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Abstract. Parametric functions are currently used to rep-1 Introduction
resent droplet spectra in clouds and to develop bulk param-

eterizations of the microphysical processes and of their incyq,q particles are represented by their size distribution
teractions with radiation. The most frequently used para-;isq referred to as spectrum. In the liquid phase, the spec-

metric functions are the Lognormal and the Generalizedy,, originates from activation of cloud condensation nuclei
Gamma} which have three and fqur |r1dependent parameter?CCN)' mainly at cloud base. Hence it expends from submi-
respectively. In a bulk parameterization, two parameters are,on particles for the smallest activated CCNSs to about 10 pum
cons_tra!ned by the total droplet number_ concentration anqn radius for the giant ones. As particles grow by condensa-
the liquid water content. In the Generalized Gamma func'tion, the spectrum gets narrower because the growth rate of a

tion, one parameter is specified a priori, and the fourth oney, et is inversely proportional to its size. Higher in a cloud,
like the third parameter of the Lognormal function, shall be spectral narrowing is counterbalanced by broadening pro-

tuned, for the parametric function to statistically best fit ob- cesses, mainly by turbulent mixing, because particles expe-

served droplet spec_tra. ) ._rience different growth histories along different trajectories,
These parametric functions are evaluated here using,yq acending adiabatically from cloud base, while others
droplet spectra collected in non-or slightly precipitating stra-\,, qerq dilution with environmental air and partial evapora-

Focumulus and shallow_cumulus..th_m_wm yalues of the UN-i5n. New CCNs can also be activated higher than cloud base,
ing parameters are derived by minimizing either the absolutg, e moist and clear air is entrained in an updraft, hence
or the_ relative error for SUCCGSS'VEI.V the f|r§,t, second, fncth’initiating small droplets. When the biggest droplets reach

and sixth moments of the droplet size distribution. A trade-a radius of about 20 um, collision and coalescence generate

off value is also proposed that minimizes both absolute anddrizzle particles (from 20 to a few 100 um). If the cloud is

relative errors .for t.he four mo(;n.entshgolrcrc])mltar.\tly. Finally, asufficiently deep and the liquid water content large enough,
parameterization is proposed in which the tuning parametearomets and drops continue to collide to form precipitation

depends on the liquid water content. This approach signifi-drops (mm). The maximum drop radius, of the order of
cantly improves the fit for the smallest and largest values 0f4mm is limited by break-up, either following a collision

the moments. or spontaneously for the biggest drops. The total number
concentration spans over a large range, because millions of
droplets are necessary to form a drop. It thus evolves from up
to 1000 cn12 for droplets in a polluted environment, to a few
per cubic meter for precipitation drops. Because the number
concentration of activated CCN, the parcel trajectories, the
series of mixing events and the resulting growth histories by
condensation, collection and break-up are infinitely diverse,

Correspondence tdD. Geoffroy cloud particle spectra exhibit all kinds of shapes (Warner,
BY (geoffroy@knmi.nl) 1969a, b, 1970, 19733, b).

Published by Copernicus Publications on behalf of the European Geosciences Union.



http://creativecommons.org/licenses/by/3.0/
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Table 1. Typical bulk parameterizations using two particle categories with, from left to right, the value of the threshold radius between the two
categories, the number of independent variables for the description of the droplet size distribution (CDSD), the parameterized microphysical
processes, the methodology adopted for the development of the parametrization, and the CDSD parametric representation.

Number of independent

Separation  variables for the Microphysical ~ Methodology&

Reference radiug description of the CDSD  processes CDSD hypothesis

Kessler NA qc autoconversion  Empirical CDSD:

(1969) monodispersed

Manton and Cotton NA qc, Ne¢ autoconversion  Analytical CDSD:

(1977) monodispersed

Berry and Reinhardt variable, g, N¢, oy autoconversion  Empiricaty30

(1974) ~41 um spectra from 0-D bin
simulations, CDSD: GG3

Khairoutdinov and Kogan 25 pm qc, N autoconversion  Empirical, 100 000 spectra

(2000) from 3-D bin simulations of
Sc, CDSD: GG1

Liu and Daum NA ge,Ne,d autoconversion  Analytical,

(2004) CDSD: GG1

Seifert and Beheng 41 pm qc, Ne, autoconversion  Analytical and empirical,

(2001, 2006) ve=vgz—1 GG3 and spectra from 1-D
bin simulations, CDSD: GG3

Cohard and Pinty NA qc, NccN activation Analytical

(2000) CDSD: GG3

Ackerman NA qc, Nc,og Cloud droplet  Analytical

(2008) sedimentation CDSD: Lognormal

The cloud droplet size distribution (CDSD) is expressed Sects. 4 and 5, respectively. Section 6 addresses the specific
as a concentration density(r)dr, i.e. number density of issue of scaling up small scale measurements for character-
droplets per volume (or per mass) of air, and per unit sizeizing cloud system properties. The results are then reported
To summarize the properties of a size distribution, one com-in Sect. 7, for fixed and variables values of the tuning param-
monly uses a moment of the distributidi,, or the mean eters successively, before the conclusions.
radius of thepth momentr,:

oo
M, = | rPn(rydr, 1) 2 Bulk parameterizations and parametric functions
0 . I
L In a numerical model, the natural variability of the droplet
- (M,,/ )7 @) spectra can be explicitly simulated with “bin” microphysical
b N schemes where the number distribution is discretized, from
whereN=Mj is the total number concentration. 30 to 200 size classes (Kogan, 1991). The computational

To interpret microphysical observations, examine the in-cost of such schemes however, prevents their use in large do-
teractions between cloud microphysics and other physicamain, high spatial resolution, cloud resolving models. In-
processes, and numerically simulate these interactions, paratead, bulk parameterizations have been developed. Indeed,
metric functions are frequently used to reduce the variety ofeven though spectra are diverse, one usually observe a transi-
the droplet spectral shapes. The objective in this paper ision from droplets to drops, in the size range where conden-
to evaluate parametric functions that best replicate observedational growth becomes inefficient, while collection starts
spectra on a statistical basis. The focus is on non-or slightlyto become significant, namely between 20 and 50 um in ra-
precipitating stratocumulus and shallow cumulus clouds.  dius. This size range also corresponds to a rapid increase

After a brief description (Sect. 2) of bulk microphysics of the particle fall velocity with the particle radiusc(?).
schemes, three frequently used parametric functions are dén a liquid phase bulk scheme, hydrometeors are thus dis-
scribed in Sect. 3. The methodology for tuning the func- tributed in two categories, the droplets that do not or slowly
tions and the data sets on which tuning relies are detailed isediment, and the drops that precipitate more rapidly. This

Atmos. Chem. Phys., 10, 4835348 2010 www.atmos-chem-phys.net/10/4835/2010/
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Table 2. Values of the arithmetic meansand the arithmetic standard deviati®g,sof the absolute errors and of the geometric mean
and the geometric standard deviatiog, of the relative errors calculated fof,, M>, M5, Mg, for the Lognormal, the GG1 and the GG3
parametric functions, when using the constant trade-off tuning parameters vegjdesthe Lognormaly} for the GG1 andgi for the GG3.

My M Ms Mg

Lognormal, Habsto abs
0?21.34 —0.82£31.1 —40+266 7.9£30.3 23.4103.1
(pment3)  mlem3)  (APumPem3)  (10° pnPem—3)

Hrel 70rel
1.00];< 1.054 l.OO% 1.052 0.97?1.332 0.91? 1.751

Generalized Gamma, absto abs
a=1, v"1‘=10.3 —5.3+32.2 —62+274 6.5£28.9 16.9£93.2
(ument3)  mlem3)  (A0PumPem3)  (10fumScm3)

Mrel 7f7rel
1.002/< 1.054 l.Ong 1.052 0.95$1.332 O.87;§ 1.751

Generalized Gamma, absto abs
a=3, v§=l.ll —12.0+34.4 —84+4-282 3.4:25.8 5.1%77.9
(ument3)  (uméem3)  (APumPem3)  (10%umBcm3)

