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Estimation of the local diffusion tensor and normalization for
heterogeneous correlation modelling using a diffusion

equation
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Abstract: As the background error covariance matrix is a key component of any assimilation system, its modelling is an important

step. Usually, this matrix is decomposed into correlations and variance matrices. An interesting method for modelling the correlation

matrix of the background error for complex geometry, like ocean grid, consists in computing correlation functions using a diffusion

operator. The background error correlation functions can be estimated for example from an ensemble of perturbed forecasts. The

diffusion operator is able to represent heterogeneous correlation functions at a reasonable numerical cost. But a first challenge resides

in the determination of the local diffusion tensor corresponding to the local correlation function. Then the second challenge resides

in the determination of the normalization to make sure that the matrix modelled through the diffusion operator is a correlation matrix.

In this article, we propose to build a background error correlation matrix using a diffusion operator based on a local diffusion tensor.

The estimation of this local tensor is performed using an ensemble of perturbed forecasts. A validation within a randomization

method illustrates the feasibility and the accuracy of the proposed method. In particular, it is shown that the local geographical

variations of diagnosed correlation functions (through an ensemble of perturbed forecast) are well represented.

This is first illustrated in an analytical one-dimensional framework. In that context, the diffusion field and the normalization field are

deduced from a given correlation length-scale field. The resulting length-scales are shown to correspond to the initial length-scale

when the given length-scale field spectrum is red. The approximate normalization, computed from the local length-scale, is close to

the true normalization under the same condition of a red spectrum.

Then, the method is illustrated in a real context using an ensemble of perturbed forecasts from the MOCAGE-PALM assimilation

system. In that case, length-scale and anisotropy diagnosis reveal the complexity of the correlation of stratospheric ozone forecast

errors. The local diffusion tensor deduced from these diagnosis are shown be able to represent such an existing heterogeneity and

anisotropy. As in the one-dimensional case, the approximate normalization, based on the local diffusion tensor, appears to be a really

good approximation of the true normalization.
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1 Introduction

The main aim of atmospheric or oceanographic data

assimilation is to construct the most likely representation

of the flow from available observations. However, the lack

of observations compared to the number of degree of free-

dom of numerical flow involves the use of a prediction

correction approach. The problem is thus solved when, as

a prior information, the background is introduced. In prac-

tice, the background equals the latest available forecast.

The prediction correction approach commonly introduces

∗Correspondence to: Météo-France CNRM/GMAP/RECYF,
42 av. G. Coriolis, 31057 Toulouse Cedex France. e-mail:
olivier.pannekoucke@meteo.fr

some new unknown quantity: the observation error covari-

ance matrix and the background error covariance matrix.

The paper focuses on the background error covari-

ance matrix. A first difficulty comes from the estima-

tion of the correlation part of the covariance matrix: it is

hard to estimate such a matrix because of its huge size

and because the estimation is affected by sampling noise.

Then, the matrix generally has to be modelled because it

is extremely costly to compute it and to store it under a

matrix form.

Some models of the background correlation matrix

are based on a diagonal assumption in spectral space

(Courtier et al., 1998) leading to homogeneous covari-

ances. More recently, the diagonal assumption in the

wavelet space has been introduced in order to model

Copyright c© 2008 Royal Meteorological Society
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some heterogeneous correlations (Fisher, 2003). This last

method offers some interesting filtering properties: using

these techniques back to spatially averaging the local cor-

relation functions (Pannekoucke et al., 2007).

Another possible model of the background covari-

ance matrix has been proposed by Weaver and Courtier

(2001). It is based on the use of a generalized diffusion

equation which aims to construct heterogeneous correla-

tions. This approach allows to easily constructs Gaussian-

like correlation functions even over a complex domain

e.g. in ocean modelling where the cost involve tortuous

boundaries constraints. The heterogeneity comes from the

variation over the domain of the local diffusion tensor.

However, there is no obvious way to obtain such a local

diffusion tensor. Moreover, the model based on the diffu-

sion operator does not lead to a valid correlation matrix

and has to be normalized in order to ensure a local vari-

ance equal to unity.

Beyond the representation of the heterogeneity, the

diffusion equation model is able to represent anisotropy

components of the background error correlation function.

This is achieved when the diffusion tensor is not diagonal.

Recently, Liu et al.(2007) have shown, by a tricky way,

that it is possible to represent flow-dependent anisotropy

in recursive filters. In their study, they have illustrated

that the anisotropic filters improves the analysis of fine-

scale structures. It has to be noted that some alternative

ways to construct model diffusion based on Gaussian

correlation exists, for instance, the use of an iterated

Laplacian method (Derber and Rosati, 1989; Egbert et al.,

1994) or the recursive filter approach (Purser et al., 2003

a&b).

This article adresses the issue of the estimation of

the local diffusion tensor and of the local normalization.

Only a simple diffusion operator is considered (and not the

generalized diffusion equation). This estimation is partly

based on the computation of the local length-scale (Belo

Pereira and Berre, 2006; Pannekoucke et al., 2008).

For real applications, the length-scale can be

estimated from an ensemble of perturbed forecasts

(Houtekamer et al., 1996; Fisher, 2003). The main fea-

ture of the ensemble method is to provide flow-dependent

information about the spreading of background error in

the background phase space at a given date. Even if

such an ensemble features the error of the day (Kalnay,

2002), perturbed ensembles over a period of several days

are often used. In this way, a large ensemble is avail-

able and gives access to the mean spreading of back-

ground error, with a reduction of the sampling noise. A

large ensemble serves to calibrate static components of

background covariance model (Fisher, 2003). This paper

focuses on the representation of static geographical vari-

ations of background correlation functions. This is a pre-

liminary step towards flow-dependent background corre-

lation modelling.

The structure of the paper is as follow. In section 2,

basics of data assimilation are recalled with an emphasis

on correlation modelling using a diffusion equation. Sec-

tion 3 explains how to estimate the local diffusion tensor

and the local normalization. This method is applied in sec-

tion 4, for the particular case of an analytical one dimen-

sional circular framework. Finally, in section 5, a real

application is proposed in order to illustrate the method

for the particular case of the MOCAGE-PALM chemical

global assimilation system. Conclusions are given in sec-

tion 6.

