
HAL Id: meteo-00358520
https://meteofrance.hal.science/meteo-00358520v1

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Regional methods for trend detection: Assessing field
significance and regional consistency

Benjamin Renard, M. Lang, P. Bois, A. Dupeyrat, O. Mestre, Hélène Niel,
Eric Sauquet, C. Prudhomme, S. Parey, E. Paquet, et al.

To cite this version:
Benjamin Renard, M. Lang, P. Bois, A. Dupeyrat, O. Mestre, et al.. Regional methods for trend
detection: Assessing field significance and regional consistency. Water Resources Research, 2008, 44
(8), pp.W08419. �10.1029/2007WR006268�. �meteo-00358520�

https://meteofrance.hal.science/meteo-00358520v1
https://hal.archives-ouvertes.fr


Regional methods for trend detection: Assessing field significance

and regional consistency

B. Renard,1 M. Lang,2 P. Bois,3 A. Dupeyrat,4 O. Mestre,5 H. Niel,6 E. Sauquet,2

C. Prudhomme,7 S. Parey,4 E. Paquet,8 L. Neppel,6 and J. Gailhard8

Received 15 June 2007; revised 27 March 2008; accepted 21 May 2008; published 12 August 2008.

[1] This paper describes regional methods for assessing field significance and regional
consistency for trend detection in hydrological extremes. Four procedures for
assessing field significance are compared on the basis of Monte Carlo simulations. Then
three regional tests, based on a regional variable, on the regional average
Mann-Kendall test, and a new semiparametric approach, are tested. The latter was found to
be the most adequate to detect consistent changes within homogeneous hydro-climatic
regions. Finally, these procedures are applied to France, using daily discharge data arising
from 195 gauging stations. No generalized change was found at the national scale on
the basis of the field significance assessment of at-site results. Hydro-climatic
regions were then defined, and the semiparametric procedure applied. Most of the regions
showed no consistent change, but three exceptions were found: in the northeast flood
peaks were found to increase, in the Pyrenees high and low flows showed
decreasing trends, and in the Alps, earlier snowmelt-related floods were detected, along
with less severe drought and increasing runoff due to glacier melting. The trend affecting
floods in the northeast was compared to changes in rainfall, using rainfall-runoff
simulation. The results showed flood trends consistent with the observed rainfall.

Citation: Renard, B., et al. (2008), Regional methods for trend detection: Assessing field significance and regional consistency,

Water Resour. Res., 44, W08419, doi:10.1029/2007WR006268.

1. Introduction

[2] The impact of climate change on the hydrological
regime of rivers is still a subject of active research,
especially regarding extreme hydrological events such as
floods or droughts.
[3] Numerous studies have attempted to detect trends in

hydrological data in various parts of the world (Douglas et
al. [2000] in USA, Hisdal et al. [2001] in Europe, Black
and Burns [2002] in Scotland, Birsan et al. [2005] in
Switzerland, Cigizoglu et al. [2005] in Turkey). Significant
trends have been reported in some regions but could in most
cases be related to natural climatic fluctuations (e.g., be-
cause of the influence of the North Atlantic Oscillation)
rather than climate change (Robson [2002] and Hannaford
and Marsh [2006] in the UK). Moreover, when considered
at the global scale, results appear inconclusive [Kundzewicz
et al., 2005; Svensson et al., 2005].

[4] The lack of clear conclusions from local analyses may
reflect the need for regional-scale analysis, which could be
more relevant than at-site studies for detecting the impacts
of global phenomena such as climate change. Several
distinct issues can be investigated at the regional scale.
The most thoroughly studied is field significance [Livezey
and Chen, 1983; Lettenmaier et al., 1994; Douglas et al.,
2000; Ventura et al., 2004; Renard and Lang, 2007]: the
aim is to derive a statistical test for the hypothesis ‘‘H0: data
from all sites are stationary,’’ when a test is repeated with a
given significance level on several locations. The second
aspect involves the consistency of changes detected within a
given region. This is usually studied by representing results
of at-site tests on a map, but more rigorous approaches exist,
through test statistics defined over the entire region [Douglas
et al., 2000; Yue and Wang, 2002]. Exploiting the concept of
regionalization may be a step forward [Katz et al., 2002], by
assuming that at-site samples are identically distributed
(including an identical trend), up to some scale factor.
Unfortunately, both field significance and regional consis-
tency determination are difficult tasks, because specific
problems arise at the regional scale. The most challenging
difficulty of regional studies stems from the spatial depen-
dence between data from different locations, which can
significantly bias conclusions when ignored.
[5] This paper aims to test existing techniques and

develop new methods for detecting changes at the regional
scale, and to illustrate their use on extreme discharge in
France. It is organized as follows. Section 2 presents
methods for assessing field significance (2.1.) and regional
consistency (2.2.). These methods are then evaluated and
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compared using synthetic data in section 3. A case study
was conducted on runoff series arising from a set of French
rivers, at the national (3.1.) and regional (3.2.) scales.
Moreover, potential links between changes in river flow
and rainfall are investigated for a single hydro-climatic
region, using a conceptual rainfall-runoff model (4.3). The
main conclusions of the paper are summarized in section 5,
together with broader perspectives and future developments.

2. Methods

2.1. Field Significance

[6] Field significance is assessed when a statistical test is
repeated on several distinct data series (e.g., from several
locations in a given region) and has been studied, for
example, by Livezey and Chen [1983], Lettenmaier et al.
[1994], Douglas et al. [2000], Yue and Wang [2002],
Ventura et al. [2004], and Renard and Lang [2007]. In a
change detection context, it aims at testing the hypothesis
‘‘H0: data from all sites are stationary.’’ In order to illustrate
this concept, let us assume that 100 stations are tested with a
significance level a equal to 0.05. Under the H0 hypothesis,
stationarity should be rejected for approximately five sta-
tions, corresponding to the 5% significance level. The
question is how to conclude if, for instance, six stations
showed significant trends. In other words, how can we
estimate the minimum number of locally significant trends
to conclude, with a regional significance level a0, that the
changes are not all due to chance? This requires knowing
the distribution of N, the number of locally significant tests
under the hypothesis that all series are stationary. If the
observed number of locally significant results is larger than
the 1 � a0 quantile of the distribution of N, the changes will
be considered field significant for regional significance
level a0.
[7] When data from all sites are independent, it can easily

be shown that N follows a binomial distribution with
parameters p (number of sites) and a (at-site significance
level). However, in practice data series are rarely indepen-
dent, and the distribution of N departs from the binomial
distribution when dependence increases in the data set.
Specific methods accounting for dependence therefore have
to be applied.
2.1.1. Effective Number of Stations
[8] In order to account for the effect of intersite depen-

dence, one approach consists of using an equivalent (or
effective) number of stations (ENS) [Matalas and Langbein,
1962]. This concept has often been used to quantify the
redundancy of information induced by dependence. Given a
statistic S and a data set with p stations, the ENS p* is
defined as:

p* ¼ p
Varind Sð Þ
Var Sð Þ ð1Þ

where Varind(S) is the variance of S under the independence
hypothesis. This means that, in terms of information content,
p-dependent stations are equivalent to p*-independent
stations.
[9] An intuitive approach to assess the field significance

of a set of statistical tests is to apply the binomial approx-
imation to the ENS p*. This results in a critical value N*,

which can be expressed as a critical percentage r =
100.N*/p*. The field significance is finally assessed by
comparing the observed percentage of significant trends
detected in the original data set to r. Note that this approach
is purely empirical because the ENS is not uniquely defined,
as it depends on the S statistic considered in equation (1).
Moreover, although the binomial distribution is the exact
distribution of N in the independence case, this does not
ensure it can be used to approximate the critical value N*
when using the ENS p* in lieu of the actual number of
stations p.
[10] In this paper, the ENS was derived from equation (1)

by using the regional average Mann-Kendall (RAMK)
statistic proposed by Douglas et al. [2000] and Yue and
Wang [2002]. Let Xi

(j) be the variable of interest computed at
site j (j = 1,. . .,p) on year i (i = 1,. . .,n) and S (j) the Mann-
Kendall statistic [Mann, 1945; Kendall, 1975] computed at
site j:

