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ABSTRACT

This article discusses several models for background error correlation matrices using the wavelet diagonal

assumption and the diffusion operator. The most general properties of filtering local correlation functions,

with wavelet formulations, are recalled. Two spherical wavelet transforms based on Legendre spectrum and a

gridpoint spherical wavelet transform are compared. The latter belongs to the class of second-generation

wavelets. In addition, a nonseparable formulation that merges the wavelets and the diffusion operator model

is formally proposed. This hybrid formulation is illustrated in a simple two-dimensional framework. These

three formulations are tested in a toy experiment on the sphere: a large ensemble of perturbed forecasts is

used to simulate a true background error ensemble, which gives a reference. This ensemble is then applied to

compute the required parameters for each model. A randomization method is utilized in order to diagnose

these different models. In particular, their ability to represent the geographical variations of the local cor-

relation functions is studied by diagnosis of the local length scale. The results from these experiments show

that the spectrally based wavelet formulation filters the geographical variations of the local correlation length

scale but it is less able to represent the anisotropy. The gridpoint-based wavelet formulation is also able to

represent some parts of the geographical variations but it appears that the correlation functions are dependent

on the grid. Finally, the formulation based on the diffusion represents quite well the local length scale.

1. Introduction

Data assimilation aims to estimate the most likely

numerical representation of a real system from known

observations. This state is called the analysis and corre-

sponds to the initial state of a new forecast. To estimate

the analysis is quite a difficult problem for the atmo-

sphere where observations are heterogeneous in time

and space, and also because these observations are af-

fected by noise. A prediction/correction method is often

used so that the analysis is designed as a background

corrected from the observations. In practice, the back-

ground generally corresponds to the most recent short-

term forecast.

Data assimilation introduces two new unknown quan-

tities: the observation error covariance matrix and the

background error covariance matrix. The background

error covariance matrix, denoted by B, plays a key role

in the data assimilation scheme, since it contributes to

the filtering of the observation error and also because it

spreads the correction from these observations. The B

matrix quantifies statistical information evolving with

time along the analysis/forecast cycles. It is known that

horizontal and vertical correlations vary geographically

(Lönnberg 1988). In particular, horizontal scales tend to

be broader in the tropics than at high latitudes because

of atmospheric dynamics (Ingleby 2001). There are also

different horizontal correlations at different levels, and

different vertical correlations for different horizontal

wavenumbers. The latter property is the fingerprint

of ‘‘nonseparability’’ of statistics (Rabier et al. 1998; In-

gleby 2001, see his Fig. 2), which can be interpreted as

reflecting a shallow-water and a deep-water behavior for

the large-scale and small-scale structures, respectively.

Furthermore, B is flow dependent: correlation scales de-

pend on the meteorological situation and on data density

(Bouttier 1993, 1994). Two major difficulties occur with

B. The first one concerns the estimation of the matrix.

Indeed, there are no measurement tools to determine

B, as it exists for the temperature or for the surface
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pressure. The second one is the huge size of B (square of

the dimension of the state vector) so that it is not pos-

sible to represent it explicitly in the computer memory.

Thus, B must be modeled. A first common model is

obtained by assuming that the correlations are homo-

geneous and isotropic (Courtier et al. 1998; Gaspari and

Cohn 1999). Moreover, this correlation model is able to

represent the nonseparability (Rabier et al. 1998). The

resulting correlation matrix is represented by a diagonal

in spectral space, and in this case, there are no geo-

graphical variations of the local correlation functions.

Thus, statistics are estimated over long periods lasting

several months. It is worth noting that some flow

dependence can be introduced in this model [e.g., by

using nonlinear balances in multivariate formulation

(Fisher 2003), which generalize the multivariate for-

mulation proposed by Derber and Bouttier (1999)].

Other models of correlation functions able to con-

struct heterogeneous formulation exist; for example, the

models using recursive filters (Purser et al. 2003a,b),

or on the generalized diffusion equation (Weaver and

Courtier 2001; Weaver and Ricci 2003). It should be

noted that some alternate ways to construct model dif-

fusion based on Gaussian correlation exists as the iter-

ated Laplacian method (Derber and Rosati 1989; Egbert

1994). This formulation is feasible even over complex

domains (e.g., in ocean modeling with coasts). But in

their current formalism, neither the recursive filters nor

the diffusion operator are able to represent the non-

separability of statistics. However, an improvement of

the spectral formulation, designed with the spherical

wavelets, has been proposed by Fisher and Andersson

(2001; see also Fisher 2003). This correlation model is

heterogeneous and nonseparable. An equivalent wave-

let diagonal assumption has been considered by Deckmyn

and Berre (2005) for limited-area models. It is worth

noting that wavelets have also been introduced to their

compression properties by Auger and Tangborn (2004)

(see also Tangborn 2004). Since it is now able to repre-

sent local information, it is feasible to introduce some

flow dependence, but the issue of B estimation remains.

The technique of the assimilation ensemble elabo-

rated with perturbed observations (Houtekamer et al.

1996; Fisher 2003) is a practical method to estimate the

background error statistics. This approach is partly re-

lated to the work of Evensen (1994), who proposed an

ensemble-based method to solve the Kalman filter

equations. It offers an explicit time evolution of B where

the flow-dependent covariances are estimated from the

ensemble. Ensemble assimilation methods have been

used to estimate the stationary component of B (Fisher

2003; Belo Pereira and Berre 2006; Pannekoucke and

Massart 2008), or to compute the statistics of the day in

variational schemes (Pannekoucke et al. 2007; Berre

et al. 2007; Pannekoucke 2008). In these last studies,

spatial averaging was applied to remove the sampling

noise due to the small size of the ensemble (Houtekamer

and Mitchell 1998; Lorenc 2003). It should be also men-

tioned that some analogous filtering effects have been

investigated by Buehner and Charron (2007).

The underlying question of the paper is how to model

the background error covariance matrix with the wavelets

and the diffusion operator and how to estimate these

two models. Section 2 recalls the spectral-based wavelet

formulation of Fisher (2003) and properties offered by

the wavelet formulation (and more generally by the

representation in a frame): the ability of the formulation

to represent heterogeneous correlations, the filtering of

sampling noise, and the smoothing of the geographical

variations of correlation functions. A second-generation

wavelet formulation, presented in section 3, corresponds

to a wavelet formulation in grid space. The correlation

model that relies on the diffusion equation is described

in section 4, with some recent results on the estimation

of the local diffusion tensor. This correlation model can

represent heterogeneous correlations, but in its current

formulation the model is not able to incorporate the

nonseparability. A hybrid formulation is proposed to mix

the diffusion operator and the wavelets in order to con-

struct a nonseparable formulation. In section 5, the hori-

zontal components of the three formulations are tested

within a simulated experimental framework, using a toy

model on the sphere. This model has been constructed to

provide ‘‘true’’ local correlation functions that are un-

known in real applications. In that case, only the feasi-

bility and the ability of each formulation to represent the

geographical variations of correlations are illustrated. The

filtering of sampling noise is not addressed in this frame-

work. Conclusions and perspectives are given in section 6.