2 About data assimilation

2.1 Variational data assimilation

Data assimilation consists in finding the more likely state

xa (the analysis) of the atmosphere or ocean, knowing a

background state xb and observations yo. Compared to

the true state xt (not known in practice), the background

corresponds to the truth plus a background error εb so

that xb = xt + εb. Similarly, an error εo occurs on the

observation state so that yo = Hxt + εo, where H is the

(linear in this reminders) observation operator that maps

the model space into the observations space. Both errors

are assumed to be uncorrelated i.e. E

(

εoεbT
)

= 0, where

E denotes the expectation function and T denotes the

transposition operation. It is also assumed that E (εo) =
0 and E

(

εb
)

= 0. The analysis is sought as beeing a

corrected state xa = xb + δxa of the background state

xb, where δxa is the increment to be estimated. The

variational approach for resolving the issue consists in

minimizing the cost function

J (v) = vT v+
(

d − HB1/2v
)T

R−1
(

d − HB1/2v
)

,

where B = E

(

εbεbT
)

is the background error covariance

matrix, R = E
(

εoεoT
)

is the observation error covariance

matrix, and d = yo − Hxb is the misfit or the innovation

vector. The suitable change of variable v = B−1/2δx is

used in order to improve the conditioning of the minimiz-

ing problem. The square-root matrix B1/2 of the covari-

ance matrix B is defined so that

B = B1/2BT/2.

The matrix B plays a key role in data assimilation

scheme as it contributes to filter the observational error

and it spreads spacially the correction provided by the

innovation. Due to its huge size and to the difficulties

to estimate it, B is often modelled. When it is physically

acceptable, B is expanded as the product

B = ΣCΣ
T ,

where Σ corresponds to the diagonal matrix of standard

deviations and C is the correlation matrix. As the varia-

tional cost function J requires B1/2, this matrix is formu-

lated according to the former decomposition of B, as

B1/2 = ΣC1/2, (1)

Copyright c© 2008 Royal Meteorological Society
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where C1/2 is a square-root matrix of C.

One classic model of B is to assume that the corre-

lation functions are Gaussian. This is a first approxima-

tion of correlation functions that is not alway appropri-

ate (Lorenc, 1992), but that can be considered as build-

ing bricks to model much more sophisticated correlation

structures (Gneiting, 1999b; Purser et al., 2003 a & b).

Moreover, the associated symmetric matrix C is positive-

definite. This shape of correlation function is realistic and

it compensates the lack of knowledge about the true statis-

tics. Note that for spherical domains, the chordal distance

has to be used in order to obtain a valid (positive definite)

correlation function (Gaspari and Cohn, 1999; Weber and

Talkner, 1993; Gneiting, 1999 a&b). On the sphere (also

the torus and the circle) such a Gaussian correlation is eas-

ily constructed as it leads to a diagonal operator in spectral

space. But this is no longer the case for complex geom-

etry as encountered in ocean modelling (or atmospheric

Limited Area Model) with irregular coastline boundaries.

Furthermore, the way the B operator is modelled must be

efficient in term of computational cost in order to avoid

to penalize real-time applications. Thus, low cost strate-

gies have to be found to model the covariance matrix B,

providing its square root B1/2 for variational purposes.

2.2 Covariance modelling with diffusion operator

A diffusion equation applied on the η variable has the

general form

∂tη = ∇ · (ν∇η) , (2)

where ν is the local diffusion tensor. The equation is

assumed to occur over a particular manifold D associated

with a measure dω. Let x denotes a particular point of

D. For the sake of simplicity, one can imagine D as R
n.

D can also be a numerical model area with its particular

mesh such as an homogeneous sphere (representation in

spherical harmonic with triangular truncation), or like an

ocean grid.

The general solution of the linear Eq.(2) is given as

η(x, t) =

∫

D

Gν,t(x,x′)η(x′, t = 0)dω(x′), (3)

where the kernel Gν,t is the Green function, solution at

time t of Eq.(2) for the particular initial condition

η(x′, t = 0) = δx(x′),

with δx the distribution of Dirac located at point x. The

Dirac distribution plays a key role in the resolution of the

diffusion equation. This distribution is defined so that for

all numerical function f over D,

∫

D

f(x′)δx(x′)dω(x′) = f(x).

Note that the definition of δx clearly depends on the

measure dω over D. It also depends on the vector space

in which the solution is sought.

The idea developed by Weaver and Courtier (2001),

was to take advantage of such a solution. They have pro-

posed to model the background correlation as the kernel

Gν,t and they have proven it to correspond to a correla-

tion tensor (after an appropriate normalization). The cor-

relation function at a given position x is thus defined as

Gν,t(·,x). This correlation function is constructed as the

integration of the non-constant diffusion equation with the

initial condition δx.

Following Weaver and Courtier (2001), the practical

integration is achieved as a product of L by W−1 where

the linear operator L corresponds to the time integration of

Eq.(2) over the period [0, t] and where W−1 is the inverse

metric product. This latest operator W−1 is defined as

follow. Let χx denotes the characteristic function related

to a point x defined by

χx(x′) =

{

0 if x′ 6= x,
1 if x′ = x.

The inverse metric tensor is formally defined as the linear

operator W−1 such as

W−1(χx) = δx. (4)

Note that W−1 depends on the measure dω as δx depends

on the measure and on the vector space where the solution

of the diffusion equation is sought. Furthermore, the def-

inition of W−1 can be restricted to a particular functional

subspace where the solution is sought. In that particular

case, χ has to be projected in functional subspace: on the

homogeneous circle at truncation T , one has to consider

the projection of χ on the discretized circle generated by

2T + 1 exponential functions (see appendix B).

Then the correlation tensor is defined as C̃ = LW−1.

