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ABSTRACT

This paper presents results from radar reflectivity data assimilation experiments with the nonhydrostatic

limited-area model Application of Research to Operations at Mesoscale (AROME) in an operational context. A

one-dimensional (1D) Bayesian retrieval of relative humidity profiles followed by a three-dimensional variational

data assimilation (3D-Var) technique is adopted. Several preprocessing procedures of raw reflectivity data are

presented and the use of the nonrainy signal in the assimilation is widely discussed and illustrated. This two-step

methodology allows the authors to build up a screening procedure that takes into account the evaluation of the

results from the 1D Bayesian retrieval. In particular, the 1D retrieval is checked by comparing a pseudoanalyzed

reflectivity to the observed reflectivity. Additionally, a physical consistency between the reflectivity innovations

and the 1D relative humidity increments is imposed before assimilating relative humidity pseudo-observations

with other observations. This allows the authors to counteract the difficulty of the current 3D-Var system to

correct strong differences between model and observed clouds from the crude specification of background-error

covariances. Assimilation experiments of radar reflectivity data in a preoperational configuration are first per-

formed over a 1-month period. Positive impacts on short-term precipitation forecast scores are systematically

found. The evaluation shows improvements on the analysis and also on objective conventional forecast scores, in

particular for the model wind field up to 12h. A case study for a specific precipitating system demonstrates the

capacity of the method for improving significantly short-term forecasts of organized convection.

1. Introduction

Many numerical weather prediction (NWP) centers

have implemented convection-permitting mesoscale

models with dedicated data assimilation systems. These

models have been developed to improve the prediction

of local high-impact weather such as fog, convective

storms, wind bursts, etc. At M�et�eo-France, a new high-

resolution NWP system, Application of Research to

Operations at Mesoscale (AROME; Seity et al. 2011)

has been running operationally since the fall of 2008.

The AROME code is mostly based on the Action de

Recherche Petite Echelle Grande Echelle Integrated

Forecast System (ARPEGE-IFS) suite and its deriva-

tives (Courtier et al. 1991). Its dynamical core is de-

rived from the Aire Limit�ee Adaptation Dynamique

D�eveloppement International (ALADIN-NH) model

(B�enard et al. 2010), while its physical parameterizations

are taken from the M�eso-NH model (Lafore et al. 1998).

Ducrocq et al. (2002) have shown that mesoscale analysis

can be more important than lateral boundary conditions

for successful forecasts of heavy rain patterns and that

simulations are particularly sensitive to the initial hu-

midity field. Indeed, small scales cannot just adapt to

large scales because of predictability limitations. High-

resolution models represent key convective cells with a

significant small-scale memory: older convection (such

as gust fronts or cold pools) may influence the develop-

ment of new convective systems. In this context, high-

frequency observations can be useful to initialize the

AROME model at similar time and space scales. The

AROME data assimilation system is derived from

ALADIN’s three-dimensional variational data assimila-

tion (3D-Var; Fischer et al. 2005), with the same control

variables (vorticity, divergence, temperature, surface

pressure, and specific humidity). It has an incremental

formulation (Courtier et al. 1994) and the background co-

variances are based on the same multivariate formulation
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as in ALADIN-France (Berre 2000). The AROME

3D-Var uses a specific 3-h assimilation cycle (Brousseau

et al. 2011).

Radar data observed by the Application Radar la

M�et�eorologie Infrasynoptique (ARAMIS) network

(Tabary 2007; Tabary et al. 2007) are well suited to

provide high-resolution information about wind and

precipitation over a large part of France. Moreover,

volumes of radar reflectivities play a key role as they

provide information on the three-dimensional struc-

ture of precipitating systems useful for the initialization

of high-resolution models. However, to extract useful

information about the main control variables such as

temperature, humidity, or wind from the observed re-

flectivities is difficult as is also the case at a larger scale

from satellite data covering cloud- or precipitation-

affected areas (Bauer et al. 2011; Errico et al. 2007).

Moreover, with variational techniques, the assimilation

of the reflectivity raises a number of issues that ques-

tion the validity of several fundamental assumptions:

d The background-error matrix allows us to spread

spatially the information brought by the observations,

but the current covariance structures are mainly iso-

tropic and homogeneous and the cross correlations

between humidity and other control variables exist but

are rather small (Berre 2000).
d The balance between hydrometeors and temperature,

humidity, and the wind field is still badly known and

introducing these hydrometeors in the control variable

remains a challenge.Michel et al. (2011) points out such

problems and suggests the use of an ensemble of short-

range forecasts at high resolution to estimate the

background-error covariances (including hydrometeor

variables). They propose heterogeneous covariances as

a way to separate rainy and nonrainy areas. With four-

dimensional variational data assimilation (4D-Var)

systems it is possible to achieve implicit error correla-

tions between hydrometeors and other control vari-

ables through the linearized model dynamics as shown

by Sun andCrook (1997) andmore recentlyWang et al.

(2013b). But, for operational applications at the con-

vective scale, a 4D-Var system is still too expensive.

However, 3D-Var systems can achieve indirectly some

balance through assimilation cycling.
d It is necessary to code the tangent linear of the ob-

servation operator for reflectivity and its adjoint. Since

the observation operator for reflectivity is nonlinear

(threshold for detection of precipitation), this can

entail suboptimalities during the minimization process

(Park and Droegemeier 1997). Wang et al. (2013a)

have shown that the direct assimilation of reflectivity by

using a linearizedZe2 qr (reflectivity minus rainwater)

equation can provide a strong underestimation of qr
(dry bias) when the observation minus model back-

ground is large (e.g., if the model is too dry in

comparison with observations).
d Nonrainy observations and model equivalents cannot

be fully taken into account because of the ‘‘no rain’’

issue (detailed hereafter) that occurs when there is no

rain in the first guess but the observation is rainy or the

symmetric case. When the model equivalent is non-

rainy, rainy profiles cannot be produced since the

variational approach requires a small amount of pre-

cipitation in the model to have a ‘‘nonzero’’ adjoint

sensitivity (Lopez and Bauer 2007; Errico et al. 2007).

As a consequence, symmetrically, the use of no-rain

observations could lead to strong dry biases.

In that context, the first attempts through case studies

to assimilate such reflectivities have shown some benefit

for 4D-Var (Sun and Crook 1997) and 3D-Var (Xiao

et al. 2007) and more recently by using an indirect as-

similation of radar reflectivity with 3D-Var (Wang et al.

2013a) and 4DVar (Wang et al. 2013b; Sun and Wang

2013). In all these studies, cold processes were not taken

into account. Indeed, a similar methodology has shown

strong limitations when applied to cold microphysics

(Wu et al. 2000; Amerault et al. 2008). Other methods to

assimilate radar reflectivity have been attempted with

more or less success. The ensembleKalman filter (EnKF)

for assimilating radar observations at the convective scale,

based mainly on simulated observations, has proved ad-

equate for Doppler winds (Snyder and Zhang 2003).

However, the assimilation of radar reflectivity on top of

radial velocity only brings small improvements (Tong and

Xue 2005; Caya et al. 2005). Therefore, assessments with

real radar observations have been limited to specific cases

of convective organization (Dowell et al. 2004; Aksoy

et al. 2009, 2010).

