑
k=1

wi,k N A
i,k ; N B

i =
N∑

k=1

wi,k N B
i,k . (17)

Computation of a meteorologically weighted internal reference

LOS velocity vREF and the satellite’s LOS velocity vSAT are per-

formed in an analogous manner, using the weights wi,k .

3.3. Error quantifier for the L2B Mie channel HLOS
wind estimate

The baseline for the L2B Mie error quantifier is the error standard

deviation σ M I E given by the equation:

σMIEi = λ0

2 cos ϕ

[
18∑
j=3

α2
i, j

]−1
√√√√ 18∑

j=3

σ 2
i, jα

2
i, j , (18)

where

σ 2
i, j =

N∑
k=1

w2
i,krATMi, j,k (19)

is an estimate for the variance of the weighted sum of photo-

counts rATM after removal of a detection chain (or analogue)

offset, and

αi, j = τ j H

⎡⎢⎣ 1

1 + 4
(

f +
j − f̂ MIE

i

)
f 2
w

− 1

1 + 4
(

f −
j − f̂ MIE

i

)
f 2
w

⎤⎥⎦ . (20)

Here H, fw and f̂ MIE
i (in frequency units) are the outputs of the

Mie core algorithm (H is peak height and fw is the full width

at half maximum of the fitted Lorentzian spectrum, and f̂ MIE
i is

the Mie frequency estimate), τ j is a correction factor accounting

for the obscuration of the primary mirror of the telescope by the

tripod that bears the secondary mirror (characterized at ground

before launch), and f +
j , f −

j are the upper and lower frequen-

cies of CCD pixel index j. With the useful spectral range γ =
1500 MHz:

f −
j = ( j − 3)

γ

16
− γ

2
and f +

j = ( j − 2)
γ

16
− γ

2
. (21)

These expressions are derived as described in the Appendix. It

is worth noting that the summation index in (18) runs from 3 to

18—indices 1 and 2 correspond to the CCD ‘pre-pixels’ which

are not used for wind processing.

3.4. Error quantifier for the L2B Rayleigh channel
HLOS wind estimate

The inversion step of the ILIAD scheme computes the horizontal

line of sight wind vHLOSo using the sensitivity ∂vHLOSo/∂ p, for a

zero scattering ratio, ρ = 0. For a given scattering ratio, ρ �= 0,

a linear correction is applied

vHLOS = vHLOSo + ρ
∂vHLOSo

∂ρ
. (22)

The radial wind vHLOSo is computed from the Rayleigh response

RATM (see eq. 16), the temperature T and the pressure p. From

this follows that the error on the calculated HLOS wind is

�vHLOS = ∂vHLOSo

∂ RATM

�RATM + ∂vHLOSo

∂T
�T

+ ∂vHLOSo

∂ p
�p + ρ

∂vHLOSo

∂ρ
, (23)

where ∂vHLOSo/∂T and ∂vHLOSo/∂ p are the local sensitivities of

the vHLOSo to T and p, respectively. For uncorrelated errors in

scattering ratio, temperature, pressure and Rayleigh response,

the resulting HLOS error, σHLOS = √〈�vHLOS�vHLOS〉 with 〈 〉
the operator for the expected covariance, is estimated as

σHLOS =
√(

∂vHLOSo

∂ RATM

σRATM

)2

+
(

∂vHLOSo

∂T
σT

)2

+
(

∂vHLOSo

∂ p
σp

)2

+
(

∂vHLOSo

∂ρ
σρ

)2

. (24)

The sensitivities ∂vHLOSo/∂ · are delivered as output from the

ILIAD scheme. The dominant term stems from ∂vHLOSo/∂ RATM,

which is about 296 ms−1. The terms with the standard deviation

of error for temperature and pressure, respectively σ T and σ p are

small but this needs to be further tested. Equation (24) assumes

that errors in the elevation angle ϕ are negligible, contributing a

wind error of order 0.01 ms−1.