Weaver and Courtier (2001) have shown that this tensor

can be also formulated as

C̃ = L1/2W−1LT/2, (5)

where L1/2 is the half time integration or the propagator

from initial time to time t/2. However, the standard

deviations modelled by C̃ are not equal to unity and to

obtain a correlation tensor, C̃ is normalized as

C = ΛC̃Λ
T

where Λ is the diagonal tensor of inverse standard devia-

tion of C̃. The correlation tensor can be expanded as

C =
(

ΛL1/2W−1/2
)(

ΛL1/2W−1/2
)T

,

= C1/2CT/2. (6)

Equations Eq.(1), (5) and (6) lead to a practical

formulation in variational data assimilation scheme of

the square root background covariance error matrix with

B1/2 = ΣΛL1/2W−1/2. This covariance modelling based

on the diffusion equation is particularly appropriate in

complex geometry or to model heterogeneous background

matrix. The cost of the formulation is mainly due to the

cost of the propagator L.

The next subsection describes this expansion in the

particular case of the real plane.

Copyright c© 2008 Royal Meteorological Society
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2.3 Correlation modelling with constant diffusion equa-

tion on the real plane

On the real plane R
2, a point is denoted by x = (x, y), the

two dimensional diffusion equation is defined by Eq.(2)

with ν the field of the diffusion tensor. ν(x) corresponds

to the local diffusion tensor that a priori depends on the

position of x. This local tensor can be expanded as

ν(x) =

(

νx(x) νx,y(x)
νx,y(x) νy(x)

)

. (7)

Note that the diffusion tensor is assumed symmetric (this

assumption is not necessary in constant diffusion tensor

case, as ν and νT lead to the same Laplacian operator

even when νx,y 6= νy,x).

As seen in the previous section, the operator L

corresponds to the solution Eq.(3). If Gν,t is analytically

known, then it determines the expansion Eq.(5). In the

particular ν−constant case, an analytical solution can be

derived. It can be shown (see appendix A) that the general

solution in that particular constant case is

Gν,t(x − x′) =

1

2π|Γ|1/2
exp

(

−1

2
(x − x′)

T
Γ
−1 (x − x′)

)

, (8)

where

Γ = 2tν, (9)

and |Γ| is the determinant of Γ.

In this paper, the inverse of the Γ tensor will be

expanded as

Γ
−1 =

(

1
L2

x

1
Lxy

1
Lxy

1
L2

y

)

,

Note that the real scalar 1/Lxy can be equal to zero, which

corresponds to the particular case where Γ is diagonal,

meaning that ν is diagonal. The scale Lx (resp. Ly)

corresponds to the one-dimensional differential length-

scale along the direction x (resp. y) (Daley, 1991).

The normalization terms Λ is another important fea-

ture brought by the analytical solution Eq.(8). It appears

that the kernel value for x = x′ is not 1 but 1/2π|Γ|1/2.

Thus, the normalization which will ensure that the stan-

dard deviation modelled to be 1, reads

Λ
2 = 2π|Γ|1/2I. (10)

As expected, the resolution of the constant diffusion

equation leads to Gaussian functions. However, in the

non-constant diffusion equation, the a priori solution is no

more Gaussian, but it is quasi-Gaussian with large scale

geographical variations of the diffusion tensor.

2.4 Approximation of the local diffusion tensor and of

the normalization in heterogeneous framework

In practice, the local diffusion tensor ν(x) is not known.

The dynamic aspects of the climatology of the geophys-

ical flow can be considered to approximate the real dif-

fusion tensor. But such an estimation does not take into

account the real statistics of the background error. In par-

ticular, the time evolution of B is not represented, the

heterogeneity of the observational network also influences

the background error (Bouttier, 1994).

In this study, we are taking advantage of equations (9)

and (10) to objectively approximate the local diffusion

tensor ν(x) and the local normalization Λ(x) for a given

position x.

The methodology is as follow: the estimation of

the local matrix Γ
−1(x) leads to the local diffusion

ν(x) = Γ(x)/2 and to the local normalization Λ
2(x) =

2π|Γ(x)|1/2. This methodology is appropriate for scales

L relevant in meteorology and in oceanography for which

the ratio γ = a2/L2 ≫ 1, where a is the Earth radius (see

appendix of Weaver and Courtier, 2001). In the remaining

of the paper, t is set to 1.

The next section describes how to estimate Γ
−1(x)

from a correlation function.

3 Estimation of the local diffusion tensor

The estimation of the local diffusion tensor ν is deduced

from the estimation of the local tensor Γ
−1. The calculus

of Γ
−1 is achieved in two steps: the computation of the

diagonal terms Lx and Ly is needed for the computation

of the extra-diagonal terms Lxy. This is described in the

following two sections.

3.1 Estimation of the diagonal components

The inverse of the diagonal terms of Γ
−1 corresponds to

the length-scales. These scales can be approximated with

several low numerical cost formulae as described in Pan-

nekoucke et al.(2008). Such length-scale approximations

are well designed for various type of domain, like circle,

plane, 2D or 3D-sphere. One of these formulae is based on

the approximation of a correlation function ρ by a Gaus-

sian.

For a specific direction, these approximations of

the length-scales can be defined as follows. Let δx

be the displacement in a direction u = δx/|δx| of the

domain, the Gaussian approximation of the correlation

function ρ leads to ρ(δx) ≈ e−|δx|2/2L2

u . It follows that

the Gaussian-based (Gb) length-scale is

Lu =
|δx|

√

−2 ln ρ(δx)
, (11)

with |δx| the magnitude of displacement.

In the particular case of a 1D domain, a left (L−δx)

length-scale and a right (L+δx) length-scale can be

defined. Thereafter, the left directional length-scale is

designed by an superscript − and the right one by the

superscript +.

Thus, Lx and Ly, which correspond respectively to

the zonal and to the meridional length-scales, can be

estimated as Lx = (L+
x + L−

x )/2 and Ly = (L+
y + L−

y )/2.

Now, the remaining non-diagonal terms have to be esti-

mated.
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3.2 Estimation of the non-diagonal term

The non-diagonal terms can be estimated from an approx-

imation similar to the one used for the computation of the

length-scales. In that case, the computation of the coeffi-

cient 1/Lxy is obtained from the approximation of the 2D

correlation function ρ by a Gaussian function

ρ(x) ≡ exp

(

−1

2
xT

Γ
−1x

)

.

