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ABSTRACT  12 

Land Surface Models (LSM) offer a description of land surface processes and set the 13 

lower boundary conditions for meteorological models. In particular the accurate description of 14 

those surface variables which display a slow response in time, like root zone soil moisture or 15 

vegetation biomass, is of great importance. Errors in their estimation yield significant 16 

inaccuracies in the estimation of heat and water fluxes in Numerical Weather Prediction 17 

(NWP) models. In the present study, the ISBA-A-gs LSM is used decoupled from the 18 

atmosphere. In this configuration, the model is able to simulate the vegetation growth, and 19 

consequently LAI. A simplified 1D-VAR assimilation method is applied to observed surface 20 

soil moisture and LAI observations of the SMOSREX site near Toulouse, in south-western 21 

France, from 2001 to 2004. This period includes severe droughts in 2003 and 2004. The data 22 

are jointly assimilated into ISBA-A-gs in order to analyse the root zone soil moisture and the 23 

vegetation biomass. It is shown that the 1D-VAR improves the model results. The efficiency 24 

score of the model (Nash criterion) is increased from 0.79 to 0.86 for root-zone soil moisture 25 

and from 0.17 to 0.23 for vegetation biomass.  26 

27 
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1. Introduction 1 

The Land Surface Models (LSM) used in meteorology have been developed in order 2 

to simulate continuous land surface processes, such as plant transpiration, soil evaporation 3 

and the evolution of soil moisture and surface temperature at regional and global scales. A 4 

number of CO2-responsive LSMs, like the ISBA-A-gs model of Météo-France (Calvet et al. 5 

1998, Calvet et al. 2004, Gibelin et al. 2006), are able to simulate photosynthesis and plant 6 

growth. In particular, the vegetation biomass and the leaf area index (LAI) evolve 7 

dynamically in response to climate conditions. These models allow the assimilation of soil 8 

moisture and LAI observations. 9 

In the present study, two variables with significant impact on the heat and water fluxes 10 

are considered: root zone soil moisture (w2) and above-ground vegetation biomass (Bio). Soil 11 

moisture regulates the partitioning between latent and sensible heat fluxes, which has a 12 

significant influence on the amount of cloud formation, air temperature, and humidity, among 13 

others (Segal et al., 1995, Shaw et al., 1997, Seuffert et al., 2002). At the same time, 14 

vegetation biomass plays a very important role in the exchange of water vapor and CO2 15 

between the vegetation canopy and the atmosphere. All aforementioned variables are key 16 

input variables into Global Circulation Models (GCM) (Chase et al, 1996, Bounoua et al, 17 

2000). However, as a consequence of different model complexities and surface 18 

parameterizations, there is a range of uncertainty in the simulation of these variables by LSMs 19 

(Henderson-Sellers et al., 1993, Henderson-Sellers et al., 1995, International GEWEX Project 20 

Office, 1995). Data assimilation systems allow to integrate the rich information provided by 21 

remotely sensed surface variables into LSMs, in order to improve the model predictions (eg. 22 

Entekhabi et al., 1994; Houser et al., 1998, Lakshmi and Susskind, 2001). To achieve this, 23 

LSMs are coupled with Radiative Transfer Models (RTM) to relate remotely sensed quantities 24 

to land-surface variables. For example, the L-Band Microwave Emission of the Biosphere (L-25 
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MEB) model (Wigneron et al., 2005) relates L-band brightness temperatures to surface soil 1 

moisture (wg) variations. wg products are already available at global scale through instruments 2 

such as the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) sensor (Njoku et 3 

al, 2003) or those that will be provided in L-band by the future Soil Moisture and Ocean 4 

Satellite (SMOS) mission of the European Space Agency (ESA) (Kerr et al., 2001). These 5 

observations can be used to analyze w2 (Entekhabi et al., 1994, Reichle et al., 2001). 6 

Additionally, a large quantity of satellite-derived LAI products is available, such as those 7 

from the MODerate-Resolution Imaging Spectroradiometer (MODIS) at 1 km spatial 8 

resolution (Tian et al. 2002a, Tian et al. 2002b, Tan et al. 2005) or the POLarization and 9 

Directionality of Earth Reflectances (POLDER) sensor (Bicheron and Leroy, 1999, Roujean 10 

and Lacaze, 2002). LAI observations have been shown to be useful for the analysis of the 11 

vegetation biomass (Cayrol et al., 2000). 12 

This paper is a continuation of the study of Muñoz Sabater et al. (2007) (henceforth 13 

called MU07). In MU07, wg observations were assimilated using four different assimilation 14 

approaches. The simplified 1D-VAR method demonstrated to be the most suitable for an 15 

implementation in an operational configuration. Although the results for the w2 analyses were 16 

generally satisfactory, the LSM was forced with a prescribed LAI obtained from in-situ 17 

measurements. In the present paper, a step forward is made, and the LAI is simulated by the 18 

surface scheme using the parameterization for the plant photosynthesis and growth model of 19 

ISBA-A-gs (Gibelin et al. 2006). The main objective is the analysis of w2 and vegetation 20 

biomass through the joint assimilation of LAI and wg observations. The experimental data 21 

originates from the SMOSREX experimental site (De Rosnay et al., 2006). The period under 22 

investigation extends over four years from 2001 to 2004, during which very contrasting 23 

meteorological conditions were observed.  24 
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In section 2, the experimental site, the data set, the ISBA-A-gs LSM, and the data 1 

assimilation scheme are described. Also, the choice of the assimilation parameters is 2 

discussed through sensitivity and Monte-Carlo based methods. In section 3, the results are 3 

presented for the 4-year period and discussed for two configurations of the assimilation (fixed 4 

and time-variant wilting point) and for different accuracies of the atmospheric forcing. 5 

