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Abstract. Parametric functions are currently used to rep-
resent droplet spectra in clouds and to develop bulk param-
eterizations of the microphysical processes and of their in-
teractions with radiation. The most frequently used para-
metric functions are the Lognormal and the Generalized
Gamma which have three and four independent parameters,
respectively. In a bulk parameterization, two parameters are
constrained by the total droplet number concentration and
the liquid water content. In the Generalized Gamma func-
tion, one parameter is specified a priori, and the fourth one,
like the third parameter of the Lognormal function, shall be
tuned, for the parametric function to statistically best fit ob-
served droplet spectra.

These parametric functions are evaluated here using
droplet spectra collected in non-or slightly precipitating stra-
tocumulus and shallow cumulus. Optimum values of the tun-
ing parameters are derived by minimizing either the absolute
or the relative error for successively the first, second, fifth,
and sixth moments of the droplet size distribution. A trade-
off value is also proposed that minimizes both absolute and
relative errors for the four moments concomitantly. Finally, a
parameterization is proposed in which the tuning parameter
depends on the liquid water content. This approach signifi-
cantly improves the fit for the smallest and largest values of
the moments.

Correspondence to:O. Geoffroy
(geoffroy@knmi.nl)

1 Introduction

Cloud particles are represented by their size distribution
also referred to as spectrum. In the liquid phase, the spec-
trum originates from activation of cloud condensation nuclei
(CCN), mainly at cloud base. Hence it expends from submi-
cron particles for the smallest activated CCNs to about 10 µm
in radius for the giant ones. As particles grow by condensa-
tion, the spectrum gets narrower because the growth rate of a
droplet is inversely proportional to its size. Higher in a cloud,
spectral narrowing is counterbalanced by broadening pro-
cesses, mainly by turbulent mixing, because particles expe-
rience different growth histories along different trajectories,
some ascending adiabatically from cloud base, while others
undergo dilution with environmental air and partial evapora-
tion. New CCNs can also be activated higher than cloud base,
when moist and clear air is entrained in an updraft, hence
initiating small droplets. When the biggest droplets reach
a radius of about 20 µm, collision and coalescence generate
drizzle particles (from 20 to a few 100 µm). If the cloud is
sufficiently deep and the liquid water content large enough,
droplets and drops continue to collide to form precipitation
drops (mm). The maximum drop radius, of the order of
4 mm, is limited by break-up, either following a collision
or spontaneously for the biggest drops. The total number
concentration spans over a large range, because millions of
droplets are necessary to form a drop. It thus evolves from up
to 1000 cm−3 for droplets in a polluted environment, to a few
per cubic meter for precipitation drops. Because the number
concentration of activated CCN, the parcel trajectories, the
series of mixing events and the resulting growth histories by
condensation, collection and break-up are infinitely diverse,
cloud particle spectra exhibit all kinds of shapes (Warner,
1969a, b, 1970, 1973a, b).
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Table 1. Typical bulk parameterizations using two particle categories with, from left to right, the value of the threshold radius between the two
categories, the number of independent variables for the description of the droplet size distribution (CDSD), the parameterized microphysical
processes, the methodology adopted for the development of the parametrization, and the CDSD parametric representation.

Number of independent
Separation variables for the Microphysical Methodology&

Reference radiusr0 description of the CDSD processes CDSD hypothesis

Kessler NA qc autoconversion Empirical CDSD:
(1969) monodispersed

Manton and Cotton NA qc, Nc autoconversion Analytical CDSD:
(1977) monodispersed

Berry and Reinhardt variable, qc, Nc, σ x autoconversion Empirical,∼30
(1974) ∼41 µm spectra from 0-D bin

simulations, CDSD: GG3

Khairoutdinov and Kogan 25 µm qc, Nc autoconversion Empirical, 100 000 spectra
(2000) from 3-D bin simulations of

Sc, CDSD: GG1

Liu and Daum NA qc,Nc,d autoconversion Analytical,
(2004) CDSD: GG1

Seifert and Beheng 41 µm qc, Nc, autoconversion Analytical and empirical,
(2001, 2006) νc=ν3−1 GG3 and spectra from 1-D

bin simulations, CDSD: GG3

Cohard and Pinty NA qc, NCCN activation Analytical
(2000) CDSD: GG3

Ackerman NA qc, Nc, σg Cloud droplet Analytical
(2008) sedimentation CDSD: Lognormal

The cloud droplet size distribution (CDSD) is expressed
as a concentration density,n(r)dr, i.e. number density of
droplets per volume (or per mass) of air, and per unit size.
To summarize the properties of a size distribution, one com-
monly uses a moment of the distributionMp, or the mean
radius of thepth momentrp:

Mp =

∞∫
0

rpn(r)dr, (1)

rp =

(
Mp

/
N

) 1
p

(2)

whereN=M0 is the total number concentration.
To interpret microphysical observations, examine the in-

teractions between cloud microphysics and other physical
processes, and numerically simulate these interactions, para-
metric functions are frequently used to reduce the variety of
the droplet spectral shapes. The objective in this paper is
to evaluate parametric functions that best replicate observed
spectra on a statistical basis. The focus is on non-or slightly
precipitating stratocumulus and shallow cumulus clouds.