S jð Þ ¼
Xn�1

k¼1

Xn
i¼kþ1

sign X
jð Þ

i � X
jð Þ

k

� �
ð2Þ

The RAMK statistic SR is the mean of the at-site Mann-
Kendall statistics:

SR ¼ 1

p

Xp
j¼1

S jð Þ ð3Þ

Under the null hypothesis H0 that at-site series are
stationary, the distribution of S (j) is asymptotically Gaussian
with variance:

Var S jð Þ
� �

¼ n n� 1ð Þ 2nþ 5ð Þ=18 ð4Þ

If the p sites are independent, it is easy to show that the
variance of SR is equal to Var(S(j))/p. However, this result is
not true when data series are spatially dependent. In this
case, Douglas et al. [2000] and Yue and Wang [2002]
showed that the variance of the RAMK statistic could be
estimated by:

Var SRð Þ ¼ n n� 1ð Þ 2nþ 5ð Þ
18p

1þ p� 1ð Þrð Þ;

where r ¼
2
Pp
i¼2

Pi�1

j¼1

ri;j

p p� 1ð Þ ð5Þ

where ri,j is the correlation coefficient between data
recorded at sites i and j. Consequently, the impact of
intersite dependence on the RAMK statistic can be
estimated by:

Var SRð Þ
Varind SRð Þ ¼ 1þ ðp� 1Þr ð6Þ

Using equation (1), the ENS p* is:

p* ¼ p

1þ p� 1ð Þr ð7Þ
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Although the RAMK statistic is used to derive the ENS, we
stress that the assessment of field significance using the
ENS is fundamentally different from the RAMK test, which
will be presented in section 2.2.2.
2.1.2. Bootstrap Procedure
[11] Douglas et al. [2000] suggested the use of a boot-

strap procedure to assess field significance. This procedure
can be used to estimate the distribution of N, the number of
locally significant results under the hypothesis that all series
are stationary at a given iteration (m = 1,. . .,nsim), the
bootstrap procedure consists of the following steps. (1) A
sample of years is created by bootstrapping the years used in
the original data set (i.e., sample with replacement the same
number of years as the original data set). (2) The new data
set is formed by the records of the p stations corresponding
to the bootstrapped years. (3) A statistical test is applied at
each station of the bootstrapped data set. (4) N(m) is the
number of stations with significant results obtained at
iteration m. In each bootstrapped data set, the at-site data
are free from any trend, because the bootstrap procedure
randomly permutes the years. Moreover, the procedure
maintains the existing intersite correlations. Consequently,
the sample (N(m))m=1,. . .,nsim can be used as an approximation
of the distribution of N under the H0 hypothesis that all
series are stationary. The critical value related to the regional
significance level a0 can be estimated as the empirical 1� a0

quantile of the simulated values (N(m))m=1,. . .,nsim.
2.1.3. Gaussian Copula
[12] Renard and Lang [2007] suggested using a Gaussian

copula to evaluate the field significance of repeated statis-
tical tests. In short, the Gaussian copula is a convenient tool
to model both marginal distributions and the dependence
structure of a multivariate data set. The model is parame-
terized by a positive-definite matrix describing the depen-
dence between pairs of sites, and by marginal parameters
(for instance, scale and location parameters of Gumbel
distributions). The procedure can be described as follows:
(1) estimation of the parameters of the Gaussian copula
(dependence matrix + marginal parameters; see Renard and
Lang [2007] for more details), (2) simulation of nsim new
multivariate data sets from the estimated Gaussian copula,
and (3) computation of N(m), the number of significant
trends for the mth simulated data set, m = 1,. . .,nsim. The
critical value with the regional significance level a0 is
derived from the simulated values (N(m))m=1,. . .,nsim as the
(1 � a0) quantile.
[13] There are limitations when using a Gaussian copula.

First, since the model is parametric, the adequacy between
model and data must be thoroughly checked. Second, given
that the dependence matrix is required, the procedure may
be unusable when the number of observed data is insuffi-
cient compared to the number of sites being considered,
because of overparameterization. The Gaussian copula is
therefore restricted to field significance assessment using a
limited number of sites.
2.1.4. False Discovery Rate
[14] All three methods described in previous sections are

based on the counting of at-site significant results, which
implies that these approaches ignore the confidence with
which at-site null hypotheses have been rejected (i.e., the
p values of at-site tests). This could limit their statistical
power. An alternative approach, based on the false disco-

very rate (FDR) concept, has emerged in the statistical
literature [Benjamini and Hochberg, 1995] and has been
applied in a climate context by Ventura et al. [2004]. We
refer to these papers for a detailed description of this
approach, and present only the application of FDR testing
to field significance assessment, after Wilks [2006].
[15] The purpose of a FDR procedure is to identify at-site

significant tests by controlling the FDR, which is defined as
the expected proportion of falsely rejected null hypotheses
among all rejections. At first sight, a FDR procedure might
seem irrelevant for field significance determination, since it
aims at making at-site decisions. However, it can also be
used for this purpose by setting the nominal FDR to the
desired regional significance level a0 and declaring field
significance if at least one at-site test is FDR significant.
[16] The standard FDR procedure used in this paper can

be described as follows: let qi be the p value related to the
test performed at site i (i = 1,. . .,p), and q(i) denotes the ith
smallest of these p values. A FDR probability pFDR is
defined as follows:

pFDR ¼ max
i¼1;...;p

p ið Þ : p ið Þ � a0 i=pð Þ
� �

ð8Þ

Assuming all local tests are independent, declaring a
significant change for sites with p values smaller than pFDR
ensures that the FDR remains smaller than a0 [Benjamini
and Hochberg, 1995]. Field significance will therefore be
declared if at least one local test has a p value smaller than
pFDR.
[17] The assumption of independence might appear sur-

prising, since we noted earlier that in most cases data are
affected by spatial dependence and that accounting for this
spatial dependence is the most challenging task in regional
testing methods. However, contrary to other methods, the
FDR procedure has been reported to be very robust when
dependence exists between sites [Ventura et al., 2004;
Wilks, 2006], suggesting that it could still be applied for
dependent data sets. This assertion will be evaluated in
section 3.2.

2.2. Regional Consistency

[18] Climate is a global phenomenon and its change is
likely to have an impact over an extended spatial area.
Consequently, river flow in nearby catchments located
within the same homogenous climatic area would be
expected to be impacted by a similar climate change. In
addition to climate, the streamflow regime also depends on
the catchment topography and on the underlying geology,
which could lessen or exacerbate variations in climate. It is
therefore interesting to investigate the consistency of
changes for catchments expected to respond similarly to
the same climate driver. If all catchments indicate consistent
changes, it is likely that these changes would be attributable
to a similar cause, such as a significant change in the
climate regime.
[19] Homogenous hydro-climatic regions could be de-

fined by cross-referencing two distinct classifications, one
characterizing hydrological mechanisms generating specific
events (e.g., snowmelt- or rainfall-related floods) and one
highlighting atmospheric circulation patterns characterizing
the climate. One may argue that in a context of climate
change, such a classification could evolve with time
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[Krasovskaia et al., 2003], as some rivers could be impacted
by gradually moving from one regime to another. We
acknowledge this problem, but herein hydro-climatic
regions are considered a minimum framework to ensure
homogeneity of hydro-climatic river properties rather than a
descriptor of runoff behavior whose stationarity has to be
assessed. Should these regions evolve with time, this should
not be a limitation to the methods presented subsequently, as
long as rivers within each region evolve in a similar way.
2.2.1. Regional Variable
[20] A first technique reduces the regional analysis to a

univariate analysis by considering regional indices, i.e.,
variables defined over the entire region. For instance, if
the date of occurrence of the annual maximum flood is
computed on all sites, the mean date can be used as an
indicator of the flood seasonality in the region. However, in
most cases, the order of magnitude of the variable of interest
greatly varies within the region. For instance, if the annual
maximum flood is the variable of interest, the mean of the
at-site values for each year has no physical meaning if the
range of catchment areas is large. A preliminary data
transformation is necessary to avoid such artifacts. In this
study, a rank transformation was used, so that the regional
variable studied is the mean annual rank of the at-site
variables of interest. A Mann-Kendall test was used to
assess the stationarity of this regional variable.
2.2.2. Regional Statistic: RAMK
[21] A complementary approach uses a regional statistic

rather than a regional variable. Douglas et al. [2000] and
Yue and Wang [2002] therefore suggest the regional average
Mann-Kendall test (RAMK), based on the SR statistic
described in equation (3). The distribution of the following
Z statistic under H0 is asymptotically a standard normal
distribution:

Z ¼

SR � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var SRð Þ

p if SR > 0

0 if SR ¼ 0

SR þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var SRð Þ

p if SR < 0

8>>>>>>><
>>>>>>>:

; ð9Þ

where Var(SR) can be estimated using equation (5). The
RAMK test can then be applied by comparing the observed
value of Z to the quantiles of the standard normal
distribution.
2.2.3. Issue of Dependence: A Semiparametric
Approach
[22] Regional variable analysis and regional statistics can

both be used for testing stationarity at a regional scale.
However, depending on the dependence structure of the
observations, both methods could also detect nonconsistent
changes. For example, consider ten strongly dependent sites
impacted by an identical upward trend, while an eleventh
site, independent of the others, is affected by an opposite
downward trend. This could represent ten data series from
the same river and one from a different river in a distinct
area of the hydro-climatic region. Because of their large
contribution to the regional variable (or the regional statis-
tic), the first ten sites will mask the inconsistent behavior of
the eleventh site. Nevertheless, in terms of information

content, ten highly dependent sites can be roughly equiva-
lent to a single site.
[23] The approach developed for overcoming this limita-

tion is based on data transformation and the multivariate
Gaussian distribution. Let X denote the n*p matrix of data.
First, the data series from all sites are transformed by a
normal score transformation as follows:

~X
jð Þ

i ¼ f�1 F̂j X
jð Þ

i

� �� �
ð10Þ

where f is the cumulative distribution function (cdf) of the
standard normal distribution and F̂j is the empirical cdf of
data (Xi

(j))i=1,. . .,n from site j.
[24] Second, the transformed data ~X are assumed to

follow a multivariate Gaussian distribution with variance
matrix S. This is a strong hypothesis that must be verified
on the observed series, because the construction creates
Gaussian marginal distributions but not necessarily a
Gaussian joint distribution.
[25] A first model is constructed under the H0 hypothesis

that all series are stationary. In that case, the mean of the
multivariate Gaussian distribution is equal to zero, and the
maximum likelihood (ML) estimator of the variance matrix
is:

Ŝ ¼ 1

n
~XT ~X ð11Þ

The alternative model assumes the trend is consistent for all
stations. The mean of the transformed data is:

E ~X
jð Þ

i

� �
¼ b~yi; ð12Þ

where ~yi = yi � y and yi denotes the year corresponding to
the ith data.
[26] The trend b does not depend on the site j; that is, the

model assumes all sites to be affected by the same trend.
Centering the years by ~yi = yi � y only aims to derive easier
computations. The trend is estimated by maximizing the
likelihood. Assuming the variance matrix S to be known,
with (gi,j)i,j=1,. . .,p the terms of the matrix S�1, the ML
estimate of the trend is (see Appendix):

b̂ ¼

Pn
k¼1

~yk
Pp
i;j¼1

gi;j~x
jð Þ

k

( )

Pn
k¼1

~y2k

� � Pp
i;j¼1

gi;j

 ! ð13Þ

[27] Unfortunately, in practice the variance matrix is
usually unknown. Estimating jointly all parameters by the
ML method may quickly become intractable when the
number of sites increases, even with powerful maximization
methods. Alternatively, the variance matrix can be approx-
imated by equation (11). This does not necessarily reach the
maximum of the likelihood, but provides an explicit for-
mula and equation (13) becomes:

b̂ ¼
1Tp

~XT ~X
� ��1 ~XT ~Y

~Y T ~Y1Tp ~XT ~X
� ��1

1p
ð14Þ
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where ~Y is the column vector of centered years, and 1p is a
column vector in which all elements are equal to one.
[28] The regional likelihood ratio (LR-reg) test is con-

structed by computing the deviance statistic:

D ¼ �2 L0 ~X ; q̂0

� �
� L1 ~X ; q̂1

� �� �

¼ �2
Xn
k¼1

log N ~xk; 0; Ŝ
� �� �

�
Xn
k¼1

log N ~xk; b̂~yk1p; Ŝ
� �� � !

ð15Þ

This deviance should follow asymptotically the c2 distribu-
tion with one degree of freedom. The two-step procedure
used to estimate b and S does not necessarily lead to the
maximum of the likelihood, possibly resulting in a smaller
deviance and therefore in a conservative test. Although this
is preferable to a liberal test, the ability of the LR-reg test to
detect regional trends has to be studied. This will be done in
section 3.3.

3. Comparison of Methods Using Synthetic Data

[29] The adequacy of the methods described in section 2.
was explored using synthetic data with known dependence
properties. More accurately, we first aimed to verify that the
methods were unbiased (i.e., the actual test level was in
accordance with the nominal regional significance level a0).
Moreover, the methods were compared on the basis of their
power to detect regional changes. Generating spatially
consistent data representative of river flow series is difficult,
in particular because their spatial variability depends to a
large extent on the hydrographical network structure. The
synthetic data used in this section were generated using
three techniques, simple enough for easy implementation,
and mimicking various spatial dependence structures, at-site
distributions, numbers of stations and record lengths.
However, they only illustrate part of the spatial variability
that could be encountered in real case studies.

3.1. Methodology: Simulation Procedures

3.1.1. Method 1
[30] Method 1 uses a multivariate Gaussian distribution,

with mean zero and variance matrix Sr:

Sr ¼

1 r r2 � � � rp�1

r 1 r . .
. ..

.

r2 r . .
. . .

.
r2

..

. . .
. . .

.
1 r

rp�1 � � � r2 r 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð16Þ

An 80*50 data set can be generated from that distribution,
mimicking 80 years of data recorded on 50 sites. This
simulation method is straightforward, and the simple
dependence structure allows an easy assessment of the
impact of spatial dependence on field significance and
regional consistency, by using increasing values of r.
However, the resulting synthetic data are unlikely to be

representative of real hydrologic data, as at-site distributions
are rarely Gaussian, and the spatial dependence structure
introduced is not realistic.
3.1.2. Method 2
[31] Method 2 is based on a Gaussian copula with

Gumbel marginal distributions and is therefore more appro-
priate for reproducing extreme distributions. The parameters
of the Gaussian copula used to simulate data arise from a
real-world case study, using a set of 13 hydrometric stations
in the northeast of France [Renard and Lang, 2007]. A data
set of size 50 years * 13 stations can then be generated.
These data could be considered more realistic than using the
multivariate Gaussian hypothesis, as Gumbel marginal
distributions and the dependence matrix were derived from
observed discharge data. However, the Gaussian copula is
far from being a universal model for multivariate extremes,
and more complex dependence structures may be encoun-
tered in practice.
3.1.3. Method 3
[32] Method 3 is based on the rainfall generator TBM

[Ramos, 2002] which simulates rainfall fields with given
characteristics (at-site distribution, spatial dependence
given by type of variogram, range, intermittency). A
squared 20 	 20-km area is generated, with rainfall depth
r simulated on 200 	 200-m pixels. The chosen at-site
distribution is a lognormal distribution with parameters
(1;1) (i.e., log(r)
N(1;1)). The spatial characteristics of the
rainfall field are generated assuming spherical variograms
with range 5 km and 50 km. Figure 1 describes examples of
such fields. The 20 white squares show the pixels data are
extracted from, and are considered equivalent to rain
gauges. Contours delimit areas where rainfall totals are
accumulated. They are considered as equivalent to catch-
ments, so that totals mimic areal precipitations. Because
some areas are nested, the spatial dependence structure of
these synthetic data is representative of dependence
observed with streamflow data. Twenty areal rainfall series
are computed for each simulated field. In Figure 1a, a
rainfall field with a 5-km range is shown. Because
dependence quickly decreases with distance, simulated data
show weak spatial dependence. Conversely, with a range of
50 km (Figure 1b), dependence between data is greater. A
total of 80 independent fields are generated, leading to a
multivariate data set of size 80 years * 20 sites (or areas).