An alternative to a direct variational approach whose

minimization of the cost function could fail is pro-

posed. An original ‘‘1D13D-Var method’’ to assimilate

radar reflectivities was introduced at M�et�eo-France by

Caumont et al. (2010), following the same approach

proposed by Mar�ecal and Mahfouf (2000, 2002) for the

assimilation of satellite-derived rain rates. It consists in

the retrieval of pseudo-observations of relative humidity

from observed reflectivity vertical profiles through a

unidimensional Bayesian inversion. This 1D approach

has been largely inspired from the methodology used to

retrieve precipitation rates and latent heating profiles

from satellite observations and from a database of cloud

ensemble simulations (Olson et al. 1999; Kummerow

et al. 2001). Choosing to assimilate raw reflectivity data

requires us to implement an observation operator that
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allows to convert the model control variables (surface

pressure, temperature, wind, and moisture) and other

prognostic fields as those related to precipitating hydro-

meteors (rain, snow, and graupel) into a model equiva-

lent radar measurement at the observed location. The

difficulties to treat nonlinear moist processes involved

in the definition of the observation operator (convec-

tion regimes and saturation) are bypassed with the 1D

methodology. Then the retrievals are assimilated in the

AROME 3D-Var that allows us to benefit from a mul-

tivariate analysis scheme.

Following a preliminary study of Caumont et al. (2010),

mainly performed with a research version of a non-

hydrostatic mesoscale assimilation system, this paper

describes the implementation of radar reflectivity assim-

ilation in the operational AROME system, including

adaptations and evaluations. Different assumptions had

to be made to the observation operator, as well as to the

1D methodology in order to adapt them to the parallel

computing environment of the AROME code. More-

over, scientific compromises were necessary in a cycled

assimilation context. Results are shown from a pre-

operational version of the radar reflectivity assimilation

in the AROME model. They are complemented by tests

with an operational configuration. Section 2 provides a

description of the radar products, tailored for assimilation

purposes, the specific preprocessing, and usage in the

assimilation system, together with the specification of

associated error statistics. The 1D13D-Var method is

detailed in section 3, including descriptions of the ob-

servation operator for reflectivities, and of the 1D

method, with a study of its behavior that leads to nec-

essary screening decisions. The results of the assimila-

tion experiments that are presented in section 4, mainly

consist of studying the impact on analyses and evalu-

ating conventional and precipitation forecast scores.

Finally, results are summarized and discussed in section 5

by highlighting the benefits and weaknesses of this as-

similation system.

2. Observations

a. The French radar network

TheFrench radar network ofM�et�eo-France (ARAMIS)

currently comprises 18 C- and 6 S-band weather radars,

13 of them having polarimetric capability. At the time of

the experiments presented in this paper, M�et�eo-France

operated 10 polarimetric weather radars, 9 at the C band

and one at the S band (Fig. 1) and the ARAMIS network

FIG. 1. Map of the French radar networkARAMIS over the AROMEdomain. Green circles

denote S-band radars, yellow circles denoteC-band radars, and red circles indicate polarimetric

radars. The number of different elevations scanned every 15min is provided in the circles.
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comprised 17C- and 7 S-band radars. In the last years, the

scanning strategy has been adapted for assimilation pur-

poses. It consists of a 15-min supercycle containing three

5-min cycles. The lowest elevation angles are scanned at

each cycle while new high elevations are added and only

scanned once in a supercycle. This scanning strategy al-

lows us to give rather complete volumetric scans thanks

to different plan position indicators (PPIs) ranging be-

tween 28 and 118 and depending on the radar. Raw data

are available in a binary universal form for the repre-

sentation ofmeteorological data (BUFR) format, defined

at M�et�eo-France, with a 1-km spatial resolution within

a 512 3 512km2 domain (Cartesian grid). Each file con-

tains values for one elevation of reflectivity, radial wind

(for data coming from one of the 16Doppler radars), and

data status. The results presented herein were obtained

using observations, recorded and archived in real time by

M�et�eo-France in Toulouse, France, since August 2007.

That is, reflectivity data from the 24 radars were assimi-

lated in the experiments presented in this paper, but

several scans and/or azimuths were excluded from the

assimilation system through a data preprocessing dis-

cussed in the next paragraph.

b. Reflectivity preprocessing

The raw reflectivities are preprocessed to exclude data

with gross errors. For that purpose, each raw datum

contains information, which allows us to distinguish pre-

cipitation from nonprecipitating good pixels, clear-sky

echoes, sea clutter, and anomalous propagation (anap-

rop). In particular ground clutters are filtered either from

climatology map or from low values of the standard de-

viation of reflectivity. The information on echo types is

used to remove nonmeteorological pixels, and to tune

observation error statistics for the assimilation system

(see the next paragraph). An estimation of the attenuation

by rain is provided by the Hitschfeld–Bordan method

(Hitschfeld and Bordan 1954). It prevents us from using

pixels that are strongly attenuated by heavy rain.An initial

sampling of the data is performed at 5km in order to re-

duce the amount of reflectivity observations in the system.

This first preprocessing is justified by the horizontal scale

of the background-error structure functions (’15km) of

the AROME model (Brousseau et al. 2011).

In addition to this preprocessing, a number of thresh-

olds on reflectivity values have been set to eliminate most

of the pixels contaminated with ground echoes. When

many pixels are identified as anaprop (above 500%of the

number of static ground pixels), minimum thresholds for

rainy information are introduced: below 3600m (above

mean sea level) and for all radars, pixels with reflectivity

values lower than 15dBZ are discarded, while above

3600m (abovemean sea level), pixels are discarded when

reflectivity values are lower than 8 and 0dBZ for S-band

and C-band radars, respectively. These thresholds are as-

sumed constant, but in reality, they depend on the radar

and on the weather situation: in preconvective situations,

these values can be very high (compatible with the current

choices) but they can be slightly smaller in winter.

Concerning the beam blockage, a choice has been

made not to correct the raw data. Instead, a pragmatic

approach is applied: it consists of blacklisting data that

are potentially affected by beam blockage. In practice,

the pixels corresponding to the azimuthal sector and el-

evation identified as partial beam blocked areas (by using

maps of partial masks) are removed from data assimila-

tion. However, a number of clean pixels can be wrongly

rejected (i.e., in front of mountains). An alternative ap-

proach could be to consider the beam blockage in the

observation operator for radar reflectivities by modeling

the weather beam topographical blockage (Bech et al.

2007). So far the first results are not satisfactory com-

pared to our pragmatic approach (Haase et al. 2007).

c. Use of ‘‘nonrainy’’ observations

The assimilation method (1D13D-Var described

hereafter) is also efficient when the model background is

nonrainy. Indeed, it is possible for the model to create

precipitation (in the first time step of the forecast after the

analysis) when the model first guess is not producing any

precipitation at observation location. Preliminary tests

without using the no-rain signal led to predominantly

positive humidity increments and have confirmed that

symmetrically it was fundamental to assimilate the no-rain

information to suppress spurious convection (Wattrelot

et al. 2008) and avoid the spatial extent of positive hu-

midity analysis increments (Wattrelot 2009). But in order

to properly use the no-rain information, the minimum

detectable signal from each radar must be known. This

value corresponds to a minimum power Pnoise, which can

be detected by the radar. The power Pr received by the

radar depends on its characteristics, but what is used in

practice is the ‘‘equivalent reflectivity factor’’ linked to

the received power Pr by the following formula (Doviak

and Zrnic 1984) or (Sauvageot and Coulomb 1982):

Z
e
(r0)5 10 log

"

r20Pr(r0)/C

1mm6m23

#

, (1)

where r0 is the vector of length r0 that links the radar

emitting antenna to the center of the resolution volume,

and C is the radar constant that depends on the radar

characteristics. The equivalent reflectivity (in dBZ) is

a relative quantity compared at the threshold value of

1mm6m23. For a nonattenuating environment, Eq. (1)

allows us to write the minimum detectable reflectivity
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factor Znoise as a function only of the distance from the

radar r0:

Znoise(r0)5Pnoise(dBm)1 20 log(r0)2C(dBm)

5 20 log

�

r0
rc

�

, (2)

where rc 5 10(C2Pnoise)/20 is the characteristic range from

the radar where Znoise becomes positive. So, the mini-

mum detectable signal depends on the range from the

radar and on a specific distance rc function of the radar

characteristics (Fig. 2). The distinction between rain and

no rain is easy with the model background since it only

depends upon the existence of precipitating hydrome-

teors. To make a meaningful comparison between ob-

servation and model counterparts in all situations, very

low values of reflectivity simulated by the model Zmodel

are set to the minimum detectable value of the radar.