After a brief description (Sect. 2) of bulk microphysics
schemes, three frequently used parametric functions are de-
scribed in Sect. 3. The methodology for tuning the func-
tions and the data sets on which tuning relies are detailed in

Sects. 4 and 5, respectively. Section 6 addresses the specific
issue of scaling up small scale measurements for character-
izing cloud system properties. The results are then reported
in Sect. 7, for fixed and variables values of the tuning param-
eters successively, before the conclusions.

2 Bulk parameterizations and parametric functions

In a numerical model, the natural variability of the droplet
spectra can be explicitly simulated with “bin” microphysical
schemes where the number distribution is discretized, from
30 to 200 size classes (Kogan, 1991). The computational
cost of such schemes however, prevents their use in large do-
main, high spatial resolution, cloud resolving models. In-
stead, bulk parameterizations have been developed. Indeed,
even though spectra are diverse, one usually observe a transi-
tion from droplets to drops, in the size range where conden-
sational growth becomes inefficient, while collection starts
to become significant, namely between 20 and 50 µm in ra-
dius. This size range also corresponds to a rapid increase
of the particle fall velocity with the particle radius (∝r2).
In a liquid phase bulk scheme, hydrometeors are thus dis-
tributed in two categories, the droplets that do not or slowly
sediment, and the drops that precipitate more rapidly. This
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Table 2. Values of the arithmetic mean µabsand the arithmetic standard deviationσabsof the absolute errors and of the geometric meanµrel
and the geometric standard deviationσ rel of the relative errors calculated forM1, M2, M5, M6, for the Lognormal, the GG1 and the GG3
parametric functions, when using the constant trade-off tuning parameters values,σ∗

g for the Lognormal,ν∗
1 for the GG1 andν∗

3 for the GG3.

M1 M2 M5 M6

Lognormal, µabs±σabs
σ∗

g=1.34 −0.82±31.1 −40±266 7.9±30.3 23.7±103.1
(µm cm−3) (µm2 cm−3) (105µm5 cm−3) (106 µm6 cm−3)

µrel
×

/ σ rel

1.001×/ 1.054 1.004×/ 1.052 0.972×/ 1.332 0.910×/ 1.751

Generalized Gamma, µabs±σabs
α=1, ν∗

1=10.3 −5.3±32.2 −62±274 6.5±28.9 16.9±93.2
(µm cm−3) (µm2 cm−3) (105µm5 cm−3) (106µm6 cm−3)

µrel
×

/ σ rel

1.002×/ 1.054 1.000×/ 1.052 0.958×/ 1.332 0.870×/ 1.751

Generalized Gamma, µabs±σabs
α=3, ν∗

3=1.11 −12.0±34.4 −84±282 3.4±25.8 5.1±77.9
(µm cm−3) (µm2 cm−3) (105µm5 cm−3) (106µm6 cm−3)

µrel
×

/ σ rel

0.991×/ 1.054 0.996×/ 1.052 0.926×/ 1.332 0.803×/ 1.751

necessarily introduces errors and biases. The art in the devel-
opment of bulk parameterizations is therefore to carefully se-
lect the minimum number of well suited prognostic variables
and develop equations that reflect the physical processes re-
sponsible for the evolution of these variables, while minimiz-
ing errors and biases.

Bulk parameterizations can be classified according to the
number of particle categories, the threshold radius value that
separates the categories, and the number of independent vari-
ables used to describe each category. For the liquid phase,
they are currently limited to two hydrometeor categories,
droplets and drops, but the threshold radius depends on the
application. For simulation of deep clouds, the threshold
radius is generally set to about 40–50 µm (Berry and Rein-
hardt, 1974; Seifert and Beheng, 2001), while for shallow
clouds a lower threshold of 20–25 µm is preferred (Khairout-
dinov and Kogan, 2000). Note that all independent vari-
ables of a parameterization are not necessarily prognostic
variables in a numerical model. For instance in Seifert and
Beheng (2006), using a Gamma distribution to represent the
droplet mass spectrum, the parameterνc is set to 1; in Ack-
erman et al. (2008) using a Lognormal distribution, the pa-
rameterσ g is set to 1.5, although a value of 1.2 is recog-
nized to better fit the observations. Original bulk schemes
were limited to one prognostic variable per category: the wa-
ter content,qc for the droplets andqr for the drops (or mix-
ing ratio=q/ρa , whereρa is the air density) (Kessler, 1969;
Tripoli and Cotton, 1980). More recent schemes rely on 4
prognostic variables, adding to the water contents the total
number concentration in each category,Nc andNr (Ziegler,

1985; Liu et al., 1995; Cohard and Pinty, 2000; Khairout-
dinov and Kogan, 2000; Seifert and Beheng, 2001). Beyond
the total water content and total number concentration of par-
ticles in each category, there were a few attempts to introduce
more variety by also predicting additional variables such as
the reflectivity, as in Milbrandt and Yau (2005). Table 1 sum-
marizes the characteristics of existing bulk parameterizations
for the liquid phase, with a focus on the description of the
droplet category.