Then, for a given direction and distance δx =
(δx, δy) with δx 6= 0 and δy 6= 0, this term is estimated

as

1

Lxy
=

−1

2δxδy

[

2 ln ρ (δx) +
δx2

L2
x

+
δy2

L2
y

]

. (12)

Finally, the local tensor Γ
−1(x) can be computed

from its diagonal and non-diagonal terms previously

described. This leads to the local diffusion tensor

ν(x) = Γ(x)/2,

and to the local normalization

Λ
2(x) = 2π|Γ(x)|1/2.

4 Illustration on the circle

The approximation of the diffusion coefficient and the

normalization are tested in a one dimensional framework.

In this case, the local tensor Γ
−1(x) is restricted to a scalar

1/L2
x.

The example is constructed as follows. In a first step,

a non-trivial length-scale field is build. Then, this field is

used to construct a heterogeneous covariance matrix with

the non-homogeneous diffusion equation, but without the

normalization. The resulting length-scale is compared

with the initial length-scale. Finally, the normalization

computed from the initial length-scale is compared with

the found numerical normalization.

The domain is a circle of radius a = 6480 km, which

corresponds to the Earth great circle. The circle is divided

into ng = 241 equally-spaced grid-points, associated to a

truncation T = 120.

4.1 Generation of a length-scale field

The length-scale field is generated as the sum of a mean

length-scale value Lh plus a length-scale perturbation δL,

sampled from a given energy-spectrum. The perturbation

δL is designed so that its standard deviation, for a given

position, is σ = 0.2 Lh. In the following, the energy spec-

trum of the perturbation is set as

{

E(n) = 0 for n = 0,
E(n) = λ np(1 + n

nc
)q−p elsewhere,

where p > 0 corresponds to the positive energy slope in

the large scales, q < 0 corresponds to the negative energy
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Figure 1. Example of energy spectrum for the perturbation δL used

to generate the length-scale field, for the particular set of parameters

Lh = 350 km, p = 4, nc = 4 and q = −6 (see text for details).

slope in the small scales, nc is a cut off wave number

and λ a normalization to ensure that the total energy is

Etot = σ2. A perturbation δL is computed as a Gaussian

random realization whose energy spectrum is E(n) (under

an ensemble average).

Figure 1 illustrates such an energy spectrum for the

set Lh = 350 km, p = 4, nc = 4 and q = −6. A particular

sample associated to this spectrum and to the Lh value is

represented at the top panel of Figure 2 (solid line). This

length-scale field is denoted Lth.

4.2 The modelled heterogeneous covariance matrix

From the length-scale field Lth(x), the field of diffusion

coefficients, corresponding to Eq. (9), is computed as

ν(x) = Lth(x)2

2τ , with τ = 1. The diffusion operator L1/2

corresponds to the propagator of the diffusion equation

∂tu = ∂x (ν∂xu) , (13)

from t = 0 to t = 1/2. In the numerical experiments, L1/2

is explicitly computed as the exponential of the discrete

problem (see appendix B for details).

In the regularly discretized circular framework, the

metric tensor is featured by the diagonal W−1 = ng/2πa I

(see appendix C).

The modelled covariance matrix based on the diffu-

sion operator is then given by Eq. (5). The matrix built

with the square-root of the diagonal elements of C̃ cor-

responds to the inverse of the normalization Λ. Thus the

correlation matrix modelled with the diffusion operator is

C = ΛL1/2W−1LT/2
Λ

T .

4.3 Diagnosis of the length-scale and validation

The length-scale of the modelled correlation matrix, in

the circle framework, can be diagnosed either with Daley
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Figure 2. Top panel: A particular length-scale field Lth generated

from the spectrum shown in Fig.1 (solid line) and the mean Gb

length-scale diagnosed Ldiag from the covariance modelling using

the heterogeneous diffusion operator on the circle, with diffusion

coefficient computed from Lth (bold dashed line). Bottom panel:

Relative error e% (in percent) between Lth and Ldiag .

formula of the length-scale or with the mean Gb length-

scale computed as Ldiag = (L+
x + L−

x ) /2. Both types of

length-scale estimation lead to similar length-scale values

(not shown here).

The diagnosed length-scales Ldiag are represented at

the bottom panel of Figure 2 (bold dashed line). It appears

that Lth and Ldiag are very close. The differences between

the two fields is measured by their relative error e(x) =
100 (Lth − Ldiag) /Lth. The usual error is less than 0.5%.

The error field feature is slightly related to the length-scale

field: the error is maximal (in absolute value) for rapid

variation of the length-scale field e.g. in the vicinity of

90 ◦; or for extreme length-scale values e.g. for the large

peaks near 33 ◦ or 300 ◦.

Another interesting diagnosis is the difference

between the energy spectrum of the two length-scale fields

Lth and Ldiag (figure 3). The energy spectrum of Ldiag

(dotted line) is close to the energy spectrum of Lth (solid

line) for a wide range of wave numbers. Again, this illus-

trates the accuracy of the method.

Finally, this example illustrates the ability of the

matrix modelled with the diffusion operator to represent

the initial length-scale variations. This proves that invert-

ing the relation between the diffusion coefficient and the

length-scale (exact in homogeneous cases, and taken as an
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Figure 3. Energy spectrum of initial length-scale field Lth (solid

line) compared to the diagnosed length-scale field Ldiag of mod-

elled covariance matrix with the diffusion operator (dotted line).

approximation in non-homogeneous cases) leads to a cor-

relation matrix whose length-scale Ldiag corresponds to

the initial Lth.

In the following paragraph, we are going to show how

the normalization Λ can be approximate from the length-

scale.

4.4 Validation of the normalization based on the length-

scale

As reminded in section 2.3, in the case of a constant

diffusion tensor, the normalization is related to the Γ
−1

tensor through Eq. (10). But in the particular case of a

one dimensional framework, the homogeneous normal-

ization is simply related to the length-scale L by Λ
2 =√

2πLI. In a non-homogeneous one dimensional case, Λ2

is approximated by the diagonal built with the normaliza-

tion
√

2πL(x) related to a given position x.

Figure 4 represents the product of the diagonal of C̃

(defined by Eq. 5) by the normalization
√

2πLth(x). If this

normalization was the true one, then the resulting product

should be everywhere equal to 1. Here, it appears that the

product is equal to 1 with an accuracy of less than 5%.