HMrel /XUreI
0.99]7X 1.054 0.99§‘ 1.052 0.92§§1.332 0.80;‘ 1.751

necessarily introduces errors and biases. The artin the devel:985; Liu et al., 1995; Cohard and Pinty, 2000; Khairout-
opment of bulk parameterizations is therefore to carefully se-dinov and Kogan, 2000; Seifert and Beheng, 2001). Beyond
lect the minimum number of well suited prognostic variables the total water content and total number concentration of par-
and develop equations that reflect the physical processes réicles in each category, there were a few attempts to introduce
sponsible for the evolution of these variables, while minimiz- more variety by also predicting additional variables such as
ing errors and biases. the reflectivity, as in Milbrandt and Yau (2005). Table 1 sum-
Bulk parameterizations can be classified according to themarizes the characteristics of existing bulk parameterizations
number of particle categories, the threshold radius value thafor the liquid phase, with a focus on the description of the
separates the categories, and the number of independent vaglroplet category.
ables used to describe each category. For the liquid phase, The physical processes that act as sources and sinks for
they are currently limited to two hydrometeor categories, the particle categories shall then be parameterized. The CCN
droplets and drops, but the threshold radius depends on thactivation process is a source for the droplet category. The
application. For simulation of deep clouds, the thresholdcollection process (a sink for the droplets and a source for the
radius is generally set to about 40-50 um (Berry and Rein-drops) is parameterized by accounting for the collection be-
hardt, 1974; Seifert and Beheng, 2001), while for shallowtween droplets to form drops (autoconversion), and the col-
clouds a lower threshold of 20-25 um is preferred (Khairout-lection of droplets by drops to form bigger drops (accretion).
dinov and Kogan, 2000). Note that all independent vari-In the most sophisticated schemes, the collection between
ables of a parameterization are not necessarily prognostidroplets to form bigger droplets and the collection between
variables in a numerical model. For instance in Seifert anddrops to form bigger drops (self-collection) are also consid-
Beheng (2006), using a Gamma distribution to represent thered (Ziegler, 1985; Cohard and Pinty, 2000; Seifert and Be-
droplet mass spectrum, the parameteis set to 1; in Ack-  heng, 2006). Indeed, these two last processes do not affect
erman et al. (2008) using a Lognormal distribution, the pa-the mass of condensed water in each category, but the num-
rametero, is set to 1.5, although a value of 1.2 is recog- ber concentration, hence the mean size of the particles and
nized to better fit the observations. Original bulk schemestheir mean fall velocity.
were limited to one prognostic variable per category: the wa- It is also useful to notice that two methodologies were
ter contentg,. for the droplets ang, for the drops (or mix- adopted to develop bulk parameterizations. In the empiri-
ing ratio=g /0., Wherep, is the air density) (Kessler, 1969; cal approach (Khairoutdinov and Kogan, 2000), numerical
Tripoli and Cotton, 1980). More recent schemes rely on 4simulations of clouds are performed with a bin microphysics
prognostic variables, adding to the water contents the totakcheme. Each grid box, at each time step, is then used as
number concentration in each categaowy,and N, (Ziegler, one realisation of the microphysical processes, from which

www.atmos-chem-phys.net/10/4835/2010/ Atmos. Chem. Phys., 10, 48252010
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bulk variables 4., ¢,, N., N,) and their evolution rates by 3 Commonly used parametric functions

CCN activation, autoconversion, accretion, and precipitation

can be calculated. Empirical laws are then derived by min-To represent droplet size distributions, the most frequently
imization over the whole set of realisations. In such a caseUsed parametric functions are the Lognormal (Clark, 1976;
the accuracy of the parameterization is limited by the perfor-Feingold et Levin, 1986) and the Generalized Gamma (Liu
mance of the bin microphysics scheme and the variable spacagnd Hallett, 1998; Cohard and Pinty, 2000). These two func-
explored by the simulations. Others (Liu and Daum, 2004)tions are convenient because any of their moments can be
follow a more analytical approach in which the particle size €xpressed as a function of the parameters of the distribution.
distribution in each category is represented by a parametrid he Lognormal function

function. The stochastic collection equation is then analyti- 1 1/In(r/r) 2

cally resolved to derive a formulation of the autoconversionn.(r) = N—exp(——( § ) ) 3)

and accretion rates. In this case the accuracy of the solu- */Zrlnag 2\ Ino,

tion mainly depends on the realism of the chosen parametritias 3 independent parameters, the total number concentra-
function. Note however, that coefficients of some “analytical tion N, the geometric standard deviatiey, and the mean
type” bulk parameterizations are tuned empirically (Seifert geometric radius,, wherer,=e<"")>. The p moment of

and Beheng, 2001, 2006). the spectrum is directly related 16, o ¢, andr, via:
Some physical processes in a cloud model require ad- 2
ditional information about cloud microphysics, beyond the M, =Nr§’exp<p—(lno—g)2>, (4)
prognostic number concentratiolV & M) and water con- 2
tent (xM3). For instance, CCN activation is often param- and it is expressed as a function’f Ms ando , as
eterized using a diagnostic of the peak supersaturation, that #
depends on the first moment of the size distributién also _ 2_9
referred to as the droplet integral radius (Twomey, 1959).M» =N* p/3M§/3eXp<p 5 'n(Gg)z)' ®)
Radiative transfer calculations in clouds depend on light ex-
tinction that is proportional to the second momeuft of ~ The Generalised Gamma function
the droplet spectrum (Hansen and Travis, 1974). The sedl;l(r) _ NLA“”r“”_lexp(—(Ar)“) ©)

mentation flux depends on the droplet sizes, through an ap- '(v)

proximation of their fall velocity. For particles smaller than pas 4 independent paramete¥s, the slope parameterand
the Stokes’ law (Roger and Yau, 1989), the sedimentationspectrum is directly related t, A, « andv via:

flux of particle number is proportional to the second mo-

ment, M, and the sedimentation flux of water contentis ,, _ N (T0+5) @
proportional to the fifth moment\fs. The radar reflectivity P ap '(v)
in a liquid phase cloud is proportional togAtlas, 1954). . .
. . o 2 and it is expressed as a functionéf M3, « andv as:
The width of the size distribution=1/Mo,/ MoM>— M7, »
or its dispersion/=N-w /M3, have been used to establish re- M, = Nl—p/3MP/3MF(U)%3. (8)

lationships between the mean volume and effective radii of 3 F(v+§)%

the droplet spectrum for radiative transfer calculations (Liu The Generalized Gamma function includes the Gamma (or
and l_)aum, 2000). It |s.the_refore not sufficient fqr a micro- Golovin), the Exponential and the Weibull functions. Indeed,
physics bulk parameterization to accurately predict the autoy, o Gamma function (Liu and Daum, 2004) is a Generalized
conversion and accretion rates; it must also provide accuratg, o \vithy =1 (hereafter referred to as GG1). Some au-
diagnostics of various integral properties of the cloud droplety, .« \;se the Gamma function to represent the cloud droplet
spectrum, at least foWfy, Mz, Ms, Ms. mass distribution (Berry and Reinhardt, 1974; Williams and
In summary, bulk parameterizations that are developed f0|Wojtowicz, 1982; Seifert and Beheng, 2001), which is equiv-
lowing an analytical approach rely on a priori specified para-jant of using a Generalized Gamma function with3

metric functions for the des<l:rip.tion O,f the Qroplet spectrg. (hereafter referred to as GG3) for describing the particle
Moreover, all bulk parameterizations, including those EMPI™ yumber concentration distribution. In this paper, both val-
ically tuned, also require a priori specified parametric func-ues «=1 anda=3. are evaluated

tions to establish formal relationships between the prognos- In summary, in the framework of a bulk parameterization

tic moments of the droplet size distributiobl§ andMs) and it 1o prognostic variables for the droplet categoM
those used in the parameterization of each microphysical PrOand M), there is still one parameter to adjust, hereafter re-
cess. ferred to as the tuning parameter, eitherfor the Lognormal
or v for the Generalised Gamma function, wherlas been

specified to either 1 or 3.

Atmos. Chem. Phys., 10, 4835348 2010 www.atmos-chem-phys.net/10/4835/2010/



O. Geoffroy et al.: Parametric representation of the cloud droplet spectra 4839

4 Methodology quality of the microphysical measurements, among others,
has been carefully assessed and discussed during the post-
The objective in this paper is to determine which value of campaign data workshops. Data from other international
the tuning parameter allow the parametric function to statis-field experiments on warm convective clouds, have also been
tically best fit the observed droplet spectra. More specificallyexamined, such as SCMS in 1995 and DYCOMS-II in 2001,
we will address the following questions. which corroborate the results presented here.
The droplet spectra were measured with the Fast-FSSP,
droplet spectrometer that covers a range from 1 to about
0-25 um in radius (Brenguier et al., 1998). This improved
version of the standard Particle Measuring System (PMS)
— Is the accuracy improved if the tuning parameter is al- FSSP-100 is presently the most accurate for measurements
lowed to vary? of the droplet spectra, both in term of number concentration
and droplet sizes (Burnet and Brenguier, 1999, 2002). The
— In such a case how can it be diagnosed from the twogroplet spectra are extended beyond 25 um with data from a
prognostic variables/ andg.? PMS-OAP-200-X (PMS Inc, Boulder Colorado, USA) dur-

. ing ACE-2 and a PMS-OAP-260-X during RICO. The 200-X
To answer these questions, a large sample of droplet spec-

L . T " Mmeasures drizzle particle sizes over 15 radius bins from 7.5
tra measured in diverse types of non- or slightly precipitating

shallow clouds is used. The best fit to each observed spec:tp 155um, with a bin width of 10um. The 260-X covers

trum is obtained with either a Lognormal or a Generalizeda larger range, from 2.5 to 317.5m, with 63 bins of 5um

Gamma function that has the same droplet number Concenv_wdth. Cloud droplets are then defined as particles with a

tration and liquid water content, and a value of the tuning Ioa_radlus smaller than 37.5um. This value is selected because

it corresponds to a bin limit in both the OAP-200-X and -
:ﬁger:]ei:ﬁq if;éstrlﬁel‘?j?f?;remigtz\:vg;l;n?:fefor;??g’ ert 260-X and it is intermediate between the values used in most
gral propertyp, i parameterizations. A sensitivity study suggests that the
of the observed spectrum and the one of the parametric func- ; i )
. . : . selected threshold radius value has no noticeable impact on
tion. The integral properties considered here &ftg Mo,