3.2. Field Significance

3.2.1. Adequacy With the Nominal Significance Level
[33] The actual level of the tests presented in section 2.1.

was evaluated with the three simulation methods previously
described. To this aim, 1000 data sets were simulated with
each simulation method, and the level of each test was
estimated by computing the rejection rate of H0 among
these 1000 simulated data sets. For unbiased tests, these
rejection rates should remain close to the regional
significance level a0, set at 10% in this study.
[34] Table 1 shows the result of this analysis. The first

line relates to the binomial approximation, which ignores
spatial dependence. When the dependence in data is low
(multivariate Gaussian with r < 0.6, or TBM data with a
5-km variogram range), the test is conservative, with the
actual test level smaller than a0. Conversely, the test
becomes liberal with highly dependent data (multivariate
Gaussian with r > 0.6, or TBM data with a 50-km
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variogram range). The results related to multivariate
Gaussian data indicate that the actual test level mono-
tonically increased as a function of r, reaching approxi-
mately 18% for r = 0.9. It can therefore be concluded that
dependence significantly affects the behavior of this
procedure, leading to a liberal test for high levels of
dependence. The binomial approximation should therefore
not be used for assessing field significance with spatially
dependent data. The second line shows the results related to
the ENS procedure: all actual levels are significantly smaller
than the nominal level a0 = 10%, leading to a highly
conservative test. Although this is preferable to a liberal test,
it could result in a very low power for detecting changes;
this will be evaluated in the next section. The bootstrap and
Gaussian copula procedures showed a similar behavior,
with actual levels remaining acceptably close to a0

(although the value of 13.5% for the Gaussian copula
procedure with TBM data might appear suspicious). Last,
the FDR procedure also leads to acceptable rejection rates,

although a tendency to become conservative for highly
dependent data can be observed (multivariate Gaussian with
r = 0.9 or TBM data with a 50-km variogram range).
3.2.2. Power
[35] The power of field significance procedures was

estimated by computing the rejection rate of H0 on 1000
nonstationary data sets. A trend was introduced in the
simulated data as follows: let X(j) = (Xi

(j))i=1,. . .,n denote the
data at site j simulated by any of the methods presented in
section 3.1. The trend d is introduced at site j according to
Yi
(j) = (1 + d i

N
)Xi

(j), i = 1,. . .,n. Contrasted types of changes
can be considered at the regional scale: for instance, all sites
could be affected by a weak trend, or conversely only a
small number of sites could be affected by a large trend. The
estimated power of the field significance procedures (except
the binomial procedure, which was shown to be biased in
the previous section) for detecting these different types of
regional changes is shown in Figure 2 for synthetic data sets
arising from TBM with high spatial dependence. Figure 2a

Figure 1. Rainfall fields generated by TBM with (a) low 5-km and (b) high 50-km variogram range.

Table 1. Rejection Rates of the Null Hypothesis With Field Significance Procedures Applied on Stationary Data With Significance Level

a0 = 10%a

Field Significance
Procedure

Simulation Procedure

Multivariate Gaussian, r =

Gaussian Copula

TBM

0 0.2 0.4 0.6 0.8 0.9 Point, 5 km Areal, 5 km Point, 50 km Areal, 50 km

Binomial 5.5 6.0 8.1 10.8 13.6 18.2 10.8 6.5 6.2 14.2 13.7
ENS 5.2 2.9 1.7 0.7 0 0.4 0.6 1.8 0.4 0.2 0.6
Bootstrap 7.5 7.7 8.5 9.3 8.1 9.5 11.2 12.2 10.6 9.8 9.2
Gaussian copula 9.7 9.7 11.4 10.6 8.7 10.4 11.9 13.5 11.8 10.2 9.6
FDR 9.4 7.3 8.6 8.0 7.6 5.6 9.3 9.8 10.5 4.9 4.9

aRejection rates are in percent.
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was obtained with only two sites affected by a trend. Only
the FDR procedure was able to detect this change, while the
power of all three other procedures did not increase with the
trend’s magnitude. This can easily be explained by the fact
that these procedures are based on counting at-site
significant tests and are not sensitive to how significant
the at-site tests are. Figure 2b is related to a trend affecting
all 20 sites. In that case, the power of all methods increased
with the trend’s magnitude, but contrasts appeared between
them: the ENS procedure had a significantly lower power,
because it is very conservative, as emphasized in the
previous section. Bootstrap and copula methods had a
similar behavior and were more powerful than the FDR
procedure for such a generalized change, with a difference
of approximately 10 points. Last, Figure 2c is related to a
trend of given magnitude (d = 1), affecting an increasing
number of sites. It summarizes the previous observations:
when the regional change only affects a limited number of
sites, the FDR procedure is the most powerful. However, as
the number of sites affected by the trend increases, the
bootstrap and copula methods catch up with the FDR
procedure, and become more powerful for detecting a
generalized change. On the other hand, the ENS procedure
was unable to detect a trend with this magnitude.
3.2.3. Discussion
[36] Guidelines can be deduced from the results described

in the previous sections. The binomial method is not a
reliable tool for assessing field significance for spatially
dependent data, because it becomes progressively more
liberal when dependence increases. On the other hand, the
ENS method is too conservative to be useful, as its power
for detecting changes is very low. This might be due to one
of following reasons: (1) the binomial approximation does
not hold for the ENS or (2) the ENS is not uniquely defined
since it is related to a given statistic, and the use of the
RAMK statistic might be a poor choice for deriving
equation (1). Note that the latter does not imply that the
RAMK test itself performs poorly, since this approach is
fundamentally different from the ENS method.

[37] The bootstrap, copula and FDR procedures are
adequate tools for assessing field significance, since the
simulations we performed did not highlight any significant
bias, although the FDR procedure seems to become slightly
conservative for highly dependent data. On the one hand,
the bootstrap and copula methods behave in a very similar
way; however, the bootstrap procedure is easier to apply and
requires no parametric assumption about marginal and joint
distributions of data. Consequently, this method might be
favored in most applications. On the other hand, the FDR
procedure is significantly more powerful for detecting
changes affecting only a limited part of the sites, but is less
powerful for detecting weaker generalized change. In con-
clusion, the choice between the bootstrap and the FDR
procedures depends on the expected type of change. When
no prior information about the regional change is available,
a pragmatic approach would simply consist in applying both
tests to the data.

3.3. Regional Consistency

3.3.1. Adequacy With the Nominal Significance Level
[38] The performance of the three regional tests (regional

variable, RAMK and LR-reg) was evaluated using the three
simulation procedures of section 3.1. The methods were
first tested for bias, i.e., verification of the significance level
a. The rejection rate of H0 was computed using 1000
synthetic stationary data, with a = 10%. For all simulation
methods, rejection rates remained close to a for the three
test procedures (Table 2; lines 1, 3, 5). The RAMK and LR-
reg tests were also applied with an independence hypoth-
esis. In this case, rejection rates quickly increased with
dependence, leading to very liberal tests. This shows the
need to account for spatial dependence at a regional scale to
avoid erroneously detecting a regional change.
3.3.2. Ability to Detect a Consistent Regional Trend
[39] The type of regional trend that can be detected by the

three regional tests is explored here by generating 11 data
series, ten of which are highly correlated, and the eleventh
series independent of the others. Highly correlated streamflow

Figure 2. Rejection rates of the null hypothesis computed on nonstationary TBM data with four field
significance procedures (a0 = 10%). (a) Only two sites are affected by the trend. (b) All sites are affected
by the trend. (c) NS sites are affected by a trend d = 1.
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series could represent data from the same river but different
gauging stations. Forty years of data were thus generated from
a multivariate Gaussian distribution with dimension 11, mean
vector 0 and variance matrix S:

S ¼

1 0:99 � � � 0:999 0

0:99 1 . .
. ..

. ..
.

..

. . .
. . .

.
0:99 ..

.