In conclusion, the approximation of the normaliza-

tion, based on the local length-scale value, is an accu-

rate estimation of the true normalization. Nevertheless,

another strategy to estimate such a normalization can

also be used: the approximation based on the ”Parametrix

method” (Purser et al., 2007).

4.5 Sensitivity to the energy spectrum shape

Various experiments have been caried out to study the sen-

sitivity of the length-scale and of the normalization esti-

mation (computed as described in previous sections) to the

shape of the initial length-scale energy spectrum. These
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Figure 4. Variances resulting by applying the normalization factor

deduced from the length-scale.
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Figure 5. Expected standard deviation of the relative error on the

length-scale (top) and on the normalization (bottom) for (p =
0, q = −2) (solid line), (p = 4, q = −6) (dashed line) and (p =
8, q = −2) (dash-dotted line) versus the cut-off wave number nc ∈

[1, 64].

experiments were performed by changing the parameters

(p, q, nc) of the spectrum defined in section 4.1.

For each set (p, q, nc), Ns = 400 independent length-

scale fields have been generated. The construction of such

a length-scale field has been designed so that the shortest

length-scale value is larger than the grid resolution.

Figure 5 represents the standard deviation of the rela-

tive error for the length-scale and for the normalization,

computed from the generated length-scale fields. These

experiments have been realized for three different shapes

of length-scale spectrum, with a cut-off number varying

from 1 to 64.

The first shape, defined by (p = 0, q = −2) (solid

line), corresponds to a white spectrum until the cut off,

from which the energy decreases slowly. This shape is

associated to a red spectrum (RS). The second shape is

defined by (p = 4, q = −6) (dashed line). In this case,

the spectrum increases rapidly until the cut-off number;

a fast decrease then follows the end of the spectrum. The

length-scale field is featured by an average scale closed to

the cut-off number. This type of signal is denoted by PS

(spectrum with peak). The third shape is associated to a

blue spectrum defined by (p = 8, q = −2) (dashed-dotted

line). All these shapes lead to a red spectrum for small

nc and to a blue spectrum for large nc. This last shape is

associated to a blue spectrum (BS).

The bulk variations correspond to an error increasing

with the cut-off wave number. It appears that the discrep-

ancy is larger when the spectrum is blue. For nc ≥ 30, the

error affecting the length-scale is larger than ≈ 6%. For

the normalization, the error is larger than ≈ 15%. For red

spectrums (corresponding to small nc), the error on the

length-scale is less than 10% for nc ≤ 10, while the error

on the normalization is less than 25%.

This type of variations are also encountered among

the various shapes: for small large scale (nc ≤ 20), the

error for PS is lower than the error for RS, itself lower

than the error for BS.

It results that the estimation of the diffusion coeffi-

cients and of the normalization from the length-scale field

is accurate in a case of smooth length-scale fields, i.e. a

length-scale field dominated by large scale components.

This can appear as a limitation of this approach. How-

ever, in practice, the length-scale is estimated from finite

ensemble. This estimation is known to be affected by the

sampling noise, featured by spurious small scales con-

tribution (Pannekoucke et al., 2008). A possible way to

reduce the sampling noise is to filter the small scale of the

length-scale field, e.g. with a spatial filtering (Berre et al.,

2007).

5 Illustration on the sphere: MOCAGE-PALM back-

ground error covariances

A one dimensional study was presented in the previ-

ous section. To explore the strengths of the method

described above, a three dimensional study was performed

using the MOCAGE-PALM chemical-transport assimila-

tion system. The corresponding Γ tensor and the normal-

ization were computed for troposheric and stratospheric

ozone content. Based on these results, a heterogeneous

covariance matrix was modelled and tested.
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8 O. PANNEKOUCKE AND S. MASSART

5.1 MOCAGE-PALM assimilation system

The assimilation system used in this study is derived from

the MOCAGE-PALM system developed jointly by CER-

FACS and Météo-France in the framework of the FP5

European project ASSET (Lahoz et al., 2007). The assim-

ilation algorithm is based on a 3D-VAR algorithm, in

the FGAT (first guess at appropriate time) variant (Fisher

and Anderson, 2001). The system is based on the Météo-

France comprehensive three-dimensional chemistry trans-

port model (CTM) MOCAGE and on the CERFACS

PALM software (Buis et al., 2006). The CTM MOCAGE

covers the planetary boundary layer, the free troposphere

and the stratosphere. It provides a number of optional

configurations with varying domain geometries and res-

olutions, as well as chemical and physical parameteri-

zation packages. MOCAGE is currently used for sev-

eral applications, such as in chemical weather forecast-

ing (Dufour et al., 2004), chemistry–climate interactions

(Teyssèdre et al., 2007) and data assimilation (Pradier

et al., 2006; Massart et al., 2005a and 2005b). The first

version of the MOCAGE-PALM assimilation system, as it

was originally implemented for the ASSET project, pro-

vided good quality ozone fields compared with ozoneson-

des and UARS/HALOE measurements with errors of the

same order as those supplied by several other assimilation

systems (Geer et al., 2006). In order to improve the assimi-

lation system, several changes have been recently made on

the model resolution and on the background error charac-

terization (Massart et al., 2007). Thus, in this study, the

domain geometry and resolution were a global 2 ◦ × 2 ◦

horizontal grid and a 60 level hybrid (σ, P ) vertical dis-

cretization from the surface up to 0.1hPa. The meteoro-

logical forcing fields were provided by the operational

European Centre for Medium-Range Weather Forecasts

(ECMWF) numerical weather prediction model. We have

also adopted the linear ozone parameterization developed

by Cariolle and Teyssèdre (2007) in its latest version.

In fact, the background error covariance matrix of the

MOCAGE-PALM assimilation system is divided into an

horizontal and a vertical operators. The vertical correla-

tion is modelled using a Gaussian formulation in terms

of the logarithm of the pressure. The horizontal correla-

tion is modelled using a two dimensional diffusion equa-

tion (Weaver and Courtier, 2001) with a homogeneous

length-scale of 4 degrees (that corresponds to a distance

of approximately 445 km).