It remains to provide an expression for the error standard de-

viation of the return signal RATM. From a sensitivity analysis it

follows that the error in RATM is

�RATM = ∂ RATM

∂ N A
�N A + ∂ RATM

∂ N B
�N B

= 2N B

(N A + N B)2
�N A − 2N A

(N A + N B)2
�N B . (25)

For independent errors in NA and NB the estimated error in the

response RATM, σRATM
=

√
〈�R2

ATM〉 is obtained by

σRATM
= 2

(N A + N B)2

√
N B2

σ 2
A + N A2

σ 2
B . (26)

Recall from Section 3 that NA and NB are obtained from weighted

sums of NA
k and NB

k , respectively, where each of the measure-

ments in range gate i has a fractional weight wi,k . σ A and σB ,
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at observation-scale, are thus as well obtained from a weighted

sum, respectively

σ 2
A =

N∑
k=1

w2
i,kσ

2
A,k σ 2

B =
N∑

k=1

w2
i,kσ

2
B,k, (27)

where σ A,k and σ B,k are the standard deviations of NA
k and NB

k

(equal to the square root of NA
k and NB

k under the assumption that

the photon count uncertainty is governed by Poisson statistics).

3.5. Selective averaging

Through aggregation of L1B data at measurement scale, L2B

algorithms can produce multiple wind retrievals at observation-

scale, as illustrated in Fig. 5. The procedure consists of two main

steps: classification and weighting of each measurement-scale

range gate.

(i) Classification. The scattering ratio estimate available in

L1B products is an indicator of the presence of particles (cloud

or aerosol) within the range-gate. The baseline classification ex-

ploits this by classifying all range-gates with scattering ratio

above a threshold value as being ‘Cloudy’, and those below the

threshold as ‘Clear’

(ii) Weighting. Let N Cloudy denote the number of mea-

surements for which range-gate i is classified as ‘Cloudy’, and

let N Clear denote the number of measurements for which

range-gate i is classified as ‘Clear’. Then two sets of weights

are defined: W cloudy(i,k) = 1/N Cloudy when range-gate i
of measurement k is classified as ‘Cloudy’, and 0 otherwise.

W clear(i,k) = 1/N Clear when range-gate i of measurement k
is classified as ‘Clear’, and 0 otherwise. According to this sim-

ple weighting scheme, each measurement range-gate receives

non-zero weight in just one set of weights.

Flexibility for future modifications includes classification

based on L2B retrieval of optical parameters. The weights may be

adjusted based on the signal-to-noise ratio of each measurement-

scale range-gate.

4. Application to simulated data

The sensitivities of the baseline L2B algorithms to basic as-

sumptions, errors and uncertainties in its main inputs have been

tested through careful simulations and application to idealized

cases. Two tests are described here to demonstrate retrieval of

HLOS winds, scene classification with selective averaging, and

estimation of wind retrieval uncertainty.

4.1. Scene classification and selective averaging

The purpose of this test is to assess the scene classification abil-

ity to identify clear from cloudy areas in an academic scenario

and to group the measurement range-gates appropriately in or-
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C
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u
d

2

C
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u
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C
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u
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C
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u
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Cloud1

Fig. 6. Schematic representation of the test scenario with three cloud

layers.

der to make L2B observations. The baseline scenario is made of

four consecutive observations (or BRCs) where the HLOS wind

is constant for all altitudes (50 ms−1). The four BRCs contain a

series of three cloud layers located at the altitudes 4, 9 and 15 km

as illustrated in Fig. 6. The first BRC is clear (see Fig. 7 for the

corresponding scattering ratio profile); the second is partly cov-

ered by Cloud1 featuring a single cloud layer at 4 km altitude;

the third is entirely covered by Cloud1, and finally the fourth

BRC contains five different cloud scenarios formed through a

combination of partly overlapping clouds at three levels. The

scenario called Cloud2 contains two cloud layers at 4 and 9 km

altitudes, and so on. Briefly, the Cloud1, Cloud3 and Cloud5

BRCs contain one-layer clouds, while Cloud2 and Cloud4 con-

tain two-layer clouds.