0:999 � � � 0:99 1 0

0 � � � 0 0 1

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð17Þ

[40] An additive trend was added to these data. In the
case of a consistent trend, this trend was the same for the
eleven stations. In the case of a nonconsistent change,
the trend applied to the eleventh station was the opposite
of the trend of the ten other stations. One thousand synthetic
data sets were generated and rejection rates were computed
to estimate the power of the different tests for detecting such
regional changes. All tests were able to detect a consistent
regional trend (Figure 3a). The regional variable and the
RAMK tests were nearly equivalent, whereas the LR-reg
test was more powerful. In the case of a nonconsistent trend
(Figure 3b), the difference between the methods is clear:

while the regional variable and RAMK tests still detected a
trend, the rejection rate of the LR-reg procedure remained
close to the prescribed level (10%), thus indicating LR-reg
will generally not detect a trend which is not consistent at
the regional scale.
3.3.3. Discussion
[41] These results can be used as a basis to choose the

most appropriate method at a regional scale. Since all three
tests are unbiased (at least on the basis of the simulations we
performed), they are all candidates for regional stationarity
analysis. In terms of power, no method was found to perform
better but instead they showed an ability to detect different
changes. The regional variable and the RAMK tests can
detect dominant changes within a region. Although this may
be an interesting task, this assessment is very sensitive to the
choice of the stations analyzed. Conversely, the LR-reg test
is more restrictive, as it forces the regional trend to be
consistent to be detectable. In the following case study,
since climate-based changes are investigated, the LR-reg
will be favored, as it is felt that to be significant, trends need
to be consistent over the homogeneous region of interest.

4. Regional Trend Detection in France

4.1. Data Sets and Variables

[42] The stationarity of hydrological extremes in France
was studied at a regional scale, using the methodologies
described above. Daily discharge series arising from 195

Table 2. Rejection Rates of the Null Hypothesis With Regional Testing Procedures Applied on Stationary Data With Significance Level

a = 10%a

Regional Test

Simulation Procedure

Multivariate Gaussian, r =

Gaussian Copula

TBM

0 0.2 0.4 0.6 0.8 0.9 Point, 5 km Areal, 5 km Point, 50 km Areal, 50 km

Regional variable 10.7 9.1 9.7 10.0 10.2 9.3 10.7 8.4 9.4 9.3 8.7
RAMK, independence hypothesis 9.2 17.8 25.5 40.4 55.7 66.5 52.0 22.2 31.1 66.4 68.3
RAMK 9.4 10.7 7.4 9.9 8.4 9.2 11.0 9.7 10.1 10.7 9.8
LR-reg, independence hypothesis 4.2 7.6 16.4 24.6 37.2 44.8 38.8 15.4 14.1 54.5 47.7
LR-reg 9.1 10.1 11.2 9.9 10.8 10.6 10.7 9.8 10.5 9.0 11.6

aRejection rates are in percent.

Figure 3. Rejection rates of the null hypothesis with three regional testing procedures, applied with
a = 10%: (a) consistent trend and (b) nonconsistent trend (see text for further explanation).
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gauging stations with a minimum record length of 40 years
are available. Among these stations, 179 were used for high-
flow analysis and 128 for low-flow analysis, the selection
being based on data quality requirements. These stations
were grouped in homogeneous hydro-climatic regions by
combining a climatic rainfall-based classification defined by
Champeaux and Tamburini [1995] and hydrological
classifications based on the seasonality of extreme events.
Regions were defined prior to (and thus independently
from) the stationarity analysis in order to ensure a fair
assessment of the trend’s consistency within each region.
Figure 4 and Figure 5 show these hydro-climatic regions for
high flows and low flows, respectively. Additional details
on the definition and the description of these regions can be
found in the online material.1

[43] Extensive preliminary analyses were performed be-
fore attempting to detect any regional change. More accu-
rately, at-site tests for trends and step changes were applied
to numerous variables for each station [Lang et al., 2006;
Renard et al., 2006], and the detected changes were
reviewed by analyzing the gauging station archives.
Focusing on the years suggested by the step change tests,
we found that nonclimatic factors (notably measurement
problems such as modification of the rating curve, displace-

ment of the station, equipment changes) explained a large
part of the changes detected. As we wished to focus on
climate-related changes, such stations were removed from the
data set, reducing the number of data series available for the
regional trend analysis. More accurately, 99 stations were
available for high-flow analysis, 25 for snowmelt-related
floods, 90 for low flows and 130 for mean annual flow.
[44] The regional trend analysis was based on a set of

hydrological variables mainly derived for describing flood
and drought phenomena. Two variables were used for high
flows: (1) annual maximum (Max), extracted from daily
discharge series and (2) date of the annual maximum
(Datemax), converted to an angular value (Datemax = Julian
date x (2p/365)).
[45] Floods generated by both snowmelt and intense

rainfall can affect some of the stations studied in this paper.
Because these two phenomena result from different climatic
and hydrological processes, they cannot be studied in the
same way. Snowmelt-related events were therefore treated
specifically. Analysis was restricted to the season of snow-
melt occurrence in France (March–September), except for
three stations mainly influenced by glaciers (June–October).
Three variables were considered: (1) mean seasonal flow g,
which provides an indication on the snowmelt-generated
volume, (2) center of mass c, a seasonality measure
suggested by Stewart et al. [2005] defined as the day when
half of the total seasonal flow has run off, and (3) seasonal

Figure 4. Hydro-climatic regions for high flows. Contours in thin lines show rainfall-based climate
regions [after Champeaux and Tamburini, 1995].

1Auxiliary materials are available in the HTML. doi:10.1029/
2007WR006268.
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maximum value of the base flow (b), describing snowmelt
peak. Base flow is considered as a way of removing the
influence of moderate rainfalls that can be superimposed on
high discharge generated by snowmelt. b is estimated by
applying the base flow separation algorithm suggested by
Tallaksen and Van Lanen [2004].
[46] Hydrological droughts can be defined in a number of

ways, summarized by Tallaksen and Van Lanen [2004].
Four variables were used to describe low flows: (1) annual
minimum (Min) of 7-day mean discharge, (2) angular date
of annual minimum of 7-day mean discharge (Datemin),
(3) annual drought duration (d), and (4) the annual volume
deficit (v). The derivation of variables d and v is based on a
low-flow threshold, which was defined in this study as the
15th percentile of the flow duration curve. This choice is a
tradeoff between minimizing the number of years with no
draught event (d = 0 and v = 0) and ensuring the selection of
extreme events; d is computed as the annual number of days
with discharge lower than the threshold, and v is the
corresponding volume deficit. Finally, although this paper
mainly focuses on extremes, mean annual flow (Mean) was
also studied as a descriptor of the average flow regime.

4.2. National Scale: Field Significance

[47] Field significance of at-site trends was assessed at
the scale of France, using the bootstrap and the FDR
procedures, found to be the most efficient methods in

section 3.2. The main difficulty relates to the handling of
missing data, which is not obvious in the case of the
bootstrap procedure. In the data sets considered, the number
of years shared by all stations was equal to zero. Conse-
quently, the bootstrap procedure was only applied to a
subset of stations whose years between 1965 and 2000 had
no missing data (extended to 1960–2000 for snowmelt flood
variables). The second column of Table 3 shows the number
of stations used for field significance assessment. Converse-
ly, the FDR procedure can analyze series with nonconcomi-
tant years, because it only relies on the p values of at-site
tests. Consequently, it is also applied to the whole data sets.
[48] Table 3 shows the result of this analysis. A Mann-

Kendall [Mann, 1945; Kendall, 1975] test was used as at-
site test for high-flow variables, and a modified Mann-
Kendall test [Hamed and Rao, 1998] accounting for
potential autocorrelation was used in the case of low and
mean flows. Local and regional significance levels are set to
a = a0 = 5%. For the subset of stations, the critical
percentage of at-site significant results as estimated by the
bootstrap procedure is shown in fifth column of Table 3.
This percentage was always larger than the observed
percentage of at-site significant trends (fourth column),
which means that none of the variables studied reached field
significance at the national scale. The FDR procedure leads
to the same conclusion, given that the number of FDR
significant results was always equal to zero. Consequently,

Figure 5. Same as Figure 4 for low flows.
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the assessment of field significance using the subset of
stations leads to the conclusion that the H0 hypothesis (all
stations are stationary) cannot be rejected.
[49] Applying the FDR procedure to the whole data set

provided slightly different results, as the trends detected on
respectively two, one and two stations for Max, b and g
variables were FDR-significant. To the best of our knowl-
edge, these trends cannot be linked to any particular
measurement problem or direct influence. It can be noted
that one of the stations showing a FDR-significant result for
variable Max was studied by Andréassian [2002], who
detected a trend in the rainfall-runoff relationship. However,
as the number of FDR-significant results remains very
small, they are likely to reflect particular behaviors of the
related watersheds rather than some generalized evolution at
the scale of France. Consequently, the search for a
generalized change in extreme hydrological events at the
national scale through field significance assessment remains
largely inconclusive. However, the study undertaken was
limited by the power of at-site tests to detect a change. A
search for consistent changes at a smaller regional scale
could increase the power to detect trends, because it could
be anticipated that several weak but consistent changes in a
given region may reflect a significant regional change.