5.2 The used ensemble data set

The estimation of the background error correlations using

an ensemble of assimilation has proved to be an effi-

cient method (Belo Pereira and Berre, 2006). The ensem-

ble used in this study is based on ten sets of perturbed

observations derived from the Envisat/MIPAS reference

data set of ASSET (version 4.61 delivered by the German

Processing and Archiving Center, D-PAC, of the Euro-

pean Space Agency). The Michelson Interferometer for

Passive Atmospheric Sounding (MIPAS) instrument gives

24h a day ozone profiles with a very good global cover-

age, extending vertically from above the top of our model

downward to around 300 hPa, with a 3km to 8km resolu-

tion (Raspollini et al.2006).

The ten perturbed observation sets are obtained by

adding to the July 2003 MIPAS data, random perturba-

tions which are drawn from a Gaussian distribution based

on the covariance matrix specified by the D-PAC. They

permit to realize an ensemble of 10 members of 3-h ozone

forecasts from the MOCAGE-PALM assimilation system.

In order to eliminate the transient period, and to ensure a

sufficient dispersion of the ensemble, only the last twenty

days of July 2003 are used to compute the statistics. The

resulting ensemble over this period counts 1600 (20 days

× 8 forecasts of 3-h per day × 10 forecasts members)

members of forecast errors.

5.3 Estimation of the local diffusion tensor for the ozone

and its features: length-scales and anisotropy vectors

As explained in Belo Pereira and Berre (2006), the pre-

viously described ensemble of perturbed forecast is used

to estimate the background error correlation in the grid-

points. Spatial correlations of the background error are

then computed over the whole MOCAGE spatial domain.

Some of these functions are illustrated in the left panel of

figure 6. It firstly shows that the correlation functions dif-

fer from one point to another with quite a similarity over

parallel lines. Moreover, the correlation functions seem

to be more isotropic over the South Polar region than to

the high latitude region. These primary diagnoses will be

confirmed by the evaluation of Lx, Ly and Lxy from the

spatial correlations as described in section 3.

Since the estimation of the length-scales is affected

by the sampling noise in the small scales (Pannekoucke

et al., 2008), the noisy contribution can be filtered by a

spatial average (Berre et al., 2007). Thus, the diagnosed

length-scales Lx and Ly (not Lxy) are filtered by a con-

volution with a radial function. This has been numerically

achieved by using an isotropic diffusion function with an

associated length of 450 km. The effect in terms of energy

spectrum is illustrated Figure 8 for the raw estimation

(solid line) and the filtered Lx length-scale. As expected,

the filter dampes a large part of the small scales present in

the raw estimation. Similar spectrum is obtained for Ly.

Note that the filter used in this paper is not optimal as

described by Berre et al.(2007).

The result for Lx (resp. Ly) is represented on the

left (resp. right) top panel of Figure 7, for the ozone

at the pressure level 10 hPa. This pressure level was

selected to illustrate the length-scales because it offers a

good representation of the phenomena observed within

the stratosphere (where most of the observations used to

produce the forecast members are located). The top panel

of Figure 7 first illustrates the variation of both the Lx and

Ly length-scales over the globe.

Probably due to the earth dynamics characterized by

a transport mainly directed along latitude lines, the Lx

length-scale is mostly greater than the Ly one. The Lx
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(a) (b)

Figure 6. Examples of correlation functions of the background error

viewed from the South Pole: (a) diagnosed from the ensemble of

perturbed forecast and (b) from the correlation model diagnosed

using a randomization method with 6400 samples. The contour lines

correspond to values within the range 0.2 – 1, with an 0.2 increment.

Parallel lines are plotted every 15 degrees from 90 ◦S to 15 ◦S.
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Figure 8. Energy spectrums of the MOCAGE-PALM Lx length-

scale estimated by the ensemble of forecast (solid-line), of this

length-scale filtered with an isotropic diffusion function (dashed

line) and of the length-scale from the formulation diagnosed using

a randomization method (dash-dotted line).

length-scale is quite constant over the parallels but has

significant variations along the meridians with decreasing

values from around 600 km at the equator to 300 km at the

poles. The Ly length-scale has a more notable variation

along the parallels with values between around 200 and

350 km.

The anisotropy vectors diagnosis is considered sim-

ilarly to Belo Pereira and Berre (2006). The local

anisotropy vector corresponds to the leading principal axe

of the diffusion tensor ν(x). The norm of the anisotropy

vector corresponds to the oblateness 1 − λ2/λ1 with λ1

and λ2 respectively the largest and the smallest eigen-

value of ν(x). Both the norm of the anisotropy vector and

the vector itself are represented in Figure 9. As noticed

for Lx, the anisotropy intensity is essentially a zonal phe-

nomenon with high values in the equatorial and tropical

regions and with lower values over the poles. However,

one can observe the development of a wave in the South

Polar Region with local maximal values. This wave is

associated with an anisotropy pointing in the South-Nord

direction while the main direction is West-East elsewhere.

5.4 Modelled heterogenous covariances

The computation of the local tensor Γ
−1(x) from our

estimation of Lx, Ly and Lxy at each position x, as

described in section 3, allows us to compute the local

diffusion tensor ν(x) using Eq. (9).

The heterogeneous covariance matrix C̃ of Eq. (5)

based on the diffusion operator and on the local diffusion

tensor ν(x) has been computed over the sphere. The

propagator L1/2 corresponds to the integration of Eq. (5).

The time discretization corresponds to a forward Euler

scheme. The differentials operators have been computed

in the spectral space. A classical 2/3 filter has been

used to eliminate the aliasing effect resulting from the

computation of the product between the diffusion and the

gradient (Boyd, 2001). The time step has been chosen in

order to ensure the Courant Friedriech Levy condition of

stability.

In the particular case of a triangular truncation, the

operator W is featured by the diagonal matrix

W−1 =
(T + 1)2

4πa2
I,

where T is the truncation and a the radius of the Earth (see

appendix C).

5.5 Diagnosis of the length-scales and the anisotropy

vectors

The diagnosis of the modelled heterogeneous background

correlation matrix C̃ can be achieved with an exact com-

putation of each modelled correlation function (as in the

1D framework) or with a randomization method (Fisher

and Courtier, 1995; Weaver and Ricci, 2003). In this part

of the work, the second method has been considered.

