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Abstract. The impact of assimilating Zenith Total delay
(ZTD) observations from a mesoscale ground-based GPS
network over Western Europe is evaluated for the heavy
precipitation event of 5–9 September 2005 over Southern
France. The ZTD assimilation is performed using a three
dimensional variational data assimilation system at the 9.5-
km horizontal resolution. Then using as initial conditions
the 3DVAR analyses with and without assimilation of ZTD,
we perform 2.4-km non-hydrostatic MESO-NH simulations.
The results of the fine-scale simulations indicate that assim-
ilation of ZTD help to improve the forecast of the tropo-
spheric water vapour content and the quantitative precipita-
tion forecast. We have also assessed through single observa-
tion experiments the influence of the formulation of the ob-
servation operator which is used to compute the model equiv-
alent ZTD.

1 Introduction

Tropospheric water vapour is highly variable in space and
time and, besides, is a key-ingredient for the success of fine-
scale heavy rainfall forecast (Ducrocq et al., 2002). Lack of
high-resolution water vapour observations is one of consider-
able sources of inaccuracy in model analyses that are used as
initial conditions of the numerical weather prediction mod-
els (Kuo et al., 1996). The Zenith Total Delays (ZTD) de-
duced from GPS measurements are attractive for providing
tropospheric water vapour data in a context of an increasing
number of ground-based GPS receivers.

In the present study, we examine the impact of mesoscale
ZTD data assimilation on the fine scale (2.4-km) forecast of a
Mediterranean heavy precipitation event. The impact is eval-
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uated more specifically for the 5 to 9 September 2005 period,
during which several precipitating systems affected South-
eastern France. The cumulative surface rainfall during the
whole period was over 300 mm over a significant part of the
region, reaching locally more than 500 mm.

Section 2 presents the ZTD assimilation methodology us-
ing the 9.5-km 3DVAR ALADIN data assimilation system.
Section 3 evaluates the impact of the formulation of the ob-
servation operator based on a single observation assimila-
tion experiment. Then, Sect. 4 discusses the impact of as-
similating GPS data on the high-resolution forecast of the
5–9 September 2005 rainy event, based on non-hydrostatic
2.4-km MESO-NH simulations. The conclusions follow in
Sect. 5.

2 Description of the ZTD assimilation

2.1 The 9.5-km 3DVAR assimilation system

The assimilation of ZTD is performed with the ALADIN
3DVAR data assimilation scheme, which has been running
operationally at Ḿet́eo-France since July 2005 (Fischer et
al., 2005; Montmerle et al., 2007). To evaluate the impact of
assimilating ZTD GPS data, two sets of six-hourly forecast-
analysis cycles are run from 1st to 10th of September 2005
with the 3DVAR assimilation system. For the first set, called
hereafter CTRL, the observations usually included in the op-
erational 3DVAR ALADIN are assimilated. The latter in-
clude observations from radio-soundings, screen-level sta-
tions, wind profilers, buoys, ships and aircraft. The following
satellite data are also assimilated: horizontal winds from at-
mospheric motion vectors (AMVs) and the Quickscatt scat-
terometers, Advanced Microwave Sounding Unit (AMSU)-A
and -B radiances and Atmospheric Administration (NOAA)-
15, -16, -17 and the AQUA satellites, High-resolution In-
frared Sounder (HIRS) radiances from NOAA-17 and clear
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SEVIRI radiances from the METEOSAT-8 satellite. The sec-
ond set, called GPS, assimilates in addition the ZTD obser-
vations.

2.2 GPS ZTD data

In the GPS data assimilation cycle, we assimilate GPS data
arising from the European GPS station network (E-GVAP,
http://egvap.dmi.dk/) and from a 32-stations research net-
work deployed within the Mediterranean Cévennes-Vivarais
hydrometeorological Observatory (OHM-CV, Delrieu et al.,
2005). For the studied period, data from more than 450 sta-
tions covering all the Western Europe were thus available
(Fig. 1).

