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1 Introduction

The accuracy of Numerical Weather Prediction (NWP) models depends largely on the
availability and quality of meteorological observations. Conventional data from net-
works of weather stations, radio-sounding data as well as radar reflectivity and aircraft
measurements provide the largest amount for convective-scale data assimilation sys-
tems. But, this observing system is supplemented by an increasingly important set of
satellite observations. The next generation of EUMETSAT geostationary meteorologi-
cal satellites, Meteosat Third Generation (MTG), will bring in orbit for the first time,
an hyperspectral Infrared (IR) instrument, called Infrared Sounder (IRS). This instru-
ment will provide unprecedented high-resolution geophysical information over Europe
[Tjemkes et al., 2007]. Radiances will be measured inside the water vapour and CO2

absorption bands with extremely high spectral resolution (0.625cm−1) and accuracy (∼
2 km resolution with 10% accuracy for humidity and ∼ 1 km with 0.5o-1.5oK accuracy
for temperature). The IRS spectrometer will be based on an imaging Fourier-transform
interferometer, measuring radiances in two bands, 800 spectral channels in the Long-
Wave InfraRed (LWIR) and 920 channels in the Mid-Wave InfraRed (MWIR), with a
spatial resolution of 4 km and a basic repeat cycle of 60 min.

The purpose of this study is to evaluate the potential benefits of high-density ra-
diance data assimilation from MTG-IRS in a fine-scale forecast model. The stan-
dard way to undertake such a study is to carry out an Observing System Simula-
tion Experiment (OSSE) using a known artificial “truth” referred to the Nature Run
(NR). It is usually defined by a global free-run model integration or a reanalysis (fig-
ure 1,[Masutani et al., 2010]). The French global Action de Recherche Petite Echelle
Grande Echelle (ARPEGE) system is used to construct the NR in an especially designed
high resolution configuration (7 km, 115 vertical levels). The full dataset of available
observations over Europe is simulated from the NR as well as the new IRS observing
system. Because observations extracted from the NR, are “perfect”, various sources of
error must be simulated and added to form synthetic observations [Errico et al., 2013].
Then, synthetic observations are assimilated in the same way as real observations in
the 3D-Var Applications of Research to Operations at MEsoscale (AROME) system
( [Seity et al., 2010] and [Brousseau et al., 2008]). This system has been operational
since 2008. It is used to avoid the fraternal twin (“incest”) problems, as shown in
[Arnold Jr and Dey, 1986]. Indeed, both models do not use the same physic package
: Schemes for deep convection, micro-physical species, shallow convection, radiative
transfer and turbulence are different as well as the surface treatments). Even if some
even if part of the code is common, the forecast model used for the NR is not used
afterwards for the data assimilation experiment in the full OSSE. That way, the OSSE
results should not show an unrealistic observation impact when compared to the “truth”
when producing analyse and forecast fields.

The second purpose of this work is to tackle problems related to the general un-
derused of satellite radiances in data assimilation systems. It is expected that NWP
centres should be ready to treat the very large amount of observations produced by
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Figure 1: Observing System Simulation Experiment (OSSE) methodology

MTG-IRS to wit, (∼ 3 Gigabytes/second at instrument output, [Donny and Aminou,
2014]). In addition to operational time constraints and computational processing power
limitations, variational assimilation schemes also require a drastic reduction of data
density. In fact, it was shown that assimilating high-density observation may result in a
degradation of the analysis rather than in an improvement if the system is sub-optimal,
i.e. observation/background errors are not well specified ([Liu and Rabier, 2002] and
[Dando et al., 2007]). Firstly, most of NWP centres still use a diagonal observation
covariance error matrix (R), which assumes uncorrelated observational errors. This
assumption is no longer valid for satellite observations which may be spectrally or
spatialy correlated ([Stewart et al., 2008], [Bormann et al., 2010], [Guedj et al., 2013]
among many others). Secondly, sub-optimality may arise from the use of a static, ho-
mogeneous and isotropic background covariance error matrix (B). Background-error
covariances have a deep impact on the analysis, since they are used to filter and propa-
gate information provided by observations [Daley, 1991]. Recently, the use of correlated
observation errors, as diagnosed by the Desroziers diagnostic [Desroziers et al., 2009] for
Infrared Atmospheric Sounding Interferometer (IASI) was tested in assimilation trials
at ECMWF and the MetOffice. The treatment of the correlated errors for IASI in 4D-
Var leads to an improvement in forecast accuracy [Weston et al., 2014], providing that
diagnosed variance errors are sufficiently inflated [Bormann et al., 2014]. This mean
that sources of observational error correlation are not fully understood yet.