2. Diagonal assumption in spectrally based wavelet
representation

a. Definition of the wavelet transform

The basic ingredients of a wavelet transform on the

real line are the translation and the dilatation of a locally

supported function. The former analyzes a signal in phys-

ical space while the latter analyzes the signal in spectral

space. A wavelet transformation splits a signal into dif-

ferent levels of detail. Thus, it can be considered as a set

of bandpass filters and it is possible to formulate the

wavelet transformation in term of convolution. On the

sphere S2 (also on the circle), it is difficult to define

a good dilatation operator since a dilatation at a point

along a great circle will lead to a contraction at the anti-

pode (Holshneider 1990, 1996). Despite these difficulties,
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different wavelet transformations on the sphere exist

(Rosca 2005; Antoine et al. 2002).

To cope with the dilatation problem, Freeden and

Windheuser (1996; see also Freeden and Schreiner 1998)

have proposed a wavelet transformation based on the

Legendre spectrum. It consists of defining an appropri-

ate set of bandpass filters c j, given by their Legendre

spectrum, and then convoluting it with the spherical

function to decompose. This tool was introduced in data

assimilation for covariance modeling by Fisher (see, e.g.,

Fisher and Andersson 2001), who made this choice be-

cause such a spectrally based wavelet (SBW) formula-

tion is invariant with spherical rotation. This last point is

a strong constraint for the isotropic representation of

dynamics (e.g., with the quasi-spectral model and tri-

angular truncation), but it is less true in a gridpoint

model as those encountered in ocean modeling, with a

heterogeneous grid and resolution.

The direct and the inverse SBW transforms are de-

fined as follows. For an arbitrary field «, the wavelet

coefficients at scale j, denoted by «j, are computed as the

convolution by the bandpass filter c j: «w
j 5 c j 5 «,

where 5 denotes the convolution product. The field «

can be obtained again as the sum of the details «w
j with

« 5 Sjc
j 5 «w

j . In general, spherical convolution is de-

fined according to the group of rotations of R3, denoted

SO(3). This group is also the group of 3 3 3 orthogonal

matrices with determinant one. But in this particular

case, thanks to the addition theorem for spherical har-

monics with appropriate normalization (Müller 1966),

the convolution reduces to a spectrum product as

(c j � «)m
n 5 (1/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n 1 1
p

)c j
n«m

n , where cn
j is the Legendre

spectrum of c j and «n
m is the spherical harmonic spec-

trum of «. This is similar to the convolution product in

the Fourier representation in a one-dimensional circle.

The formulation of Fisher (2003) is designed with

band-limited c j functions so that their spectrum repre-

sentation is as follows. For a set of arbitrary chosen

integers, (Nj)j2[0, J], with Nj , Nj11, the spectral coeffi-

cients of function c j are given by, for j 6¼ 0 (n being the

total wavenumber in the spherical case):

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n 1 1
p c j

n 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�N
j�1

N
j
�N

j�1

s

for N
j�1

# n , N
j
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
j11
� n

N
j11
�N

j

s

for N
j

# n , N
j
1 1,

0 otherwise.

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

For j 5 0, the definition is the same, except that the

range Nj21 # n , Nj is replaced by 0 # n , N0, for which

(2n 1 1)21/2cn
j 5 1.

Note that these SBWs are not orthogonal and do not

form a basis, but rather a frame (Fisher 2004; Daubechies

1992; Mallat 1999). In finite expansions, if W represents

the linear operator associated with this wavelet trans-

formation, then W is not invertible (in particular, W is

not square but rectangular). Of course, W has a left in-

verse (the Moore–Penrose pseudoinverse) W21 so that

W21W 5 I but WW21 6¼ I, where I represents the identity

operator. Moreover, this particular kind of wavelets

forms a tight frame, implying that W21 5 WT.

Figure 1 illustrates the bandpass filters for the par-

ticular set {Nj} 5 {0, 1, 2, 3, 4, 5, 7, 10, 15, 21, 30, 63, 130}.

As c j are band limited, the wavelet coefficients «w
j can be

stored on a coarse grid in physical space, associated with

an adapted triangular truncation. By convention, the

smaller the truncation, the smaller the index j. Note that

the truncation for the two last scales is the truncation of

the full-resolution grid. Thus, the number of wavelet

coefficients is at least 2 times greater than the degree of

freedom of the gridpoint representation (which is why W

is rectangular). The wavelet function associated with a

given position x on the sphere is cx
j(x9) 5 (c j 5 dx)(x9),

where dx is the Dirac distribution at point x. Wavelet

functions are such that the larger the spectral band,

the more localized in physical space it is, constrained

by Heisenberg’s uncertainty principle. Figure 2 rep-

resents an example of SBW expansion of a spherical

field (Fig. 2a). There is one resolution for each scale,

with a low resolution for the large scales (Fig. 2b) and a

higher resolution for the small scales (Fig. 2d).

The choice of {Nj} is a degree of freedom for the for-

mulation and can be optimized in order to match geo-

graphical variations of local correlation from a given set

FIG. 1. Spectral coefficients (2n 1 1)21/2cn
j of the wavelet

bandpass filters c j. The spectrum associated to the particular c10

function is shown in bold.
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of statistics. For instance, it is possible to specify {Nj} so

that the modeled correlation length scale corresponds to

the diagnosed length scale under least squares criterion.

This discrete optimization problem can be solved by us-

ing metaheuristic algorithms such as simulated annealing.

Note that for orthogonal wavelets, some algorithms are

available for selecting the best basis among a dictionary

of basis (in particular dictionary of wavelet packets; see

Coifman and Wickerhauser 1992). In this framework, it is

also possible to select the best approximation of the

Karhunen–Loève basis (an orthonormal basis for which a

covariance matrix is represented by a diagonal) (Mallat

et al. 1998; appendix E in Pannekoucke 2008).

However, the choice of {Nj} constraints, in correlation

modeling, the resolution of the variation of vertical cor-

relations with horizontal scale (spectrally defined): the

larger bands [Nj, Nj11] are lower in the spectral resolution

of the vertical–horizontal nonseparability (Fisher and

Andersson 2001). Because of some atmospheric balances,

(e.g., shallow-water behavior in the large scales and deep-

water behavior in the small scales with a fast transition in

the low wavenumbers) it appears better to construct a

fine (coarse) representation of low (high) wavenumbers

(i.e., the spectral support of the bandpass filters is larger

in the small scales than in the large scales).

b. Formalism of diagonal assumption in wavelet
space

Similarly to the diagonal formulation in spectral space

(Courtier et al. 1998), the wavelet equivalent is that the

background correlation tensor is represented by a di-

agonal in wavelet space. Thus, B is expanded as the

product of B 5 SgCSg
T where Sg

2 is the diagonal matrix

of B and C is the correlation matrix. With the previous

notation, the wavelet formulation of the matrix B is

specified following Fisher (2003) and Deckmyn and

Berre (2005) as Bdw 5 SgCdwSg
T with

C
dw

5 LS
s
W�1D

w
W�TS

s
TLT, (1)

where Ss is a diagonal normalization by the spectral

standard deviation, Dw
1/2 is a diagonal of wavelet stan-

dard deviations, and L is a diagonal normalization by

standard deviations of SsW
21DwW2TS s

T. Thereafter,

this normalization is not recalled, but is applied. Note

that a nonseparable formulation can be constructed fol-

lowing Fisher and Andersson (2001; see also Fisher 2003).

In that correlation model, the matrix Dw is a block diag-

onal matrix whose blocks Dw,a are the vertical covari-

ances associated with wavelet index a, where a 5 ( j, x) is

a coupling of scale and position. Similarly to the spectral

formulation, the dependence on frequency is ensured by

the dependence on the scale j. But unlike the spectral

formulation, the dependence on position x involves a

geographical variation of the vertical correlation by scale.