4.3. Regional Consistency in Hydro-climatic Regions

[50] Because of the existence of varied climate and river
flow regimes, it was felt important to analyze potential
trends at a smaller spatial scale than the whole of France if
one is interested in consistency. This section describes the
application of the regional LR-reg procedure to assess the
existence and consistency of potential trends in the hydro-
climatic regions defined in section 4.1.
[51] The hypothesis of joint normality of the normal-

score-transformed data underlying the LR-reg test was
verified using paired scatterplots of transformed data and
qq plots based on a quadratic function of the data (see
Renard and Lang [2007] for examples of such graphics and
Mardia [1980] for additional methods for verification of
normality). In most cases, the data verified the LR-reg test

assumptions. Exceptions were detected for annual maxima
series in the Center, Mediterranean and Oceanic regions,
which could result from the limited number of years
compared with the number of stations, implying over-
parameterization problems. Consequently, only subregions
were subsequently investigated. The transformed date of
annual maximum was found not to be normal in most
regions. Consequently, the regional variable approach was
used for the date of the annual maximum by performing a
Mann-Kendall test on the regional mean annual date. For
snowmelt-related floods, all transformed variables verified
the hypothesis of joint normality. For low-flow variables,
the mean date of the annual minima was also studied using a
regional variable approach. Finally, the LR-reg test was
used to study annual mean flows, but only large regions
were investigated, because subregions reflected differences
in the drought regime that were not relevant for mean
annual flow regime. Because autocorrelation is not taken
into account by the LR-reg test, the results should be
considered with caution for regions where groundwater
control prevails (e.g., the northern part of the Oceanic
region and the Paris Basin).
[52] The LR-reg test was applied with 1, 5 and 10%

significance levels. The results for high-flow variables are
shown in Table 4, the percentages indicating the minimum
level leading to a significant result (e.g., +5% denotes a
positive trend significant with a = 5% but not with a = 1%).
A first comment can be made regarding the limited number
of stations available in some regions or subregions. Because
stations where changes have been related to nonclimatic
factors were discarded, some regions only include two or
three stations. In such cases, the conclusions should be
considered with caution. A significant result obtained on
two stations will indeed indicate consistency, but this
consistency should not be extrapolated to all existing rivers
in the region. A solution would have been to merge some
regions or subregions, but it was felt that this did not
produce a fair analysis, as the hydro-climatic regions must
be defined independently from the stationarity analysis.

Table 3. Summary of Field Significance Assessment Resultsa

Variable

Reduced Data Set Whole Data Set

Number of
Stations

Number of
Common Years

Percent of
At-Site Significant

Results
Critical

Percentage

Number of
FDR-Significant

Results
Number of
Stations

Percent of
At-Site Significant

Results

Number of
FDR-Significant

Results

High Flows
Max 83 36 7.2 18.1 0 99 10.1 2
Datemax 83 36 3.6 19.3 0 99 2 0

Snowmelt-Related Floods
c 15 41 6.7 46.7 0 25 12 0
b 15 41 0 20 0 25 12 1
g 15 41 6.7 26.7 0 25 12 2

Low Flows
Min 58 36 6.9 19 0 90 6.7 0
Datemin 58 36 0 22.4 0 90 6.7 0
d 58 36 1.7 29.3 0 90 3.3 0
v 58 36 3.4 31 0 90 1.1 0

Regime
Mean 86 36 9.3 25.6 0 130 4.6 0

aLocal and national levels are equal to 5%.
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[53] A significant increase in annual maxima was found
in the Vosges subregion (continental region), in two sub-
regions of the Oceanic area and in the southwest. Conversely,
annual maxima of rainfall-related floods significantly
decreased in the Pyrenees. For snowmelt-related floods
(Table 5), a trend toward earlier floods was detected in
the northern Alps, and the three glacier-controlled rivers
showed a significant increase in mean seasonal flow. Al-
though only based on 17 common years and three stations,
this is consistent with the ablation of these glaciers observed
by Vincent [2002] and Vincent et al. [2004]. For low-flow
variables (Table 6), only the Oceanic region showed a
significant trend (increase) in annual minimum flow, but
more changes were detected for variables duration (d) and
volume deficit (v). Less severe droughts were detected in
the Alps (both northern and southern), while more severe
droughts were found in the Basque region, the Pyrenees and
the Oceanic region. In the latter case, the increase in drought
duration is in apparent contradiction with the increase in
annual minima. Finally, mean annual flow was found to
decrease in the Pyrenees (last column of Table 6).
[54] In sum, three geographical regions were found to

have experienced consistent regional change.
[55] 1. The northeast experienced a slight increase in

flood peaks. Although detected only in the Vosges subre-
gion (five stations, Table 4), additional significant results
related to other flood-based variables were also detected in
the west subregion and in the whole Continental region
(e.g., annual maxima of d days mean discharges, where d is
a characteristic flood duration [Renard, 2006]).
[56] 2. The Alps experienced less severe low flows for

three stations in the north and four stations in the south,

along with earlier snowmelt in the northern part (five
stations) and increased volume related to glacier melting
in three stations.
[57] 3. The Pyrenees (including the Basque region) ex-

perienced a decreasing trend in high (Pyrenees, five sta-
tions), low (three stations in Pyrenees and five in Basque
region) and mean (Pyrenees, six stations) flows.
[58] In addition, significant changes were also detected in

the north and Paris Basin subregions of the Oceanic area.
However, there is little confidence in these results, due to
the prevailing groundwater control in these regions (chalk
area). This particularity induces long-term persistence in
flow (including high flows for the north subregion), which
can bias the conclusions of the statistical tests. Conversely,
data in the three geographical regions described above do
not present significant autocorrelation.
[59] Given that the results found at the regional level are

based on thoroughly quality-checked data, they are likely to
be representative of genuine changes in the regime rather
than a result of measurement problems or direct influences.
However, these findings are not sufficient to demonstrate
the existence of an impact of climate change on hydrolog-
ical extremes in France. Other factors, such as long-term
modification of the rainfall-runoff relationship and catch-
ment evolution, could also result in changes in the hydro-
logical regime. The next section describes a first attempt at
exploring this possibility.

4.4. Investigation of the Causes of River Flow Changes

[60] As noted by Andréassian et al. [2003], the changes
in runoff depend both on climate drivers (e.g., rainfall,

Table 4. Results of Regional Testing Procedures Applied on

High-Flow Variablesa

Regionb
Number of
Stations

Number of
Common Years

Significance

Max Datemax

AlpN-M 3 40 x x
AlpS-M 2 31 x x
Basque 3 35 x x
Centre 26 18 / x
Centre-C 7 37 x x
Centre-R 12 37 x x
Cont 10 31 x x
Cont-west 4 40 x x
Cont-Vosges 5 37 +10% x
Lozère 4 38 x x
Med 20 22 / x
Med (without
Alps and Cevennes)

8 41 x x

Med-Alp 3 28 x x
Med-Cev 9 31 x x
MassCent 4 41 x x
Ocean 10 21 / x
Ocean-PB 2 29 +5% x
Ocean-north 4 36 +5% x
Ocean-west 4 63 x x
Pyr-M 4 32 �5% x
Rhône 6 43 x x
Roussillon 3 36 x x
Southwest 9 24 +5% x

aSymbols are as follows: x, nonsignificant result; /, test not performed on
the region (see text for further explanations); and %, significance of the
regional trends, positive (negative) for upward (downward) trend.

bRegions are bold; subregions are not.