The physical processes that act as sources and sinks for
the particle categories shall then be parameterized. The CCN
activation process is a source for the droplet category. The
collection process (a sink for the droplets and a source for the
drops) is parameterized by accounting for the collection be-
tween droplets to form drops (autoconversion), and the col-
lection of droplets by drops to form bigger drops (accretion).
In the most sophisticated schemes, the collection between
droplets to form bigger droplets and the collection between
drops to form bigger drops (self-collection) are also consid-
ered (Ziegler, 1985; Cohard and Pinty, 2000; Seifert and Be-
heng, 2006). Indeed, these two last processes do not affect
the mass of condensed water in each category, but the num-
ber concentration, hence the mean size of the particles and
their mean fall velocity.

It is also useful to notice that two methodologies were
adopted to develop bulk parameterizations. In the empiri-
cal approach (Khairoutdinov and Kogan, 2000), numerical
simulations of clouds are performed with a bin microphysics
scheme. Each grid box, at each time step, is then used as
one realisation of the microphysical processes, from which

www.atmos-chem-phys.net/10/4835/2010/ Atmos. Chem. Phys., 10, 4835–4848, 2010



4838 O. Geoffroy et al.: Parametric representation of the cloud droplet spectra

bulk variables (qc, qr , Nc, Nr) and their evolution rates by
CCN activation, autoconversion, accretion, and precipitation
can be calculated. Empirical laws are then derived by min-
imization over the whole set of realisations. In such a case,
the accuracy of the parameterization is limited by the perfor-
mance of the bin microphysics scheme and the variable space
explored by the simulations. Others (Liu and Daum, 2004)
follow a more analytical approach in which the particle size
distribution in each category is represented by a parametric
function. The stochastic collection equation is then analyti-
cally resolved to derive a formulation of the autoconversion
and accretion rates. In this case the accuracy of the solu-
tion mainly depends on the realism of the chosen parametric
function. Note however, that coefficients of some “analytical
type” bulk parameterizations are tuned empirically (Seifert
and Beheng, 2001, 2006).

Some physical processes in a cloud model require ad-
ditional information about cloud microphysics, beyond the
prognostic number concentration (N = M0) and water con-
tent (∝M3). For instance, CCN activation is often param-
eterized using a diagnostic of the peak supersaturation, that
depends on the first moment of the size distributionM1, also
referred to as the droplet integral radius (Twomey, 1959).
Radiative transfer calculations in clouds depend on light ex-
tinction that is proportional to the second momentM2 of
the droplet spectrum (Hansen and Travis, 1974). The sedi-
mentation flux depends on the droplet sizes, through an ap-
proximation of their fall velocity. For particles smaller than
30 µm in radius, the terminal fall velocity verifying roughly
the Stokes’ law (Roger and Yau, 1989), the sedimentation
flux of particle number is proportional to the second mo-
ment, M2, and the sedimentation flux of water content is
proportional to the fifth moment,M5. The radar reflectivity
in a liquid phase cloud is proportional to M6 (Atlas, 1954).

The width of the size distributionw=1/M0

√
M0M2−M2

1 ,
or its dispersiond=N ·w/M1, have been used to establish re-
lationships between the mean volume and effective radii of
the droplet spectrum for radiative transfer calculations (Liu
and Daum, 2000). It is therefore not sufficient for a micro-
physics bulk parameterization to accurately predict the auto-
conversion and accretion rates; it must also provide accurate
diagnostics of various integral properties of the cloud droplet
spectrum, at least forM1, M2, M5, M6.

In summary, bulk parameterizations that are developed fol-
lowing an analytical approach rely on a priori specified para-
metric functions for the description of the droplet spectra.
Moreover, all bulk parameterizations, including those empir-
ically tuned, also require a priori specified parametric func-
tions to establish formal relationships between the prognos-
tic moments of the droplet size distribution (M0 andM3) and
those used in the parameterization of each microphysical pro-
cess.

3 Commonly used parametric functions

To represent droplet size distributions, the most frequently
used parametric functions are the Lognormal (Clark, 1976;
Feingold et Levin, 1986) and the Generalized Gamma (Liu
and Hallett, 1998; Cohard and Pinty, 2000). These two func-
tions are convenient because any of their moments can be
expressed as a function of the parameters of the distribution.
The Lognormal function

nc(r) = N
1

√
2πr lnσg

exp

(
−

1

2

(
ln(r/rg)

lnσg

)2
)

(3)

has 3 independent parameters, the total number concentra-
tion N , the geometric standard deviationσ g, and the mean
geometric radiusrg, whererg=e<ln(r)>. Thep moment of
the spectrum is directly related toN , σ g, andrg via:

Mp = Nr
p
g exp

(
p2

2
(lnσg)

2

)
, (4)

and it is expressed as a function ofN , M3 andσ g as

Mp = N1−p/3Mp/3
3 exp

(
p2

−9

2
ln(σg)

2

)
. (5)

The Generalised Gamma function

n(r) = N
α

0(ν)
λανrαν−1exp(−(λr)α) (6)

has 4 independent parameters,N , the slope parameterλ and
the two shape parametersα andν. Thepth moment of the
spectrum is directly related toN , λ, α andν via:

Mp =
N

λp

(
0(ν +

p
α
)

0(ν)

)
(7)

and it is expressed as a function ofN , M3, α andν as:

Mp = N1−p/3Mp/3
3

0(ν +
p
α
)

0(ν +
3
α
)

p
3
0(ν)

p−3
3 . (8)

The Generalized Gamma function includes the Gamma (or
Golovin), the Exponential and the Weibull functions. Indeed,
the Gamma function (Liu and Daum, 2004) is a Generalized
Gamma withα=1 (hereafter referred to as GG1). Some au-
thors use the Gamma function to represent the cloud droplet
mass distribution (Berry and Reinhardt, 1974; Williams and
Wojtowicz, 1982; Seifert and Beheng, 2001), which is equiv-
alent of using a Generalized Gamma function withα=3
(hereafter referred to as GG3) for describing the particle
number concentration distribution. In this paper, both val-
ues,α=1 andα=3, are evaluated.

In summary, in the framework of a bulk parameterization
with two prognostic variables for the droplet category (M0
andM3), there is still one parameter to adjust, hereafter re-
ferred to as the tuning parameter, eitherσ g for the Lognormal
or ν for the Generalised Gamma function, whereα has been
specified to either 1 or 3.

Atmos. Chem. Phys., 10, 4835–4848, 2010 www.atmos-chem-phys.net/10/4835/2010/
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4 Methodology

The objective in this paper is to determine which value of
the tuning parameter allow the parametric function to statis-
tically best fit the observed droplet spectra. More specifically
we will address the following questions.

– When a Lognormal, a GG1 or a GG3 function is used,
and the tuning parameter is constant, what is the best
value to use for this parameter?

– Is the accuracy improved if the tuning parameter is al-
lowed to vary?

– In such a case how can it be diagnosed from the two
prognostic variablesN andqc?

To answer these questions, a large sample of droplet spec-
tra measured in diverse types of non- or slightly precipitating
shallow clouds is used. The best fit to each observed spec-
trum is obtained with either a Lognormal or a Generalized
Gamma function that has the same droplet number concen-
tration and liquid water content, and a value of the tuning pa-
rameter,σg for the Lognormal,ν1 for GG1 andν3 for GG3,
that minimizes the difference between an integral property
of the observed spectrum and the one of the parametric func-
tion. The integral properties considered here areM1, M2,
M5, M6. For each one separately, the value of the tuning
parameter that minimizes the mean absolute error between
the property value of the observed spectrum (xm) and the
one derived from the fitted parametric function (xp) is cal-
culated. The same procedure is applied to the relative error,
where the absoluteεabsand relativeεrel errors are defined as:
εabs=xp−xm and εrel=xp/xm. The statistical adequacy of
the tuning parameter value is then evaluated for each moment
successively. Since there is no reason for a single value of the
tuning parameter to minimize the errors for the 4 moments
concomitantly, a trade-of value is also evaluated in terms of
absolute and relative errors.

In the second step, a parameterization is proposed to allow
the value of the tuning parameter to vary, and the resulting
errors, both absolute and relative, are calculated for compar-
ison with the ones obtained in step 1.

5 The data sets

Cloud particle size distributions used in this study were col-
lected during two airborne field experiments: The ACE-2
campaign took place in June and July 1997 to document
marine boundary layer stratocumulus clouds, north of the
Canary islands (Brenguier et al., 2000). The RICO cam-
paign took place in December 2004 and January 2005 to
study shallow precipitating cumulus clouds of the coast of the
Caribbean Island of Antigua and Barbuda within the North-
east Trades of the western Atlantic (Rauber et al., 2007).
Both are international field campaigns during which the

quality of the microphysical measurements, among others,
has been carefully assessed and discussed during the post-
campaign data workshops. Data from other international
field experiments on warm convective clouds, have also been
examined, such as SCMS in 1995 and DYCOMS-II in 2001,
which corroborate the results presented here.

The droplet spectra were measured with the Fast-FSSP,
a droplet spectrometer that covers a range from 1 to about
20–25 µm in radius (Brenguier et al., 1998). This improved
version of the standard Particle Measuring System (PMS)
FSSP-100 is presently the most accurate for measurements
of the droplet spectra, both in term of number concentration
and droplet sizes (Burnet and Brenguier, 1999, 2002). The
droplet spectra are extended beyond 25 µm with data from a
PMS-OAP-200-X (PMS Inc, Boulder Colorado, USA) dur-
ing ACE-2 and a PMS-OAP-260-X during RICO. The 200-X
measures drizzle particle sizes over 15 radius bins from 7.5
to 155 µm, with a bin width of 10 µm. The 260-X covers
a larger range, from 2.5 to 317.5 µm, with 63 bins of 5 µm
width. Cloud droplets are then defined as particles with a
radius smaller than 37.5 µm. This value is selected because
it corresponds to a bin limit in both the OAP-200-X and -
260-X and it is intermediate between the values used in most
bulk parameterizations. A sensitivity study suggests that the
selected threshold radius value has no noticeable impact on
the results within the range from 27.5 to 37.5 µm. This also
indicates that the results presented here are not strongly af-
fected by the uncertainty in the OAP measurements which is
very large for particles of radius lower than 50 µm (Lawson
et al., 2006).