Indeed, if the model hydrometeor contents are nonzero,

the simulated reflectivity Zmodel will be significant, even

with very low values, and has to be used differently ac-

cording to the observation value Zradar. A comparison

against an observed value at the minimum detection

level (Zradar 5 Znoise) indicates that there is no rain

observed by the radar above this value. Since the radar

cannot provide information below Znoise, the simulated

reflectivity Zmodel is set to this threshold in order to

avoid spurious corrections. The different possible situ-

ations are summarized in Table 1.

d. Errors

To retrieve humidity profiles from columns of re-

flectivities, it is necessary to specify observation error

statistics. These errors originate from the observation

operator and from the reflectivity measurements. Verti-

cal correlations of reflectivity observations errors are not

taken into account. Therefore, the covariance matrix of

observation errors RZ used in the 1D Bayesian inversion

is diagonal. At each level, the standard deviation sz is set

to 0.2 dBZ (additional details on this specification are

given in section 3b). In theory, these errorsmust take into

account the different sources coming from the measure-

ment [e.g., undetected anomalous propagation (anaprop)],

attenuation by precipitation. Despite some arbitrariness

in the specification of sz, preliminary tests have shown

that the results of the 1D13D-Var experiments were not

so sensitive to this value. It appears more important to

specify accurately the observation error statistics of the

humidity retrievals from the 1D inversion into the 3D-Var,

since they determine confidence given to the pseudo-

observations. In particular, an increase of the measure-

ment uncertainty with the distance from the radar

(because of the beam broadening effect and propaga-

tion effects) is taken into account by applying the fol-

lowing pseudo-observation standard deviation:

FIG. 2. Minimumdetectable reflectivity as a function of range for

three radars (shown as the three different line types): example of

different status of Zmodel following its position compared to the

noise’s curve of the assimilated radar as defined in Table 1 (see text

for explanations).

TABLE 1. Description of the various cases of rain assimilation: ‘‘No rain observed’’ is the radar reflectivity observation at the noise’s

levelZnoise as defined by Eq. (2) and ‘‘No rain simulated’’ includes either ‘‘nonrainy’’ simulated reflectivity (no hydrometeor in themodel,

leading to the simulated reflectivity set at the arbitrary value 2120 dBZ) or ‘‘rainy’’ simulated reflectivity below the noise’s level Znoise.

Cases Definition Decision

No rain observed (NoRainO)/

no rain simulated (NoRainS)

Zradar 5 Znoise and Zmodel # Znoise No assimilation: when " i 2 [1, nelev]

Zi_model # Zi_noise then Zi_model is set to Zi_noise

No rain observed (NoRainO)/

rain simulated (RainS)

Zradar 5 Znoise and Zmodel . Znoise Drying

Rain observed (RainO)/

no rain simulated (NoRainS)

Zradar . Znoise and Zmodel # Znoise Moistening

Rain observed (RainO)/

rain simulated (RainS)

Zradar . Znoise & Zmodel . Znoise Adjustment of rain (drying or moistening)
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s
RH
o 5 0:151

0:253 d

160
. (3)

Therefore, the pseudo-observation error of relative hu-

midity retrievals varies between 15% and 40% according

to the distance from radar [expressed in kilometers in the

Eq. (3)], and profiles are only taken within a 160-km ra-

dius. The error correlations between the retrieved pro-

files are also neglected but a thinning is performed to

justify this approximation.

3. The 1D13D-Var reflectivity assimilation

algorithm

a. Reflectivity observation operator

By definition, the radar reflectivity factor Z is a phys-

ical parameter (the sixth power of the hydrometeor di-

ameter over all hydrometeors in a unit volume), which is

independent of the radar characteristics and has meteo-

rological significance (Doviak and Zrnic 1984). However,

radar meteorologists have introduced the equivalent re-

flectivity factorZe, which corresponds to a received signal

of the same power but for liquid water scatterers under

specific assumptions on backscattering and antenna’s

radiation pattern as described by Probert-Jones (1962).

To assimilate an equivalent reflectivity factor, still re-

ferred to as radar reflectivity, the NWPmodel must have

the capability to simulate a realistic counterpart of the

observed value. The observation operator that simulates

radar reflectivities has been adapted from the M�eso-NH

‘‘radar simulator’’ described in Caumont et al. (2006). Its

goal is to simulate accurately the horizontally polarized

electromagnetic pulse backscattered by the hydrometeor

targets in the direction of the radar antenna. The com-

putations and assumptions are divided in two parts. The

first one concerns the computation of radar reflectivity on

model grid points. In AROME this is done at eachmodel

level after a horizontal bilinear interpolation of the sim-

ulated hydrometeors at observation location.1 The sec-

ond part is the definition of the sampling resolution

volume of the radiation, which contributes most to the

returned power.

1) THE RADAR REFLECTIVITY AT EACH MODEL

LEVEL

In the AROME observation operator, the backscat-

tering cross section s(D, r) of particles of diameter D at

the distance vector to the radar r is computed from the

Rayleigh method. This assumption is valid when the hy-

drometeor diameter is sufficiently small compared to the

radar wavelength. More sophisticated methods (such as

volumetric methods) are available in the ‘‘M�eso-NH ra-

dar simulator,’’ but theRayleigh scattering approximation

is reasonable for S and C-band radars (Caumont et al.

2006). The integration on the model grid requires the

knowledge of the hydrometeor size distributionsN(D, r).

The same distributions as in the M�eso-NH radar simu-

lator have been used for the observation operator in

AROME since both share the same microphysical

scheme (Caniaux et al. 1994; Pinty and Jabouille 1998)

that considers the following hydrometeor types: cloud

water, rainwater, graupel, snow, and primary ice. Since

cloud water gives very small reflectivities (typically lower

than 210dBZ), it is not considered in the observation

operator. Therefore, the radar reflectivity ze(r, h) at each

model level is computed as

z
e
(r,h)5 �

j2type

jKjj
2

jKwj
2

ðD
max

D
min

N
j
(D, r,h)D6 dD , (4)

where jKjj
2 is the dielectric factor for the precipitation

hydrometeor type j, jKwj
2 is the dielectric factor of wa-

ter, andNj(D, r, h) is the number of particles of diameter

D(m) for this type, at the altitude h of the considered

model level. Under these assumptions, the radar re-

flectivity ze depends only upon the relative permittivity

of the hydrometeor scatterers and not upon the radar

wavelength. The distance r to the radar is considered

constant on the model reflectivity profile over the res-

olution volume (Fig. 3).

FIG. 3. Schematic diagram of the radar reflectivity observation

operator. The radar beampropagates along a straight ray path in an

atmosphere over a fictitious Earth with an equivalent radius 4/3a.

The shaded area represents the volume resolution with model

levels.

1This interpolation by grid point is possible because the hori-

zontal size of the radar gate is considered lower than themodel grid

mesh.
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2) THE SIMULATED RADAR REFLECTIVITY IN THE

RESOLUTION RADAR VOLUME

Regarding the definition of the resolution volume,

some assumptions on the geometry of the radar beam

have been adopted: the earth’s curvature has been taken

into account and a constant, climatological vertical gra-

dient of the refractivity index is assumed. Under these

assumptions, the height of the curved radar beam is the

same as that from a straight ray path propagating in a

homogeneous atmosphere of a fictious planet with an

equivalent radius ae5 4/3awith the earth’s radius (Fig. 3)

(Doviak and Zrnic 1984). This last hypothesis corre-

sponds to themodel of the ‘‘effective radius of the earth.’’