At Météo-France, OSSEs were implemented using both operational NWP models:
ARPEGE for the NR and AROME for the data assimilation scheme (section 2). The full
dataset of atmospheric observations, as well as MTG-IRS radiances were simulated from
the NR with scaled observation errors (section 3). The section 4 presents validation and
calibration exercises against real world data assimilation systems to ensure a realistic
impact of the new observing system. Finally, several assimilation trials were undertaken
to evaluate the the potential benefits of different-density radiance data from MTG-IRS
(section 5). Potential effect of error correlations on NWP performances are discussed
in section 6.
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2 The Nature Run and the assimilation system used

for the OSSE

2.1 The global ARPEGE forecast system

The ARPEGE system is used in operations at Météo-France for NWP since 1992. The
code is partly common with the Integrated Forecasting System (IFS) software and it is
used to create the NR which is a long, uninterrupted forecast representing the ”true“
state of the atmosphere. ARPEGE is a global spectral model, with a Gaussian grid for
the grid-point calculations. The vertical discretisation is done according a following-
terrain pressure hybrid coordinate over 115 vertical levels (from 0.1hPa to 10m). The
version used to generate the ARPEGE-NR has a variable horizontal resolution with
truncation Tl1198 with a 2.2 stretching factor (around 7.5km over France and 36km
over antipodes). This NWP model was used because 1) it is a mature NWP system
with a proven forecast skill and 2) the atmospheric simulation resolves scales compatible
with the future MTG-IRS observing system.

The simulated fields from the ARPEGE-NR are hourly available for both prognostic
and diagnostic model fields. The period covers 2 months during winter 2013 (February
to March) and 4 months during summer 2013 (June to September). The first guess is
based on one atmospheric analysis produced by the operational ARPEGE-NWP system.
A few weeks after the starting date, the atmospheric state of the ARPEGE-NR diverges
from the one of ARPEGE NWP version. The influence of assimilated observations held
in the First-Guess (FG) is progressively eradicated and the system converges toward
climatologies, evolving continuously in a dynamically consistent way. Figure 2 and 3
give an example of specific humidity and temperature fields produced by the Nature
Run.

The ARPEGE-NR proved its usefulness in many applications within the OSSE
framework. One can extract fields of the ”true“ atmospheric state to evaluate the
quality of the produced analysis and the forecast skills whether the new observing sys-
tem is included or not. The ARPEGE-Nature Run (NR) is also a source of simulated
observations.
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Figure 2: Maps of Specific Humidity (g/kg) from the ARPEGE Nature Run over the
Northern Hemisphere, at 850 hPa,2013/07/23-00UTC, 33 days after the start run
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Figure 3: Maps of Temperature (oC) from ARPEGE the Nature Run over the Northern
Hemisphere, at 850 hPa,2013/07/23-00UTC, 33 days after the start run
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2.2 The 3D-VAR AROME Meso-scale system

Since 2008, the AROME system is the operational convective-permitting Limited Area
Model (LAM) of Météo-France with a 2.5 km-grid covering the western part of Europe
and part of the Mediterranean Sea ([Seity et al., 2010]). With regard to the ARPEGE
system, the AROME physical package is inherited from the physical parametrisations
of the Meso-NH research model [Lafore et al., 1997]. The high horizontal resolution
permits to explicitly resolve deep convection and the micro-physical scheme makes use
of prognostic equations to describe the six water species. The shallow convection and
turbulence are parametrised according to the Eddy Diffusivity Kain Fritsch (EDKF)
scheme and the radiative scheme. Surface parameters are computed through a two-way
coupling with the externalised surface model SURFEX.