One GPS station can be processed by several analysis cen-
ters, leading to several ZTD time-series for a given station.
For the assimilation, in order to have a uniform dataset per
station, we select only one solution per station by applying
the pre-processing developed by Poli et al. (2007) (called
hereafter POLI07), slightly modified in order to take into ac-
count the higher resolution data assimilation system used in
our study. The pre-processing selects pairs of station-center
verifying that the first-guess departure follows a Gaussian
distribution (The first-guess departure is defined as the dif-
ference between observed ZTD and model equivalent ZTD
computed from the 6-hour ALADIN forecast which acts as
the first-guess in the assimilation cycle). The difference be-
tween the station height and the model ground surface height
should also be less than 150 meters. Station-center pairs with
large time availability, small standard deviation of the first-
guess departure or the most Gaussian distribution are pre-
ferred. Within the assimilation window (±3 hours around
the analysis time), the GPS observation which is the closest
to the analysis time is chosen. The pre-processing of GPS
data retains at the end 262 stations out of 481 stations (Fig.
1).

To ensure that the observations meet the hypothesis of un-
biased errors assumed in the assimilation scheme, the ZTD
data are bias-corrected before the assimilation followingthe
method used by POLI07. The bias is computed for each
station-center pair based on a 15-day average of first-guess
departure between 15 and 31 August 2005.

3 Sensitivity to the observation operator

To study the impact of how the model equivalent ZTD is
calculated in the assimilation system, we perform analyses
where the 3DVAR ALADIN system only assimilates one
zenith delay observation using two different observation op-
erators available, as their tangent-linear and adjoint codes,
in the assimilation software. The first one has been used by
POLI07 and the second one has been proposed by Brenot et
al. (2006) (called hereafter BREN06) which had evaluated
many expressions to calculate the model equivalent ZTD.

B

A

Fig. 1. Location in the 3DVAR ALADIN domain of the GPS sta-
tions of the E-GVAP and OHM-CV networks for September 2005.
The pink-circled stations are those selected for data assimilation.
The A-B line indicates the location of the cross-sections shown in
Fig.2. The 2.4-km MESO-NH domain is delineated by the red box.

POLI07 integrates from the bottom to the top of the model
the following equation, using the total pressureP , the tem-
peratureT and the partial pressure of water vapore of the
atmospheric model column:
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temperature,Rd =287.0586J/(kmol.K) andRv =461.525
J/(kmol.K) the specific molar gas constants for dry air and
water vapour, respectively.

BREN06 have evaluated different sets of(k1, k2, k3) coef-
ficients proposed in the literature for ZTD values computed
from high-resolution (2.4km) non-hydrostatic atmospheric
simulated fields. The results showed that there is no sig-
nificant differences in the evaluation of ZTD between most
of the coefficient sets (with a mean bias of ZTD less than
2 mm), except for the set using the two-coefficient formula,
which presents a mean ZTD bias reaching nearly 12 mm. A

Fig. 1. Location in the 3DVAR ALADIN domain of the GPS sta-
tions of the E-GVAP and OHM-CV networks for September 2005.
The pink-circled stations are those selected for data assimilation.
The A–B line indicates the location of the cross-sections shown in
Fig. 2. The 2.4-km MESO-NH domain is delineated by the red box.

SEVIRI radiances from the METEOSAT-8 satellite. The sec-
ond set, called GPS, assimilates in addition the ZTD obser-
vations.

2.2 GPS ZTD data

In the GPS data assimilation cycle, we assimilate GPS data
arising from the European GPS station network (E-GVAP,
http://egvap.dmi.dk/) and from a 32-stations research net-
work deployed within the Mediterranean Cévennes-Vivarais
hydrometeorological Observatory (OHM-CV,Delrieu et al.,
2005). For the studied period, data from more than 450 sta-
tions covering all the Western Europe were thus available
(Fig. 1).