One of the consequences of the diagonal assumption

in a frame is that the diagonal matrix Cd is related to

the initial matrix C following a relation of the following

form:

C
d
(x9, x) 5 �

z,z9

C(z9, z)F
(x9, x)

(z9, z),

FIG. 2. (a) Illustration of a wavelet expansion of a field. Some wavelet coefficients are represented for only few

scales: (b) the large scale j 5 1, (c) the medium scale j 5 4, and (d) the small scale j 5 10. In (b)–(d), each gray bloc is a

wavelet coefficient.
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where the weight matrix F(x9,x) is function of the frame

(Pannekoucke et al. 2007). This means that Cd is a spa-

tial average of C. In the spectral basis, the weight only

depends on the distance between x9 and x. Thus, the

diagonal assumption in spectral space Cds can be seen as

a global spatial average of C, so that the resulting tensor

is homogeneous (and isotropic according to Gaspari and

Cohn 1999). In the wavelet representation, the weight

F(x9, x) is localized around the position (x9, x), because the

wavelets are localized in both space and spectrum. Here

Cdw can be seen as a local spatial average of C. Then, this

formulation is able to represent geographical variations

of the local correlation functions. However, as the

wavelets cx
j are radial (i.e., isotropic) functions and

thus not polarized (i.e., anisotropic or directional; see

Antoine et al. 2002), the local average at each scale tends

to damped anisotropy.

The result of this averaging is that the geographical

variations of the local correlation functions, modeled

with the wavelet diagonal assumption, are smooth, as-

sociated with a filtering of sampling noise (Pannekoucke

et al. 2007). Figure 3 mimics the estimation of wavelet

statistics at different scales and for two points A and B.

For the large scales, the spatial average is done over

a large area (horizontally hashed area for A and verti-

cally hashed area for B). This eliminates small-scale

contribution and thus damps a part of the sampling

noise. At the opposite extreme, for small scales, the

averaging is done over a local area near the point and

they are more sensitive to sampling noise. The statistics

computed at two different points vary slowly for the

large scale: areas around A and B overlap. Then the

statistics vary more rapidly in the medium scales: areas

around A and B overlap slightly. Finally, they are in-

dependent in the small scales: areas around A and B

are disjointed.

To illustrate the diagonal assumption in wavelet space

and to give another point of view of why sampling noise

is eliminated in this formulation, a one-dimensional ex-

ample is now introduced.

c. Example in a one-dimensional framework with
varying length scale

Following Pannekoucke et al. (2007), a simple 1D

analytical heterogeneous correlation matrix on the cir-

cle is obtained from a change of variable. This procedure

is well known as it offers a way to construct flow-

dependent correlation (e.g., with a semigeostrophic

change of variable; Desroziers 1997). In the present

construction, a 1D Schmidt transformation of parameter

c (or c stretching) is used (Courtier and Geleyn 1988). It

is defined, on the circle of radius a, by

u(x) 5 a p � 2 arctan c�1 tan
p

2
� 1

2

x

a

� �� �� �

,

where x is the geographical position, with x/a varying

from 08 to 3608. The change of variable is applied to a

homogeneous Gaussian correlation tensor:

C
h
(x, y) 5 exp

�(x� y)2

2L2
h

" #

,

where Lh 5 250 km denotes the length scale. The re-

sulting correlation tensor is thus

C(x, y) 5 C
h
[u�1(x), u�1(y)].

For numerical applications, a 5 6400 km (the radius

value of the earth), c 5 2.4, and Lh 5 250 km. The circle

is regularly discretized at truncation T 5 130 and the

discretization of the correlation tensor C is denoted by

C. As shown in Fig. 4a, the correlation functions of C

are more (less) spread near 08 (3608) than the original

Gaussian correlations (not shown).

The wavelet transform considered on the circle is

equivalent to the wavelet presented in section 2a but

replaces the Legendre spectrum with a cosine spectrum.

This class of circular wavelets also forms a tight frame

(WT 5 W21).

Now, applying the diagonal assumption in wavelet

space (spectral normalization is not considered here)

FIG. 3. Sketch of the local spatial average at different scales with

the diagonal wavelet assumption (see text for details).
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consists, in a first step, in computing the diagonal oper-

ator Dw. In this simple one-dimensional framework,

where the matrices can be fully represented in computer

memory, Dw is explicitly computed as Dw 5 diag(WCWT).

Then the computation of Cdw is achieved according to

Cdw 5 W21DwW2T. Some of the correlation functions

of Cdw are shown in Fig. 4b.

Geographical variations of correlation functions are

well represented. Modeled correlation functions are

largely spread near 08—see for instance the bold solid

line correlation function near 308 in Fig. 4b, which is

quite similar to the original in Fig. 4a—and they are

well localized near 1808 as shown by the bold dashed

line correlation function. Some defects are still present,

visible especially on the bold dashed line correlation

in Fig. 4b. This can be partly corrected by adapting the

set of integers {Nj}.

The diagonal of Dw is represented in Fig. 5b. In this

panel, each box represents a wavelet variance with a

gray level depending on the variance magnitude. A

wavelet variance is associated to a correlation around a

certain position and frequency. This position can be

viewed as the middle abscissa of a box while the fre-

quency is related to the scale j. In accordance with the

definition of C and Fig. 4a, large scales are excited in the

vicinity of 08 while small scales are excited near 1808.

The local correlation function related to a position x is

computed as fx 5 Cdwdx, with dx the Dirac distribution.

For the present tight frame, Cdw 5 W21DwW and fx are

obtained using a three-step process. The first step is the

wavelet transformation Wdx of the Dirac distribution dx.

The wavelet coefficients of Wd08 are represented in Fig. 5a.

It constitutes a particular pattern called the ‘‘cone of

influence’’; wavelet coefficients are negligible outside a

conelike area. The second step is the element wise

product of the wavelet coefficients Wdx with the wavelet

variances Dw. Here Dw is represented in Fig. 5b and

DwWd08 is represented in Fig. 5c. It can be considered as

the wavelet coefficients of f08 (this is not rigorously the

case as WW21 6¼ I). The last step is the return to physical

space with W21.

The former two steps can help us to understand

(through a spatial average interpretation) why diagonal

wavelet assumption is able to filter sampling noise. When

statistics are estimated from an ensemble (e.g., an en-

semble of perturbed forecasts) the finite and generally

small size of the ensemble leads to sampling noise

(Houtekamer and Mitchell 1998; Lorenc 2003). But

when applying the diagonal assumption in wavelet space,

and following the previously described steps, it appears

that only the wavelet variances located in the cone of

influence are taken into account. This results in infor-

mation beyond a certain distance not contributing to the

correlation function model. This can be interpreted as a

filtering of the raw local correlation function.

An illustration of this filtering is given in Fig. 6a, which

shows an example of a correlation function, relative to 08

estimated with 10 members (solid line) compared with

the true correlation function (dashed line). In this case,

FIG. 4. Representation of some local correlation functions of (a)

the heterogeneous correlation matrix C and (b) its modeled version

based on the diagonal assumption Cdw. In both (a) and (b), each

solid line curve represents a local correlation function. The bold

solid line and the bold dashed line are two particular correlation

functions.