. the results within the range from 27.5 to 37.5 um. This also
Ms, Mg. For each one separately, the value of the tuning. .
N indicates that the results presented here are not strongly af-
parameter that minimizes the mean absolute error betwee o >
ected by the uncertainty in the OAP measurements which is
the property value of the observed spectrum)(and the

one derived from the fitted parametric functior,) is cal- \;’\2; Iazrgggf r particles of radius lower than 50 um (Lawson

culated. The same procedure is applied to the relative error, h . | db anif
where the absolute,psand relatives g errors are defined as: .T ese wo campaigns were selected because significant
S re . differences were expected between the stratocumulus and the

Eabs=Xp—Xp Ndérei=x,/x,. The statistical adequacy of o eumulus regimes. The depth of the stratocumulus
the tuning parameter value is then evaluated for each momenstI . o
clouds in ACE-2 was a few hundreds of meters, while it

successively. Since there is no reason for a single value of the . .
. ST reaches a few kilometres for the RICO shallow cumuli. In
tuning parameter to minimize the errors for the 4 moments

: . . fACE-Z, the droplet number concentration varied from less
concomitantly, a trade-of value is also evaluated in terms o o :
. than 50 to more than 400 crd, while it was lower during
absolute and relative errors.

In the second step, a parameterization is proposed to aIIovvRICO with values less than 100 cihin most cases. Light
p.ap brop recipitation was observed in ACE-2, while it was slightly

the value of the tuning paramgter to vary, and the resultin tronger in the RICO clouds. In general, the LWC in stra-
errors, both absolute and relative, are calculated for compar: : . .
tocumulus remains close to adiabatic up to cloud top (Bren-

ison with the ones obtained in step 1. guier et al., 2003; Pawlowska and Brenguier, 2003), while it
is significantly diluted in the RICO cumulus clouds. Cloud

5 The data sets sampled during RICO show indeed that peak LWC values
decrease continuously with height down to about 50% of the

Cloud particle size distributions used in this study were col-adiabatic value 1 km above cloud base, while median LWC

lected during two airborne field experiments: The ACE-2 values drop down to about 30% of the adiabatic within the

campaign took place in June and July 1997 to documenfirst 200 m.

marine boundary layer stratocumulus clouds, north of the Droplet spectra were sampled at 1 Hz (a flight distance of

Canary islands (Brenguier et al., 2000). The RICO cam-about 100 m). Cloudy samples are defined as samples with

paign took place in December 2004 and January 2005 t@ LWC greater than 0.025gT and a cloud droplet num-

study shallow precipitating cumulus clouds of the coast of theber concentrationV,. greater than 5cme. Figure 1 shows

Caribbean Island of Antigua and Barbuda within the North- a scatter-plot of the droplet number concentratiory)sihd

east Trades of the western Atlantic (Rauber et al., 2007)the LWC (xM3), with different colours for the ACE2 (blue)

Both are international field campaigns during which the and the RICO (red) data sets. The number concentrations

— When a Lognormal, a GG1 or a GG3 function is used,
and the tuning parameter is constant, what is the bes
value to use for this parameter?

www.atmos-chem-phys.net/10/4835/2010/ Atmos. Chem. Phys., 10, 48252010
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become an issue if the physical process of interest is highly
: non-linear. Although they are second order, the biases arising
IR from using non-linear combinations of linearly averaged mi-

1 crophysical parameters may thus occasionally lead to flawed
conclusions. A typical example is when characterizing the
spectral width for studies of the collection process. Indeed,
the droplet collection (collision and coalescence) is highly
sensitive to the presence of both small and large droplets in
- the same micro-volume of cloudy air. Thus it depends non-
1 linearly on the width of the droplet spectrum. In cumulus
clouds for instance, narrow droplet spectra are observed at all
levels, but their mode increases from cloud base to the top. If
droplet measurements are cumulated over flight legs ascend-
ing from the cloud base to the top, the resulting spectrum
might thus be much broader than locally, hence suggesting
enhanced collection, while droplets located at different lev-
els have no chance to collide and coalesce. It is therefore
recommended to cumulate droplet counts only on flight legs
that are statistically homogeneous in term of spectral proper-
ties.
are lower in RICO, but the LWC values are similar in both ~ The second issue arises when averaging CDSD intensive
data sets, up to 2 gT3. Overall, the two campaigns provide Properties, such as the radius of théh moment instead
a set of 27623 cloud droplet spectra in total: 19 151 from 80f extensivé properties such as the moment itself. For in-
ACE-2 cases (fr9720, fr9721, fr9728, fr9730, fr9731, fr9733, Stance the light extinction in a cloud depends on the second
19734, fr9735) and 8472 from 7 RICO cases (RF06, RFO7,MOMENt, a%rex=m Qext Mo=m Qext N73, Wherers, is the
RF08, RF09, RF11, RF12, RF13), sampled at various lev/mean radius of the 2nd moment or mean surface radius of
els from the cloud base to the top. Both data sets have firsf1€ droplet spectrum. The mean extinction in a cloud layer,
been analyzed separately to derive tuning parameter valud§ therefore equal Zt«’“ext) =7 Qext(M2), which is different
specific to the stratocumulus and cumulus regimes. InterffoM 7 Qext(N) (r2)“. The latter formulation, however, is the