Finally, section 4 discusses and summarizes the main conclusions. 6 

  7 

8 
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2. Methodology 1 

 2 

2.1. Experimental site and data set 3 

The SMOSREX site is situated within the ONERA (French National Aerospace 4 

Research Establishment) centre of Fauga-Mauzac, located 40 km south-west of Toulouse 5 

(43º23’N, 1º17’E, 188 m altitude). SMOSREX (De Rosnay et al., 2006) is a field scale 6 

experiment, operative since 2001. In this study, the southern part of the site, covered by 7 

vegetation (natural fallow) is studied. An estimation of wg is obtained through the 8 

measurements provided by four probes (ThetaProbe, Delta T Devices) vertically installed at 9 

the surface at different locations within the experimental field site. They provide continuous 10 

observations over the first 6 cm of the soil surface layer. Daily mean j
gw  values are obtained 11 

by averaging the measurements of the four probes and their standard deviation permits to 12 

estimate the uncertainty of the observations. The root-zone soil moisture is obtained by 13 

calculating an average bulk soil water content from the surface probes and additional soil 14 

moisture sensors horizontally installed at depths of 10, 20, 30, 40, 50, 60, 70, 80 and 90 cm. 15 

From the individual measurements, a mean and a standard deviation are computed on a daily 16 

basis, and the daily standard deviation averaged over the year 2001 is assumed to represent 17 

the observation error: 3303.0)(  mmwOBS
g  and 33

2 02.0)(  mmwOBS . Due to a lack of 18 

sufficient spatial sampling at the field site, the spatial averaging is replaced by a temporal one 19 

(ergodicity principle). These uncertainties are attributed to the moisture observations in 20 

subsequent years (2002-2004). The atmospheric forcing (precipitation, atmospheric pressure, 21 

wind speed and direction, air humidity, air temperature, and incident solar and infrared 22 

radiation) is obtained from a meteorological station at the field site performing continuous 23 

measurements, obtained every minute and averaged at 30 minute intervals.   24 
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Manual measurements of the vegetation characteristics (LAI, above-ground biomass 1 

and necromass, height of the canopy) were generally carried out every two weeks. The LAI 2 

and above-ground biomass/necromass measurements were performed by harvesting random 3 

sample areas of 25 x 25 cm2 (4 replicates), and using planimetric and gravimetric methods. 4 

For each sample, green biomass and dead plant material were measured separately (De 5 

Rosnay et al. 2006). Fig. 1 shows the in-situ observations of the LAI, the surface and root-6 

zone soil moisture and the monthly accumulated precipitation for the four years (2001-2004). 7 

It is shown that 2003 was a particularly dry year, with an annual cumulative precipitation of 8 

less than 600 mm. Unlike the other years, 2003 shows an atypical double cycle of LAI, with a 9 

first peak in spring and a second one at the beginning of the winter season. Precipitation is 10 

quite irregularly distributed during 2004, with a wet spring and a very dry summer. This 11 

causes a rapid growth of the vegetation and a marked senescence during the dry period, with 12 

moisture observations reaching values below the wilting point (wwilt) throughout the summer 13 

and part of autumn. 14 

In Table 1 a list of the most relevant characteristics of the soil at the SMOSREX site 15 

for ISBA-A-gs is provided. The soil is a loam characterized by its texture and density which 16 

were determined in the laboratory. The wwilt and the field capacity parameters were derived 17 

from the clay content observations, by using the relationships given by Noilhan and Mahfouf 18 

(1996). 19 

 20 

2.2. Land surface model: ISBA-A-gs 21 

The land surface model used in this study is the ISBA-A-gs model (Calvet et al., 1998, 22 

Calvet et al., 2004, Gibelin et al., 2006). It is an improved version of the Interaction between 23 

the Soil, Biosphere and Atmosphere (ISBA) model, first developed by Noilhan and Planton 24 
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(1989) and further improved by Noilhan and Mahfouf (1996), to describe the land surface 1 

processes in weather and climate models.  2 

The version of the ISBA model used in this study is based on the equations of the 3 

force-restore method (Deardorff, 1977, 1978), and the soil is represented by a single layer. 4 

Together with the surface fluxes (LE, H, G), five surface state variables are described: surface 5 

temperature (Ts), mean surface temperature (T2), surface volumetric soil moisture (wg), 6 

volumetric root-zone soil moisture (w2) and canopy interception reservoir (Ws). The new 7 

version (ISBA-A-gs) accounts for the effect of the atmospheric CO2 concentration on the 8 

stomatal aperture. The net assimilation of CO2 is used to predict the vegetation biomass and 9 

the LAI. The model simulates two above-ground biomass reservoirs: the leaf biomass and the 10 

above-ground structural biomass. For herbaceous vegetation, the sum of these two reservoirs 11 

is the total above-ground biomass (Bio). The reservoirs are fed by the net assimilated carbon, 12 

and decreased by turnover and respiration terms. Phenology is modelled implicitly: LAI 13 

follows the variations of the leaf biomass, multiplied by a constant Specific Leaf Area (SLA). 14 

The SLA is related to the leaf nitrogen concentration (Nl) by using two plasticity parameters e 15 

and f (Gibelin et al. 2006):  16 

feNSLA l  .         [1] 17 

The values of e and f used in this study are presented in Table 1. 18 

Two strategies are represented for the response of the plant to water stress, drought-19 

avoiding and drought-tolerant (Calvet 2000, Calvet et al. 2004) depending on the evolution of 20 

water use efficiency (WUE) under moderate stress: WUE increases in the early stages of soil 21 

water stress in the case of the drought-avoiding response, whereas WUE decreases or remains 22 

stable in the case of the drought-tolerant response.  23 
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The vegetation parameters of ISBA-A-gs are presented in Table 1. They are derived 1 

from the simulation of Calvet (2000) for the MUREX test site (Calvet et al., 1999). Following 2 

their work, the drought-tolerant strategy is used in this paper.  3 

In this study, the model performance is evaluated by using the root mean square error 4 