This allows us to localize the altitude of the radar beam,

but only as a function of the range from the radar.

However, this assumption is not valid when the vertical

gradient of humidity is weak (temperature inversion at

low elevations) or very strong (midlevel advection of

humidity). Therefore, it is necessary to detect anoma-

lous propagation before the assimilation processing as

pointed in section 2b.

The emitted energy of the radar beam is confined into

a conical beam. The resolution volume is radially deter-

mined by the sampling process and orthoradially defined

by the antenna’s radiation pattern. Since gate lengths are

on the order of 250m and the 23-dB beamwidth is at

most on the order of the model grid mesh size in the

horizontal, there is no need to integrate model fields

along the horizontal direction, which is a significant

advantage for the AROME code parallelization. Also,

to keep a good level of performance on parallel com-

puters, the attenuation of the reflectivity by hydrome-

teors along the radar beam path is not taken into account,

which avoids too much message passing between pro-

cessing units. Sensitivities studies have shown that at-

tenuation was crucial for reflectivity signals from X-band

radars, and sometimes from C-band radars. Therefore, it

is important to detect such attenuation before the as-

similation as pointed in section 2b.

In the observation operator for AROME, the power

density function is described by a Gaussian function to

represent the main lobe as suggested by Probert-Jones

(1962). The side lobes are not simulated: their power is

neglected because for the French radars it is at least

20dB smaller than the maximum power of the main lobe.

However, the hydrometeors are not considered uni-

formly distributed in the resolution volume and because

of the radar beam broadening with the distance from the

radar, the variations of reflectivities within the resolution

volume have to be taken into account in the vertical.As in

the M�eso-NH radar simulator, the integration is done in

the vertical direction through a weighted sum of the re-

flectivities in the considered vertical profile. Therefore,

the radar reflectivity depends on the antenna aperture

(one of the radar characteristics) at the distance r from

the radar and can be written as

Ze(r)5 10 log
1018

1m3

ðH
max

H
min

ze(r, h) exp

�

28 ln2

�

u(h)2 ielev
Du

�2�

dh

ðH
max

H
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exp

�

28 ln2

�

u(h)2 ielev
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�2�
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6
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7

7

7

5

, (5)

where ielev is the elevation of the radar beam, u(h) is the

apparent elevation at an altitude of h, Du is the 3-dB

beamwidth for one-way transmission, Hmin (Hmax) cor-

responds to the lowest (highest) altitude of themodel level

in the antenna aperture, and close to the value ielev2Du/2

(and ielev 1 Du/2).

b. 1D method

Reflectivities depend directly upon hydrometeor

contents, but the latter are not in the AROME’s 3D-Var

control variable. Furthermore, initialization of these

species is not expected to have significant impact on

short-range forecasts because of their minor contribution

in supplying convection and also from their lack of pre-

dictability (Fabry and Sun 2010; Fabry 2010; Wang et al.

2012, 2013a). It seems, therefore,more efficient tomodify

variables such as humidity or temperature. For that

purpose, a 1D Bayesian retrieval of relative humidity

columns from reflectivity columns has been developed

upstream of the 3D-Var. The Bayesian formalism al-

lows us to retrieve the most probable relative humidity

vertical profile, given a vertical profile of observed re-

flectivity and a database of consistent reflectivity vertical

profiles by using the model state in the vicinity of the

observation (Caumont et al. 2010). Significant technical

modifications are done in the massively parallel code

AROME in order to use a consistent database in the 1D

Bayesian inversion.

Themethodology described in detail in Caumont et al.

(2010) is summarized hereafter. Let the vector x repre-

sent a model vertical profile to retrieve, xtrue denotes the

true state vector, and the vector yo represents a set of
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available observations. The best estimate of x given the

set of observations yo can be written by using Bayes’s

theorem:

E(x)5

ð

xP(y2 yo j x5 xtrue)P(x5 xtrue) dx . (6)

A first approximation can be made by replacing the in-

tegral expression by a finite and discretized sum. It is

possible if a sufficiently large database of atmospheric

profiles with associated simulated counterparts (from

the background in our case) is available.Moreover, if we

assume that the errors of the observations yo and of the

simulated observations y are Gaussian and uncorrelated,

Eq. (6) can be simplified. In our particular case, for each

observed column of reflectivity (yZ), a column of relative

humidity pseudo-observations (yHU
po ) can be computed

by a linear combination of simulated columns taken

from the model background state weighted by a func-

tion of the difference between observed and simulated

reflectivities:

yHU
po 5 �

i

xHU
i

exp

�

2
1

2
Jpo(xi)

�

�
j

exp

�

2
1

2
Jpo(xj)

� (7)

with

Jpo(x)5 [y
Z
2H

Z
(x)]TR21

Z [y
Z
2H

Z
(x)] , (8)

where xHU
i are columns of model relative humidity taken

from the background state in the vicinity of the observa-

tion, HZ(x) is the simulated reflectivity by the radar sim-

ulator, andRZ is the observation error covariance matrix.

In the AROME operational configuration and experi-

ments presented hereafter RZ will be a diagonal matrix

with one unique term equal to n3s
2
z, where n is the

number of observations in a vertical profile. The obser-

vation error is inflated by the number of elevations to give

identical weights to the same model profiles for every

observation columnwhatever the number of elevations to

retrieve. The sz values act in the 1D Bayesian inversion

as weights on the model profiles closest to the observed

column: if the observation errors are too large, the re-

trieval will be a weighted average of many model neigh-

boring profiles and therefore, it could be biased toward

the mean value of the profiles from the database. To

prevent from such effect, a very low value of sz is chosen

(at 0.2 dBZ). The consequences of this choice are detailed

in the next paragraph.

The method assumes that model profiles (in the vi-

cinity of the observation and used to invert reflectivities)

follow the same probability density function as that of

the real profiles found in nature (or at least in the region

where the inversion is applied). Using model profiles in

the vicinity of the observation will constrain the solution

and avoid an incorrect retrieval that could occur because

of finite summation or implicit ambiguity of the model

profiles for the nonrainy observations. Experiments were

undertaken in order to examine the sensitivity of the re-

sults to the chosen vicinity, and to the number and to the

spatial density of the profiles. Results indicate that above

100km around the radar observation and above 80

profiles,2 the dependence of retrievals on the number of

profiles and research area becomes very low (not shown).

However, the behavior of the 1D method may depend

upon the background profiles and must be checked be-

fore assimilation of the retrieval in the 3D-Var AROME.

c. Description of the quality controls

1) A PRIORI QUALITY CONTROLS

The first quality control (QC) is based on reflectivity

observations minus guess departures averaged on each

column. This QC enables us to check observation against

the model counterpart. The new positioning of misplaced

or unpredicted precipitation patterns means that the QC

of reflectivity must allow large departures in the system:

in practice a value of 40 dBZ has been chosen. The

similar QC for humidity retrievals takes into account the

background-error statistics for relative humidity that are

flow dependent in the screening, and an observation error

set to 15% for simplicity [the dependency with radar

range presented in Eq. (3) before is only used in the

3D-Var minimization in order to filter out most dubious

data]. After the initial data reduction (5 3 5 km2) and

before entering the minimization process, a thinning is

performed, to avoid horizontal correlation of observation

errors. In each 15 3 15 km2 box, the selected profile

corresponds to the one having the most important num-

ber of elevations that passed the QC.

Other QC have also been introduced to improve the

consistency of the retrievals. One limitation of the 1D

statistical method is that the retrieved vertical profiles

depend on what the model is able to simulate at the time

of analysis. For instance, if precipitation is observed in an

area where no rain is triggered by the model, the method

will not be able to find neighboring columns with signif-

icant reflectivities. This case occurs in particular when sz

is very small. Indeed, the method favors model columns

2 Sensitivity studies with different domain sizes have been per-

formed and a moving window of 93 9 columns uniformly distrib-

uted in a 100-km square centered on the observation point is used

in the operational version.