The AROME system has its own data assimilation system, based on a 3D-Var scheme
with an incremental formulation, observations operators, minimization technique and
data flow [Courtier et al., 1998] inherited from IFS/ARPEGE and Aire Limitée Adapta-
tion Dynamique Développement International (ALADIN) ([Fischer et al., 2005], [Brousseau
et al., 2008]). The 3D-Var data assimilation system is carried out using a 3-hour for-
ward intermittent cycle. A cycle consists in computing the analysis using observations
within a ±1h30 assimilation window and a 3-hour forecast to serve as FG for the next
cycle. The two wind components, temperature, specific humidity and surface pressure
are analysed. Other model fields are directly cycled from the previous guess. 48-h fore-
cast can be run from each cycle.

The AROME-NWP observation error covariances are tuned to account 2 distinct
contributions: instrument errors and representativeness errors. Observation errors are
assumed to be uncorrelated. To compensate for this omission, 1) observation errors are
inflated between 2 to 4 times that of the standard deviation of the true error covariance
matrix and 2) data are dramatically thinned to insure the best observation indepen-
dence. The background error covariances are based on a multivariate formulation and
have been estimated using an ensemble-based method ([Berre, 2000] and [Berre et al.,
2006]). In comparison with larger-scale background errors, they have smaller horizontal
correlations and increased standard deviations for model parameters representing small
scale structures, such as temperature in the low layers [Brousseau et al., 2008].

10



3 Simulation of observations

The reason for simulating observations which are to used in OSSE, is to extract observed
quantities at the closest coordinate (in space and time) from the ”true“ background
field (NR). The observation operator includes a) the interpolation process and b) the
radiative transfer model RTTOV v10 ([Saunders et al., 2006]) for the direct assimilation
of radiances. All observations, including MTG-IRS, are simulated (every 3 hours), from
the NR, over the AROME domain.

3.1 Simulation of the operational observing systems

The averaged amount of available observation points for each assimilation cycle is :

• surface : 5000 measurements from surface stations (SYNOP), ships and buyos,
15000 observations from ground GPS (GPS-SOL) and 1000 from wind profilers.

• altitude : 950 observations from radiosondes (TEMP, PILOT, standard levels),
5000 measurements from aircraft during ascent/descent phases (AIREP, AM-
DAR), 3000 wind vector observations from Geostationary Orbit (GEO) and
low Earth orbit (LEO) satellites, 2500 observations from LEO scatterometers
(SCATT, full coverage: 9UTC, 21UTC), 1500 HIRS radiances (3UTC, 9UTC,
12UTC, 21UTC), 2000 AMSU-A and AMSU-B radiances (6UTC, 12UTC, 15UTC,
21UTC), 500 SSMI/S radiances (6UTC, 18UTC), 4000 IASI radiances, (9UTC and
21UTC), 1000 CriS radiances (3UTC, 12UTC) et 8000 Spinning Enhanced Visible
and Infrared Imager (SEVIRI) radiances.

Figures 4, 5 and 6 show a comparison between simulated and real observations for
conventional and radiance data. Distributions of real observations values (circles) and
simulated observations over the vertical are relatively close to each other, especially
for temperature. Main differences between real and simulated data occur for humidity
(increase toward the surface, up to 0.77%) and U-wind profiles (increase toward the top
of the atmosphere, up to 12 m/s at 200 hPa) versus real radiosounding data.

On the overall, simulated observations give satisfactory results relatively to real
observations. Simulated and real observations were not expected to be exactly similar
since they are not using the same atmospheric states. However, the comparison was
helpful to evaluate the quality of the observation operator and the ability of the NR to
describe realistically the atmosphere.

3.2 Simulation of MTG-IRS radiances

IRS will constitute spectra at a moderately high spectral resolution of 0.754 cm−1 with a
spectral sampling of 0.625 cm−1 in two bands, one in the long-wave infra-red region (700
to 1210 cm−1) and the other in the midwave infra-red (1600 to 2175 cm−1) providing a
total of 1738 channels. For operational NWP, the main focus will be on the assimilation
of temperature and humidity. This work focussed on humidity channels because very
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Figure 4: Simulated versus real radiosounding observation data of a) temperature , b)
specific humidity and c) U and V wind components

Figure 5: Simulated versus real satellite observation data of a)AMSU-A, b)AMSU-B,
c) MHS, d) SSMI/S
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Figure 6: Simulated versus real satellite observation data of e)SEVIRI, f)IASI, g)CrIS

few channels of operational instruments (IASI CrIs ...) are efficiently assimilated.