(RMSE), the mean bias, and the efficiency  score (or Nash criterion ; Nash and Sutcliffe 5 

1970) E defined as:  6 
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where x represents a state variable and xOBS the corresponding observed variable. A value of E 8 

equal to 1 corresponds to perfect simulations and values of E close to 0 correspond to 9 

simulations equal to the constant average of the observations. Negative values of E show that 10 

the model performance is less accurate than simply applying the arithmetic mean of the 11 

observations. 12 

 13 

2.3. Assimilation method: Simplified 1D-VAR  14 

The choice of the assimilation scheme is based on the results obtained in MU07. Of 15 

the four assimilation methods compared in that study, the Ensemble Kalman Filter (EnKF) 16 

and a simplified 1D-VAR showed the best performance. However, the variational scheme 17 

presented an important advantage, as the computational cost was significantly lower, making 18 

it more suitable for operational purposes. Therefore, a simplified 1D-VAR was employed in 19 

this study. 20 

2.3.1. Formalism  21 

Variational methods use an assimilation window of predefined length, usually 22 

containing several observations. The initial value of the model state vector (the variables to be 23 

analysed) is perturbed and the optimal combination of model states is then found by 24 
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minimizing a cost function J (at observation times within the assimilation window). In our 1 

case, the state vector is composed of two state variables (w2 and vegetation above-ground 2 

biomass (Bio)). The cost functions for the two state variables are:  3 

            OBSbOBS1-TOBSb1-Tb  --
2

1
--

2

1
LAIBioLAIBIO JJBioHLAIBioHLAIBioBioBioBioBioJ  RB4 

[3]  5 
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1
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2

1
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 [4] 7 

where the superscripts b and OBS denote the initially estimated values of the state variables 8 

within the assimilation window (background) and the observed variables, respectively; and H 9 

is the non-linear observation operator which transfers the state variables into observation 10 

space. The “best” analyses are the result of minimizing the distance between the state 11 

variables and the first-guess weighted by the background error covariance matrix B ( b

BioJ  and 12 

b

2wJ  terms) and the distance between the observations and the model predictions ( OBS

LAIJ and 13 

OBS

wgJ  terms) within the assimilation window, weighted by the observation error covariance 14 

matrix R. In the case of a linear observation operator and a normal distribution of the errors, 15 

the analysed state variables of the cost functions [3] and [4] are expressed by : 16 

 17 

  bb - BioLAIBioBio BIO

OBS

BIO HK ;   1-TT ][ LAIBIOBIOBIOBIOBIOBIO RHBHHBK  , [5] 18 

and 19 

  b

22

OBS

2

b

22 - wwww wgw HK ;           1- TT ][ wgw2w2w2w2w2w2 RHBHHBK  ,  [6]      20 

respectively. In the non-linear case, the minimum of the cost functions [3] and [4] is evaluated 21 

by deriving adjoint or tangent linear models. However, this is an often difficult and time 22 

consuming task (Reichle et al., 2002). The simplified 1D-VAR (Balsamo et al., 2004) 23 

circumvents this problem by using a numerical linear approximation of the observation 24 
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operator. This approximation consists of a perturbation of the initial value of the state 1 

variables ( 2

b

22 www   for the root zone soil moisture and BioBioBio  b'  for the 2 

vegetation biomass) and studying the impact of this perturbation on the predicted variables at 3 

each observation time step i within the assimilation window (with n observations). In this 4 

way, linearised observation operators of the type: H = 











00

1

,...,
x

y

x

y n

 are obtained, where x0 5 

represents the perturbation of the initial state variable and yi the change in the simulated 6 

variable at time step i (for i=[1,n]), due to x0. This operator H is then substituted in [5] and 7 

[6], and also replaces the non-linear observation operator H.  8 

2.3.2. Setting of the main 1D-VAR parameters 9 

 The most difficult task in the implementation of an assimilation scheme is the 10 

description of the error matrices. It is a key aspect, because the correction of the system state 11 

depends on the background and observation error prescription (see Eqs. [3] to [6]). The size 12 

of the initial perturbation and the length of the assimilation window is also discussed in this 13 

section. 14 

 (i) Assimilation window length 15 

The choice of the assimilation window length for a variational assimilation scheme is 16 

particularly important when the scheme is applied to large regions. In this study, a 10-day 17 

assimilation window,  which is close to the sampling time of many LAI products (e.g. a 8-day 18 

MODIS product is available), was chosen because shorter assimilation windows would 19 

regularly exclude LAI observations altogether.  20 

  (ii) Observational errors  21 

 In this study, observed time series of surface soil moisture (wg) and LAI were used for 22 

the assimilation into the model. For wg, the same method as in MU07 was applied, i.e. the 23 

error derived from the dispersion of in-situ observations was doubled and therefore set to Rwg 24 
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= 0.06 m3m-3. For LAI, an observational error is difficult to obtain from the experimental 1 

procedure followed in SMOSREX. Moreover, the LAI observations exhibited quite different 2 

cycles (in terms of shape and maxima) in 2001 and 2002. It was decided to use an empirical 3 

value of RLAI = 1 m2m-2, which is expected to account for all sources of uncertainties 4 

(observational system and representativeness error). Both values were assumed to be constant 5 

throughout the whole period 2001-2004. A sensitivity study was performed in order to assess 6 

the value of a variable LAI observation error. However, no or little impact on the assimilation 7 

results were found. For the sake of simplicity, a constant value was used. 8 

 (iii) Background errors 9 

For the description of the error in the estimation of w2, an ensemble of simulations was 10 

created between two consecutive observations by using different initial states of w2 and by 11 

perturbing the atmospheric forcing. For each assimilation window the dispersion of the 12 

residuals (difference between an observation and the model estimation) was assessed.  During 13 

the calibration year (2001) this quantity was shown to have a constant value of 0.02 m3m-3.  14 