The scenario described above is run through the Aeolus End-

to-End simulator (E2S v2.01) and L1B Processor (v1.05), de-

veloped in the frame of the satellite prime contract, in order

to generate Level-0 and Level-1 instrument data. The Level-1

products are then used as input by the L2B processor (v1.2).

The classification criterion uses the scattering ratio calculated

by the L1B processor for each measurement range-gate with a

threshold of 1.5 to separate clear from cloudy.

Upon running the L2B processor, the classification procedure

assigns each measurement range-gate with three possible values:
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Fig. 7. Scattering ratio of the observations Clear, and Cloud1 to

Cloud5. The cloud profiles have each been shifted by one unit in the

x-direction, for convenience.
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Fig. 8. Result of the L2B classification

applied to the scenario shown in Fig. 6. Red

(green, blue) indicates that the measurement

range-gate is found clear (respectively:

cloudy, not used).

clear, cloudy, or not used. The latter happens if for any reason the

L1B input data are not within the expected range, such as below

the surface or when measurement noise is too large. Figure 8

shows the result of the classification. Possibly due to noise, some
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Fig. 9. Rayleigh (clear air, top) and Mie (from clouds, lower panels). L1B and L2B (see legend) HLOS wind retrievals at observation scale for the

four BRCs of the scenario shown in Fig. 6. Horizontal bars extend up to +/− one L2B HLOS wind error standard deviation. Filled (empty)

diamonds indicate where error estimates are smaller (larger) than 2 ms−1.

measurement range-gates are mistakenly identified as cloudy, but

otherwise the cloud layer locations are found successfully.

We now evaluate the quality of the L1B and L2B wind re-

trievals in the various regions. Figure 9 shows the L1B HLOS
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observation wind retrievals (i.e. averaged over each BRC), ob-

tained from both Rayleigh and Mie receivers. The Rayleigh wind

retrievals show some apparent positive bias as compared to the

true value of 50 ms−1 at higher altitudes, while the bias is negative

for the Mie retrievals. The figure also shows the L2B Rayleigh

retrievals for the clear observation and the L2B Mie retrievals

for the cloudy observation. We retain only L2B data for which

L2B quality flags are nominal, indicating no problem was en-

countered during L2B processing and L1B input data were found

within expected range for either processing. Using proper mete-

orological temperature and pressure information, the bias in the

Rayleigh retrievals is reduced by the L2B processor. Also, the

error quantifiers provided by the L2B processor help identify the

good-quality winds. For example, all L2B retrievals with small

errors (i.e. error quantifiers <2 ms−1, represented by filled dia-

monds on Fig. 9) are only found in clear regions for Rayleigh and

in cloudy regions for Mie, as expected. Note that L2B retrievals

for Rayleigh in cloudy regions are either absent because the L2B

processor flagged these retrievals as poor or are suggested by the

L2B to present large errors (>2 ms−1, such as near the surface).

Similarly, there are usually no good-quality L2B Mie retrievals

in clear regions. Overall, the good L2B retrievals remain close

to the true wind of 50 ms−1.

The present test indicates that the L2B algorithms perform

reasonably well with the academic scene presented here as

regards classification and wind retrieval. The example shown

here also illustrates that L2B products feature a combination of

Mie and Rayleigh retrievals on which users should have more

confidence thanks to the quality flags and representative error

quantifiers. We anticipate that more investigation will be re-

quired to fine-tune the various parameters used for classification

when actual data are collected with the ADM-Aeolus Airborne

Demonstrator (Durand et al., 2006) and later with the space-

borne ADM-Aeolus itself during the spacecraft commissioning

phase.