FIG. 5. Illustration of the construction of a correlation function

in the wavelet transformation: (a) wavelet transform Wd08 of the

Dirac function d08, (b) wavelet standard deviation that corresponds

to the diagonal of the diagonal matrix Dw, and (c) the pre-

correlation function DwWd08 that can be considered as the wavelet

coefficients of f08, the correlation function at point 08, modeled with

the diagonal assumption. In (a)–(c), white (black) stands for low

(large) values.
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each background error has been randomly generated as

eb 5 C1/2z, where z is a sample of a Gaussian random

vector with zero mean and the identity I as a covari-

ance matrix (Fisher and Courtier 1995). Thus, with

the expectation function E, the covariance matrix of

the generated eb is E(ebe
T
b ) 5 C1/2E(zzT)CT/2

5 C. The

covariance matrix estimated from this ensemble of

simulated error eb
k is Ce 5 (1/N)Ske

k
b ekT

b , with N 5 10.

The correlation matrix estimated is obtained after a

normalization of Ce by its standard deviations. The

sampling noise is particularly visible from 458 to 3158

where the true correlation is zero while its estimation

oscillates with a magnitude of 0.5. Note that the fre-

quency of these oscillations is varying along in space,

with a low-frequency oscillation near 458 and a high-

frequency oscillation near 1808. This is directly related to

the local correlation itself: local correlation functions

are more spread near 458 than near 1808. Figure 6b

shows the absolute value of the wavelet coefficients of

the estimated correlation function. It accurately repre-

sents this variation of local frequency with no energy in

the small scales near 458 (coefficients at scale j 5 12 are

negligible) and some energy in the small scales near

1808. Now applying the diagonal assumption in wavelet

space will damp all coefficients outside the cone of in-

fluence at point 08, as shown in Fig. 6d, which corre-

sponds to the absolute value of the wavelet coefficient of

the local correlation function modeled with wavelet as-

sumption. This last correlation function is represented in

Fig. 6c (solid line) and its estimation is done from the

same 10 members used in Fig. 6a. It is clear that the

sampling noise has been reduced.

As seen previously, the wavelet formulation offers

interesting properties: it is able to represent horizontal

heterogeneity (see Fig. 4), it can filter a part of the

sampling noise, and it can represent the nonseparability.

However, the size of the wavelet coefficient space is

larger than in the initial space, this spectrally based

wavelet cannot be used in complex geometry and be-

cause the wavelet functions are isotropic, it is not easy

to get a good representation of anisotropy. To study

some of these points, another wavelet formulation is

now introduced.

3. Diagonal assumption in second-generation
wavelets

The previous SBW formulation is well adapted to

atmospheric models, using a triangular spectral repre-

sentation. However, it could be interesting to extend this

approach to other fields such as ocean models where the

invariance by spherical rotation is no longer valid. As a

preliminary example, a gridpoint-based wavelet trans-

formation is now presented. It corresponds to another

class of wavelet transformation called second-generation

wavelets (SGWs; Sweldens 1995, 1998).

The basis of this construction is first a hierarchical

mesh on the sphere, and second a scheme of prediction/

correction where the wavelet coefficients appear as the

correction.

a. Subdividing the sphere and splitting

A hierarchical subdivision of the sphere is first de-

scribed. It relies on recursive partitioning of the

sphere into geodesic spherical triangles. Starting from

an icosahedron (a convex polyhedron composed of

20 triangular faces with 12 vertices) at each iteration,

4 triangles are generated from each triangle of the pre-

vious subdivision. Figure 7 represents the initial grid

(Fig. 7a) and the first three subdivisions (Figs. 7b–d).

FIG. 6. Effects of sampling noise on correlation estimation view in wavelet representation (see the text for details).
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The degree of a point is the number of connection it has

in the mesh. The point A in Figs. 7a,b is of degree 5,

while the point B in Fig. 7b is of degree 6. Thus, the grid

is not homogeneous. It is worth noting that this kind of

mesh on the sphere has been already used by Sadourny

et al. (1968) and also by Williamson (1968) for numerical

modeling. Recently the use of this kind of mesh has been

extended, for example, with an adaptive wavelet collo-

cation method (Mehra and Kevlahan 2008).

The set of all vertices pk
j
, after j subdivisions is denoted

Sj 5 fp j
kgk2Kj , where K j is an index set. Here S0 corre-

sponds to the original icosahedron. Since Sj � Sj11, we

so let K j � Kj11. The point pk
j11 for k 2 Kj is defined by

pk
j11 5 pk

j
. The cardinal of K j is Card(Kj) 5 10 3 4 j 1 2.

The index set of the vertices added when going from

level j to level j 1 1 is denoted Mj 5 Kj11 2 Kj.

Thus at a given resolution j 1 1 (high resolution) the set

Kj11 can be split into two sets Kj and Mj so that Kj11 5

Kj 1 Mj. If a field e is represented by its discretization on a

grid Sj11 as «j11 5 («
j11
k )k2Kj11, then its low-resolution

version is defined as «j 5 («
j
k9)k92Kj so that

8k2Kj, «
j

k 5 «
j11

k . (2)

b. Wavelet coefficients as corrections to a prediction

Now, the idea consists in predicting the higher-resolution

field « j11 from the low-resolution field « j. Following

Eq. (2), only the value of points in Mj remains to be

found. Schröder and Sweldens (1995a,b) have used a

butterfly scheme, a technique inherited from computer-

aided geometric design (Dyn et al. 1990), where what is

wanted is to construct a smooth C1 surface out of a

control polyhedron. For each m in Mj, the butterfly ba-

sis uses a stencil of eight neighboring points Km � Kj

as illustrated in Fig. 8. The prediction is P(«j) 5

Sk2Km
w

j
k,m«

j
k, with the particular weight (independent of

j): wy1
5 wy2

5 ½, wf 1
5 wf 2

5 1/8 and we1
5 we

2
5 we3

5

we4
5�1/16. The wavelet coefficients «

j
w 5 («

j
wk)m2Mj at

scale j are thus defined as the misfit between the true values

of « j11 and the predicted ones:

«
j
wk 5 « j11

m � �
k2K

m

w
j

k,m«
j

k. (3)

This expansion could be sufficient, but an additional

step called lifting is added, after the computation of «w
j ,

in order to ensure that wavelet functions are of zero

mean, which is realized as follows: for a given j and a

given k in Kj, the scaling function fk
j

is defined as the

inverse of the wavelet coefficients fw so that fw j9

k9

5

d
j,j9

d
k,k9

, where di,j stands for the Kronecker symbol.

A wavelet function cm
j is defined from these fk

j
func-

tions by

c j
m 5 f j11

m � �
k2K

m
5fy1,y2g

s
j

k,mf
j

k, (4)

where sk,m
j

5 Im
j11/2Ik

j
with I

j
k 5

Ð

S2 f
j

k dv the integral

over the sphere S2 with its classical measure dv (see the

appendix for the computation of Ij,k). Finally, the

wavelet coefficient is defined as

8m2Mj :8k 2 K
m

5 fy
1
, y

2
g, «

j
k 5 «

j
k 1 s

j
k,m«

j
wk. (5)

FIG. 7. Representation of grid subdivisions. (a) The initial grid,

formed from the projection on a sphere of the icosahedron, is

subdivided along a recursive process after (b) one, (c) two, and (d)

three iterations.