One GPS station can be processed by several analysis cen-
ters, leading to several ZTD time-series for a given station.
For the assimilation, in order to have a uniform dataset per
station, we select only one solution per station by applying
the pre-processing developed byPoli et al. (2007) (called
hereafter POLI07), slightly modified in order to take into ac-
count the higher resolution data assimilation system used in
our study. The pre-processing selects pairs of station-center
verifying that the first-guess departure follows a Gaussian
distribution (The first-guess departure is defined as the dif-
ference between observed ZTD and model equivalent ZTD
computed from the 6-hour ALADIN forecast which acts as
the first-guess in the assimilation cycle). The difference be-

tween the station height and the model ground surface height
should also be less than 150 m. Station-center pairs with
large time availability, small standard deviation of the first-
guess departure or the most Gaussian distribution are pre-
ferred. Within the assimilation window (±3 h around the
analysis time), the GPS observation which is the closest to
the analysis time is chosen. The pre-processing of GPS data
retains at the end 262 stations out of 481 stations (Fig.1).

To ensure that the observations meet the hypothesis of un-
biased errors assumed in the assimilation scheme, the ZTD
data are bias-corrected before the assimilation following the
method used by POLI07. The bias is computed for each
station-center pair based on a 15-day average of first-guess
departure between 15 and 31 August 2005.

3 Sensitivity to the observation operator

To study the impact of how the model equivalent ZTD is
calculated in the assimilation system, we perform analyses
where the 3DVAR ALADIN system only assimilates one
zenith delay observation using two different observation op-
erators available, as their tangent-linear and adjoint codes,
in the assimilation software. The first one has been used by
POLI07 and the second one has been proposed byBrenot et
al. (2006) (called hereafter BREN06) which had evaluated
many expressions to calculate the model equivalent ZTD.
POLI07 integrates from the bottom to the top of the model
the following equation, using the total pressureP , the tem-
peratureT and the partial pressure of water vapore of the
atmospheric model column:

ZTD =

∫
(k1

P

T
+ k3

e

T 2
)dz (1)

with k1=0.776·10−6 Pa−1
·K, k3=3730·10−6 Pa−1

·K2(Smith
and Weintraub, 1953).

The equation for BREN06 is the following:
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with k2=0.704·10−6 Pa−1
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3= 3739·10−6 Pa−1
·K2, and
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(Bevis et al, 1994); Tv being the virtual

temperature,Rd =287.0586 J/(kmol.K) andRv =461.525
J/(kmol.K) the specific molar gas constants for dry air and
water vapour, respectively.

BREN06 have evaluated different sets of(k1, k2, k3) coef-
ficients proposed in the literature for ZTD values computed
from high-resolution (2.4 km) non-hydrostatic atmospheric
simulated fields. The results showed that there is no sig-
nificant differences in the evaluation of ZTD between most
of the coefficient sets (with a mean bias of ZTD less than
2 mm), except for the set using the two-coefficient formula,
which presents a mean ZTD bias reaching nearly 12 mm. A
ZTD contribution above the model top level1ZT DTOP is
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Fig. 2. Vertical cross section along the 670-km line A-B shown in Fig. 1 of analyses and analysis increments of relative humidity, obtained
by assimilation of a single ZTD observation using the BREN06(ac) or the POLI07 (bd) observation operator. Panels ab display the relative
humidity from the 3DVAR analysis and panels cd the analysis increment of relative humidity (the analysis increment being defined as the
difference between the analysis and the first-guess). The vertical arrows in panels cd indicate the location of the ZTD observation.

the RMS is slightly weaker for the MCTRL runs. Figure
5 shows the Frequency Bias (FBIAS, Bougeault (2003)) for
precipitation events with observed 12-h accumulated rainfall
above 0.1 mm, 0.5 mm, 1 mm, 5 mm, 10 mm and 20 mm.
FBIAS indicates whether the experiment has a tendency to
under-forecast (FBIAS<1) or to over-forecast (FBIAS>1)
precipitation events, with a perfect score being 1. For all the
thresholds, the MGPS experiment shows an improved skill
compared to the MCTRL, especially for the higher precipi-
tation events. FBIAS for the two experiments indicate a ten-
dency to under-forecast the events for weak thresholds.

5 Conclusions

The impact of assimilating Zenith Total delay (ZTD) obser-
vations from a dense GPS network has been evaluated for the
high-resolution forecast of the heavy precipitation eventof 5-
9 September 2005 over Mediterranean northwestern coasts.
Using as initial conditions the analyses in which GPS ZTD
data have been assimilated leads to a weak positive impact on
the quantitative precipitation forecasts issued by the convec-
tive scale MESO-NH model. A better forecast of the model
equivalent ZTD and thus of the tropospheric water vapour
are also found.