estingly, the conclusions are very similar and the analysis ignost frequently used because observational data sets are of-
presented here with both data sets merged. ten processed to derive the mean droplet number concentra-

tion and the mean surface radius, or effective radius, instead
of the mean second moment of the size distributions. Di-
6 From the small scale to the cloud system scale luted cloud volumes often show intensive properties that are
quite different from the ones observed in undiluted volumes
In this exercise, the spatial scale is an important issue. Inbecause of the impact of entrainment and mixing processes
deed, airborne cloud particle spectrometers have a limitedBurnet and Brenguier, 2007). However, when using the sec-
sampling section, so that a very tiny fraction of air is sam- ond formulation, diluted volumes are given the same weight
pled along the flight track. For instance, the Fast-FSSP hasas the undiluted ones, while they very little contribute to the
a sampling section of 0.1 nfmDroplet counts are therefore mean value of the corresponding moment.
cumulated over 100 m for the measured distribution to be- In general, one shall therefore avoid averaging spectral
come statistically significant (about 1000 droplets sampledproperties such as any mean radius of the distribution or ratio
at a number concentration of 100ch). For drizzle and  of such variables as thecoefficient in Martin et al. (1994)
precipitation drops, the number concentration decreases exhat do not depend on the droplet concentration, hence might
ponentially with size, but the sampling section of the driz- overemphasize the contributions of highly diluted cloud vol-
zle and precipitation particle spectrometers does not increasemes. The tuning of the parametric functions described here-
accordingly. One is thus tempted to increase the samplafter is thus based on moments of the size distribution instead
length, hence increase the number of sampled particles, tof mean radii of the moments, and 4 momerig ( M2, Ms
better characterize a spectrum. Droplet spectra, however, argnd Mg) are considered separately.
highly variable at scales smaller than 100 m (Pawlowska et
al., 1997). This spatial variability raises two important issues
when averaging spectra over long distances for characteriz-
ing cloud system representative properties. Lintensive” and “extensive” are defined here with regards to
First, the spatial variability is linearly smoothed out when the number of particles, instead of number concentration or mixing
cumulating particle counts over a long sample and this mayratio.

q (gm™)

Fig. 1. Scatter-plot of the droplet number concentratidh, and
the LWC, ¢, for droplet spectra sampled at 1 Hz, during the ACE2
(blue) and RICO (red) field experiments.

Atmos. Chem. Phys., 10, 4835348 2010 www.atmos-chem-phys.net/10/4835/2010/
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Fig. 2. Scatter-plots (grey points) of the tuning parameter values as a function, from left to right Aé{ tié>, M5, andMg moment values.

The x-axis is divided in 10 classes on a Logscale. The thin lines denote the 25th and the 75th percentiles of the tuning parameter distribution
in each class. The circles and triangles denote the tuning parameter value that minimizes the standard deviation of the absolute error and th
geometric standard deviation of the relative error in each class, respectively. The horizontal thick line denotes the constant trade-off value
of the tuning parameter. The top row is for the Lognormal function, the second and third rows are for the Generalized Gamma functions
with «=1 andw=3, respectively. On top of each graph, the number in brackets on the left (right) hand side is the tuning parameter value
that minimizes the absolute (relative) error over the whole range of variation of the specified moment. The fourth row shows the number of
sampled spectra in each moment class.

7 Tuning of the parametric functions four moments, from left to right, for the Lognormal paramet-
ric function in a) and for the generalized Gamma function
7.1 Constant tuning parameter with ¢=1 (GG1) andx=3 (GG3) in b) and c), respectively.

For each observed spectrum the moment value is reported
Figure 2 summarizes the analysis. The upper three rowsn the x axis and the value of the tuning parameter that mini-
show scatter-plots of the tuning parameters values for thamizes the error is reported on the y axis. The two lines are the

www.atmos-chem-phys.net/10/4835/2010/ Atmos. Chem. Phys., 10, 48252010



4842 O. Geoffroy et al.: Parametric representation of the cloud droplet spectra

a) Lognormal, 0,=1.34: g;p=f(M)
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Fig. 3. Scatter-plots (grey points) of the absolute errors between the observed spectrum moment value and the one of the parametric functior
using the trade-off value of the tuning parametgrzl.34 for the Lognormal function (top row);=10.3 for GG1 (2nd row), and§:1.11

for GG3 (3rd row), as a function of the moment values. The X-axis is divided in 10 classes as in Fig. 2. The thin lines denote the 25th
and the 75th percentiles of the absolute error distribution in each class. The circles and the error bars denote the arithmetic mean and the
arithmetic standard deviation of the absolute error values in each class. The absolute errors are normalized from left to right respectively by
100 pm cnv3 for My, 1000 png cm—3 for My, 107 punP cm—3 for M5 and 16 um® cm—3 for M.