4.2. Estimation of wind retrieval uncertainty

The purpose of this second test is to check the correctness of the

proposed equation for estimating wind retrieval errors. The at-

mospheric scenario is simple: the vertical profiles of temperature

and Rayleigh backscatter represent a mid-latitude winter case

with altostratus clouds, but the wind is set artificially to zero, as

is the aerosol and cloud backscatter and extinction (that is, no Mie

return).

Based on this scenario, two BRCs were generated using

the E2S. For the purpose of this test, all error-simulation

options were switched off (satellite pointing and velocity

errors. . .). The entire chain of ground segment processing tasks

(L0→L1A→L1B) was applied. A total of 100 data files were

generated with random Rayleigh CCD photon counts (Poisson’s

statistics). The L1B processor and the Rayleigh-Brillouin correc-

tion scheme were then applied to the 100 randomized data. The
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Fig. 10. Average of 200 L1B and L2B wind profiles computed from

the randomized L1A data (solid curves, see legend). The true wind is

zero. For L1 and L2 winds, the dotted curves show the wind profile

obtained from the original L1A data file where no random Poisson

statistics is applied.
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Fig. 11. Error standard deviation of random L2B winds (dotted) and

errors (solid) estimated from the Rayleigh useful signals in A and B

channels and sensitivity coefficients computed by the

Rayleigh-Brillouin correction scheme.

average of the resulting 200 wind profiles (two BRCs per data

file) is displayed in Fig. 10. It can be seen that L1 Rayleigh winds

are biased while L2 winds are not. This confirms the necessity

to correct Rayleigh winds from temperature effects and verifies

the accuracy of the Rayleigh-Brillouin correction scheme. Fig-

ure 11 compares the actual standard deviation of L2 winds with

the error standard deviation estimated by the L2B processor al-

gorithm. In this simple scenario, the error estimation is given

by eqs. (26) and (27). The results show very good agreement

between estimated wind retrieval error, and the actual spread,

which validates the error estimates.
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5. Summary and conclusions

The ADM-Aeolus is primarily a research and demonstration mis-

sion flying the first Doppler wind lidar in space. Given the exper-

imental nature of the mission, flexible data processing tools are

being developed for use within ESA’s operational ground seg-

ment and by the meteorological community. We have presented

the algorithms developed for the processing of Aeolus data to

Level-2B, that is, wind profile retrievals suitable for assimila-

tion in NWP. The L2B processor provides a flexible framework

for classification and weighting of measurement-scale (1–10 km)

data into aggregated, observation-scale (50 km) wind profiles for

assimilation. The main remaining scientific challenge is to pro-

duce representative winds in inhomogeneous atmospheric con-

ditions, such as strong wind shear, broken clouds, and aerosol

layers. The Aeolus instrument provides separate measurements

in Rayleigh and Mie channels, representing molecular (clear

air) and particulate (aerosol and clouds) backscatter, respec-

tively. The combining of information in the two channels of-

fers possibilities to detect and flag difficult, inhomogeneous

conditions.

The functionality of a baseline version of the L2B proces-

sor has been demonstrated in terms of classification and wind

retrieval. The corresponding computed error estimates of the re-

trieved winds have been validated. The next step is to apply the

algorithms to real data obtained from an airborne Aeolus in-

strument demonstrator (Durand et al., 2006). Further refinement

of the processor will continue even after launch of the satellite,

in particular as based on results from the commissioning phase

immediately after launch.

The L2B software is portable to a range of computers. It

will be made freely available to the meteorological commu-

nity. Operational Aeolus products will be available from ESA/

ESRIN.