The impact of the formulation of the observation operator
has also been studied through a single observation experi-
ment. Two slightly different observation operators showed

Fig. 2. Vertical cross section along the 670-km line A-B shown in Fig.1 of analyses and analysis increments of relative humidity, obtained
by assimilation of a single ZTD observation using the BREN06 (ac) or the POLI07 (bd) observation operator. Panels ab display the relative
humidity from the 3DVAR analysis and panels cd the analysis increment of relative humidity (the analysis increment being defined as the
difference between the analysis and the first-guess). The vertical arrows in panels cd indicate the location of the ZTD observation.

also added in BREN06. POLI07 did not consider this con-
stant correction in their observation operator and left this to
be handled by their bias correction scheme.1ZT Dtop in
BREN06 is computed according toSaastamoinen(1972):

1ZT DTOP = 10−6k1RdPTOP

gTOP
(3)

with PTOP and gTOP being the pressure and the acceler-
ation of gravity at the top of the model. POLI07 eval-
uated to 2.3 mm this constant contribution above the AL-
ADIN/ARPEGE model top at 1 hPa.

In order to perform the integration of ZTD operator in-
side the model, POLI07 and BREN06 follow nearly the same

implementation, except when the GPS station is located be-
low the model terrain. In that case, extrapolation of pressure,
temperature and humidity values from the model lowest level
down to the GPS station altitude is needed. In that extrapo-
lation procedure, the temperature is considered as constant
in POLI07 while BREN06 assumes a constant temperature
gradient.

Figure 2 shows results of the assimilation of a single
observation of ZTD of value 2.4586 m; the model equiva-
lent ZTD computed for the first guess with BREN06 and
POLI07 observation operators departs from the observation
by 14.34 mm and 18.6 mm, respectively. Note that 2.3 mm

www.adv-geosci.net/17/71/2008/ Adv. Geosci., 17, 71–77, 2008
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Fig. 3. BIAS and RMS for model equivalent ZTD as function of
the forecast range for MGPS and MCTRL MESO-NH runs. Scores
are computed against ZTD observations included in the MESO-NH
domain (see red box in Fig. 1).The scores are computed gathering
all the 3-hourly forecasts of all the MESO-NH 18-h duration runs
from 12 UTC, 5 September 2005 to 18 UTC, 8 September 2005.

that the assimilation of ZTD modifies mainly the low to mid-
troposphere moisture. The main difference between the two
operators lie in the amplitude of the relative humidity incre-
ments, only reflecting larger first-guess differences in oneop-
erator (some of these differences are explained by a constant
model top contribution). Almost no difference is found for
the vertical distribution of analysis increment of relative hu-
midity in both cases.

A more comprehensive analysis of the 3DVAR ALADIN
ZTD assimilation over the whole September 2005 month is
the subject of a companion paper. Work is in progress to
assimilate ZTD data directly at the convective scale using a
2.5-km data assimilation system and evaluate its impact on

Table 1. BIAS and RMS for ZTD simulated by GPS and CTRL
MESO-NH experiments against observed ZTD. For the “all GPS
stations”, scores are computed gathering all the raw ZTD observa-
tions over the MESO-NH domain. For the “only assimilated GPS
stations”, scores are computed only for ZTD values used in the as-
similation after removing of the station bias (see section 2.1). The
scores are computed gathering all the 3-hourly forecasts ofall the
MESO-NH 18-h duration runs from 12 UTC, 5 September 2005 to
18 UTC, 8 September 2005.

all GPS Stations only assimilated GPS Stations

MCTRL MGPS MCTRL MGPS

BIAS 23.1 mm 22.6 mm 14 mm 13.4 mm

RMS 30.8 mm 30.6 mm 26.9 mm 26.2 mm

Table 2. BIAS and RMS for 12-h accumulated precipitation fore-
cast from the MGPS and MCTRL MESO-NH experiments against
observed precipitation. The scores are computing gathering all the
12-hourly forecasts (i.e. 0-12h and 6-18h forecasting ranges) of all
the MESO-NH 00 UTC and 12 UTC runs covering the period from
12 UTC, 5 September 2005 to 18 UTC, 8 September 2005.