The same approach was used to estimate a model covariance error for the vegetation biomass 15 

over the 10-days of the individual assimilation windows. It was observed that the evolution of 16 

the standard deviation of the residuals does not vary much over the year 2001. However, a 17 

slight seasonal effect is observed (not shown). Departure from the mean value is about 0.01 18 

kg m-2 on average. Therefore, the background error for the vegetation biomass was assumed 19 

to be constant and was set equal to the average of the standard deviation of the residuals in 20 

2001 (0.05 kg m-2). 21 

 (iv) Linear hypothesis 22 

A further important parameter in the implementation of this simplified variational 23 

assimilation scheme is the choice of the perturbation size of the state variables, because it 24 

determines the quality of the linear approximation through the observation operator H. To 25 
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evaluate the “optimal” size of this perturbation, the following test was conducted: an 1 

ensemble of linear operators H was obtained by finite differences (by a random Gaussian 2 

perturbation of the initial value of w2 and/or the vegetation biomass) for a 10-day period (four 3 

components for Hw2 and one for HBIO) and their standard deviation (σ) was calculated. Several 4 

values of the initial perturbation of the state variables were tested. The smallest perturbations 5 

of w2 (between 0.005 and 0.015 m3m-3) produced a strong value of σ to the four linearized 6 

components of Hw2 during the calibration year (not shown). This is due to the numerical noise 7 

produced by infinitesimal perturbations in the vicinity of the initial value. The most suitable 8 

perturbation should result in a low sensitivity of Hw2. Hw2 was found to be less sensitive for 9 

perturbations close to 0.05 m3m-3 and this value was used in the assimilation algorithm. 10 

Fig. 2 illustrates how the optimal perturbation of Bio was determined. The σ of the 11 

sole component of HBIO in a 10-day assimilation window is presented for contrasting values of 12 

perturbations of Bio. In Fig. 2, the optimal perturbation, producing the lowest σ values, is 13 

located between 0.07 and 0.10 kg m-2. It was finally set to 0.07 kg m-2. Fig. 2 shows that 14 

perturbation values lower than 0.07 kg m-2 and between 0.10 and 0.13 kg m-2 produced larger 15 

σ values. Perturbations higher than 0.13 kg m-2 were found also to produce larger 16 

uncertainties in HBIO (not shown). 17 

 (v) Implementation 18 

The implementation of the simplified assimilation scheme can be undertaken in 19 

different ways. In this study, w2 and vegetation biomass were perturbed at the beginning of 20 

each assimilation window, in order to determine the linearized observation operator. This 21 

configuration necessitated 3 runs for each assimilation window (one for each perturbed 22 

variable and one for the control run).  23 

2.3.3. Dynamical correction of the wilting point  24 
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As mentioned before, wwilt is estimated by the LSM and then treated as a constant 1 

parameter (found to be 0.17 m3m-3 for the SMOSREX site). However, the assimilation 2 

scheme is allowed to initialise the model with w2 states below wwilt, following the assimilation 3 

of wg. This occurred during the drought periods of the years 2003 and 2004 (MU07). In this 4 

case, ISBA-A-gs did not allow any further evapotranspiration and soil water extraction 5 

through the roots, even after significant rainfall events. This led to a strong vegetation 6 

mortality rate. However, the SMOSREX field observations performed during the summer 7 

2003 show that the vegetation growth in response to rainfall may be rapid (Fig. 1). The 8 

performance of the vegetation analyses was also affected by this constraint. The following 9 

solution is proposed: for each assimilation step with an analysed value of w2 below the fixed 10 

wwilt, the model wwilt is re-set by substituting its value with the analysed value of w2. This 11 

simple modification to the model allows plant growth in response to rainfall to occur after a 12 

drought. 13 

 14 

 15 

16 
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3. Results  1 

 2 

3.1.  w2 and biomass analyses (2001-2004)  3 

 In Fig. 3, the 1D-VAR analysis of w2 and the vegetation biomass are presented for the 4 

years 2001 to 2004 (Fig. 3a and 3b, respectively) with a non-stationary wwilt (see section 5 

2.3.3). The simulation performed with ISBA-A-gs and without the assimilation of wg or LAI 6 

observations (i.e. the control simulation) is also presented in Fig. 3. The predicted LAI 7 

(control and analysis) is also shown on Fig. 3c. The assimilated observations are the surface 8 

soil moisture (one observation every three days) and the LAI (one observation every 10 days). 9 

Analyses, observations and the control model reference are superposed for comparison 10 

purposes. It is shown that w2 is generally well reproduced during the whole period from 2001 11 

to 2004, with a score E equal to 0.86 after the assimilation in contrast to 0.79 for the control 12 

simulation (Table 2). The added value of the assimilation is particularly noticeable during the 13 

six months following June 2003, for which the model without assimilation is not able to 14 

descend below the prescribed wwilt and consequently overestimates the moisture during the 15 

rest of that year.  16 

On Fig. 3c, the impact of the joint w2 and vegetation biomass analysis is shown for the 17 

LAI predictions. The predicted values of LAI are quite close to the observations, improving 18 

the performance from E = 0.17 for the control run to E = 0.72, and RMSE from 0.80 m2 m-2 to 19 

0.47 m2m-2 after the assimilation (Table 2). The main disagreements are found during the 20 

senescence periods of the vegetation when the model clearly overestimates the LAI (except 21 

for 2003, where an anomalous double cycle of LAI was observed). Since the vegetation 22 

biomass observations are sparse and very scattered for 2001 and 2002, it is not clear whether 23 

the assimilation improves the control model simulation for these years. It is observed that 24 

during the second cycle of vegetation in 2003, the biomass is slightly overestimated after the 25 
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analysis, which is in agreement with the higher LAI observations assimilated. The RMSE and 1 

the score for the years 2003 and 2004 were not improved, which may be explained by the 2 

limited number of available observations of vegetation biomass. However, for the whole 3 

study period, the analysis of the vegetation biomass improved the score from 0.17 to 0.23.  4 