25th and the 75th percentile of the corresponding distributiorthat these two higher moments are more sensitive than the
over 10 classes on a Logscale. The circles and triangles adewer ones, although the impact, even with a threshold value
the tuning parameter values that minimize, in each momenbf 27.5 um, is hardly noticeable. This, value is close to
class, the arithmetic and the geometric standard deviation othe revised value that was recommended in the 9th inter-
the absolute and relative errors, respectively. The number ofomparison exercise of the GCSS BLW&,£1.2) for the
samples in each class are reported on the lower row. parameterization of cloud droplet sedimentation (Ackerman
o etal., 2008).

For the Lognormal distribution, the top row suggests thata  pqr the Generalised Gamma distribution, the results are
o, value between 1.3 and 1.4 provides accurate estimationggjmijar, with optimum values of the tuning parameteof
for the moment values that are the most frequently observedy,e order of 10 for GG1 and slightly larger than 1 for GG3
; 3 —3 i
l.e. 1%“%” _fsor M1, 5.1 pn? Cm@ for J\/g fr:]%m 19: although the trends are reversed compared to the Lognor-
t0 2.10 e cm™ for Ms and from 10 to 2.1¢" pmP cm mal since increasing values of theparameters correspond
for Me._ For M1 and M2, however, this value underestimates 15 narrower spectra. A value of equal to 1 corresponds
the optimun, value at small moment values, hence overes-jy the formulation of the autoconversion in Seifert and Be-

timates the small moment values, and inversely for the Iargeheng (2006, Eq. 4) to a. value equal to 0, which is com-
moment values. For the higher momem, and Mg, the op- monly used.

timumo, value does not vary significantly with the value of
the moment. The sensitivity test to the radius threshold value
that separates droplets from drops in the bulk scheme reveals
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a) Lognormal, 6,=1.34: e...=f(M,)
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Fig. 4. Same as Fig. 3 for the relative errors. The circles and the error bars denote the geometric mean and the geometric standard deviatiot
of the relative error value distribution in each moment class. The relative errors are not normalized.

This set of scatter-plots suggests that there is no single pasame process parameterization (see Table 1 in Gilmore and
rameter value that minimizes both errors for the 4 momentsStraka, 2008). For better consistency, we propose a compro-
concomitantly. The optimum value indeed depends on themise that partly satisfies all types of applications. A trade-off
application and one might selectM; optimum value for  value of the tuning parameter is derived as:
the prognostic of peak supersaturation in a CCN activation 1
scheme, a1 specific one for radiative transfer and the sed- p* = _Zi,j’kni,jpi,j,k, 9)

. . X : 8
imentation flux of particle number concentration)/g spe- h " the total ber of cloud lé&l1:101 stand
cific one for the sedimentation flux of particle water content,W eren is the total number of cloud samplég]1:10] stan

and aMg specific one for the retrieval of cloud properties Lortlhg moment clazs,et[l,Z't,rt?,B]tztancés fcIththe morlnz;:'nt, and
from a radar reflectivity. €[1,2], corresponds to either the absolute or relative error.

n; j, is the number of samples in classf the momentV;

It might be questionable, and less practicable, to use differandp; ; «, is the optimum tuning parameter value in the class
ent values of the tuning parameter for the analytical function: of the momentj, for the absolute and relative errors, re-
that describes the droplet distribution in a numerical model,spectively.
although this is a common practice when using in a numeri- - This trade-off value of the tuning parametef,=1.34 for
cal model parameterizations of diverse origins, hence relyinghe Lognormal,y;=10.3 for GG1 and3=1.11 for GG3, is
on different values of the tuning parameter or even differentrepresented in Fig. 2 by a horizontal bar and it is reported in
parametric functions. For instance the bulk microphysicalTable 2, with the resulting offset and standard deviations of
schemes tested by the GCSS boundary layer working groughe absolute and relative errors.
are based on a Lognormal function for parameterization of Figure 3 shows scatter-plots of the absolute errors in each
droplet sedimentation (Ackerman et al., 2008), whereas thenoment class, as in Fig. 2, for the Lognormal (first row), the
autoconversion scheme often relies on different hypothesessG1 (second row) and the GG3 (third row) parametric func-
Some authors use different distribution hypotheses in thdions. The circles and error bars indicate the arithmetic mean
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a) Lognormal: 6,=f(q.)
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Fig. 5. Same as Fig. 2 but plotted as a function of the LWE, The thick line represents the proposed parameterizations for the variable
tuning parameter.