MCTRL MGPS

all GPS Stations

BIAS 0.5 mm 0.3 mm

RMS 19.7 mm 20.2 mm

the quantitative precipitation forecast. A finer scale model is
expected to reduce the height differences between the GPS
station and the model orography, and therefore to improve
the accuracy of the observation operator.
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all GPS Stations only assimilated GPS Stations

MCTRL MGPS MCTRL MGPS
BIAS 23.1 mm 22.6 mm 14 mm 13.4 mm
RMS 30.8 mm 30.6 mm 26.9 mm 26.2 mm

Table 2. BIAS and RMS for 12-h accumulated precipitation fore-
cast from the MGPS and MCTRL MESO-NH experiments against
observed precipitation. The scores are computing gathering all the
12-hourly forecasts (i.e. 0–12 h and 6–18 h forecasting ranges) of all
the MESO-NH 00:00 UTC and 12:00 UTC runs covering the period
from 12:00 UTC, 5 September 2005 to 18:00 UTC, 8 September
2005.

MCTRL MGPS

all GPS Stations
BIAS 0.5 mm 0.3 mm
RMS 19.7 mm 20.2 mm

humidity. We can see in Fig.2cd that the assimilation exper-
iment using POLI07 yields an analysis increment of humid-
ity in the low- to mid- troposphere more intense than in the
assimilation experiment using the observation operator from
BREN06. The larger analysis increments imply more correc-
tions to the humidity field by the analysis. To summarize, in
the present example, the use of different operators can lead to
about 2% of difference in the final analysis increment of hu-
midity, without however modifying the vertical distribution
of the humidity analysis increment.

4 Impact on the fine scale forecasts

The impact of the ZTD assimilation on the convective scale
forecast of the 5–9 September 2005 Mediterranean heavy
precipitation episode has been assessed, using two-way grid-
nesting MESO-NH domains at 9.5-km and 2.4-km, respec-
tively. Ducrocq et al.(2002), Lebeaupin et al.(2006) and
Nuissier et al.(2008) provided a comprehensive description
of this MESO-NH model configuration, that was success-
fully used for simulating Mediterranean heavy precipitation
events in these studies. The 3DVAR ALADIN analyses is-
sued from the two assimilation cycles with and without ZTD
data assimilation, as described in Sect. 2, are used as initial
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Fig. 4. 12-h accumulated precipitation (mm) from 00:00 UTC to 12:00 UTC, 6 September 2005 for:(a) MGPS MESO-NH run starting
from the GPS ALADIN analysis at 00:00 UTC;(b) MCTRL MESO-NH run starting from the CTRL ALADIN analysis at 00:00 UTC;(c)
raingauges;(d) differences between MGPS and MCTRL 12-h accumulated precipitation.

conditions to the MESO-NH simulations. Two 18-hour-
duration MESO-NH runs were issued every day at 00:00 and
12:00 UTC from 12:00 UTC, 5 September to 00:00 UTC,
8 September 2005, covering the whole rainy period. The
MESO-NH set using the 3DVAR ALADIN analyses with
ZTD data assimilation is called MGPS hereafter, whereas the
other one is called MCTRL. We focus here on results of the
2.4-km MESO-NH runs.

The model equivalent ZTD at the GPS stations have been
computed for every 3-hourly forecasts from 3 to 18 h range
issued from the two sets of MESO-NH runs. Figure3
shows the bias and Root Mean Square error (RMS) computed