In Section 2.3.3, we noted that the use of meteorological

parameters (temperature and pressure estimates) in the L2B

Rayleigh channel wind retrieval implies some (small) sensitiv-

ity of the wind estimates to errors in the NWP model supplying

the meteorological parameters. NWP models undergo regular

improvements thereby changing (reducing) their error charac-

teristics and to a lesser extent those of the L2B wind retrievals

derived from them. For climate applications, where long-term

trends are extracted from noisy signals, it is often desirable to

remove such variations and so a re-processing capability is con-

sidered valuable. This could be achieved by including Level 2B

processing of data from Aeolus, and any follow-on missions,

within re-analysis projects (e.g. Uppala et al., 2005). It is easy

to envisage other applications of Aeolus data, in particular to

improve interpretation and use of other satellite data. This could

include, but is not limited to, more accurate height assignment

of atmospheric motion vectors and better detection of cloud-

affected radiances. We welcome the participation of others to

realize the full potential of the mission.
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List of acronyms and terms

(A)CCD (Accumulation) charge coupled device

ADM-Aeolus Atmospheric Dynamics Mission (subse-

quently named ‘Aeolus’)

BRC Basic repeat cycle

DWL Doppler wind lidar

E2S Aeolus End-to-End Simulator

EGM96 Earth geoid model, available from http://

cddisa.gsfc.nasa.gov

ECMWF European Centre for Medium-Range Weather

Forecasts

ESA European Space Agency

ESRIN ESA Centre for Earth Observation

(H)LOS (Horizontal) line of sight

ILIAD Impact of LIne shape on Aeolus Doppler es-

timates

L1A/B Level-1A/B

L2A/B/C Level-2A/B/C

NWP Numerical weather prediction

PRF Pulse repetition frequency

WGS84 World Geodetic System 1984, available from

http://earth-info.nga.mil/GandG/wgs84/

WMO World Meteorological Organization

8. Appendix: The Mie channel HLOS error
estimate

The Mie core algorithm (Paffrath, 2006; Reitebuch et al., 2006)

estimates the frequency of the Mie return by minimizing the cost

function:

J ( f ) =
18∑
j=3

[Ni, j − μ j ( f )]2, (A1)

where Ni,j is a weighted photo-count for ith height-bin and jth
CCD pixel and μ j ( f ) is a prediction of the same number based

on an ad-hoc model (at present, a Lorentzian on top a uniform

level of background light). The summation index in (A1) runs

from 3 to 18 because indices 1 and 2 correspond to the CCD

‘pre-pixels’ which are not used for wind processing

The photo-counts Ni,j are computed from the measurement

level CCD photo-counts ri,j,k (after the removal of the detection

chain offset estimated from CCD pixels 19 and 20 and correction
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for tripod obscuration τ j as defined after eq. 20):

Ni, j =
N∑

k=1

wi,kri, j,k, (A2)

where N is the total number of measurements and wi,k are the

weights allocated to measurement k.

In eq. (A1), the minimization bears only on the frequency,

while four parameters are optimized by the Mie core algorithm

(the central frequency, the amplitude, the width and the uniform

level of background light). Here, we simplify the problem by lim-

iting the optimization to the single frequency parameter, hoping

that the equation we derive will apply with no major deficiency

to the more complex case.

Let us denote by f 0 the frequency that optimizes the cost func-

tion

J̄ ( f ) =
18∑
j=3

[N̄ i, j − μ j ( f )]2, (A3)

where N̄ i, j denotes the mathematical expectation of Ni,j . Then,

let us approximate J ( f ) around f 0 by a second order expansion:

J ( f ) ≈ J ( f0) + ∂ J

∂ f
( f0) ( f − f0) + 1

2

∂2 J

∂ f 2
( f0) ( f − f0)2

(A4)

and assume that the frequency f̂ that minimizes J ( f ) is very

close the frequency that minimizes (A3). This assumption can

be written:

f̂ ≈ f0 −
[

∂2 J

∂ f 2
( f0)

]−1
∂ J

∂ f
( f0). (A5)

Now, let us denote J ′ ( f ) = J ( f ) − J̄ ( f ) and assume

∂ J ′

∂ f
( f0) <<

∂ J̄

∂ f
( f0) and

∂2 J ′

∂ f 2
( f0) <<

∂2 J̄

∂ f 2
( f0) . (A6)