In Fig. 4, the impact of setting a non-stationary  wwilt is only shown for 2003 and 2004, 5 

because wwilt was only modified during these two years. During the periods with analysed w2 6 

below wwilt an increased vegetation mortality rate is observed. The need for re-setting wwilt is 7 

particularly apparent between July and October 2004, when the vegetation biomass analyses 8 

were close to zero. During this period, each time w2 analyses were below wwilt ISBA-A-gs 9 

stopped plant transpiration and photosynthesis, which resulted in a high vegetation mortality 10 

rate. Consequently, the performance of the vegetation biomass analyses for 2003 and 2004 11 

was low (Table 2) compared to the case of a modified wwilt. This effect is less evident in 2003, 12 

since the drying period is shorter than in 2004. For the complete four years, the score of the 13 

vegetation biomass decreases (compared with a non-stationary wwilt) from 0.23 to 0.12. The 14 

lower vegetation biomass during the dry periods also had an impact on the soil water 15 

reservoir, which produced higher moisture levels. The score for w2 decreased from 0.86 to 16 

0.82 (Table 2).  17 

18 
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 1 

 2 

3.2. Zero precipitation 3 

The simulations at SMOSREX are forced with good quality measurements of 4 

meteorological variables, representative for the study area. However, at larger scales the 5 

information about meteorological variables is less accurate. In order to test the robustness of 6 

the 1D-VAR, even when forcing data are subjected to large errors, the precipitation was set to 7 

0. Precipitation is a key variable within atmospheric forcing data sets and is particularly 8 

important for the water reservoir evolution. For this experiment, the assimilation scheme was 9 

run again for the whole 4-year period under investigation. Fig. 5 shows the same plots as Fig. 10 

3, but with the new, degraded forcing data. Although the new analyses produced a drier soil, 11 

the general shape of the curve of the analyzed w2 was maintained. It is now much smoother, 12 

since the information about the precipitation events is lacking. It is important to remark that 13 

the assimilation scheme permits the increase of the root-zone soil moisture before the start of 14 

the growing period. Otherwise, given the absence of precipitation, a growing season would 15 

not be simulated. The LSM, with precipitation set to 0, tends to decrease the root-zone soil 16 

moisture between two observations. However, the 1D-VAR generates positive increments 17 

which correct the water deficiency in order to match the wg observations. The advantage over 18 

the control simulation is considerable. Under the precipitation constriction, the control 19 

simulation would rapidly fall to 0.17 m3m-3 (constant wwilt), and since the model would not 20 

receive precipitation, the moisture reservoir would remain at this lower boundary. The 21 

benefits of the data assimilation are also clear for the vegetation: although the biomass 22 

analyses are obtained with less accuracy (in particular, lower peak values are obtained), 23 

especially during the wet years 2001 and 2002, the start of the growing season is still well 24 

predicted. The need for a non-stationary wwilt is highlighted again when Fig. 5 is compared to 25 
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Fig. 6. In the latter, the vegetation biomass reaches a value of 0 in those periods where w2 is 1 

below wwilt, and which now have a longer duration, due to the lack of precipitation. The score 2 

for the vegetation biomass becomes negative and for the LAI is reduced from 0.48 (non-3 

stationary wwilt) to 0.14 (stationary wwilt). In Fig. 6, the w2 analyses for the summer period are 4 

overestimated in the years 2003 and 2004, because of a very low level of vegetation, while 5 

better retrievals are obtained by re-setting wwilt. The evapotranspiration is strongly reduced 6 

without precipitation, since the simulation of the vegetation biomass underestimates the real 7 

conditions (Table 3).  8 

 9 

4. Summary and Discussion  10 

The present study is a continuation of the work initiated in MU07. There, a simplified 11 

1D-VAR assimilation scheme was compared with other assimilation schemes, and it was 12 

shown that it offered the best performance in view of a future implementation in a regional 13 

experiment. However, the LAI was forced and the vegetation biomass was not corrected for, 14 

as only wg observations were assimilated. Nevertheless, vegetation biomass is also an 15 

important surface variable, vital to estimate the carbon and water vapour fluxes, and its 16 

analysis is also essential. In this study, field observations of wg and LAI were assimilated at 17 

the same time into the ISBA-A-gs LSM. When comparing Fig. 3a of this study with Fig. 4 of 18 

MU07, two main differences are observed with regard to the analyses of w2: i) a degradation 19 

at the end of 2001 is observed, ii) the correction over the dry period of 2004 is less accurate. 20 

This is a consequence of analysing the vegetation biomass in addition to soil moisture. From 21 

October 2001 to February 2002 no LAI observations were available, which resulted in 22 

interpolated values of less than 0.5 m2m-2 during this period. In this study, these estimates 23 

were assimilated and the LAI retrievals after assimilation were close to these observations. 24 

This produced lower transpiration and water extraction rates, hence a slower drying of the 25 
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water reservoir and as a consequence an overestimation of the w2 analyses. Before the 1 

implementation of the joint assimilation of wg and LAI observations into the fully coupled 2 

model, a number of tests were performed. In particular, the assimilation of wg alone and of 3 

LAI alone was attempted (MU07). 4 

The assimilation of wg alone (LAI was not controlled by any observation) did not 5 

improve the simulated LAI. It tended to speed up the growing period and to increase the 6 

maximum value of LAI reached each year. This factor had detrimental effects on the analysed 7 

w2 during the spring of 2002 (values lower than the control simulation, and much lower than 8 

the observations were obtained). 9 

The assimilation of LAI alone (wg was not constrained by any observation) generally 10 

improved w2 only marginally. However, it tended to increase the error on the simulated w2 11 

during the drought periods (e.g. October 2001, July-August 2003, July 2004, October 2004), 12 

while it permitted to obtain analysed vegetation biomass values very similar to those shown in 13 