FIG. 8. The members of the index sets used in the prediction P
based on the butterfly scheme, with m in Mj and with Km 5 {y1, y2,

f1, f2, e1, e2, e3, e4} included in Kj. Circles and dashed lines represent

the next finer level of resolution j 1 1,while black points and solid

lines represent the grid at level resolution j.
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Thus, the direct wavelet transformation consists in

computing recursively the wavelet coefficients « j
w. In

practice this recursion is initialized by considering that

the discrete signal samples « belong to SJ, and is stopped

when j 5 0. Each level is divided into two steps, with a

first step corresponding to the subsampling, described by

Eqs. (2) and(3), and a second step, corresponding to the

lifting, described by Eq. (5). Note that these wavelets are

not radial (they do not have an axis of symmetry). This

is related both to the butterfly scheme and to the di-

rectional definition of the wavelet functions c j in Eq. (4).

However, this anisotropy is not very strong: the wavelet

functions of large scales are quasi isotropic (not shown

here).

The inverse wavelet transform is also computed under

a recursive form but in the reverse, from scale j 5 0 to

j 5 J. Each level is divided into two steps with a first step

described by the opposite of Eq. (5):

8m2Mj :8k2K
m

5 fy
1
, y

2
g, «

j
k 5 «

j
k � s

j
k,m«

j
wk, (6)

and then the upsampling described by the opposite of

Eq. (3):

« j11
m 5 «

j
wk 1 �

k2K
m

w
j

k,m«
j

k, (7)

and by the reverse of Eq. (2):

8k2Kj, «
j11

k 5 «
j

k. (8)

The linear operator associated to the direct (the inverse)

wavelet transformation is denoted by W(W21).

The mathematical background of this wavelet de-

composition is given next. In terms of functional analy-

sis, the space Vj11, engendered by scaling functions f j11

(which forms a biorthogonal basis, or a Riesz basis, of

Vj11), is included in the space of square-integrable

functions on the sphere L2(S), while the wavelet func-

tions c j engender a subspace Wj � Vj11 so that Vj11 5

Vj 4 Wj (c j forms a Riesz basis of Wj). Thus, VJ is de-

composed along the recursive process into VJ 5 V0 4

W0 4 W1 4 . . . 4 WJ21. Moreover, the closure of Wj Vj

is L2(S). This kind of construction is called a multi-

resolution analysis and is important for orthogonal

wavelets. In this case, Riesz bases are replaced by or-

thogonal bases, with additional constraints (Daubechies

1992; Mallat 1999).

c. Formalism of diagonal assumption in SGW space

The correlation formulation retained in this paper is

similar to the one presented in section 2b. In this case,

the wavelet transformation is replaced, in Eq. (1) by the

SGW transformation (with the same notation W). How-

ever, the normalization with the spectral standard devi-

ation is not used.

What is attractive about the SGW is that the dimen-

sion of the wavelet coefficient space is equal to the di-

mension of the initial sate. The wavelets are compactly

supported. Then, as the wavelets are a little directional,

they should be more adapted to represent a part of the

anisotropy of the local correlation function (at least in

the small scales where the wavelet functions are direc-

tional, but not in the large scales where the wavelet

functions are quasi isotropic). But this might depend on

the direction of the local correlation anisotropy com-

pared with the direction of the wavelet. Furthermore, it

is possible to construct second-generation wavelets that

take into account boundaries. Note that algorithms to

compute SGW transform are fast: the computational

complexity is O(N), where N is the number of grid points

(Schröder and Sweldens 1995a).

An example of this SGW formulation, in a spherical

toy framework, is presented in section 5.

4. Covariance modeling based on diffusion operator

a. Formalism of the correlation modeling with a
diffusion operator

Another way to construct a heterogeneous correlation

matrix has been introduced by Weaver and Courtier

(2001) and is based on the generalized diffusion equa-

tion. It is noticeable that on a plane, a particular solution

of the diffusion equation is

›
t
h 5 $ � (n$h), (9)

with the constant diffusion tensor n (corresponding to

the homogeneous diffusion equation) is the Gaussian

function:

Gn,t(x, x9) 5
1

2pjGj1/2
exp �1

2
(x� x9)TG�1(x� x9)

� �

,

with

G 5 2tn, (10)

where t is the time of integration and jGj is the deter-

minant of G. The expansion of G21 in the 2D case ac-

cording to

G�1 5

1

L2
x

1

L
xy

1
L

xy

1
L2

y

0

B

B

@

1

C

C

A
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gives rise to the length scale Lx(Ly) along axis x(y). This

length scale corresponds to the differential length scale

(Daley 1991, p. 110), and it can be approximated under

assumption of correlation behavior in the vicinity of

small separation distance (Pannekoucke et al. 2008).

The idea is then to construct Gaussian-like correlation

functions as the result of the diffusion of a Dirac distri-

bution. By using this approach, it is feasible to generate

heterogeneous correlation functions when the local

diffusion tensor n(x) varies with the position x 5 (x, y).

The correlation tensor is then modeled as

C 5 LL1/2E�1LT/2LT ,

where L1/2 is an half-time integration (or the propagator)

from initial time 0 and final time t/2, E is a local metric

tensor, and (similarly to the wavelet formulation) L is a

normalization so that C is a correlation matrix. Note that

in the homogeneous sphere of triangular truncation T,

the inverse metric E21 is expressed by E21 5 (T 1 1)2/

4pa2I, where a is the radius of the sphere and I denotes

the identity operator.

For practical applications, a numerical time integration

of the diffusion Eq. (9) is achieved in a quasi-spectral

approach (triangular truncation T ), with an Euler time

scheme of time step defined by dt # (dx)2/(CFLnmax),

where dx is the regular step associated to truncation

T and the Courant–Friedrichs–Lewy condition of stabil-

ity is set to CFL 5 4 (Weaver and Courtier 2001). Here

nmax corresponds to the maximum of the spectrum of all

the local diffusion tensor. The convention is that local

diffusion tensors are defined for time t 5 1 in Eq. (10).

Thus, L1/2 corresponds to a time integration over the

interval [0, ½].

b. Estimation of the local diffusion tensor

The question of how to estimate this local diffusion

tensor remains. A first possibility is to estimate the local

tensor from the dynamical aspects of the geophysical

flow considered (A. Weaver 2007, personal correspon-

dence). The underling assumption is that the spread of

the local correlation function is only related to the dy-

namics. But this is not entirely satisfactory as it is known

that background error correlation functions are also

influenced by the data network (Bouttier 1994).

Another possibility is to estimate the local diffusion

tensor from ensemble statistics (Pannekoucke and Massart

2008). This estimation relies on the estimation of the

local anisotropic tensor, under the assumption of a local

homogeneous diffusion. This means that the local cor-

relation function r(x, �) is considered as being locally

Gaussian in the limit of small separation distance:

r(x, x 1 dx) [ exp �1

2
dxTG�1dx

� �

,

where dx 5 (dx, dy) is a small displacement. Here G21 can

be numerically estimated as the least squares solution

from an ensemble of K $ 3 position dxk 5 (dxk, dyk)

associated with numerical correlation values rk 5 cor(x,

x 1 dxk) . 0. Thus, local length scale and anisotropy play

an important role in this approach (contrary to the

wavelet diagonal assumption where the length scale is not

necessary to estimate the formulation). Note that the

question of how to estimate parameters of the general-

ized diffusion equation is not yet answered.

c. Nonseparable hybrid formulation based on the
diffusion equation and the wavelets

A three-dimensional diffusion operator is constructed

similarly (Weaver and Courtier 2001). In this case the

local diffusion tensor n is a 3 3 3 matrix. In the formu-

lation, the diffusion along the vertical is independent of

the horizontal features; even if vertical diffusion coeffi-

cients may depend on the horizontal diffusion coeffi-

cients as when a change of vertical coordinate is used.