MTG-IRS radiances were also simulated from the NR. A coefficient file for IRS
was generated by Météo-France/CMS (Pascal Brunel), based on the existing IASI co-
efficients (more details in [Guedj et al., 2013]). In addition, most of the instrument
specifications, such as observation geometry, horizontal/spatial resolution, are inherited
from SEVIRI. The full IRS spectrum was simulated every 3 hours over the AROME
domain.

Figure 7 shows the averaged Brightness temperature (Bt) spectrum for simulated
IRS measurements. 3 channels were selected (red dots) in 1) the CO2 absorption band
(temperature sounding), 2) window band and 3) H2O absorption band (water vapour
sounding). Maps of simulated Bt for this 3 channels respectively are presented in figure
9.

It is impossible to assimilate the full spectrum, its dimensionality has to be much
reduced for operational data assimilation schemes. Amidst the 640 humidity channels,
we singled out 1 channel out of 5, to generate a first subset of 128 channels. Then
we selected a subset of channels (50, 25 and 15) which provide information on the
entire vertical (figure 9 and table 1). Then we have selected a subset of channels (50,
25 and 15) in a way that they give information on the entire vertical (figure 9, table
1). Additionally, a group of closely-separated channels circa 300 hPa were selected to
evaluate in which way the system deals with redundant data. This methodology, far
from optimal, strays from the original subject. This simple method was assumed to be

13
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Figure 7: Averaged spectrum of simulated IRS radiances on the 25th of July 2013 - 12
UTC, over the AROME domain : 1) Temperature channel 83, 2) Window channel 421
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Figure 8: Maps of simulated IRS radiances on the 25th of July 2013 - 12 UTC, over the
AROME domain : 1) Temperature channel 83, 2) Window channel 421 and 3) Water
Vapour channel 867
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Figure 9: Normalised weighting functions for the selected 25 IRS water vapour channels

Channel Index Central Wavenumber
915 1660.625
945 1679.375
957 1686.875
970 1695.000
978 1700.000
989 1706.875
1010 1720.000
1036 1736.250
1038 1737.500
1124 1791.250
1131 1795.625
1142 1802.500
1153 1809.375
1155 1810.625
1162 1815.000
1171 1820.625
1174 1822.500
1176 1823.750
1227 1855.625
1259 1856.875

Table 1: IRS Channel selection
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3.3 Assignment of observation errors

When creating simulated observations for an OSSE, it is useful to distinguish between
the modelling of observational signal and noise. The signal provides information which
the data assimilation system can interpret and store, whereas any noise will be a source
of error that the data assimilation system will tend to lessen.

In practice, the real observations (y) are the sum of the true atmospheric value (yt)
and of an error εm incurred during the measurement or subsequent data processing. yt

is also affected by an error of representativity εr related to the mismatch between the
AROME model grid volume and the volume sampled by the instrument, as well as from
a mismatch between the observed and predicted variables. In the real data assimilation
system, yt is unknown and εm is combined with εr. The final observation error is finally
tuned up or down by the scaling factor α1 to take into account the residual errors and
correlation.

Real Observation : yo = yt + ((εm + εr) × α1)

In the OSSE data assimilation system, yt is known (extracted from the NR) to
which is added a random contribution εx to the model output, which stands for the
observation error (εx ∼ εm + εr). The random vector (actually a specific realization) is
obtained from a multivariate normal distribution having the error statistics of the real
observations (yo) and similarly scaled by the α2 factor.

Simulated Observation : ys = yt + (εx × α2)

We can apply this methodology to the full operational observing system that needs
to be assimilated in the OSSE assimilation system to construct the Control (CTL) run.
But no estimate are available for MTG-IRS. Estimates from IASI and SEVIRI data were
useful to specify the ”correct“ observation error for IRS. Three methods were used to di-
agnose observation errors and their correlation : the Hollingsworth and Lönnberg (H/L)
method, the Desroziers (Dz) diagnostic and the Background error method. Details on
methods and some results can be found in [Guedj et al., 2013]. Here we focus on both
the Hollingsworth and Lönnberg (H/L) method and the Desroziers (Dz) diagnostic.