Thus an ensemble of background error has been gener-

ated according to εb = C̃
1/2

ζ where ζ is a realization of

a centred Gaussian perturbation with the identity matrix

as its covariance matrix. Some correlation functions from

the randomization method are illustrated in the right panel

of figure 6. The comparison of the two panels shows

that the modelled correlation functions well reproduce the

anisotropy and the heterogeneity. Likewise, in the neigh-

bourly of the core of each correlation functions, the model

well represents the amplitude of the correlations in the two

dimensions.
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10 O. PANNEKOUCKE AND S. MASSART

(a) (b)

(d)(c)

Figure 7. Representation of the raw length-scale estimation over the last twenty days of July 2003 at 10hPa: zonal (a) and meridional (b)

length-scale. These field are used to approximate the diffusion coefficients associated to such a heterogeneity. The zonal (c) and meridional

(d) length-scale of the resulted formulation are diagnosed using a randomization method with 6400 samples.

Similarly to the estimation of the raw length-scales,

the length-scales of C̃ have been estimated from the gen-

erated ensemble by using the Gaussian-based approxima-

tion defined by Eqs. (11) and (12). In the experiment, a

large ensemble of 6400 members has been generated so

that the sampling noise affecting the estimation is less than

2%.

The energy spectrum of the zonal length-scaled iag-

nosed from the generated ensemble is represented Fig-

ure 8 (dash-dotted line). In comparison with the filtered

length-scale (dashed line), both spectrums are very close

until total wave numbers around 20. For higher total wave

numbers, the sampling noise adds energy in the small

scales. Thus, the the spectrum of the length-scale from the

formulation diagnosed using the randomization method

decreases at a lower rate than the one from the filtered

length-scale. The zonal and the meridional length-scales

diagnosed from the generated ensemble are represented in

the physical space Figures 7-(c) and (d). The diagnosed

length-scale fields are very close to the initial raw esti-

mation (figures 7-(a) and (b)). In details, the correlation

matrix C̃ underestimates the zonal length-scales with an

average relative error of 0.4%. These errors are maximal

over the poles with values of 8% at the South and −15%

at the North. This has to be linked with lower length-

scale values over the poles and to the difficulty of the

method to catch small values (compared to the size of the

mesh). Concerning the meridional length-scales, the diag-

nosis reveals that the correlation matrix C̃ overestimates

the length-scales with an average relative error of 2.2%.

This error is higher than the one of the zonal length-scales,

probably beacause for the reason that the length-scales

along the meridians have lower values than those along the

parallels. Moreover, as for the zonal length-scales, the rel-

ative error between the diagnosed and the raw meridional

length-scales reaches its maximum when the length-scale

values are the lowest. Then, the relative error is about 8%

in two latitude bands, one, just above the equator, and the

other, below the equator.

Figures 9-(c) and (d) represent respectively the norm

and the direction of the anisotropy diagnosed from the

same ensemble as the one use for the length-scales. It

appears that the diagnosed anisotropy is close to the initial

raw estimation with an average underestimation of 2.5%.

In this case, the error is maximal with values around

80% where the anisotropy has important gradient in the

South pole region. As expected from the 1D framework

results, rapid geographical variations, associated to small
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(a)

(d)(c)

(b)

Figure 9. Representation of the anisotropy estimation (resp. modelled with diffusion operator) over the last twenty days of July 2003 at

10hPa: norm (a) and direction (b) of the anisotropy vector (resp. (c) and (d)).

LatitudeLatitude

(b)(a)

Figure 10. Validation of the factor deduced from the local diffusion tensor using the randomization method with 6400 samples: (a) variance

along longitude 0◦ and (b) standard deviation of the variance.

scale contributions in the initial length-scale field, are

attenuated.

5.6 Validation of the normalization based on the length-

scales

As the validation of the normalization in the case of the

circle, section 4.4, the normalization based on the length-

scales is computed here using Eq. (10). With the same
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12 O. PANNEKOUCKE AND S. MASSART

randomization method used previously for the length-

scales, the diagonal of C̃ (defined by Eq. 5) is estimated

with a 6400 samples. The product of this diagonal by

the normalization 2π|Γ(x)|1/2 is computed and has to

be compared to the unity. This porduct is illustrated by

Figure 10 along the longitude 0◦ and its standard deviation

as a function of latitude. As shown, the predetermined

normalization is a very good approximation of the true

one (with an error less than 0.3%) more or less 5%.

As a result, the normalization based on the local

diffusion tensor offers an accurate approximation of the

true normalization. Note that the accuracy is reached in a

randomization process since our ensemble size is greater

than the one needed (1000) as discussed by Weaver and

Ricci (2003).

6 Conclusion

In this paper, we have described the estimation of the

local diffusion tensor and the local normalization appear-

ing in the modelling of a heterogeneous background error

covariance matrix based on the diffusion equation. This

estimation is based on the relationship between the local

diffusion tensor and the local length-scales. It has been

shown that the use of the estimated diffusion tensor

leads to a formulation of the background error covari-

ance matrix that reproduces the initial feature of the back-

ground errors. The link between the diffusion tensor and

the length-scales is well-known in the case of a constant

diffusion tensor. This study shows that this link is still

valid in an heterogeneous case when the geographical

variations are relatively smooth.

This has been firstly illustrated for a simple one

dimensional framework. The local diffusion coefficients

have been estimated from a given length-scale field that

varies along the domain. These coefficients have then been

used to model a heterogeneous covariance matrix based

on the diffusion operator. It has been shown that the diag-

nosed length-scale field from this modelled matrix cor-

responds to the initial length-scale field. This correspon-

dence is particularly accurate when the spectrum of the

initial length-scale field is red. Similar conclusions have

been obtained for the normalization field.

Then, the method has been illustrated for a spe-

cific altitude level of a three-dimensional global chemistry

transport model. An ensemble of model forecasts has per-

mitted to estimate the length-scales and the anisotropy

vector of the ozone forecast errors. The local diffusion

tensor was deduced from these estimations. A two dimen-

sional heterogeneous background error covariance matrix

was modelled, based of this local diffusion tensor. As

for the one dimensional study, the diagnosed length-scale

fields from this modelled matrix have been shown to cor-

respond to the initial length-scales with a low average rel-

ative error. The diagnosis has also revealed that it is more

difficult to model efficently the anisotropy in this specific

case where spatial variations are important. Concerning

the normalization, the values given by the length-scales

tend to be close to the expected ones. This proposed nor-

malization is especially interesting since there is no other

low cost way to compute it in the particular heterogeneous

case.