This leads to a separable formulation. This can be im-

proved in the particular case of a homogeneous diffusion

by level. For that situation, a three-dimensional corre-

lation tensor can be modeled following Rabier et al.

(1998), where horizontal modal variances are replaced

at each level by the spectrum of homogeneous diffusion

correlations for the level considered. The result is a non-

separable formulation. But, this situation is of less interest

as the diffusion is not used optimally to construct hetero-

geneous horizontal correlation functions.

Inspired by the wavelet formulation of Fisher, extend-

ing the spectral formulation, a nonseparable heteroge-

neous formulation can be constructed with a diffusion

operator by replacing the vertical modal correlation

in Rabier et al. (1998) with a wavelet representation.

The diffusion correlation matrix should be defined by

C 5 LeCLT, where

eC 5 L1/2E�1/2W�1VW�TE�T/2LT/2, (11)

where L is the propagator of the diffusion at each level,

W is the wavelet transform at each level, and V corre-

sponds to a block diagonal matrix whose blocks Va are

the vertical correlations associated with wavelet index a,

where a 5 ( j, x) is a coupling of scale and position de-

pending on the wavelet transform used. The matrix V

can be estimated from an ensemble of background er-

rors in two steps. The former is the estimation of the
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local diffusion tensor at each level, so that L1/2 is now

known. The latter is the estimation or the parameteri-

zation of Va 5 (Va
l,l9), where l and l9 denote the level

index. The direct estimation from an ensemble is hard to

achieve: it is estimated from the ensemble of normalized

background errorseeb 5 S�1
b eb, where Sb is the diagonal

matrix of standard deviations and eb a background error,

as follows. The correlation between levels l and l9 is

Vl,l9
a 5 cor(«l

w
a
, «l9

w
a
), where ew 5 W E1/2L�1/2~eb, and «l

w
a

is the value of «w at wavelet index a and level l. How-

ever, these relations imply that to invert the propagator

L leads to an ill-posed problem. To overcome this issue,

a parameterization should be used. This can be based on

the climatology. But this solution is not able to represent

any flow dependences, and other parameterizations still

need to be found.

With this formulation, the resulting correlation model

will benefit from the advantages of both formulations: a

good representation of length scale and anisotropy be-

cause of the diffusion, and nonseparability because of

scale analysis provided by wavelets.

d. Example in a two-dimensional framework of the
hybrid formulation

To illustrate the previous formulation in Eq. (11) a

simple analytical model is now presented. This is defined

as a three-level vertical extension of the 1D framework

described in section 2c, and the same wavelet transform

is used. Level 1 (level 3) corresponds to the top (bottom)

level. The horizontal correlations are modeled by using

a diffusion operator. The local diffusion coefficients at

level k are computed as nk(x) 5 Lpk
2(x)/2. Here Lpk(x) is

the length scale field of a heterogeneous correlation

tensor obtained as a ck stretching of a homogeneous

Gaussian correlation tensor of length scale Lhk. For

numerical applications, the stretching coefficients are

equal to c1 5 1.2, c2 5 1.8, and c3 5 2.4; the homoge-

neous length scale values such as Lh1 5 1000 km, Lh2 5

625 km, and Lh3 5 250 km. The length scale field for

each level is represented in Fig. 9a (bold lines). Long

(short) length scales are found near 08 (1808). The vertical

correlation matrices are defined in wavelet space. With

the notations of the previous paragraph, the vertical

correlation matrix for the couple a 5 ( j, x) is arbitrarily

defined by Va 5 gaT 1 (1 2 ga)I, where T is the sym-

metric Toeplitz matrix of first row (1, 0.8, 0.5) and ga 2
[0, 1] is a mixing ratio. The T matrix mimics a strong

correlation between the three levels. Here Va is a mixing

between a strong vertical correlation (when ga 5 1) and

no vertical correlation (when ga 5 0). Thus, the vertical

correlation increases with ga. The coefficients ga used

here are represented in Fig. 9b. For the large scales

(small j), the vertical correlation is deep (shallow) when

the horizontal length scale is long (short); while in the

small scales (high j) the vertical levels are not correlated.

To diagnose the vertical and horizontal components

of this correlation model, a randomization technique has

been used with a large ensemble (Ne 5 1600). The hori-

zontal length scales diagnosed for each level are repre-

sented in Fig. 9a (thin lines). In spite of the sampling

noise, the estimated length scale fields accurately re-

produced the initial length scale fields (bold lines). The

nonseparability of the horizontal and the vertical cor-

relations is illustrated in Fig. 9c. This panel represents

the vertical correlation at level 3 versus the horizontal

wavenumber. The result is that the vertical correlation is

deep for low wavenumbers while it is shallow for high

wavenumbers. This proves that the correlation model in

Eq. (11) is nonseparable.

In the next section, a comparison between the wavelet

formulations and the diffusion is proposed, but only the

horizontal features are discussed.

5. Illustration with a toy ensemble of perturbed
forecasts

This paper focuses on the representation of horizontal

heterogeneity of the background error covariances. In

real applications, the true background error correlation

matrix is not known. This matrix is generally estimated

FIG. 9. Illustration of the hybrid formulation in Eq. (11): (a)

length scale field per level: initial length scale field (bold lines) and

estimated length scale field (thin lines); (b) the values of ga used in

the example; and (c) the vertical correlations with level 3 as a

function of horizontal wavenumber (see the text for details).
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from a small ensemble and thus its estimation is af-

fected by sampling noise (Houtekamer and Mitchell

1998; Lorenc 2003). Thus, it is not possible to compare

the correlation model with the true correlation matrix,

as done for the analytical example in section 2c (see the

discussion about the example in Fig. 4) that corresponds

to an infinite ensemble framework. To overcome these

difficulties, a simple toy model on the sphere has been

implemented to generate a large ensemble of perturbed

forecasts, providing a correlation matrix of reference.

The ensemble is large enough to be considered as infinite.

In other words, this correlation matrix corresponds to the

truth unknown in practice. The heterogeneous correla-

tion functions produced with this approach are suffi-

ciently complex to be considered as a test bed for the

formulation presented in the previous sections. The

model is first described and the construction and analysis

of the ensemble are also detailed. The analysis of pre-

vious formulations is then presented.

a. Description of the model and the ensemble

The spherical model considered is the nonrotating

nondivergent barotropic vorticity equation:

›
t
z 1 J(D�1z, z) 5�n

2
D2z,

where z is the vorticity of the horizontal wind, t is time,

J is the Jacobian operator, D is the horizontal Laplacian,

D2 is the horizontal bi-Laplacian, and n2 5 5 3 1014 a

superviscosity coefficient (Yoden and Yamada 1993).

The numerical integration is based on a quasi-spectral

approach in a triangular truncation T 5 130, with a

classical 3/2 rules for the dealiasing procedure (Boyd

2001). The time integration is done by a leapfrog scheme

(Kalnay 2002) with Asselin’s filter to damp numerical

modes (Asselin’s parameter is set to 1%; Asselin 1972).