Figure 10 indicates that the observation error should be quite close to the instrument
error for temperature channels. However, both methods do not show a good agreement
for humidity channels. Thus, the averaged diagnosed values were interpolated following
IRS expected noise function. As mentioned in [Guedj et al., 2013], IRS is expected to
carry strong inter-channel/horizontal error correlation since it was diagnosed from real
IASI and SEVIRI data. As our system is not sufficiently mature to take into account this
error correlation/these error correlations, we have over-estimated MTG-IRS observation
error on purpose, as it is done for the full operational observing system.
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Figure 10: Estimates of observation errors (standard-deviation) for a selection of IASI T
(left panel) and Q (right panel) observations : assumed observation errors (as specified
in the AROME system, blue line), diagnosed values computed using the Hollingsworth
and Lönnberg (H/L) method (black thick line) and using the Desroziers (Dz) diagnostic
(red line). The in-flight instrument error (dashed black line) for IASI is shown as well
as the recommended values for the future MTG-IRS (dotted green line).

4 OSSE calibration/validation

The statistics of analysis errors are partly determined by the statistics of observation
errors, as revealed by the fundamental DAS equations and as examined further by
[Daley and Ménard, 1993]. Here, the impact of simulated data in the OSSE system is
verified relatively to that of real observation data in the operational system (AROME-
NWP). Each observing system should ideally describe comparable impacts in the anal-
ysis and forecast skill in both systems.

Their are many methods to perform the evaluation: data denial (or adding) exper-
iments, forecast anomaly correlation and RMS analysis/forecast error verified against
the NR. In the following, results obtained from the last method are presented.
Because the assumed observation error covariances, together with background error co-
variances, play an important role in determining the weight of a given observation in
data assimilation, several calibration/validation experiments were run to find the best
possible match between the OSSE and AROME-NWP statistics (13 days, July 2013).
The Operational (OPER) experiment is similar to the AROME-NWP system. Real ob-
servations were assimilated and the observation errors were not modified relatively to the
operational configuration. In the CAL experiment series, observations were simulated
and perturbed using scaled values of observation errors. Then, simulated observations
were assimilated with the same observation errors used to simulate the observation. All
assimilation experiments are summarized in table 2.

Calibration steps using analysis departures to observations/simulations of radiosonde
data are presented in figure 11.

Statistics properties for the OPER run (real world) should match one of CAL exper-
iments (OSSE world). In fact, the simulated observations should force the OSSE model
state in the same way that the real observations do. The reduction of observation errors
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Exp Name Observations Obs. error
scaling factor (α)

OPER Real 1.0
CAL-1.0 Simulated 1.0
CAL-0.8 Simulated 0.8
CAL-0.5 Simulated 0.5

CAL-0.5sc Simulated 0.5 + manual
CAL-0.2 Simulated 0.2

Table 2: Calibration experiments

improves the fit of the OPER run down to a threshold that depends on the observation
type. Figure 11 indicates that the standard deviation of observation error, as specified
in the real system, should be reduced by about 50% to improve the fit between statis-
tical properties of OSSE and the real system. Manual adjustments has been applied to
low atmospheric levels.
This exercise was done for each observation type independently. Except for AMSU
observations, the observational errors were/error was reduced by about 50%
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Figure 11: Analysis departures to specific humidity observations/simulations for ra-
diosounding data following 5 configurations : 1) The CTL run assimilates real obser-
vations with the same observational error as the operational system (α1); 2) CAL-1.0
assimilates simulated observations with the same observational error as the operational
system (α1 = α2 = 1.0); 3) CAL-0.8 assimilates simulated observations with reduced
observational error with regard to the operational system (α2 = 0.8); 4) CAL-0.5 as-
similates simulated observations with reduced observational error with regard to the
operational system (α2 = 0.5); 5) CAL-0.5sc assimilates simulated observations with re-
duced observational error with regard to the operational system and manual adaptations
(α2 = 0.5sc); 6) CAL-0.2 assimilates simulated observations with reduced observational
error with regard to the operational system and manual adaptations (α2 = 0.2)
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5 Results : Assimilation experiments

A set of assimilation experiments was tested by the OSSE, to detect future benefits of
MTG-IRS in the AROME mesoscale model.