This two dimensional application was the first step

towards the appliance to the whole three dimensional

domain of our chemistry-transport model. Nevertheless,

the three dimensional error covariance operator will be

separated on each grid point into a two dimensional

horizontal one and a one dimensional vertical one. The

full evaluation of this methodology has now to be carried

on by assessing the impact of first diagnosed and then

modelled local covariance on the analysis and finally on

the forecast. Moreover, this methodology could also be

applied to full scale atmospheric and oceanic forecast

system. As there is no computational cost associated to

the normalization, the main cost is therefore attributed to

the computation of the members (and a sufficient number

of members is required to have significant statistics when

the local length-scale are computed). Furthermore, an

efficient diffusion solver is also an important requirement.
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A Analytical resolution in the plane of the constant

diffusion equation

The expression of the kernel Gν,t, solution of 2D equation

Eq.(2) is sought. The diffusion tensor ν of Eq.(7) is

assumed to be symmetric, it follows that there exists an

orthonormal basis of the plane where the matrix of the

representation of ν is diagonal i.e. νx,y = 0. Thus, without

lost of generality, νx,y is thereafter assumed to be null.

Let Gνx,t(x) and Gνy,t(y) be solutions of, respec-

tively,

∂tG
νx,t = νx∂2

xxGνx,t,

∂tG
νy,t = νy∂2

yyGνy,t.

Noticing that Gν,t(x, y) = Gνx,t(x)Gνy,t(y) is a solution

of Eq. (5), the 2D solution can be constructed as the

product of 1D solutions. One can verify that a solution of

the constant 1D diffusion equation on the real line, with a

Dirac as initial condition, is

Gνx,t(x) = e−x2/4νxt/
√

4πνxt,

Gνy,t(y) = e−y2/4νyt/
√

4πνyt.

The solution of the 2D problem is thus

Gν,t(x) =
1

2π|Γ|1/2
exp

(

−1

2
xT

Γ
−1x

)

, (14)

where Γ = 2tν and |Γ| is the determinant of Γ. The

invariance by translation due to ν−constant assumption

involve, Gν,t(x,x′) = Gν,t(x − x′).
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B Resolution of the heterogeneous diffusion equation

over the circle

The aim of this section is to evaluate L1/2 in Eq. (5) in

the particular case of a one dimensional circle framework.

It can be noted that L1/2 corresponds to the propagator

from t = 0 to t = 1/2 associated to the equation (11). The

domain represents the great-Earth circle that is regularly

discretized with n points corresponding to the truncation

T so that n = 2T + 1.

For the vector u corresponding to the discretized

field over the circle, the discrete diffusion equation can

be written
du

dt
= S−1D K DSu, (15)

where S is the matrix that corresponds to the discrete

Fourier transform, D is the diagonal matrix corresponding

to the discrete version of the differential operator ∂x, and

K is the matrix representing the convolution in the spectral

space that corresponds to the grid-point product with the

field ν.

If in the spectral space, the spectral coefficients are

ordered as (up)p∈[−T,T ], then D = Diag
{

(ιp)p∈[−T,T ]

}

,

and K is the n × n banded Hermitian Toeplitz

matrix where the first column is the n-list

(ν0, ν1, · · · , νT , 0, · · · , 0) and the first row is the n-

list (ν0, ν−1, · · · , ν−T , 0, · · · , 0), where (νp)p∈[−T,T ] is

the spectrum of the discretized diffusion field. Note that

the matrix S−1D K DS is Hermitian.

The solution of linear differential equation (15) is

u(t) = et S−1D K DSu(0). Thus, L1/2 = e
1

2
S−1D K DS.

In numerical experiments, this exponential is explicitly

computed.

C Expression of the metric on the isotropic circle and

sphere

According to section 2.2, the normalization is defined

from the distribution of Dirac δ. This distribution depends

on the measure and the vectorial space where the solution

is sought.

In the case of the a−radius homogeneous circle C
associated to the truncation T and where the measure is

defined as dω = dx/2πa. The aim is to find the expression

of δl corresponding to the Dirac distribution at point l.
Due to the translation invariance property, this distribution

does not depend on the point of the circle. Thus, without

lost of generality, only the distribution δ at point x =
0 is sought. δ is included in the subspace FT span

by exponential functions ep(x) = eipx/a for p ∈ [−T, T ].
The exponential functions form an orthogonal basis of

this subspace. Thus, the coordinate of δ along eipx/a

corresponds to the Fourier coefficient

〈ep|δ〉 =
1

2πa

∫

C

e−ipx/aδdx.

By definition of the Dirac distribution

1

2πa

∫

C

e−ipx/aδdx =
e−ip0/a

2πa

that is equal to 1/2πa. Thus, δ(x) = 1/2πa
∑T

p=−T ep(x)
also equal to

δ(x) =
1

2πa

(

1 +

T
∑

p=1

2 cos
px

a

)

.

Moreover, the projection of χ0 on FT leads to a similar

spectrum as δ so that only a scaling law links the two

spectrum. The value χ0(0) = 1 imply a scaling value of

δ(0) = (2T + 1)/2πa. Finally, W−1 = δ(0)I or

W−1 =
2T + 1

2πa
I,

where I denotes the identity operator of FT .

A similar conclusion occurs on the homogeneous

sphere of triangular truncation T . In that case, the Dirac

distribution δ corresponds to the distribution located at the

North pole. Its spherical harmonic spectrum δm
n is δ0

n =
Y m

n (0)/4πa2 =
√

2n + 1/4πa2 (Y m
n denotes the spheri-

cal harmonic function) when m = 0 and δm
n = 0 else-

where. Then it can be proofed that W−1 = δ(0)I with

δ(0) = 1/4πa2
∑T

n=0(2n + 1) or simply

W−1 =
(T + 1)2

4πa2
I,

where I denotes the identity operator of the subspace

spanned by spherical harmonic within truncation T .
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