These two campaigns were selected because significant
differences were expected between the stratocumulus and the
shallow cumulus regimes. The depth of the stratocumulus
clouds in ACE-2 was a few hundreds of meters, while it
reaches a few kilometres for the RICO shallow cumuli. In
ACE-2, the droplet number concentration varied from less
than 50 to more than 400 cm−3, while it was lower during
RICO with values less than 100 cm−3 in most cases. Light
precipitation was observed in ACE-2, while it was slightly
stronger in the RICO clouds. In general, the LWC in stra-
tocumulus remains close to adiabatic up to cloud top (Bren-
guier et al., 2003; Pawlowska and Brenguier, 2003), while it
is significantly diluted in the RICO cumulus clouds. Cloud
sampled during RICO show indeed that peak LWC values
decrease continuously with height down to about 50% of the
adiabatic value 1 km above cloud base, while median LWC
values drop down to about 30% of the adiabatic within the
first 200 m.

Droplet spectra were sampled at 1 Hz (a flight distance of
about 100 m). Cloudy samples are defined as samples with
a LWC greater than 0.025 g m−3 and a cloud droplet num-
ber concentrationNc greater than 5 cm−3. Figure 1 shows
a scatter-plot of the droplet number concentration (M0) and
the LWC (∝M3), with different colours for the ACE2 (blue)
and the RICO (red) data sets. The number concentrations
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Fig. 1. Scatter-plot of the droplet number concentration,Nc, and the LWC,qc, for droplet spectra sampled at

1 Hz, during the ACE2 (blue) and RICO (red) field experiments.

19

Fig. 1. Scatter-plot of the droplet number concentration,Nc, and
the LWC,qc, for droplet spectra sampled at 1 Hz, during the ACE2
(blue) and RICO (red) field experiments.

are lower in RICO, but the LWC values are similar in both
data sets, up to 2 g m−3. Overall, the two campaigns provide
a set of 27 623 cloud droplet spectra in total: 19 151 from 8
ACE-2 cases (fr9720, fr9721, fr9728, fr9730, fr9731, fr9733,
fr9734, fr9735) and 8472 from 7 RICO cases (RF06, RF07,
RF08, RF09, RF11, RF12, RF13), sampled at various lev-
els from the cloud base to the top. Both data sets have first
been analyzed separately to derive tuning parameter values
specific to the stratocumulus and cumulus regimes. Inter-
estingly, the conclusions are very similar and the analysis is
presented here with both data sets merged.

6 From the small scale to the cloud system scale

In this exercise, the spatial scale is an important issue. In-
deed, airborne cloud particle spectrometers have a limited
sampling section, so that a very tiny fraction of air is sam-
pled along the flight track. For instance, the Fast-FSSP has
a sampling section of 0.1 mm2. Droplet counts are therefore
cumulated over 100 m for the measured distribution to be-
come statistically significant (about 1000 droplets sampled
at a number concentration of 100 cm−3). For drizzle and
precipitation drops, the number concentration decreases ex-
ponentially with size, but the sampling section of the driz-
zle and precipitation particle spectrometers does not increase
accordingly. One is thus tempted to increase the sample
length, hence increase the number of sampled particles, to
better characterize a spectrum. Droplet spectra, however, are
highly variable at scales smaller than 100 m (Pawlowska et
al., 1997). This spatial variability raises two important issues
when averaging spectra over long distances for characteriz-
ing cloud system representative properties.

First, the spatial variability is linearly smoothed out when
cumulating particle counts over a long sample and this may

become an issue if the physical process of interest is highly
non-linear. Although they are second order, the biases arising
from using non-linear combinations of linearly averaged mi-
crophysical parameters may thus occasionally lead to flawed
conclusions. A typical example is when characterizing the
spectral width for studies of the collection process. Indeed,
the droplet collection (collision and coalescence) is highly
sensitive to the presence of both small and large droplets in
the same micro-volume of cloudy air. Thus it depends non-
linearly on the width of the droplet spectrum. In cumulus
clouds for instance, narrow droplet spectra are observed at all
levels, but their mode increases from cloud base to the top. If
droplet measurements are cumulated over flight legs ascend-
ing from the cloud base to the top, the resulting spectrum
might thus be much broader than locally, hence suggesting
enhanced collection, while droplets located at different lev-
els have no chance to collide and coalesce. It is therefore
recommended to cumulate droplet counts only on flight legs
that are statistically homogeneous in term of spectral proper-
ties.

The second issue arises when averaging CDSD intensive
properties, such as the radius of thepth moment instead
of extensive1 properties such as the moment itself. For in-
stance the light extinction in a cloud depends on the second
moment, asσext=πQext M2=πQext Nr2

2 , wherer2, is the
mean radius of the 2nd moment or mean surface radius of
the droplet spectrum. The mean extinction in a cloud layer,
is therefore equal to〈σext〉=πQext〈M2〉, which is different
from πQext〈N〉〈r2〉

2. The latter formulation, however, is the
most frequently used because observational data sets are of-
ten processed to derive the mean droplet number concentra-
tion and the mean surface radius, or effective radius, instead
of the mean second moment of the size distributions. Di-
luted cloud volumes often show intensive properties that are
quite different from the ones observed in undiluted volumes
because of the impact of entrainment and mixing processes
(Burnet and Brenguier, 2007). However, when using the sec-
ond formulation, diluted volumes are given the same weight
as the undiluted ones, while they very little contribute to the
mean value of the corresponding moment.