As mentioned earlier, the full operational observing system as well as IRS radi-
ances were simulated (section 3) with calibrated errors (section 4) during 15 days
(July 2013). This set of simulated observations were assimilated with the same er-
ror used to construct the CTL run. In this experiment, simulated observations were
subjected to various quality control checks such as selection of stations, levels and chan-
nels, flow-dependent background departure check, redundancy check, horizontal and
vertical thinning of data denser than the model grid... Observations are also bias cor-
rected in the operational model using the variational bias correction scheme (VarBC,
[Auligné et al., 2007]). However, since synthetic observations are assumed to be unbi-
ased in the OSSE, the VarBC scheme was disconnected: no bias correction was applied.

25 IRS humidity channels were assimilated with different thinning distances (20, 40
and 80 km), as shown in table 3. Additional experiments were also carried out using
different IRS humidity channel selection (15, 25, 50 channels, not shown) or a selection
of temperature channels ...

All assimilation experiments ran during 15 days (July 2013), with a 48h forecast.
Since OSSEs are very labour intensive, we present here the result for the 25th of July
at 12UTC with a focus on humidity impacts.

Exp Name Distance Channel
Thinning (km) number

CTL (no IRS)
CTL+IRS80km 80 25
CTL+IRS40km 40 25
CTL+IRS20km 20 25

Table 3: Assimilation experiments

5.1 Impacts on atmospheric analysis

In the OSSE framework, the NR can be used to verify the quality of the analysis while
comparing it to the true state of the atmosphere. The full set of atmospheric specific
humidity profiles (516152 profiles) were extracted every 3h, from all assimilation experi-
ments and compared to the NR. Standard Deviation (STD), Root Mean Square (RMS)
error and bias were computed over a set of analysis. Figure 12 shows analysis scores ver-
sus the NR for the CTL run (no IRS, red line), the IRS80km run (back line), IRS40km
(blue line) and IRS20km (green line). The assimilation of IRS do improve specific
humidity modelling from the surface to the top of the atmosphere. Mean analysis re-
duction errors are about 27.2% for IRS80km, 31.5% for IRS40km 27.7% for IRS20km
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over whole vertical levels. The maximum impact is obtained for high atmospheric levels
(800-400 hPa) where few observations are used.The IRS impact is lower outside this
region because the information brought can be redundant with SEVIRI! ( SEVIRI!)
water vapour channels at the top and with conventional observations at the bottom.

Figure 13 shows maps of specific humidity RMS error at 700 hPa, computed against
the NR. Maps of IRS observation location are also presented to illustrate used data
density in each experiment. As shown in figure 13, IRS data improve the smaller spatial
scales.

However, figures 12 and 13 indicate also that the system is not able to take full advan-
tage of an increase in assimilated data density. There is a threshold where increasing
assimilated data amount do not add any information to the analysis. Theoretically,
this finding is relevant when real observations are assimilated at a too high density be-
cause they may carry error correlation ([Liu and Rabier, 2002] and [Dando et al., 2007],
[Bormann et al., 2010]). However, in this work, errors were added to perfect observation
values while ignoring correlations (section 3).
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Figure 12: Analysis scores (bias and STD) of specific humidity versus the Nature Run
for 4 assimilation experiments on the 25th of July - 12H
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Figure 13: Analysis scores (RMS) of specific humidity (700 hPa) versus the Nature Run
for 4 assimilation experiments on the 25th of July - 12H

5.2 Impacts on forecast scores

The ultimate goal of data assimilation in the meso-scale NWP context is to improve
short-range forecast (3-12h), mid-range forecasts (12-24h) and longer range forecasts
(24-48h). The evolution of data impact with forecasts is shown in figure 14. Time series
of specific humidity forecast error (RMS) versus the NR are presented as a function of
forecast ranges. Results are averaged from the surface to the top of the atmosphere for
each forecast range.

Positive impacts are demonstrated on short-range forecast fields of specific humidity
when IRS are assimilated. Best results are obtained using the IRS80 experiment since
the improvement is visible up to 48h. However, IRS20 and IRS40 experiments show a
degradation of the forecast quality from 9h and 12h respectively.