An initial state of vorticity zr(t 5 0) has been ran-

domly generated as follows: from an energy density

spectrum E(n) 5 n(1 1 n/nc)
27 (n denotes the wave-

number) and normalized so that the total energy

Etot 5 �T

n50 E(n) is Etot 5 300 m2 s22, and the enstrophy

spectrum Gn has been computed according to Gn 5

n(n 1 1)/a2En, with the earth radius a 5 6400 km (Boer

1983; Boer and Shepherd 1983). The cutoff wavenumber

nc is set to 20. Then, the spherical harmonic spectrum zn
m

of the vorticity field has been randomly generated

with zm
n 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2G
n
/(2n 1 1)

p

jm
n , where jn

m is a sample

of a complex Gaussian variable of mean 0 and standard

deviation 1. The initial state zr(t 5 0) of reference

is represented in Fig. 10a. It corresponds to a hetero-

geneous field with patterns randomly distributed. The

2D-characteristic length of patterns is given by

the differential length scale (Daley 1991, p. 110)

l 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a2�
n
G

n
/�

n
n(n 1 1)G

n

q

5 216 km. The coast

lines are represented to facilitate the discussion on lo-

calized structures, but no orography is present in the

model.

Similarly, an ensemble of Ne 5 800 independent

perturbations dzk(t 5 0) (k denotes the number of the

member) has been randomly generated with the energy

spectrum En9 5 n(1 1 n/nc)
24 normalized so that the total

energy of each perturbation is Etot9 5 30 m2 s22. An ex-

ample of perturbation, dz1(0) is represented in Fig. 10d.

Similarly to the initial field, the 2D-characteristic length

of the patterns is l9 5 113 km. The patterns of the per-

turbation are of smaller scales than in the initial field,

and the magnitude of the perturbation is 26% of the

magnitude of the reference zr(0).

The reference zr(t 5 0) [respectively each member of

the ensemble of perturbed initial state zk(0) 5 zr(0) 1

dzk(0)] has been integrated over t 5 54 h, to obtain zr(t)

[respectively zk(t) 5 zr(t) 1 dzk(t)]. The field zr(t) is

represented in Fig. 10b. The interaction of coherent

structures have emerged during the integration from the

initial patterns (McWilliams 1984; Yoden and Yamada

1993), with formation of long filaments of vorticity similar

to some frontlike structure. Any perturbed forecasts ex-

hibit a similar time evolution. Slight differences (e.g.,

resurgences of the initial independent perturbations) still

exist however. The perturbation dz1(t) is represented in

Fig. 10e. Several dipoles appear as near the point at

latitude 2458 and longitude 08, or near the point at lat-

itude 2458 and longitude 21808. Each dipole corresponds

to a phase shift error. Moreover, the error magnitude is

now of the same order as the reference magnitude zr(t).

Subsequently, the statistics are computed at time t.

Some simple diagnostics of the ensemble can be

computed, such as the ensemble mean z
k

represented in

Fig. 10c. The field is clearly of larger scales than the

reference forecast; this is the fingerprint of slight non-

linearities. The standard deviation field s(zk) is reported

in Fig. 10f. Large values of standard deviation are con-

centrated on coherent structures and on filaments, which

is consistent with the fact that coherent structures are

the dynamical part while they inhibit the nonlinear in-

stability of the background flow (i.e., the incoherent part

of the flow; Kevlahan and Farge 1997).

Other diagnostics of correlation functions can be com-

puted as the local anisotropy (not shown here) or the local

length scale. Figure 11 represents the zonal length scale Lx

in Fig. 11a and the meridional length scale Ly in Fig. 11b.

The length scale field is computed according to the

method described section 4b. In that case, zonal and

meridional displacement are the finest scale associated

to the homogeneous resolution at truncation T. Both

length scale fields are very organized and fingerprints of
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coherent structures are visible. Areas of strong aniso-

tropy are visible; for example, over the northeast of

Greenland, where Lx are almost 100 km while Ly are

nearly 300 km. Both length scale fields appear to be in-

termittent, which is a difficulty for covariance modeling.

Now this diagnosis is used to compare the different

formulations introduced in previous sections.

b. Comparison of the different correlation models

The three correlation models presented in the pre-

liminary sections are now compared. Each of them has

been estimated from the previous ensemble of Ne 5 800

perturbed forecasts zk 5 zr 1 dzk. Then an ensemble of

Ne 5 800 simulated background errors has been gen-

erating as eb 5 B1/2
modelj, where j ; N (0, I) is a sample

of a Gaussian random vector with zero mean and the

identity as covariance matrix (Fisher and Courtier

1995). In this section, only qualitative results are pre-

sented in order to illustrate the feasibility of each method

and their behavior. Quantitative results can be found in

previous studies about the wavelets formulation and the

diffusion operator (see e.g., Pannekoucke et al. 2007;

Pannekoucke and Massart 2008; Pannekoucke 2008).

The diagnosed length scale associated with the SBW

formulation is reported in Fig. 11c for Lx and Fig. 11d

for Ly. The heterogeneity is accurately represented

and the main structures present on the reference in Figs.

11a,b are retrieved. For instance, one can notice the long

length scale pattern over the Himalayas (cf. Figs. 11a,c)

and the short length scale area in West Africa (cf. Figs.

11b,d). But in this experiment, the SBW formulation

misses the extremes in the length scale (Figs. 11a,b).

Moreover, the range of magnitude variation of the

modeled length scale is smaller than the original refer-

ence. On the reference, the order of the minimum length

scale represented is 100 km while this minimum is now

FIG. 10. Representation of (a) initial vorticity field (1024 s21) and (b) the final field after the time integration of the nondivergent

barotropic model. An example of (d) initial perturbation and (e) its nonlinear time evolution are represented. (c) The mean of the

ensemble of perturbed forecasts is represented. (f) The standard deviation (in 1026 s21) of this ensemble is represented. Coast lines are

represented to facilitate the presentation but the model does not include any orography.
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up to 150 km for the wavelets. The height values are also

reduced as they are nearby 300 km on the reference and

250 km with the model. This corresponds to the spatial

average discussed in section 2b. Even if this spatial av-

erage is an advantage for an ensemble of small size

(Pannekoucke et al. 2007), in this simulated example,

the SBW formulations seems to fail. This should be

further investigated. A first guess may be that the SBW

formulation is less appropriate to represent filament

structures, which are particularly strong in this toy ex-

periment. Similar to the bad representation of the an-

isotropy, this could be related to the isotropy of the SBW

functions.

Now the SGW diagonal assumption is analyzed. The

modeled length scale fields of this formulation are

reported in Fig. 11e for Lx and in Fig. 11f for Ly. The

FIG. 11. Diagnosis of the length scale estimated from the raw ensemble or from a randomization: (a) raw zonal length scale Lx and (b)

raw meridional length scale Ly; the length scales modeled with SBW (c) Lx and (d) Ly; the length scales modeled with SGW (e) Lx and (f)

Ly; and the length scale modeled with the diffusion equation (g) Lx and (h) Ly. [The length scale values low to 100 km (up to 300 km) are in

white (black).]
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geographical variations of the length scale are present

with a good range of length scale value. Nevertheless,

the most visible defect is that the length scale fields are

dependent on the grid. This might be attenuated by us-

ing a spectral normalization (Deckmyn and Berre 2005).