In general, one shall therefore avoid averaging spectral
properties such as any mean radius of the distribution or ratio
of such variables as thek coefficient in Martin et al. (1994)
that do not depend on the droplet concentration, hence might
overemphasize the contributions of highly diluted cloud vol-
umes. The tuning of the parametric functions described here-
after is thus based on moments of the size distribution instead
of mean radii of the moments, and 4 moments (M1, M2, M5
andM6) are considered separately.

1“intensive” and “extensive” are defined here with regards to
the number of particles, instead of number concentration or mixing
ratio.
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Fig. 2. Scatter-plots (grey points) of the tuning parameter values as a function, from left to right, of theM1, M2, M5, andM6 moment values.

The x-axis is divided in 10 classes on a Logscale. The thin lines denote the 25th and the 75th percentiles of the tuning parameter distribution

in each class. The circles and triangles denote the tuning parameter value that minimizes the standard deviation of the absolute error and the

geometric standard deviation of the relative error in each class, respectively. The horizontal thick line denotes the constant trade-off value of

the tuning parameter. The top row is for the Lognormal function, the second and third rows are for the Generalized Gamma functions withα=1

andα=3, respectively. On top of each graph, the number in brackets on the left (right) hand side is the tuning parameter value that minimizes

the absolute (relative) error over the whole range of variation of the specified moment. The fourth row shows the number of sampled spectra in

each moment class.
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Fig. 2. Scatter-plots (grey points) of the tuning parameter values as a function, from left to right, of theM1, M2, M5, andM6 moment values.
The x-axis is divided in 10 classes on a Logscale. The thin lines denote the 25th and the 75th percentiles of the tuning parameter distribution
in each class. The circles and triangles denote the tuning parameter value that minimizes the standard deviation of the absolute error and the
geometric standard deviation of the relative error in each class, respectively. The horizontal thick line denotes the constant trade-off value
of the tuning parameter. The top row is for the Lognormal function, the second and third rows are for the Generalized Gamma functions
with α=1 andα=3, respectively. On top of each graph, the number in brackets on the left (right) hand side is the tuning parameter value
that minimizes the absolute (relative) error over the whole range of variation of the specified moment. The fourth row shows the number of
sampled spectra in each moment class.

7 Tuning of the parametric functions

7.1 Constant tuning parameter

Figure 2 summarizes the analysis. The upper three rows
show scatter-plots of the tuning parameters values for the

four moments, from left to right, for the Lognormal paramet-
ric function in a) and for the generalized Gamma function
with α=1 (GG1) andα=3 (GG3) in b) and c), respectively.
For each observed spectrum the moment value is reported
on the x axis and the value of the tuning parameter that mini-
mizes the error is reported on the y axis. The two lines are the
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Fig. 3. Scatter-plots (grey points) of the absolute errors between the observed spectrum moment value and the

one of the parametric function using the trade-off value of the tuning parameterσ∗
g=1.34 for the Lognormal

function (top row),ν∗
1=10.3 for GG1 (2nd row), andν∗

3=1.11 for GG3 (3rd row), as a function of the moment

values. The X-axis is divided in 10 classes as in Fig. 2. The thin lines denote the 25th and the 75th percentiles

of the absolute error distribution in each class. The circles and the error bars denote the arithmetic mean and

the arithmetic standard deviation of the absolute error values in each class. The absolute errors are normalized

from left to right respectively by 100µm cm−3 for M1, 1000µm2 cm−3 for M2, 107 µm5 cm−3 for M5 and

109 µm6 cm−3 for M6.
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Fig. 3. Scatter-plots (grey points) of the absolute errors between the observed spectrum moment value and the one of the parametric function
using the trade-off value of the tuning parameterσ∗

g=1.34 for the Lognormal function (top row),ν∗
1=10.3 for GG1 (2nd row), andν∗

3=1.11
for GG3 (3rd row), as a function of the moment values. The X-axis is divided in 10 classes as in Fig. 2. The thin lines denote the 25th
and the 75th percentiles of the absolute error distribution in each class. The circles and the error bars denote the arithmetic mean and the
arithmetic standard deviation of the absolute error values in each class. The absolute errors are normalized from left to right respectively by
100 µm cm−3 for M1, 1000 µm2 cm−3 for M2, 107 µm5 cm−3 for M5 and 109 µm6 cm−3 for M6.

25th and the 75th percentile of the corresponding distribution
over 10 classes on a Logscale. The circles and triangles are
the tuning parameter values that minimize, in each moment
class, the arithmetic and the geometric standard deviation of
the absolute and relative errors, respectively. The number of
samples in each class are reported on the lower row.