Profiles of forecast scores (STD) were computed for IRS80, IRS40 and IRS20 experi-
ments, normalised by the CTL run (NoIRS) at 8 forecast ranges (6h, 12h, 18h, 24h, 30h,
36h,42h and 48h, figure 15). Negative (positive) values, indicate that the assimilation of
IRS decrease (increase) the forecast error with regard to the NR. Error changes are ex-
pressed in %. Overall, the assimilation of IRS data induces changes in humidity profiles
at all forecast ranges. IRS80 scores demonstrates neutral to positive impacts whereas
IRS40 and IRS20 show negative to neutral impacts. Quantitatively, even if changes
seem over-estimated, maximum changes affect short-ranges forecast (up to -33.74% of
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STD error, 500 hPa) and can be sensitive up to 48h-forecast (up to +8.35% of STD
error, 700 hPa).
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Figure 14: Forecast scores (RMSE) time series of specific humidity for 4 assimilation
experiments. Forecasts are computed from the analyse fields of the 25th of July 2013.
The CTL run (red line) do not assimilate IRS observations. IRS80 (blue line), IRS40
(black line) and IRS20 (green line) experiments assimilate IRS observations with a
distance thinning of 80, 40 and 20 km respectively. RMS is computed against the
Nature Run at corresponding time
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Figure 15: Normalised forecast scores (STD) profiles of specific humidity. Forecasts are
computed from the analyse fields of the 25th of July 2013. The CTL run (red line) do
not assimilate IRS observations. IRS80 (blue line), IRS40 (black line) and IRS20 (green
line) experiments assimilate IRS observations with a distance thinning of 80, 40 and 20
km respectively. RMS is computed against the Nature Run at corresponding time and
it is normalised with the CTL run. Error changes are expressed in %.

25



6 Discussion

To interpret OSSE results is quite challenging. The many causes of inconsistent results
must be investigated carefully and explained for OSSEs to be more creditable. In our
case, the assimilation system cannot extract useful information if the amount of assimi-
lated data is too dense. The best analysis and forecast improvements of humidity fields
are assigned to IRS80 whereas IRS20 get the worst results.

In this work, observations were simulated and assimilated assuming uncorrelated
errors. Following studies presented in [Liu and Rabier, 2002], [Desroziers et al., 2009]
and [Guedj et al., 2012], a gradual increase in data density should monotonically im-
prove the quality of the analyses if 1) observations errors are uncorrelated and 2) the
analysis is optimal. In our system, this is not verified (section 5). In order to better un-
derstand the origin of theses results, the a posteriori Desroziers diagnostic was applied
on the analysis and first-guess departures to simulated observations. Unexpected and
significant inter-channel error correlations were diagnosed even if they were assumed
uncorrelated during the simulation/assimilation process (figure 16).

Several failures in the assimilation and diagnostic schemes can explain these unex-
pected results. Indeed, the Desroziers diagnostics are exact under the following condi-
tions:

• the specified error covariance matrices (B and R) are exact,

• the analysis is optimal (true minimum of the cost function),

• the statistical expectations in Desroziers diagnostics should be computed over
independent realizations.

If these conditions were met in our case where uncorrelated observation errors were
explicitely specified, then the diagnosed observation error correlation matrix should be
diagonal, and the first-guess departure and background error correlation matrices should
be equal except for diagonal coefficients.

This is not the case here, probably because:

• the specified background error covariance matrix is a climatologic, homogeneous
and isotropic model, which is a crude representation of the true background error
covariance matrix,

• the analysis is determined after a limited number of iterations, so that the mini-
mum of the cost function is not always reached,

• the statistical expectations in Desroziers’ diagnostics are approximated with an
homogeneous and isotropic ergodicity assumption: observation couples are sorted
according to thier separation and covariances are computed inside each distance
class.
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Several studies have shown the limitations of Desroziers diagnostics, especially for
the computation of off-diagonal coefficients. Some attempts to correct this issue with
iterative schemes are currently developed. In any case, these findings should be studied
further to improve our understanding in observation error correlation and its effect on
NWP systems ...
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Figure 16: Error correlation matrix for a) First-guess departures to simulated IRS data,
b) observations error and c) background errors (in observation space). Error correlation
were diagnosed over a period of 15 days (July 2013), over the AROME domain
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7 Conclusion and future plans