Figs. 3 and 4. 14 

No flux validation data was available and the positive or negative impact of the 15 

assimilation on the fluxes could not be quantified. On a daily basis, the simulated 16 

evapotranspiration was not fundamentally changed by the assimilation. However, the new 17 

annual cycles of the flux was more consistent with the available observations of vegetation 18 

biomass and LAI, which showed that the LAI produced by the control simulation was 19 

underestimated during the start of the growing season and overestimated during the 20 

senescence phase.  21 

The wwilt limitation imposed by the single soil layer of the model used in this study 22 

tends to trigger a high vegetation mortality rate during marked droughts, and to underestimate 23 

the impact (on vegetation growth and on the water and carbon fluxes) of significant rainfall 24 

events after the droughts. A simple solution consists in re-setting wwilt dynamically during 25 
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anomalously dry periods. The introduction of a non-stationary wwilt was shown to improve the 1 

moisture and vegetation predictions as compared to the control simulation with a stationary 2 

wwilt. This led to an improvement of the score of w2 from 0.79 to 0.86. Furthermore, the score 3 

was slightly improved from 0.17 to 0.23 for the vegetation biomass analysis. The final value 4 

of 0.23 is rather low, partly because the high level of scatter in the observations found for 5 

2001 and 2002 prevents the score of reaching higher values.  6 

Solutions potentially suitable to overcome the wwilt problem, include the attribution of 7 

more weight to the LAI observations by reducing the observational error when the initial w2 is 8 

found below the prescribed wwilt. However, this poses a problem when LAI observations are 9 

not reliable. The simple solution of prescribing a non-stationary wwilt value, low enough for 10 

drought periods, was assessed (not shown). Indeed, a lower wwilt (e.g. 0.10 m3m-3 instead of 11 

0.17 m3m-3) permitted to improve the control simulation of w2 during the summer/autumn of 12 

dry years (2003-2004). However, this change triggered a significant underestimation of w2 13 

during the summer/autumn of the normal/wet years (2001-2002). These results were to be 14 

expected, as prescribing a lower value of the wilting point is tantamount to increasing the total 15 

extractable soil moisture of the soil. The vegetation simulated by ISBA-A-gs over this site 16 

tends to exploit the whole soil moisture reservoir prescribed in the model, even during a wet 17 

year like 2002. It was eventually decided that it was preferable to use the 0.17 m3m-3 value, 18 

which is a typical wilting point value for a loam and which allows a good model performance 19 

during normal years. The difference between the model and the observations in 2003 and 20 

2004 can be explained by the rather extreme droughts encountered during these two years.  A 21 

number of biological and physical explanations are proposed: 22 

In the model, the wilting point depends on the soil texture. In reality, this parameter may also 23 

depend on the plant ability to extract water from a particular soil. The SMOSREX fallow is a 24 

multi-specific canopy. During drought events, the plant species most capable of extracting 25 
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water in dry conditions have an advantage in their competition with the other species. This 1 

effect could change the behaviour of the soil-plant system from one year to another. To some 2 

extent, this effect could also happen at large spatial scales for natural ecosystems and 3 

agricultural areas (e.g. farmer may choose to use cultivars adapted to dry conditions during 4 

dry years). 5 

Over the SMOSREX site, the fallow biomass is very dense and the dead vegetation residues 6 

tend to form a dense vegetal mulch at the soil surface (De Rosnay et al. 2006). In the model, 7 

the strong decrease in direct soil evaporation due to the mulch (Gonzalez-Sosa et al. 2001) is 8 

not represented explicitly. In order to represent the mulch effect, a fixed vegetation cover 9 

fraction of 100 % was assumed in the ISBA-A-gs simulations. Test simulations were 10 

performed with lower vegetation cover fraction values (allowing bare soil evaporation) and 11 

showed that this effect is not sufficient to simulate a total soil moisture content below the 12 

wilting point. In the field, phenomena like the formation of deep cracks into the soil may 13 

foster the soil evaporation and this process is not accounted for by the model. 14 

The use of a soil multi-layer scheme, which describes more accurately the evolution of 15 

the prognostic variables during dry periods than a single layer model with an averaged soil 16 

moisture content, may lead to a better prediction of soil moisture and LAI. In particular, the 17 

impact on the vegetation of rewetting the top soil layer is better accounted for by a multilayer 18 

model. However, the inclusion of several soil layers would augment the computational burden 19 

of the assimilation. The assimilation of observations into a multi-layer soil model is not a 20 

simple task. If all layers are to be analysed individually, an understanding of the error-21 

correlation between near-surface soil moisture observations and the different layers are 22 

required (Reichle et al. 2001, Walker et al. 2002). 23 

It was shown that when precipitation observations contain large errors, the joint 24 

assimilation of wg and LAI is capable of restoring the annual trend of w2 and vegetation 25 



  21

biomass, but large errors may occur in the absolute value of these quantities. An attempt was 1 

made to deactivate the plant growth module of the model and to analyse w2 only. In this case, 2 

the observed LAI was prescribed to the model instead of being assimilated. The soil moisture 3 

evolution was better predicted, because the root-plant water extraction and evapotranspiration 4 

rates were more realistic. In case of large precipitation errors, imposing LAI from external 5 

observations may be an advantage for the retrieval of soil moisture. However, as stated above, 6 

a large error in the LAI observations may prevent the assimilation scheme to lead to a 7 

significant improvement. 8 

In this study, an assimilation window of 10 days was used. Longer windows have the 9 

advantage of reducing the computing time but they result in a degradation of the model 10 

prediction. For example, a test with a 30-day assimilation window showed that the score E of 11 

the analysed w2 and vegetation biomass decreased from 0.86 and 0.23, respectively, to 0.79 12 

and a negative value. 13 

 14 

 15 

 16 

5. Conclusion 17 

In the SMOSREX case study, the joint assimilation of wg and LAI observations by 18 

using a simplified 1D-VAR assimilation scheme over a fallow, has demonstrated that: 19 