MAY 2014 WATTRELOT ET AL . 1859



that resemble most the observation and the weights of

other columns are much lower. As a consequence,

pseudo-observations cannot be produced when the

overall background in the vicinity of the observation is

not close enough to the observation (the weights are al-

most equal to zero for every model profile), which is

a desirable feature. Sensitivity studies of the 1D13D-Var

assimilation method to the observation error standard

deviation sz were already carried out in Caumont et al.

(2010) with similar effects. In the original version pre-

sented by Caumont et al. (2010) for cases where no

‘‘rainy’’ pseudo-observations could be computed by the

1D inversion an additional correction was made that

consisted of a humidity adjustment procedure by apply-

ing saturation above themodel condensation level, where

reflectivities are observed but none can be retrieved by

the 1D-Bayesian inversion. Although it showed promis-

ing results on a case study (Caumont et al. 2010), this

adjustment procedure has not been selected for opera-

tional implementation. Indeed, given the high spatial

variability of heavy convective precipitating patterns, this

latter procedure would require a symmetrical artificial

drying to avoid creating a positive bias of humidity when

the model state is completely saturated in the neighbor-

hood of the observation. By not applying this procedure

when using a low value of sz can lead to the absence of

any retrieval for some reflectivity observations. This can

be interpreted as an implicit quality control that re-

moves observations not suitable for assimilation. The

main drawback of this approach is the inability to create

rain if the model has a completely ‘‘dry’’ state in the vi-

cinity of a rainy observation, which happens very rarely.

2) BEHAVIOR OF THE 1D BAYESIAN METHOD

To shift, create, or remove precipitating patterns, it is

necessary to give less weight to the standard background

check QC. However, in order not to introduce data of

poor quality in the assimilation, the control of the cor-

rect behavior of the 1D retrieval led to the definition of

a new quality control. In addition to the implicit control

mentioned above, the good behavior of the 1D method

can be evaluated by the existence of profiles thermo-

dynamically consistent with the observed profile. It is

especially important to check the possible ambiguity of

the relative humidity retrievals for nonrainy profiles.

That consistency can be measured by the deviation be-

tween the reflectivities simulated with the retrieved pro-

file and the observed ones. If these values are very close

to each other, it means that the model background da-

tabase contains precipitating hydrometeor information to

create the rainy or nonrainy observation.

This ‘‘pseudo-analyzed’’ profile of reflectivityZpseudo_ana

is a function of the specific contents of precipitating

hydrometeors (rainwater, snow, graupel, and pristine ice)

corresponding to a relative humidity retrieval that is ob-

tained by the same Bayesian inversion:

Zpseudo_ana 5HZ[E(x)]

5H
Z
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We then operate a simplification mainly based on prac-

tical issues: we assume the observation operator linear

with respect to the precipitating hydrometeors variables,

which leads to

Zpseudo_ana ffi �
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exp

�
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�

�
j

exp

�

2
1

2
Jpo(xj)

�

5 �
i

Zi_sim

exp

�

2
1

2
Jpo(xi)

�

�
j

exp

�

2
1

2
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� . (10)

Therefore, in practice, this pseudoanalyzed reflectivity

column is estimated from a linear combination of re-

flectivity profiles Zi_sim with the weights of the Bayesian

inversion used to derive the relative humidity retrieval.

The 1D Bayesian inversion is controlled by the rela-

tive differences between the analyzed and observed

reflectivities. Large differences between Zpseudo_ana and

yZ reveal that the inversion is not able to provide

pseudo-observations that are consistent with observations

in terms of reflectivity and the corresponding retrieved

profiles are not assimilated in the 3D-Var AROME.

In most situations, the correlation between Zpseudo_ana

and yZ is already quite good, larger than 0.9 (Fig. 4),

from the experiment OREFLEC introduced hereafter

in section 4a(2).

3) A POSTERIORI QUALITY CONTROLS

The correlation between the observation minus guess

relative humidity departures and the observation minus

guess departures of reflectivity is positive but not very

high (0.59, Fig. 5). This result was expected as it is well

known that the link between humidity and precipitation

is not linear: for instance, several precipitating states can

be found for a same humidity state, which is even more

true for dry profiles because of the ambiguity of non-

precipitating profiles. Intuitively, it is expected that the

total columnwater vapor increments should be coherent

1860 MONTHLY WEATHER REV IEW VOLUME 142



with the reflectivity departures as found for the assimi-

lation of all-sky radiances (Bauer et al. 2010; Geer et al.

2010).

The positive correlation indicates that indeed the

physical consistency is achieved. Positive (negative)

reflectivity departures; for example, too little (toomuch)

rain in the model leads to a moistening (drying) of the

model after the 1D retrieval (most of departures evolve

in the same direction). Nevertheless for a significant

number of profiles the reflectivity departures have an

opposite sign to those of relative humidity departures.

It means that the retrieval dries the model when it is

expected to increase precipitation and vice versa. These

cases can occur even if the pseudoanalyzed reflectivity is

close to the observed one (e.g., the 1D method has well

converged). Indeed, the retrieval can provide (locally on

the vertical) a reduction of humidity but with more rain

than in the background. This can be realistic but in order

to act efficiently on precipitating systems, other model

fields (includingwind convergence/divergence) have to be

modified consistently in the 3D-Var analysis in particular

through the cross correlations of the background-error

covariance matrix. However, the current climatological

specification is not particularly representative of pre-

cipitating structures as shown by Montmerle and Berre

(2010). Therefore, although radial winds are assimi-

lated consistently with pseudo-observations of relative

humidity, profiles with reflectivity and relative humidity

departures of opposite signs are discarded from the as-

similation (profiles corresponding to the first and the last

quarter of the scatterplot in Fig. 5). This latter QC is thus

linked to a current weakness of the 3D-Var assimilation

system that uses the 1D relative humidity active retrievals

similarly to the other observations mostly representative

of nonrainy areas (described in the experimental frame-

work in section 4a).

The active relative humidity retrieved profiles are

indeed directly assimilated in the 3D-Var assimilation

system as pseudo-observations at pressure levels corre-

sponding to the altitudes of observed reflectivity pixels.

4. 1D13D-Var evaluation

a. Experimental framework

Two pairs of experiments are introduced hereafter

to evaluate the impact of radar reflectivity assimilation

in the AROME 3D-Var Rapid Update Cycle (RUC)

system.

1) PREOPERATIONAL EXPERIMENTS

The main purpose of the first pair of preoperational

experiments is to demonstrate the capacity of the radar

reflectivity assimilation method for improving the per-

formance of theAROMEsystem. The configuration used

in these experiments and validated over long periods

has been the basis of all next operational experiments of

reflectivity assimilation. These experiments are based on

the first operational configuration of theAROMEsystem

(without reflectivity assimilation). The AROME system

is used with a 2.5-km mesh covering the France domain

(40.58–51.78N, 5.28W–11.28E). This domain is vertically

divided in 41 layers from 17m above the ground up to

FIG. 4. Histogram of analyzed reflectivity minus observed re-

flectivity from 2100 UTC 22 Feb to 0000 UTC 28 Feb 2010 (42

assimilation cycles) (OREFLEC experiment). The sample com-

prises 1 214 466 observations entering the 1D Bayesian inversion.

The correlation between the analyzed reflectivity and the observed

reflectivity is 0.9678.

FIG. 5. Observation minus first-guess departures of relative hu-

midity against reflectivity innovations (same period as in Fig. 4).