This solution seems difficult to achieve as the hierar-

chical mesh is not adapted for spectral computation,

results should depend on the interpolation strategy.

Moreover, it appears that anisotropy is not well repre-

sented, even if there exists a part anisotropy represented

such as over Himalaya.

Finally, the length scales of the model based on the

diffusion equation are represented in Fig. 11g for Lx and

in Fig. 11h for Ly. With this approach, the geographical

variations of the local correlation functions are better

represented. Both length scale maps are well corre-

lated with their associated reference (Fig. 11a) for Lx or

(Fig. 11b) for Ly. Representation of anisotropy is better

than the two previous models (e.g., West Africa). Some

slight known defects occur, such as the difficulty with

catching fast oscillations at the south of South Africa

(Pannekoucke and Massart 2008).

This simulated experiment has shown the various

abilities of these formulations to represent geograph-

ical variations. In this framework, the correlation

model based on the diffusion has been shown better

than the SBW and the SGW formulations. Of course

the length scale analysis is solely not sufficient, but it

gives a preliminary view of the heterogeneity of each

formulation.

When the ensemble is small, the above results are

affected by the sampling noise. As stated in sections

2b,c, the wavelet formulation reduces the sampling

noise. However, the correlation model with the diffusion

is estimated from the computation of the local correla-

tion, which is sensitive to the ensemble size. Under a

local ergodicity assumption, the knowledge of the cor-

relation sampling distribution, versus the ensemble size,

is a possible way to improve the estimation and to re-

duce the sampling effects (Pannekoucke et al. 2008).

6. Conclusions and perspectives

In this paper, three formulations of correlations model

have been studied. Two of them are based on the

wavelet diagonal assumption while the third one is based

on the diffusion equation.

The spectrally based wavelets (SBWs) has been

recalled in detail, especially the filtering properties as-

sociated with local spatial averaging offered by the for-

mulation. These properties have been described in a first

experimental framework: a simple 1D context with

heterogeneous correlation functions. In this framework,

the filtering of sampling noise that affects the estimation

of the local correlation function has been shown to be

associated with the cone of influence related to a point.

All wavelet variances, outside of the cone of influence,

do not contribute to the local correlation function

modeled with the diagonal assumption in wavelet space.

A second generation wavelet (SGW) formulation

has been introduced. As for the spectrally based wave-

lets, the SGW formulation must present some filtering

properties of the sampling noise but this has not been

studied here.

The ability of the wavelet diagonal assumption to

represent the geographical variations of local correla-

tion functions has been illustrated on a toy experiment

on the sphere. It consists of generating a large ensemble

with a toy barotropic model to construct complex cor-

relation functions, taken as the reference. The diagnosis

of length scale, modeled with the wavelet formulations,

has shown the ability of both wavelet formulations to

catch geographical variations. Length scale fields of the

spectrally based wavelet formulation were too smooth

compared with the references but main geographical

variations were represented. A possible suspect is the

failure of the SBW formulation to model filament struc-

tures, but this is purely speculative at this stage and re-

quires more investigation. The length scale fields of the

SGW formulation represent well the range of value of

the reference but the correlation functions are dependent

on the grid. However, this SGW was introduced as a

FIG. A1. The scheme to explain the computation of the integral

Ij,k at the finest scale J. The triangular mesh is in black except the

spherical triangle ABC. Here O is the center of the unit sphere (see

the text for details).
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preliminary test case to more complex usage (e.g., with

the introduction of boundary constraints).

It has been demonstrated that it is possible to estimate

the local diffusion tensor for the diffusion model. This

estimation has been illustrated in the toy experiment,

where its representation of anisotropy has been shown

to be more accurate than the wavelet formulations

presented. Note that the issue of how to estimate the

local tensor of diffusion in the generalized diffusion

equation is still open. The correlation model based on

the diffusion operator has been generalized into a hy-

brid version that includes a representation of the ver-

tical correlations in wavelet space: there is one vertical

correlation matrix per scale and geographical position.

The resulting formulation is nonseparable. A simple

two-dimensional framework has been used to illustrate

this correlation model. Nevertheless the estimation of

the vertical correlations in this hybrid formulation

leads to an ill-posed problem. Until a satisfactory so-

lution is found a parameterization can be used. This

should be further investigated.
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APPENDIX

Computation of Ij,k Integrals

With notation in Fig. 8, the integrals Ij,k can be com-

puted recursively (Schröder and Sweldens 1995b) as

follows:

For j 5 J on SJ, the scaling functions fJ correspond to

hat functions. The initial value of IJ,k can be computed as

described now, with the help of Fig. A1. In that figure,

fA
J is the hat function of value one at A and null at the

other points of the triangular mesh (e.g., at B or at C).

For this particular case where the point A is of degree 6,

IJ,A appears as the sum of six elementary volumes such

as SABC of spherical triangle base ABC. These ele-

mentary volumes are computed as for the last volume

SABC: it corresponds to the volume of tetrahedron

SABC (dashed line) minus the spherical sector OABC

(dashed–dotted line).

The volume of the tetrahedron SABC is also the

volume of the tetrahedron OABC that is j[A, B, C]j/6,

where [A, B, C] is the determinant of vectors A 5 A 2 O,

B 5 B 2 O, and C 5 C 2 O.

The volume of the spherical sector OABC is E/3, where

E is the area of the spherical triangle. This area is E 5 a 1

b 1 g 2 p, with a the angle dBAC, b 5 dABC and g 5

dBCA; and it can be computed by using l’Huilier’s theorem:

where p 5 (a 1 b 1 g)/2.

However, when J is large enough, the volume of the

tetrahedron SABC can be a good approximation of the

elementary volume.
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Schröder, P., and W. Sweldens, 1995a: Spherical wavelets: Effi-

ciently representing functions on the sphere. Proc. 22nd Conf. on

Computer Graphics and Interactive Techniques, Los Angeles,

CA, SIGGRAPH, 161–172.

——, and ——, 1995b: Spherical wavelets: Texture processing.

Tech. Rep. 4, Industrial Mathematics Initiative, Department

of Mathematics, University of South California, 13 pp.

Sweldens, W., 1995: The lifting scheme: A new philosophy in bi-

orthogonal wavelet constructions. Wavelet Appl. Signal Image

Process., III, 68–79.

——, 1998: The lifting scheme: A construction of second genera-

tion wavelets. SIAM J. Math. Anal., 29, 511–546.

Tangborn, A., 2004: Wavelet approximation of error covariance

propagation in data assimilation. Tellus, 56A, 16–28.

Weaver, A., and P. Courtier, 2001: Correlation modelling on the

sphere using a generalized diffusion equation. Quart. J. Roy.

Meteor. Soc., 127, 1815–1846.

——, and S. Ricci, 2003: Constructing a background-error corre-

lation model using generalized diffusion operators. Proc.

ECMWF Seminar on Recent Developments in Data Assimi-

lation for Atmosphere and Ocean, Reading, United Kingdom,

ECMWF, 327–340.

Williamson, D., 1968: Integration of the barotropic vorti-

city equation on a spherical geodesic grid. Tellus, 20,

642–653.

Yoden, S., and M. Yamada, 1993: A numerical experiment on two-

dimensional decaying turbulence on a rotating sphere. J. At-

mos. Sci., 50, 631–643.

3012 M O N T H L Y W E A T H E R R E V I E W VOLUME 137

Unauthenticated | Downloaded 10/22/21 10:17 AM UTC