against observed ZTD for all the GPS stations included in the
2.4-km MESO-NH domain (Fig.1). Scores for MGPS runs
show an improved forecast of ZTD for the longer ranges (15
and 18-h ranges) compared to MCTRL. BIAS and RMS are
quite similar for the two MESO-NH sets for the very short-
range (Fig.3). The BIAS and RMS computed over all the
3-hourly forecasts, whatever the forecasting ranges, lead to
the same conclusion of slightly better results for the MGPS
runs (Table1, left columns). If the scores are computed
only on the subset of GPS stations assimilated in the 3DVAR
ALADIN system (Table1, right columns), the MGPS runs
are also found better. Note that the BIAS is weaker on that
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September 2005 to 18 UTC, 8 September 2005.
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Fig. 5. FBIAS for 12-h accumulated precipitation forecast from
the MGPS and MCTRL MESO-NH experiments against observed
precipitation. FBIAS is computing gathering all the 12-hourly fore-
casts (i.e. 0–12 h and 6–18 h forecasting ranges) of all the MESO-
NH 00:00 UTC and 12:00 UTC runs covering the period from
12:00 UTC, 5 September 2005 to 18:00 UTC, 8 September 2005.

subset than on the whole GPS data-set because the scores are
computed on the biases-corrected ZTD values used for the
3DVAR assimilation. So, using as initial conditions an anal-
ysis in which ZTD data have been assimilated improves the
forecast of zenith total delay and thus of tropospheric water
vapour.

The impact of assimilating GPS on the high-resolution
quantitative precipitation forecast is also found slightly pos-
itive. Figure4 shows the 12-h accumulated precipitation re-
sults of MGPS and MCTRL runs issued from the correspond-
ing GPS and CTRL Aladin analysis at 00:00 UTC, 6 Septem-
ber 2005. Compared with the raingauge data (Fig.4c),
we could see that MGPS run locates better the heavy pre-
cipitation region over the GARD department while MC-
TRL run misplaces the heavy precipitation area over the
BOUCHES-DU-RHONE department. The differences reach
more than 80 mm in some locations(Fig.4d) between these
two runs (MGPS-MCTRL). Table2 shows the BIAS and
RMS computed over every 12-h accumulated precipitation
totals (i.e. 0 h–12 h and 6 h–18 h forecast ranges) for the
MGPS and MCTRL runs. Scores are computed against rain-
gauge observations in the 2.4-km MESO-NH domain, which
counts about 220 raingauges. The MGPS set improves the
BIAS whereas the RMS is slightly weaker for the MCTRL
runs. Figure5 shows the Frequency Bias (FBIAS,Bougeault
(2003)) for precipitation events with observed 12-h accumu-
lated rainfall above 0.1 mm, 0.5 mm, 1 mm, 5 mm, 10 mm
and 20 mm. FBIAS indicates whether the experiment has
a tendency to under-forecast (FBIAS<1) or to over-forecast
(FBIAS>1) precipitation events, with a perfect score being

1. For all the thresholds, the MGPS experiment shows an
improved skill compared to the MCTRL, especially for the
higher precipitation events. FBIAS for the two experiments
indicate a tendency to under-forecast the events for weak
thresholds.

5 Conclusions

The impact of assimilating Zenith Total delay (ZTD) ob-
servations from a dense GPS network has been evaluated
for the high-resolution forecast of the heavy precipitation
event of 5–9 September 2005 over Mediterranean northwest-
ern coasts. Using as initial conditions the analyses in which
GPS ZTD data have been assimilated leads to a weak posi-
tive impact on the quantitative precipitation forecasts issued
by the convective scale MESO-NH model. A better forecast
of the model equivalent ZTD and thus of the tropospheric
water vapour are also found.

The impact of the formulation of the observation operator
has also been studied through a single observation experi-
ment. Two slightly different observation operators showed
that the assimilation of ZTD modifies mainly the low to mid-
troposphere moisture. The main difference between the two
operators lie in the amplitude of the relative humidity incre-
ments, only reflecting larger first-guess differences in one op-
erator (some of these differences are explained by a constant
model top contribution). Almost no difference is found for
the vertical distribution of analysis increment of relative hu-
midity in both cases.

A more comprehensive analysis of the 3DVAR ALADIN
ZTD assimilation over the whole September 2005 month is
the subject of a companion paper. Work is in progress to
assimilate ZTD data directly at the convective scale using a
2.5-km data assimilation system and evaluate its impact on
the quantitative precipitation forecast. A finer scale model is
expected to reduce the height differences between the GPS
station and the model orography, and therefore to improve
the accuracy of the observation operator.
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