The color scale indicates the density of observations in a circle with

a fixed radius around each individual observation.
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1 hPa and coupled to the ALADIN model. Except for

radar data, the observations assimilated in the AROME

3D-Var are the same as in theALADIN 3D-Var (Fischer

et al. 2005), with the same spatial density, except for GPS

zenith tropospheric delay (GPS-ZTD), which benefit

from a specific station selection (Yan et al. 2009). We

performed two experiments: the first one uses the oper-

ational version of AROME from which reflectivity data

are discarded but with radar radial wind of improved

quality3 and the second one uses additional radar re-

flectivities described in section 2. The time period begins

at 0000 UTC 11 December 2008 and ends on 11 January

2009 (Table 2). These experiments are referred as

NOREFLEC and REFLEC, respectively.

In the REFLEC experiment, the information about

the minimum detected reflectivity is not used (because it

was not provided by radar producers). As a conse-

quence, the radiation values of reflectivity at noise level

were set to an arbitrary value of 0 dBZ up to 100 km in

order to account for increasing noise with range (to avoid

suspicious drying very far from the radar). Therefore,

negative values of reflectivity identified as rain (close to

the radar) are not taken into account. With such ob-

servation processing, simulated reflectivities are also

thresholded at 0 dBZ: at the observation location and also

for all model profiles from the database used for the 1D

Bayesian retrieval [Eqs. (7) and (8)].

In this configuration, the assimilation of reflectivity

became operational on 6 April 2010.

2) OPERATIONAL EXPERIMENTS

The second pair of experiments refers to an intermediate

system in preparation to the version of AROME, which

became operational at M�et�eo-France on 24 November

2010. This version contains a number of evolutions with

respect to the preoperational experiments described

above: radiances from the Infrared Atmospheric Sound-

ing Interferometer (IASI) at 80-km thinning, an increased

number of vertical levels to 60, the direct couplingwith the

global model ARPEGE with a 10-km resolution over

western Europe, background-error covariances deduced

froman ensemble data-assimilation technique (Brousseau

et al. 2011) and a larger computational domain (with 750

and 720 physical grid points in the east–west and north–

south directions). In the first experiment, reflectivity data

are introduced as described in sections 2b and 2c, with an

improved no-rain characterization using the minimum

detectable reflectivity depending on the radar and the

range from the radar. Reflectivity values at a noise level

above 0dBZ are still not used. This first experiment is

referred asOREFLEC. The equivalent experiment where

relative humidity retrievals from radar reflectivities are

not assimilated is referred as ONOREFLEC (Table 2).

Both experiments have been run over the period be-

tween 0000 UTC 1 February and 0000 UTC 28 February

2010. Experiment OREFLEC has also been run over

another period (29 April to 12 May 2010) for a com-

parison to a third experiment that uses the reflectivity as

in the preoperational experiment (i.e., without the im-

proved characterization of the no-rain detection, but

based on the sameAROME configuration as OREFLEC).

This last experiment is referred as OREFLECNOTUN.

The three experimental designs are summarized in Table 2.

b. Analysis impact

1) GENERAL BEHAVIOR

First we focus on the impact ofREFLECon the relative

humidity field. Figure 6 shows, for the overall AROME

domain, mean and RMS values of relative humidity dif-

ferences between REFLEC and NOREFLEC averaged

over 1 month, from the analyses, the 3- and the 12-h

forecasts. The assimilation of radar reflectivities brings

significant information on humidity mainly between

850 and 300hPa. The positive analysis differences pre-

dominant at 700hPa are kept through the forecasts up to

12-h range. The comparison between the mean and the

TABLE 2. Definition of the experiments.

Expt

Preoperational expt based

on the first operational

configuration of AROME

Tests based on a version

in preparation of the AROME

model as after 24 Nov 2010

Assimilation

of reflectivity

Improved usage

of the no-rain signal

NOREFLEC 3

REFLEC 3 3

ONOREFLEC 3

OREFLEC 3 3 3

OREFLECNOTUN 3 3

3These new radar data, which have been used since July 2009 in

the operational AROME system, are characterized by an im-

proved preprocessing, (e.g., better identification of sea clutter and

clear-sky echoes, even if a number of rainy pixels are also dis-

carded) that profits both reflectivity and radial wind.
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RMS at different altitudes shows that even though the

mean differences are still positive at 400 and 500 hPa,

they are smaller than at 700 hPa, while the RMS is larger.

Therefore, they exhibit similar values but with more

dispersion between negative and positive values than

at 700 hPa, leading to as much drying as moistening in

the highest troposphere, while in the midatmosphere

the differences lead to much more moistening. The im-

pact of REFLEC on the analysis differences of the hu-

midity field is still visible up to 12-h forecasts over the

entire troposphere.

An objective evaluation of the analyses fromREFLEC

against NOREFLEC over the time period between

12 December 2008 and the 10 January 2009 has been

done: a positive impact on the RMS of the differences

of the wind field from the analyses with respect to

radiosounding data has been observed (not shown) but

no impact has been found for the humidity field. In

a first explanation, this impact on the wind field can be

induced by the 3D-Var multivariate analysis. Indeed,

the cross correlations between the humidity and the

wind fields were first introduced by Berre (2000), which

has extended the balance operator to the coupling with

moisture (multiple linear regressions) including not only

dynamical links but also thermodynamic processes.

However, it will be discussed in the next section that this

impact cannot be due solely to the multivariate analysis.

To illustrate the behavior of the 3D-Var analysis, a

scatterplot of the relative humidity (RH) 3D-Var analysis

increments against the relative humidity observation

minus background departures is displayed in Fig. 7 for

the experiment OREFLEC. The RH field of the 3D-Var

analysis is clearly constrained by the RH retrievals since

nearly all points verify the following ranking: yHU
po ,

H(xHU
a ) , H(xHU

b ) or H(xHU
b ) , H(xHU

a ) , yHU
po de-

pending on the sign of the relative humidity departures.

These results are consistent with the recent computa-

tions of a posteriori diagnostics of the impact of observa-

tions on the analysis of the AROME 3D-Var assimilation

system (Brousseau et al. 2013). They computed the re-

duction of the estimation error variance and showed the

large impact of the radar observations on the analyzed

model fields, in particular that the relative humidity

pseudo-observations retrieved from the radar reflecti-

vities contribute the most to the variance reduction of

specific humidity in the midatmosphere during pre-

cipitating periods.

2) BEHAVIOR FOR A SPECIFIC RADAR

The impact on analyses of the reflectivity assimilation

is only isolated by examining differences of RH analysis

between experiments OREFLEC and ONOREFLEC

for one analysis cycle (22 February 2010) starting from

the same background.

The rain/no-rain distinction is illustrated in Fig. 8 for

the Cherves radar (red triangle) at the elevation 0.998 for

this particular date. Figure 8a (Fig. 8b) shows the ob-

served reflectivity field (the simulated counterpart of the

same PPI after being thresholded according to Table 1).

From the observation side, reflectivities at noise’s level

are kept below 0dBZ (symbol A in Fig. 8a, green pixels

between 215 and 0dBZ) in order to only use realistic

FIG. 6. Vertical profiles of analysis and forecast differences (mean and RMS) of relative

humidity between REFLEC and NOREFLEC experiments for a 1-month average (11 Dec

2008–11 Jan 2009) over the AROME domain.
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values of no-rain signal. These pixels are then collected

up to a limited radius corresponding at the value rc
[Eq. (2)] and explained by this threshold of 0 dBZ.

In Fig. 8b, the simulated counterpart is leveled in the

no-rain observation (symbol B) according to case 1 in

Table 1. The corresponding observations are then not

assimilated. For the case of absolute no-rain in the

model,4 but rain in the observation a moistening of the

model is made according to case 3 in Table 1 (symbol C).

Still on the model side, negative values of reflectivity,

between 210 and 225 dBZ (less than 1023 g kg21 of

precipitating hydrometeors) appear in an area where

scattered precipitation is simulated (symbol D). The

model produces finer rain than radars could ever detect.