(offset) and standard deviation of the absolute error values iry.2 Variable tuning parameter
each class. Note that for practical reasons, the error values

are normalized in each graph, as specified in the figure capy, 4 second step, we explore the potential of diagnosing the
tion. Figure 4 is S|m|'lar fqrthe relative errors, although eITorSyning parameter, using the prognostic variables of a bulk
are not normalized in this case. These figures c_on_flrm that darameterization, i.eV or ¢.. The tuning parameter shows
single parametgr value provides accurate descriptions of thg nsticeable sensitivity tg., and almost no sensitivity t.
droplet spectra in the most common range of moment valueste sensitivity tog. is illustrated in Fig. 5 that is similar to

but significantly deviates at low moment values for the reIa-Fig_ 2, except that the x-axis now represents the LWC.
tive error and high moment values for both errors, although

Th imum rameter val in I
such samples are less frequently observed. e optimum parameter values, eagh class

(10 classes) of each moment (4 moments) and for both
the absolute (circles) and relative (triangles) errors, are
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a) Lognormal, 6,=0,": £,=f(M,)
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Fig. 6. Same as Fig. 3 using the proposed parameterization for the variable tuning parameter.

combined and the function @f. that best fits the 80 values 8 Summary and conclusions
is derived for the Lognormal, the GG1 and the GG3 succes-

sively, leading to the following parameterizations: Droplet spectra measured in stratocumulus and shallow cu-
mulus clouds have been examined to fit three parametric
og” =—0.056:-In(g.) +1.24, (20) functions, i.e. the Lognormal, and the Generalized Gamma
functions withe=1 anda=3, successively, that are frequently
vy =145.9.+6.7, (11)  used in bulk parameterizations of the microphysics to repre-
» sent droplet size distributions.
v3 =1.58-9.+0.72, (12) These functions have three independent parameters. Two

) ] _ are constrained by the values of the droplet number concen-
whereg, is expressedin g ”‘3 They are represented in each yaion and liquid water content. An optimum value of the
graph of Fig. 5 by a thick line. . third parametesy , for the Lognormaly for the GG1 and3

Figures 6 and 7, similar to Figs. 3 and 4 show the improve-t, the GG3, has been derived for each measured spectrum,
ment on the absolute and relative errors, respectively, in €acfhat minimizes the difference between the observed spectrum
moment class. The offsets and standard deviations of the absnq the parametric function. The difference has been mea-
solute and relative errors over the whole range of momengreq using integral properties of the droplet spectra, namely
values are summarized in Table 3. 4 moments of the size distribution/; that is used in CCN

The comparison with Table 2, attests that both the absolutg ¢(iyation schemesy; in radiative transfer calculations and
and relative errors have been reduced in term of offset angy,pjet sedimentation parameterizatiods for parameteri-
standard deviation, although the main improvement is for the, 54iq of droplet sedimentation, andk for radar reflectivity
absolute error at large values of the moments (Figs. 3 and 6),5cylations.
and for the relative error at both small and large values of the
moments (Figs. 4 and 7).
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a) Lognormal, 6g=G,": €.=f(M,)
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Fig. 7. Same as Fig. 4 using the proposed parameterization for the variable tuning parameter.

Table 3. Same as Table 2 when using the variable tuning parameter parameterizm@dosthe Lognormalpf for the GG1 and)é’ for the
GG3.

My M3 Ms Mg
Lognormal, HabsE0 abs
ag 4.3£28.9 23t227 0.2£18.2 1.2£54.2
(ument3)  (umécm™3)  (@PpmPem=3)  (10%umBcecm3)
Mrel 7Urel
1.007;< 1.052 1.00;‘1.050 0.97$1.292 0.91?1.651
Generalized Gamma, abstoabs
a=1, vi’ —2.3+£29.0 —17+226 0.3t18.1 —1.4453.5
(ument3)  (umlem3)  (APumPem3)  (108umScm3)
Mrel 7Urel
0.9977 1.053 0.99§ 1.050 0.97;5‘1.300 0.89:}‘1.672
Generalized Gamma, absto abs
a=3, Ug —8.6+29.9 —37+226 —1.7+18.0 —8.9+52.7
(ument3)  umlem3)  (APumPem3)  (108umScm3)
Mrel 7Urel

0.9847 1.052 0.99? 1.050 0.94.'}‘1.303 0.82?1.682
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