Equation (A4) can then be approximated by the first order ex-

pansion

f̂ − f0 ≈ −
[

∂2 J̄

∂ f 2
( f0)

]−1 [
∂ J̄

∂ f
( f0) + ∂ J ′

∂ f
( f0)

]
= −

[
∂2 J̄

∂ f 2
( f0)

]−1
∂ J ′

∂ f
( f0) , (A7)

where we have used ∂ J/∂ f ( f0) = 0. From (A7) follows that

〈
( f̂ − f0)2

〉 =
[

∂2 J̄

∂ f 2
( f0)

]−2 〈
∂ J ′

∂ f
( f0)

∂ J ′

∂ f
( f0)

〉
. (A8)

From (A1) and (A3), we can write

J ′ ( f ) =
18∑
j=3

N ′
i, j2 + 2

18∑
j=3

N ′
i, j [N̄ i, j − μ j ( f )] (A9)

so

∂ J ′

∂ f
( f0) = 2

18∑
j=3

N ′
i, jα j ( f0), (A10)

where α j ( f0) = ∂μ j ( f0)
/
∂ f . Since

〈
N ′

i,k N ′
i, j

〉 = σ 2
i, j δ ( j − k)

(the random fluctuations of the photo counts are independent),

it follows that〈
∂ J ′

∂ f
( f0)

∂ J ′

∂ f
( f0)

〉
= 4

18∑
j=3

σ 2
i, jα

2
j . (A11)

From eq. (A3)

∂2 J̄

∂ f 2
( f0) = −2

18∑
j=3

∂α j

∂ f
( f0)

[
N̄ i, j − μ j ( f0)

] + 2
18∑
j=3

α2
j ( f0).

(A12)

The first term can be neglected if N̄ i, j ≈ μ j ( f0). This condition

should be met as long as the model μ j ( f ) is a good model for

the photo-counts N̄ i, j , so we can make the approximation

∂2 J̄

∂ f 2
( f0) = 2

18∑
j=3

α2
j ( f0). (A13)

Now, combining (A11) and (A13) gives

〈(
f̂ − f0

)2〉 ≈
[

18∑
j=3

α2
j ( f0)

]−2
18∑
j=3

σ 2
i, jα

2
j ( f0). (A14)

This is the basis for the expression given in Section 3.1, which

uses the photo-count model (integration over a CCD pixel of a

Lorentzian plus a uniform level of background light)

μ j ( f ) = τ j

∫ f +
j

f −
j

{
2A

π fw

[
1 + 4 (x − f )2

f 2
w

]−1

+ B

}
dx, (A15)

where f +
j and f −

j are the upper and lower frequency bounds of

CCD bin j as given by eq. (20) in the main paper, τ j is the tripod

obscuration factor for bin j, f w is the full-width half maximum

(FWHM) of the Lorentzian spectrum assumed for the Mie return,

A is its amplitude, and B is the uniform level of background light.

Considering this model, it follows that

α j ( f0) = τ j
2A

π�

⎡⎢⎢⎣ 1

1 + 4
(

f +
j − f0

)2

f 2
w

− 1

1 + 4
(

f −
j − f0

)2

f 2
w

⎤⎥⎥⎦ . (A16)

In practice, A, f w and f0 are approximated with the parameters

estimated by the Mie core algorithm (Reitebuch et al., 2006), the

link between both sets being

peak height ↔ 2A

π fw

FWHM ↔ fw

frequency estimate ↔ f0

. (A17)

It now remains to give an expression for σ 2
i,j . If we assume that the

random fluctuations of ri,j,k follow independent, Poisson statis-

tics, we have

σ 2
i, j =

Nmeas∑
k=1

w2
i,kri, j,k (A18)
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which we can approximate by

σ 2
i, j ≈

Nmeas∑
k=1

w2
i,kri, j,k .
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