For the Lognormal distribution, the top row suggests that a
σ g value between 1.3 and 1.4 provides accurate estimations,
for the moment values that are the most frequently observed,
i.e. 103 µm cm−3 for M1, 5.103 µm2 cm−3 for M2, from 106

to 2.107 µm5 cm−3 for M5 and from 107 to 2.108 µm6 cm−3

for M6. ForM1 andM2, however, this value underestimates
the optimumσg value at small moment values, hence overes-
timates the small moment values, and inversely for the large
moment values. For the higher moments,M5 andM6, the op-
timumσ g value does not vary significantly with the value of
the moment. The sensitivity test to the radius threshold value
that separates droplets from drops in the bulk scheme reveals

that these two higher moments are more sensitive than the
lower ones, although the impact, even with a threshold value
of 27.5 µm, is hardly noticeable. Thisσ g value is close to
the revised value that was recommended in the 9th inter-
comparison exercise of the GCSS BLWG (σ g=1.2) for the
parameterization of cloud droplet sedimentation (Ackerman
et al., 2008).

For the Generalised Gamma distribution, the results are
similar, with optimum values of the tuning parameterν of
the order of 10 for GG1 and slightly larger than 1 for GG3,
although the trends are reversed compared to the Lognor-
mal since increasing values of theν parameters correspond
to narrower spectra. A value ofν3 equal to 1 corresponds
in the formulation of the autoconversion in Seifert and Be-
heng (2006, Eq. 4) to aνc value equal to 0, which is com-
monly used.
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Fig. 4. Same as Fig. 3 for the relative errors. The circles and the error bars denote the geometric mean and the

geometric standard deviation of the relative error value distribution in each moment class. The relative errors

are not normalized.
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Fig. 4. Same as Fig. 3 for the relative errors. The circles and the error bars denote the geometric mean and the geometric standard deviation
of the relative error value distribution in each moment class. The relative errors are not normalized.

This set of scatter-plots suggests that there is no single pa-
rameter value that minimizes both errors for the 4 moments
concomitantly. The optimum value indeed depends on the
application and one might select aM1 optimum value for
the prognostic of peak supersaturation in a CCN activation
scheme, aM2 specific one for radiative transfer and the sed-
imentation flux of particle number concentration, aM5 spe-
cific one for the sedimentation flux of particle water content,
and aM6 specific one for the retrieval of cloud properties
from a radar reflectivity.

It might be questionable, and less practicable, to use differ-
ent values of the tuning parameter for the analytical function
that describes the droplet distribution in a numerical model,
although this is a common practice when using in a numeri-
cal model parameterizations of diverse origins, hence relying
on different values of the tuning parameter or even different
parametric functions. For instance the bulk microphysical
schemes tested by the GCSS boundary layer working group
are based on a Lognormal function for parameterization of
droplet sedimentation (Ackerman et al., 2008), whereas the
autoconversion scheme often relies on different hypotheses.
Some authors use different distribution hypotheses in the

same process parameterization (see Table 1 in Gilmore and
Straka, 2008). For better consistency, we propose a compro-
mise that partly satisfies all types of applications. A trade-off
value of the tuning parameter is derived as:

p∗
=

1

8n

∑
i,j,k

ni,jpi,j,k, (9)

wheren is the total number of cloud samples,i∈[1:10] stand
for the moment class,j∈[1,2,5,6] stands for the moment, and
k∈[1,2], corresponds to either the absolute or relative error.
ni,j , is the number of samples in classi of the momentMj

andpi,j,k, is the optimum tuning parameter value in the class
i of the momentj , for the absolute and relative errors, re-
spectively.

This trade-off value of the tuning parameter,σ ∗
g=1.34 for

the Lognormal,ν∗

1=10.3 for GG1 andν∗

3=1.11 for GG3, is
represented in Fig. 2 by a horizontal bar and it is reported in
Table 2, with the resulting offset and standard deviations of
the absolute and relative errors.

Figure 3 shows scatter-plots of the absolute errors in each
moment class, as in Fig. 2, for the Lognormal (first row), the
GG1 (second row) and the GG3 (third row) parametric func-
tions. The circles and error bars indicate the arithmetic mean
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Fig. 5. Same as Fig. 2 but plotted as a function of the LWC,qc. The thick line represents the proposed

parameterizations for the variable tuning parameter.
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Fig. 5. Same as Fig. 2 but plotted as a function of the LWC,qc. The thick line represents the proposed parameterizations for the variable
tuning parameter.

(offset) and standard deviation of the absolute error values in
each class. Note that for practical reasons, the error values
are normalized in each graph, as specified in the figure cap-
tion. Figure 4 is similar for the relative errors, although errors
are not normalized in this case. These figures confirm that a
single parameter value provides accurate descriptions of the
droplet spectra in the most common range of moment values,
but significantly deviates at low moment values for the rela-
tive error and high moment values for both errors, although
such samples are less frequently observed.

7.2 Variable tuning parameter

In a second step, we explore the potential of diagnosing the
tuning parameter, using the prognostic variables of a bulk
parameterization, i.e.N or qc. The tuning parameter shows
a noticeable sensitivity toqc, and almost no sensitivity toN .
The sensitivity toqc is illustrated in Fig. 5 that is similar to
Fig. 2, except that the x-axis now represents the LWC.