 The temporal evolution of both w2 and the vegetation biomass are significantly 20 

improved by the assimilation. The assimilation scheme generally reduces the model 21 

underestimation of vegetation biomass during the growing phase and, especially, the 22 

overestimation of vegetation biomass during the senescence phase of the vegetation.  23 

 The use of a non-stationary wwilt is required for dry years during which soil 24 

moisture observations are found below the a priori value of wwilt. This change limits 25 
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the vegetation mortality during (and after) very dry conditions and the underestimation 1 

of the evapotranspiration following an inaccurate simulation of the biomass.  2 

 In the presence of significant errors in the atmospheric forcing, the leaf onset and 3 

the seasonal dynamics of the soil moisture are still retrieved well even, for example, if 4 

precipitation is set to 0. However, the error on the analysed variables (w2 and the 5 

vegetation biomass) is large. In this case, the analysis of w2 is more efficient if the 6 

vegetation biomass is not analysed, i.e. if good quality LAI observations are 7 

prescribed to the model, instead of simulating the vegetation growth. 8 

 9 
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1. a) LAI, b) wg, c) w2 and d) monthly precipitation for 2001 to 2004 as measured over 4 
the SMOSREX site. On top the interpolated LAI (solid line) is superimposed to the 5 
observations (circles). Note that the spline function used for LAI interpolation changed 6 
from one year to another, depending on data quality and frequency. The wg and w2 7 
simulations of ISBA-A-gs (solid line) using the offensive strategy as response to water 8 
stress (drought tolerant) are superimposed to the observations (dots for wg and stars for 9 
w2). 10 

 11 
2. Temporal evolution of the linearized HBIO standard deviation. HBIO is computed by an 12 

initial perturbation of the vegetation biomass. The standard deviation of HBIO is 13 
presented for four different intervals for the initial perturbation of the vegetation 14 
biomass: [0.005, 0.030], [0.03, 0.07], [0.07, 0.10], [0.10, 0.13], in units of kg m-2. HBIO 15 
values are in units of m2 ּ◌kg-1. 16 

 17 
3. Analysis of a) the root zone soil moisture (circles) and b) vegetation biomass, using 18 

the simplified 1D-VAR method and a dynamical correction of the wilting point for 19 
2001 to 2004 over the SMOSREX experimental site. c) Observations and simulations 20 
of LAI before and after the assimilation. For comparison purposes, analysed values are 21 
superimposed over the in-situ observations (points) and the open loop-22 
simulations(solid line). 23 

 24 
4. Analysis of a) the root zone soil moisture (circles) and b) vegetation biomass, using 25 

the simplified 1D-VAR method and a fixed wilting point for 2003 to 2004 over the 26 
SMOSREX experimental site. c) LAI before and after the assimilation. For 27 
comparison purposes, analysed values are superimposed over the in-situ observations 28 
(points) and the model initial estimations (solid line). 29 
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5. Analysis of a) root zone soil moisture and, b) vegetation biomass, using the simplified 32 
1D-VAR method for 2001 to 2004, with precipitation set to zero. c) LAI before and 33 
after the assimilation. Analysed values (circles) are superimposed over the in-situ 34 
observations (points) and the model basic estimations (solid line) for comparison 35 
purposes. 36 
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6. Same as Fig. 5, but using a fixed wilting point. The results for the years 2001 and 38 
2002 are omitted as being similar as in Fig. 5. 39 
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 1 
 2 
 3 
Figure 1.- a) LAI, b) wg, c) w2 and d) monthly precipitation for 2001 to 2004 as measured 4 

over the SMOSREX site. On top the interpolated LAI (solid line) is superimposed 5 
to the observations (circles). Note that the spline function used for LAI 6 
interpolation changed from one year to another, depending on data quality and 7 
frequency. The wg and w2 simulations of ISBA-A-gs (solid line) using the offensive 8 
strategy as response to water stress (drought tolerant) are superimposed to the 9 
observations (dots for wg and stars for w2). 10 
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 17 
 18 
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 1 

 2 

Figure 2.- Temporal evolution of the linearized HBIO standard deviation. HBIO is computed 3 
by an initial perturbation of the vegetation biomass. The standard deviation of 4 
HBIO is presented for four different intervals for the initial perturbation of the 5 
vegetation biomass: [0.005, 0.030], [0.03, 0.07], [0.07, 0.10], [0.10, 0.13], in 6 
units of kg m-2. HBIO values are in units of m2 ּ◌kg-1. 7 
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 1 

Figure 3.- Analysis of a) the root zone soil moisture (circles) and b) vegetation biomass, 2 
using the simplified 1D-VAR method and a dynamical correction of the wilting 3 
point for 2001 to 2004 over the SMOSREX experimental site. c) LAI before and 4 
after the assimilation. For comparison purposes, analysed values are superimposed 5 
over the in-situ observations (points) and the model basic estimations (solid line). 6 
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 1 

Figure 4.- Analysis of a) the root zone soil moisture (circles) and b) vegetation biomass, 2 
using the simplified 1D-VAR method and a fixed wilting point for 2003 to 2004 3 
over the SMOSREX experimental site. c) LAI before and after the assimilation. 4 
For comparison purposes, analysed values are superimposed over the in-situ 5 
observations (points) and the model basic estimations (solid line). 6 
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 1 
 2 