An Observing System Simulation Experiment (OSSE) was implemented to investigate
the potential impact of the future MTG-IRS in the convective-scale AROME forecast
system. In OSSE, simulated rather than real observations are the input to the 3D-
Var data assimilation system. Hence, all observation types (conventional and satellite
measurements) as well as IRS radiances were simulated from the true state of the at-
mosphere: the Nature Run (NR) (section 3). To make them more realistic, these values
were explicitly increased by an appropriate amount of noise, sized on observation er-
ror (section 4). The resulting values were ingested into the data assimilation system,
in the same way real observation would be in the operational system. Several con-
figurations for the assimilation of water vapour MTG-IRS channels were evaluated as
well as the CTL run in which all simulated observations are used except IRS (section 5).

An important work was undertaken for the preparation of MTG-IRS data assimila-
tion. First, the full IRS spectrum was simulated using the RTTOV radiative transfer
model. Then, an intensive inter-comparison exercise and error estimation/calibration
with existing satellite measures, was conducted to ensure good quality simulations with
realistic errors. Instruments such as the SEVIRI radiometer (similar time/spatial reso-
lution) and the IASI hyper-spectral sounder (similar spectral resolution), were primarily
used for these exercises. The main results show that MTG-IRS observation errors am-
plitude for water vapour channels, diagnosed from IASI data, should be increased by
a factor of 2.5, starting from the level of radiometric noise. This result is consistent
with [Bormann et al., 2014]. This factor should be even higher if one wants to take into
account account the presence of inter-channel error correlation for real observations. In
addition, SEVIRI were useful to evaluate the best thinning distance to use for MTG-
IRS. Horizontal error correlations were diagnosed for this task and it was shown that
the distance between two observations should not be higher than 40km. More details
can be found in [Guedj et al., 2012] and [Guedj et al., 2013].

Then, simulated radiances of MTG-IRS were included into the system with pre-
liminary diagnosed observation error. In practice, effective horizontal and vertical data
density of IRS were modified in each experiment, playing on thinning distance and chan-
nel selection. Since this work was carried out in an OSSE framework, it was possible to
evaluate the realism of produced analysed and forecast fields against the NR and the
impact of MTG-IRS against the CTL run. Quantitatively, the future observing system
may be able to significantly improve the specific humidity modelling, especially when
few observations are available. However, forecast impact studies indicate that the den-
sity (in term of thinning distance and channel selection) should be carefully specified.
The analysis improvement do not well propagated into the forecast if observations are
too densely assimilated. Large Root Mean Square (RMS) error may occurs on humid-
ity, temperature and wind fields, up to 48h forecast. Experiments simulating only the
impact of observations from polar-orbiting satellites are oversimplified compared with
the impacts expected from the complete global observing system. Nevertheless, they
are useful as they contribute toward the forecast error reduction.
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Preliminary studies on diagnosed error correlation were presented in section 6 to
explain briefly potential sources of forecast changes. Recently, [Bormann et al., 2014]
showed that accounting for inter-channel error correlations allows the use of an R con-
sistent with diagnostics and slight inflation gives a small benefit. [Weston et al., 2014]
shows similar results and demonstrates that accounting for inter-channel error correla-
tions allows a more aggressive use of observations which leads to an improved forecast
accuracy, as well as an adaptive weighting of the observations based on the relationship.
But, does a non-diagonal R will allow the use of more water vapour channels for the
future hyperspectral MTG-IRS sounders? What about the temporal error correlation
([Eyre and Weston, 2013])?

This report, as well as the litterature demonstrate current operationalNWP assimi-
lation schemes make use of only a small fraction of the instrument potential (horizontal
thinning, channel selection ...). In the same time, new generation of hyperspectral in-
struments are planed to deliver more and more observations : 2738 channels for MTG-
IRS every hour, 16921 spectral channels for IASI-NG (New Generation). In order to
reduce the spectrum into a small number of measurements, one proposed method is
Principal Component (PC) compression. This method should be a greate advantage
for data dissemination but, at the present time, the direct assimilation of PC scores is
not recommended for operational use [Hilton and Collard, 2009]. However, the use of
reconstructed radiance spectrum from PC scores is an area of active research.
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