These reflectivities may correspond to very weak content

of large residual droplets isolated in drying areas close

to large areas of precipitation. Indeed, in clouds where

droplets are growing and precipitation is created, the

number of cloud droplets is sufficiently large before de-

veloping into raindrops, thus inducing a positive value of

the reflectivity.

But as rain is detected in the observation at this loca-

tion, the model is moistened as still in case 3 in Table 1. It

is clearly a slightly ‘‘rainy’’ simulated reflectivity, but still

referred as ‘‘no rain simulated’’ because the simulated

value is below the noise’s level of the radar observation at

this location.

Figure 8c shows for this elevation of 0.998 (most of

data are in the midatmosphere around 100-km range

from the radar), the pseudoanalysis of reflectivity, which

contributes to define the active pseudo-observations of

relative humidity (Fig. 8d).

Figure 9 displays for the same elevation the corre-

sponding relative humidity pseudo-observation minus

background departures and their impact on the RH field

in the 3D-Var analysis at 700 hPa. In Fig. 9d, regions of

positive and negative differences in relative humidity

increments (or analysis differences because both experi-

ments use the same background state) are well repre-

sented according to the respective positive and negative

regions of departures (Fig. 9a). This case illustrates the

fact that the 1D13D-Varmethodology is able to increase

or reduce humidity whatever the state of the background

(Fig. 9c) and through different status of the used obser-

vations (Fig. 9b).

c. Forecast evaluation

Forecast evaluation has been carried out using model

analyses as a reference. Figure 10 a shows the RMS

differences in 24-h forecasts of temperature at 925 hPa

with respect to their own analyses between REFLEC

and NOREFLEC for the overall time period (between

12 December 2008 and 10 January 2009). This RMS is

reduced for REFLEC up to the 24-h forecast range. It

indicates that the radar reflectivity observations are

consistent with model forecasts, because the added in-

formation brought by the reflectivities is kept during the

24 h. It is interesting to notice that the impact is visible

for each individual forecast of the period (after the first

assimilation cycles). Moreover, the forecast differences

against observations as a reference generally show a pos-

itive evaluation of the impact. For example, a comparison

of themodel wind field at 925hPa against radiosoundings

is shown in Fig. 10b. The RMS and the mean of such

differences are reduced by REFLEC up to 12 h for

a majority of forecasts. A similar impact is noticed over

the whole troposphere for model wind forecasts. On the

other hand, no impact was found on the humidity field.

This improvement on temperature and wind fields is not

intuitive since reflectivity observations should modify

mostly the humidity field. This behavior can be explained

by the cross correlations between the humidity field and

the other model fields through the background-error

covariance matrix as mentioned in the previous section

about analysis scores. However, the AROME 3D-Var

system uses a climatological multivariate background-

error covariance matrix deduced from an ensemble-

based method (Brousseau et al. 2011), which gathers

summer and winter cases in order to build statistics rep-

resentative of a wide range of forecast errors. By explic-

itly computing the statistics in rainy areas, Montmerle

and Berre (2010) have shown that using climatological

covariance matrix, the coupling between the humidity

FIG. 7. Relative humidity analysis increments against relative

humidity innovations (same period as Fig. 4).

4For numerical reasons, the reflectivity (in dBZ) in the case of

complete absence of precipitating hydrometeors in the model has

been set at the arbitrary value of 2120 dBZ.
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and unbalanced divergence could be too weak in con-

vective areas and could provide wrongly balanced in-

crements. Therefore, improvements are more likely

caused by mutual adjustments between humidity and

wind during the forecasting steps of the assimilation cy-

cle. The cycling also provides a better usage of Doppler

radial winds (Montmerle and Faccani 2009), since these

observations are consistently assimilated with radar

reflectivities.

The most visible impact has been noticed on precipi-

tation forecast scores against rain gauge measurements.

A positive impact is found for REFLEC for most of the

forecasts of a time series of 3-h probabilistic precipitation

scores (cf. Fig. 11 for the threshold of 1mmh21). The

definition of each used score is described in the appen-

dix. These categorical scores, which measure the prob-

ability of detection (POD) of rainy patterns and false

alarm ratio (FAR), are improved for a lot of analysis

times. Results are presented for one threshold but the

short-term forecasts are visibly improved for all thresh-

olds up to 10mmh21 as shown in average on Fig. 12

(above 10mmh21 the number of samples is too small to

bring any significant conclusion). Similar results have

been observed for other forecast ranges up to 12 h.

Focus is made here on the comparison between

OREFLECandOREFLECNOTUN,which uses the same

configuration as OREFLEC but without this improved

no-rain characterization as described in section 4a(2).

FIG. 8. (a) Observed radar reflectivity, (b) corresponding simulated reflectivities from an AROME 3-h forecast, (c) pseudoanalysis of

reflectivity, and (d) active 1D Bayesian retrievals used in the 2100 UTC analysis 22 Feb 2010 from the Cherves radar at 0.99 elevation PPI

(in dBZ). All model fields come from experiment OREFLEC.
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The comparison does not show any significant impact

on the objective conventional scores (not shown) but

some impact is visible on the classical probabilistic

quantitative precipitation forecast (QPF) scores. Indeed,

the Fig. 13 shows a slight improvement of the probability

of detection, the false alarm ratio, and the equitable

threat score. The frequency bias, already close to unity,

does not indicate any change in the capability to under-

predict or overpredict the occurrence of rain for any

specific threshold.

d. Case study: Thunderstorms on the southwest of

France on 5 August 2009

The pair of experiments chosen for this case study refers

to an AROME system close to the one used in REFLEC

and NOREFLEC experiments but with 60 vertical levels

instead of 41. The names of the experiments are kept

unchanged for simplicity. The case study is a convective

situation that occurred on 5 and 6 August 2009 and the

experiments are cycled every 3h from 1500 UTC 14 July

2009. In the evening of 5 August 2009, convective clouds

moved from Spain to the Basque country over the

Pyr�en�ees. During the night they covered the entire

southwest of France and strong thunderstorms developed

locally with strong gust winds over the ‘‘Pyr�en�ees At-

lantiques’’ and ‘‘Hautes-Pyr�en�ees’’ areas. Earlier in the

afternoon, temperatures were very high (above 358C) in

the southwest. The evolution of thunderstorms over the

southwest is significantly different between the forecasts

from analysis with assimilated reflectivities and the fore-

casts from analysis without reflectivity. Figure 14 shows

a much better reflectivity field from 3-h forecasts in

REFLEC at 2100 UTC 5 August but also at 0000 UTC

6 August where the convection, visible on the observed

FIG. 9. (a)Observedminus background relative humidity at the same location and (b) initial status of the observed reflectivity values.At

700 hPa: (c) background relative humidity and (d) difference in relative humidity increments between OREFLEC and ONOREFLEC

(both experiments use the same background state), for the same data, radar and elevation as in Fig. 8.
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radar composite, was absolutely lacking and not fore-

casted in NOREFLEC. This better forecast leads to

much more accurate 6-h accumulated precipitation

forecasts in accordance with the accumulated rainfall

measured by rain gauges (not shown). Associated to this

convection, some high ground gusts have been observed

between 80 and 90 kmh21. Figure 15 shows that for

experiment REFLEC such wind gusts are forecasted at

0000 UTC 6 August 2009.

5. Conclusions and discussion

The implementation of radar reflectivity assimilation

in the operational AROME 3D-Var system has been

FIG. 10. Time series of RMS (solid lines) and bias (dashed lines) of the (top) 24-h forecast

error in temperature at 925 hPa (forecasts errors are calculated with respect to own analysis)

and (bottom) 12-h forecast error in wind at 925 hPa (forecasts errors are calculated with respect

to radiosounding data), for REFLEC (gray lines) and NOREFLEC (dark lines), experiments

between 12 Dec 2008 and 10 Jan 2009.
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described. It follows feasibility studies performed by

Caumont et al. (2010) with a number of new features in

order to improve the assimilation technique, in partic-

ular to make it more efficient and more robust for op-

erational purposes. This work required assumptions on

the observation operator in particular to be compatible

with the parallel code environment of AROME. Dif-

ferent preprocessing of the raw data have been required

and introduced for the selection operationally. The

systematic use of the ‘‘nonprecipitating’’ signal has been

carried out, in particular to avoid systematic positive

analysis biases due to the fact that the adopted meth-

odology based on a 1D Bayesian inversion is able to

create pseudo-observations whatever the model state

(rainy or nonrainy).