Table 5. Same as Table 4, for Snowmelt-Related Floods

Region
Number of
Stations

Number of
Common Years

Significance

c b g

AlpN 5 40 �5% x x
AlpS 5 30 x x x
Pyr 6 30 x x x
MassCent 4 55 x x x
Gla 3 17 x x +5%

Table 6. Same as Table 4, for Low- and Mean-Flow Variables

Region
Number of
Stations

Number of
Common
Years

Significance

Min Datemin d v Mean

AlpN 3 41 x x x �5% x
AlpS 4 32 x x �10% x x
Basque 5 34 x x +5% +10% x
Basque-C 3 35 x x +5% +10% /
Basque-R 2 90 x x x x /
Center1 8 33 x x x x x
Center2 13 35 x x x x x
Cont 8 31 x x x x x
Cont-C 2 38 x x x x /
Cont-west 4 40 x x x x /
Med 6 30 x x x x x
Ocean 6 26 +5% x x x x
Ocean-north 5 34 x x +10% x /
Pyr 3 30 x x +5% x �5%
Pyr-C 2 33 x x x x /
Rhone 3 81 x x x x x
Southwest 5 27 x x x x x
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evapotranspiration) and on the stationarity of the watershed
hydrological behavior. A change in either (or possibly both)
of these phenomena could result in a change in runoff.
Changing rainfall or evapotranspiration could occur as a
result of climate change, while changing hydrological
behavior could occur as a result of changes in land use
(e.g., deforestation). In this section, the problem of
assessing the potential cause of a change in streamflow is
addressed.
[61] The evolution of temperature and rainfall over the

last few decades has been extensively studied in France
[Mestre, 2000; Moisselin et al., 2002; Spagnoli et al., 2002;
Dubuisson and Moisselin, 2006; Parey et al., 2007].
Significant and consistent changes have been reported for
temperatures, including extreme indices. Annual or seasonal
rainfall has also shown some evidence of change, although
less pronounced and more regionally contrasted than those
observed for temperature. At present, no consistent pattern
has been highlighted for extreme rainfalls. However, simply
comparing trends detected on observed rainfall or tempera-
tures with trends detected on observed discharges makes
little sense, because of the strong nonlinearity of the
rainfall-runoff relationship. For instance, there is no reason
to believe that a trend in annual maxima of rainfall will
result in an identical trend in annual maxima of discharge.
Similarly, if a change in the hydrological behavior is
investigated, comparing a trend detected on a descriptor of
the watershed (e.g., percentage of forest cover) with the trend
detected on runoff is groundless. This nonlinearity has to be
tackled by using a rainfall-runoff model. A preliminary
attempt was made to evaluate whether the trend detected in
runoff was consistent with the potential trends in rainfall and
whether a possible change in the rainfall-runoff relationship
could be brought out.
4.4.1. Input Data and Model
[62] The case study considered here involves four hydro-

metric stations located in northeast France, which were
chosen because good quality rainfall data were available.
The general hydrological properties of the related catchments
are shown in Table 7. An increase in annual maximum flow
was detected in this region (see section 4.3.). Consequently,
our main interest was to evaluate whether this change was
related to evolving rainfall patterns or modifications in the
watershed behavior. We will therefore only focus on high
flows.
[63] Daily input variables of the hydrological model

(Potential Evapotranspiration PE and rainfall) are available
from 1968 to 1998. PE is derived from temperature and
relative humidity data series recorded in Nancy, the closest
meteorological station. The derived PE values are interan-
nual mean values with a time step of 10 days, obtained with

the Penman equation [Penman, 1948]. A polynomial inter-
polation was used to derive daily PE values. Because we
were only interested in high flows, whose sensitivity to PE
is limited, using interannual PE data was deemed accept-
able. Daily areal rainfall for each catchment was derived
from the dense rain gauge network used by Javelle [2001].
[64] Areal precipitation and PE series were used as input

of the lumped rainfall-runoff model GR4J [Perrin et al.,
2003] to derive daily flow series. This four-parameter model
was calibrated to maximize the Nash criterion [Nash and
Sutcliffe, 1970] on daily river flow, using the 1968–1979
period for calibration. The first year was used for the
initialization of the stores in the model. The Nash criteria
showed good agreement between observed and simulated
streamflow for each station, both in calibration and
validation (Table 7). The last column of Table 7 also shows
R2 coefficients between observed and simulated annual
maximum runoff (Max), which is of primary interest
because stationarity analysis will be performed on this
variable. Although acceptable, these values clearly indicate
that the fit between observed and simulated Max values is
far from perfect.
4.4.2. Comparison of Trends on Observed and
Simulated Streamflow Series
[65] The LR-reg test was applied to the annual maximum

daily discharge Max derived from observed and simulated
flow series over the entire 1968–1998 period (Figure 6). A
5% significant positive trend was detected on observed
Max, consistent with the trend detected on the stations of the
Continental area (see section 4.3.). A positive trend was also
detected on Max derived from the simulated series, differing
significantly from zero at 10% level. The important point is
that neither model parameters nor interannual evapotran-
spiration evolved from year to year in the hydrological
model. Consequently, the trend detected in simulated Max
can only be explained by the evolving rainfall pattern.
Because a comparable trend was detected on observed Max,
this indicates that this change could be at least partly related
to changes in rainfall.
[66] It is then interesting to assess whether changes can

be detected in observed rainfall. To this end, variables
describing high rainfall were derived, such as annual
maximum 1-day (RX1 day) and 3-day (RX3 day) depth and
annual number of days with rainfall depth greater than 10
mm (R10 mm). The LR-reg test was then applied to each
rainfall variable. Only weak changes were detected in the
rainfall characteristics (Figure 7), the only significant
change being a slight increase in R10 mm. In particular,
maximum annual rainfall did not exhibit any significant
trend for 1-day depth or 3-day depth, which highlights the
strong nonlinearity of the rainfall-runoff relationship: the

Table 7. Hydrological Properties and Goodness-of-Fit for the Four Modeled Catchments

River @ Station
Catchment
Area (km2)

Station
Elevation

(m)
Mean Annual
Flow (m3 s�1)

10-Year Daily
Flow (m3 s�1)

Nash (%)
R2 Between Observed
and Simulated MAXAN

(1968–1998)
Calibration
(1968–1979)

Validation
(1980–1998)

Moselle @ Saint-Nabord 621 371 24 360 85.3 87.4 0.70
Moselle @ Epinal 1220 324 39 470 85.5 87.0 0.75
Madon @ Pulligny 940 225 10 220 78.6 83.0 0.63
Moselle @ Toul 3350 201 63 790 87.9 89.1 0.78
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trend in extreme runoff cannot be explained by an identical
behavior of extreme rainfall, but might be related to an
increased frequency of wet (but not extreme, as a 10-mm
depth can hardly be viewed as extreme) conditions.
[67] This analysis must be considered as a preliminary

attempt to link changes in rainfall and runoff. The results are
encouraging, given that the hydrological model was able to
recreate a trend detected on observed runoff, even though
the ability to correctly model extreme discharges was far
from perfect (Table 7). However, this analysis does not
provide quantified evidence of a relation between rainfall
and detected trend in annual maximum discharges. A more
rigorous approach would require using a statistical test, in
order to assess whether the consistency between rainfall and
runoff changes is significant. This test could consist in
investigating the equality of the trend detected in observed
and simulated discharge. This would imply accounting for
sampling uncertainty (because the trend is estimated on only
30 years of data) and modeling uncertainty, related to the

calibration process. Although the former uncertainty might
be quantified by using asymptotic statistical results, the
latter one is more challenging. Methods such as BATEA
[Kavetski et al., 2006a, 2006b] might be useful for this
purpose. Although such a development would be of great
interest, it is beyond the scope of this paper, and is left for
future development.
[68] Finally, a similar study was undertaken for the

snowmelt-related floods in the Alps (not detailed in this
paper), showing earlier melting consistent with a significant
increase in temperature in this area [Renard, 2006].
4.4.3. Investigation of Potential Changes in the
Rainfall/Runoff Relationship
[69] The analysis on four catchments in the northeast

showed that the positive trend detected in maximum annual
flood flows might be related to a climatic mechanism
because it is consistent with observed rainfall. However,
the hydrological behavior of studied watersheds may also
have changed at the same time, potentially attenuating or

Figure 6. Regional trends on annual maximum flow for four modeled catchments for (a) observed
values and (b) simulated values. Variables are transformed by normal score.