Figure 5.- Analysis of a) the root zone soil moisture and, b) vegetation biomass, using the 3 
simplified 1D-VAR method for 2001 to 2004, with precipitation set to zero. c) 4 
LAI before and after the assimilation. Analysed values (circles) are superimposed 5 
over the in-situ observations (points) and the model basic estimations (solid line) 6 
for comparison purposes. 7 
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 1 

Figure 6.- Same as Fig. 5, but using a fixed wilting point. The results for the years 2001 and 2 
2002 are omitted as being similar as in Fig. 5.  3 
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TABLE 1. 1 

Main soil and vegetation  parameters used in the ISBA-A-gs simulations over the SMOSREX 2 
site. 3 

 4 

Soil parameters 

parameter symbol Unit Value 

Soil depth d2 cm 95 

Sand Content SAND % 32.0 

Clay content CLAY % 22.8 

Field capacity wfc m3 ּ◌m-3 0.30 

Wilting point wwilt m3 ּ◌m-3 0.17 

Vegetation parameters 

parameter symbol Unit Value 

Mesophyll conductance gm mm ּ◌s-1 0.56 

Critical extractable soil moisture θc % 50 

Plant response to water stress - - drought-tolerant 

Potential leaf life expectancy τ days 80 

Minimum LAI  LAImin m2 ּ◌m-2 0.3 

Cuticular conductance gc mm ּ◌s-1 0 

Nitrogen plasticity parameter (slope) e m2 ּ◌kg-1 ּ◌%-1 5.84 

Nitrogen plasticity parameter 
(intercept) 

f m2 ּ◌kg-1 6.32 

Leaf nitrogen concentration Nl % 1.4 

 5 
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TABLE 2.  1 

Yearly and global RMSE and mean bias for the root zone-soil moisture (in m3 m-3), the above-2 
ground vegetation biomass (in kg m-2), and the LAI (in m2 m-2) of the analyses (4 model 3 
configurations) and the control simulation. The score E (dimensionless) is indicated.  4 
 5 
 6 

  

2001 2002 2003 2004 2001-2004 

 
RMSE mb E RMSE mb E RMSE mb E RMSE mb E RMSE mb E 

A
N

A
L

Y
SI

S 
F

ix
ed

  w
w

il
t  w2 0.01 0.03 0.94 0.02 0.01 0.90 0.02 0.01 0.90 0.05 0.04 0.60 0.03 0.01 0.82 

LAI 0.41 0.38 0.65 0.46 0.32 0.62 0.45 -0.07 0.75 0.50 -0.02 0.73 0.48 0.16 0.70 

Biomass 0.13 0.01 0.02 0.16 0.12 0.08 0.09 0.03 0.26 0.12 0.04 0.18 0.14 0.03 0.12 

A
N

A
L

Y
SI

S 
D

yn
am

ic
 w

w
il

t  w2 0.01 0.03 0.94 0.02 0.01 0.90 0.02 0.01 0.94 0.04 0.02 0.72 0.03 0.01 0.86 

LAI 0.41 0.38 0.65 0.46 0.32 0.62 0.41 -0.07 0.76 0.45 0.05 0.79 0.47 0.19 0.72 

Biomass 0.13 0.01 -0.21 0.16 0.12 -0.08 0.09 0.03 0.48 0.12 0.04 0.39 0.14 0.08 0.23 

A
N

A
L

Y
SI

S 
P

P
=

0,
  f

ix
ed

 w
w

il
t  

w2 0.03 -0.02 0.68 0.05 -0.04 -0.09 0.04 -0.03 0.65 0.05 -0.02 0.66 0.04 -0.03 0.57 

LAI 0.31 -0.02 0.81 0.73 -0.46 0.02 1.16 -0.72 -0.63 0.85 -0.49 0.27 0.82 -0.46 0.14 

Biomass 0.13 -0.07 0.03 0.18 -0.13 -0.38 0.15 -0.08 -0.94 0.11 -0.04 0.47 0.14 -0.08 -0.06 

A
N

A
L

Y
SI

S 
P

P
=

0,
 D

yn
am

ic
 

w
w

il
t 

w2 0.03 -0.02 0.68 0.05 -0.04 -0.09 0.05 -0.04 -0.09 0.06 -0.03 0.51 0.05 -0.03 0.47 

LAI 0.30 -0.02 0.86 0.73 -0.46 0.02 0.73 -0.46 0.02 0.73 -0.36 0.46 0.64 -0.29 0.48 

Biomass 0.13 -0.07 0.03 0.18 -0.13 -0.38 0.10 0.03 0.15 0.09 -0.03 0.66 0.13 0.04 0.13 

C
O

N
T

R
O

L
  w2 0.01 -.005 0.97 0.02 -.004 0.89 0.03 0.02 0.74 0.05 0.04 0.58 0.03 0.01 0.79 

LAI 0.97 0.47 -0.40 0.60 0.32 0.35 0.79 -0.33 0.25 0.81 -0.12 0.33 0.80 0.09 0.17 

Biomass 0.12 -.07 0.15 0.19 1.19 -.47 0.06 -0.03 0.53 0.08 -0.02 0.62 0.13 0.02 0.17 
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TABLE 3.  1 

Evapotranspiration yearly cumulated flux (LE, in mm year-1) after the assimilation of LAI and 2 
wg observations for four different model configurations, and for the control simulation. 3 
 4 
 5 

 2001 2002 2003 2004 
Control 
 

505.8 523.8 407.1 398.8 

Analysis 
fixed wwilt 

535.8 520.5 378.5 375.4 

Analysis 
dynamic wwilt 

543.8 520.4 400.0 395.2 

Analysis 
fixed wwilt and no rain 

230.8 144.7 113.4 156.0 

Analysis 
dynamic wwilt and no rain 

230.8 144.7 171.1 174.4 
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