The optimum parameter values, in eachqc class
(10 classes) of each moment (4 moments) and for both
the absolute (circles) and relative (triangles) errors, are
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Fig. 6. Same as Fig. 3 using the proposed parameterization for the variable tuning parameter.
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Fig. 6. Same as Fig. 3 using the proposed parameterization for the variable tuning parameter.

combined and the function ofqc that best fits the 80 values
is derived for the Lognormal, the GG1 and the GG3 succes-
sively, leading to the following parameterizations:

σ
p
g = −0.056· ln(qc)+1.24, (10)

ν
p

1 = 14.5·qc +6.7, (11)

ν
p

3 = 1.58·qc +0.72, (12)

whereqc is expressed in g m−3. They are represented in each
graph of Fig. 5 by a thick line.

Figures 6 and 7, similar to Figs. 3 and 4 show the improve-
ment on the absolute and relative errors, respectively, in each
moment class. The offsets and standard deviations of the ab-
solute and relative errors over the whole range of moment
values are summarized in Table 3.

The comparison with Table 2, attests that both the absolute
and relative errors have been reduced in term of offset and
standard deviation, although the main improvement is for the
absolute error at large values of the moments (Figs. 3 and 6),
and for the relative error at both small and large values of the
moments (Figs. 4 and 7).

8 Summary and conclusions

Droplet spectra measured in stratocumulus and shallow cu-
mulus clouds have been examined to fit three parametric
functions, i.e. the Lognormal, and the Generalized Gamma
functions withα=1 andα=3, successively, that are frequently
used in bulk parameterizations of the microphysics to repre-
sent droplet size distributions.

These functions have three independent parameters. Two
are constrained by the values of the droplet number concen-
tration and liquid water content. An optimum value of the
third parameter,σ g for the Lognormal,ν1 for the GG1 andν3
for the GG3, has been derived for each measured spectrum,
that minimizes the difference between the observed spectrum
and the parametric function. The difference has been mea-
sured using integral properties of the droplet spectra, namely
4 moments of the size distribution,M1 that is used in CCN
activation schemes,M2 in radiative transfer calculations and
droplet sedimentation parameterization,M5 for parameteri-
zation of droplet sedimentation, andM6 for radar reflectivity
calculations.
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Fig. 7. Same as Fig. 4 using the proposed parameterization for the variable tuning parameter.
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Fig. 7. Same as Fig. 4 using the proposed parameterization for the variable tuning parameter.

Table 3. Same as Table 2 when using the variable tuning parameter parameterizations,σ
p
g for the Lognormal,νp

1 for the GG1 andνp
3 for the

GG3.

M1 M2 M5 M6

Lognormal, µabs±σabs
σ

p
g 4.3±28.9 23±227 0.2±18.2 1.2±54.2

(µm cm−3) (µm2 cm−3) (105 µm5 cm−3) (106µm6 cm−3)

µrel
×

/ σ rel

1.007×/ 1.052 1.003×/ 1.050 0.978×/ 1.292 0.918×/ 1.651

Generalized Gamma, µabs±σabs
α=1, νp

1 −2.3±29.0 −17±226 0.3±18.1 −1.4±53.5
(µm cm−3) (µm2 cm−3) (105µm5 cm−3) (106µm6 cm−3)

µrel
×

/ σ rel

0.997×/ 1.053 0.996×/ 1.050 0.973×/ 1.300 0.893×/ 1.672

Generalized Gamma, µabs±σabs
α=3, νp

3 −8.6±29.9 −37±226 −1.7±18.0 −8.9±52.7
(µm cm−3) (µm2 cm−3) (105µm5 cm−3) (106µm6 cm−3)

µrel
×

/ σ rel

0.984×/ 1.052 0.990×/ 1.050 0.943×/ 1.303 0.826×/ 1.682
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The range of variation of each moment has been divided
in 10 classes on a Logscale and the arithmetic and geometric
means of the optimum parameter values have been calculated
in each class. The absolute and relative errors have similarly
been quantified in each class, and over the whole range of
variation of each moment. As expected, the optimum param-
eter values however are slightly different depending on which
integral property is used for the minimization. A trade-off
parameter value has then been proposed, that minimizes both
the absolute and the relative errors on the 4 moments of the
distributions.

In a second step, parameterizations are proposed where the
optimum parameter value depends on the LWC, and the ab-
solute and relative errors have been quantified for each mo-
ment separately. Such a varying tuning parameter slightly
improves both the absolute and relative errors for the mo-
ment values that are the most frequently observed, and it sig-
nificantly improves the error at the lowest and largest values
of the moments.

The potential of using the third parameter as a prognos-
tic variable in a bulk scheme has been explored, but because
of the large variability of spectral shapes and the diversity
of physical processes that are responsible for this variabil-
ity, condensational growth, mixing and evaporation, droplet
scavenging, and collection, we have not been able to isolate
one process that could be considered as the most determinant.
Further analysis or numerical simulations with bin micro-
physical schemes might help at solving the issue. However,
considering the limitations inherent to the bulk approach, one
might also conclude that the accuracy of the parameteriza-
tions proposed here is sufficient for most of the topics that
can be addressed with a bulk scheme.
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