Figure 7. Regional trends on three rainfall variables for the four catchments studied. Variables are
transformed by normal score.
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enhancing the trend due to rainfall. This possibility is
addressed in this section, using the statistical test developed
by Andréassian et al. [2003] (hereinafter referred to as APM
test). The APM test aims at identifying watershed behavior
over distinct time periods by successive calibration of the
model using the data of each period. It then uses a
resampling approach to quantify the significance of trends.
Andréassian et al.’s [2003] can be consulted for a complete
description of this test.
[70] The APM test was applied to the four catchments

studied in the previous section. Following the guidelines of
Andréassian et al. [2003], the 1968–1998 period was
divided into six subperiods of 5 years. Because we are
mainly interested in floods in this case study, an adequate
variable has to be derived for describing high flows of each
subperiod. Unfortunately, using annual maximum discharge
is impossible, because it would require using 1-year
subperiods, which is too short to allow for a proper
calibration of the model. Consequently, high flows are
described by the volume exceeding a high threshold (chosen
as the 95% percentile of the observed daily discharges), as
suggested by Andréassian et al. [2003].
[71] No significant change was detected for three of the

four stations. Conversely, the Madon at Pulligny station
showed a significant change at 10% level, which means that
the watershed behavior significantly evolved during the
study period. More accurately, this change depicts a less
responsive catchment (i.e., for identical rainfall, the gener-
ated high-flow volume decreased). This could have attenu-
ated the increasing trend detected on observed annual
maximum runoff. However, we are unable to provide a
physical explanation for this finding, since no particular
change has been reported for this watershed over the last 30
years. This example therefore emphasizes the difficulty in
studying the stationarity of discharge data, because several
forcings (climatic or watershed hydrologic behavior) may
have contrasted impacts on runoff.

5. Conclusion

[72] The impact of climate change on hydrological regimes
is still an open question, as illustrated by the lack of a clear
signal emerging from large-scale studies [Kundzewicz et al.,
2005; Svensson et al., 2005]. Some authors offered
explanations regarding this inability to detect any robust
trend [Svensson et al., 2006; Wilby, 2006]. A possible cause
(among many others) might be the weak power of at-site
statistical methods to detect a trend in hydrological data
affected by a very high level of natural variability, especially
if extreme regimes are investigated. This paper therefore
explored methods for regional trend detection and provided
an example of application using French river data.
[73] First, methods for regional-scale trend analysis were

described and evaluated. Methods for assessing the field
significance of a set of at-site tests were compared, using
different synthetic data sets. The bootstrap and the FDR
methods were found to be adequate and robust tools.
Consistency of trends within a homogeneous hydro-climatic
region was also assessed. A semiparametric test (LR-reg)
was developed and compared with methods based on
regional variables or regional statistics. Although none of
the methods were biased, they detected different changes:
the regional variable and the RAMK tests can be used to

detect dominant changes within a region, but they will also
detect nonconsistent changes. Conversely, the LR-reg test is
more restrictive, as it forces the regional trend to be
consistent to be detectable.
[74] Regional methods were then applied to ten variables

representative of the high-, low- and mean-flow regimes on
a set of gauging stations in France. At the scale of the entire
country, the search for a generalized change in extreme
hydrological events through field significance assessment
remained largely inconclusive. At the smaller scale of
hydro-climatic regions, encompassing catchments with
comparable hydrological behavior subjected to similar cli-
mate forcings, the LR-reg procedure showed no significant
result on most regions. However, consistent changes were
detected in three geographical areas. In the northeast, a
slight increase in annual maximum flow was found. In the
Alps, less severe droughts were detected, along with earlier
snowmelting in the northern Alps, and increasing volume
related to glacier melting in glacier regime rivers. Finally, in
the Pyrenees, a decreasing trend was detected in low, mean
and high flows.
[75] The relationship between rainfall and flow changes

was also explored, on the basis of a case study of four
stations in the northeast. The positive trend detected on
annual maximum flow was found to be consistent with
observed rainfall, which may indicate climate-driven
changes. Possible changes in the hydrological behavior of
the watershed were also explored, using the test proposed
by Andréassian et al. [2003]. A significant trend toward a
less responsive catchment in high flows was detected for
one of the four stations. These results show that the trend in
climatic variables may interact with changes in the
watershed hydrological behavior, leading to a complex
response of runoffs.
[76] From a broader perspective, the results obtained in

this paper highlighted some of the challenges related to the
detection of runoff changes in a context of nonstationary
climate.
[77] Although not developed in detail in this paper,

preliminary analyses showed many stations from the initial
data set were affected by significant changes, but most of
these changes could be explained by nonclimatic factors,
principally measurement problems. Such biases are unlikely
to be specific to France and might be encountered in any
river flow series. Consequently, an intensive quality check
is recommended as a necessary step when undertaking trend
detection analysis, as such biases might hide a smoother and
more consistent signal due to climatic factors. No general-
ized change was then found after this quality check at the
scale of France, based on a field significance assessment.
This result is not really surprising, considering the large
natural variability in extreme discharge [Svensson et al.,
2006]. However, it is important to note that a nonsignificant
result does not mean that the null hypothesis can be
accepted, but only that it cannot be rejected. In other words,
our results do not imply that climate change has no impact
on hydrological extremes, but should this impact exist, it
cannot be detected today using at-site methods. The same
analysis on the same data (but longer series) should be
conducted in the future and could provide different
conclusions [Wilby, 2006].
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[78] Hydrologists routinely use the concept of regional-
ization to overcome the difficulty in characterizing natural
variability with short record lengths. This concept can also
be a very useful tool in detecting consistent trends in hydro-
climatic regions. Indeed, the LR-reg test can be viewed as a
trend regionalization procedure, as it assumes all stations in
a homogeneous hydro-climatic region are affected by an
identical trend. The results showed that for three regions, a
regional trend could be detected, while this did not appear
from at-site analyses.
[79] Finally, providing a physical explanation for the

streamflow trends remains difficult. Here hydrological
modeling was considered a preliminary approach to link
the changes in rainfall and runoff. A more rigorous study
would require quantifying the uncertainty in model calibra-
tion. Had this been done, it would not be sufficient to
establish causality from climate change, as the changes in
the rainfall regime might merely reflect cycles in the natural
variability. Searching for a formal link between changes in
hydrological extremes and climatic change would require
using fingerprint methods [Hasselmann, 1993, 1998].
Unfortunately, this would involve using GCM outputs,
and therefore dealing with new uncertainties, for example,
from downscaling or parameterization of the GCM.
Methodological improvements are still needed, both for
quantifying these uncertainties and combining them into the
analysis.

Appendix A

[80] Let X be a n*p data matrix, and ~X the matrix of data
transformed by normal score, with variance matrix S. ~X i

(j)

denotes the transformed data recorded at site j and year yi.
The data are assumed to be affected by a regional trend, so
that E(~X i

(j)) = b~yi, with ~yi = yi � y.
[81] The log likelihood of the data ~X can be written as

follows:

L ~X ;b
� �

¼ � n

2
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Deriving this expression and developing the matrix product
gives:
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Consequently,
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This last expression is strictly negative, because S�1 is
definite positive. With equation (A3), this proves that b̂
maximizes the likelihood.
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séries climatiques, Ph.D. thesis, 229 pp., Univ. Paul Sabatier, Toulouse,
France.

Moisselin, J. M., M. Schneider, C. Canellas, and O. Mestre (2002), Les
changements climatiques en France au vingtième siècle, Meteorologie,
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