A number of additional quality checks (QC) based on

the 1D retrieval results have been introduced. One of

these QCs is based on the ability of the model to create

or remove rainy clouds as observed, even if the behavior

of the implemented 1D inversion already shows a good

behavior in most cases. However, the positive correla-

tion between the relative humidity observation minus

guess departures and the equivalent reflectivity departures

is not very high. This result was expected but because of

the use of climatological background-error covariances,

pseudo-observations that do not verify a strong physical

consistency (same sign between high relative humidity

increments and reflectivity departures) have not been

introduced in the 3D-Var.

Several observing system experiments (OSEs) over

long periods of time have been performed and have

shown a good impact on analysis and forecast skill scores.

The assimilation of radar reflectivity brings significant

information to the analyzed humidity field. A good im-

pact of the moistening or drying areas is found in ac-

cordance with the observed precipitating patterns. On

objective conventional scores, a positive impact is visible

in particular on wind and temperature fields in the low

and midatmosphere up to 24h by comparison to own

analyses and up to 12h by comparison to radiosondes.

Sensitivity tests on the specification and use of the mini-

mum detectable values of reflectivity have been per-

formed. The potential link between the relative humidity

from the pseudo-observation and from the background

has been studied, in particular through OREFLEC ex-

periment. Only a very slight overdrying of the model has

been found (not shown). Indeed the mean value of the

observation minus background departures has been

found slightly negative (with small positive humidity de-

partures after analysis).

The assimilation of radar reflectivity became opera-

tional at M�et�eo-France in the AROMEmodel on 6 April

2010. Significant improvements to the precipitation

probabilistic scores (up to the 6-h forecast range) have

been found after the introduction of reflectivity data in

the AROME system (not shown). On 24 November

2010, the improved use of the ‘‘nonprecipitating’’ sig-

nal has been also introduced.

All these positive results validate the concept of using

a two-step methodology to operationally assimilate ra-

dar reflectivities. However, the observation error sta-

tistics were estimated a priori at the beginning of the

assimilation processing (the ‘‘true state’’ of the atmo-

sphere is a priori not known). Work is currently under

way to improve the specification of observation error

covariances. Different algorithms have been proposed

to estimate a posteriori observation error statistics (var-

iances and spatial correlations) by Hollingsworth and

L€onnberg (1986), Desroziers et al. (2005), and Fisher

(2003). Such computations will improve the specification

of observation errors and help to optimize the density of

the observations to be assimilated. First results show

a realistic specified standard deviation of the observa-

tion error, but the increase in observation density will

probably require the introduction of observation error

correlations.

FIG. 11. Time series of POD and FAR values for 3-h forecast of accumulated precipitation

for REFLEC (black line) and NOREFLEC (gray line) for the threshold 1mmh21. Probabi-

listic scores are computed against rain gauge measurements over the AROME France domain

at 0000 UTC 11 Dec 2008 and at 0000 UTC 22 Dec 2008.
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Concerning the modeling of forecast errors, the current

climatological B matrix needs to be improved. Indeed,

a significant day-to-day variability of these covariances

that are linked to meteorological conditions over France

has been found (Brousseau et al. 2012). Recent tests of

using specific background-error covariances in precipi-

tating areas have been carried out by Montmerle (2012).

The results are promising on the dynamics of convec-

tive systems, although strongly dependent upon the

precipitating systems sampled by the ensemble used to

estimate error covariances. The extension of the con-

trol variable to hydrometeors and the possible direct

assimilation of quantities provided by polarimetric ra-

dars need to be considered in the future. Michel et al.

(2011) have estimated the covariance errors for hy-

drometeors, which is a first step in that direction.

Additional work, mainly performed in the Hydrologi-

cal cycle in the Mediterranean Experiment (HyMex)

FIG. 12. Average of time series of 3-h cumulated precipitation

scores vs rain gauge measurements for different thresholds between

0000 UTC 11 Dec 2008 and 1200 UTC 1 Jan 2009 for REFLEC

(black line) and NOREFLEC (dashed line). (from top to bottom)

Probability of detection, false alarm ratio, equitable threat score,

and frequency bias. The dashed histogram indicates the number of

forecasts taken into account in the score computation.

FIG. 13. Average of time series of 3-h cumulated precipitation

scores vs rain gauge measurements for different thresholds between

0000 UTC 30 Apr and 0000 UTC 11 May 2010 for OREFLEC

(black line) and OREFLECNOTUN (green dashed line). (from top

to bottom) Probability of detection, false alarm ratio, equitable

threat score, and frequency bias. The dashed histogram indicates the

number of forecasts taken into account in the score computation.
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framework (for a better quantification of the hydrological

cycle in the Mediterranean) concerns the assimilation of

data from X-band radars and radars from neighboring

countries in the AROME 3D-Var system. Indeed, to

improve the radar coverage in the southeast of France,

M�et�eo-France, in partnership with other French research

institutes and administrations, is deploying a network of

several dual-polarization X-band weather radars. This

FIG. 14. Comparison between (middle) REFLEC and (top) NOREFLEC of the model reflectivity field at

2000 mMSL, and from the 3-h forecast on the (top andmiddle left) 2100UTC 5Aug 2009 and (top andmiddle right)

0000 UTC 6 Aug to the (bottom) radar composite.
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latter work is also used to evaluate the usefulness of ad-

ditional information provided by polarimetric variables

and associated algorithms in the assimilation AROME

system. Activities on foreign radars will allow us to pre-

pare data from European radars in the framework of

European Meteorological Network’s (EUMETNET’s)

Operational Programme for the Exchange of Weather

Radar Information (OPERA) program. The method-

ology for using the ‘‘nonprecipitating’’ signal will be

chosen according to the information available on radar

technological features.
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APPENDIX

Precipitation Scores

Precipitation scores shown in this paper are defined

hereafter; G is the number of good forecasts (well

forecasted and observed hit above the considered

threshold), F is the number of forecast hits but not ob-

served, andM is the number ofmisses (not forecasted but

observed).

The probability of detection (POD) gives the fraction

of good forecast events among all observed cases:

POD5
G

G1M
. (A1)

The false alarm ratio (FAR) gives the fraction of fore-

cast events that are observed to be nonevents:

FAR5
F

G1F
. (A2)

The equitable threat score (ETS) is a skill score and

defined as

ETS5
G2Ge

G1M1F2G
e

, (A3)

where Ge is the number of good hits due to random

chance, computed as (with N the sample size)

G
e
5

(G1F)(G1M)

N
. (A4)

The frequency bias (FB) measures the tendency to over-

or underestimate a rain rate and computed as

FB5
G1F

G1M
. (A5)

FIG. 15. Comparison between the 3-h forecasts of surface wind gusts (m s21) between (left) NOREFLEC and

(right) REFLEC at 0000 UTC 6Aug 2009 with observed gusts (dark gray triangles) at Urdos (Pyr�en�ees Atlantiques,

25.1m s21) and Ossun (Hautes-Pyr�en�ees, 22.2m s21).
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