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ABSTRACT 
 

The purpose of this article is to improve modeling of statistical properties of solar radiation 

models through the analysis of measurement data on the ground in the intertropical zone. For 

this, we identify, using information criteria, the probabilistic distributions introduced in two 

models of synthetic solar radiation generation. We then validate the results by using the KL 

divergence and KSI parameter as comparison criteria between the distributions arising from 

real and synthesized data. Our study confirms, for example, that the Gaussian classical 

distribution is not suitable for modeling solar radiation, and we propose other more suitable 

statistical laws instead. The value of the identification procedure of the distribution laws 

presented in this article is that it ensures the generation of solar radiation data comparable in 

their statistical content to the measured data. Another advantage is that this procedure 

contributes to highlighting the time invariance of distribution laws representing the random 

terms. We conclude that this new information-criteria-based method permits the identification 

of the probability laws that best describe the statistical distributions introduced in the models 

of synthetic solar  radiation generation 

 

KEYWORDS: information criteria, synthetic solar irradiance model, model selection. 

 

 

1. Introduction 

Knowledge of solar radiation, or irradiance, on the surface of the Earth is of great interest in 

many fields. Climate sciences require reliable and sufficiently numerous solar data for 

understanding climate change. Agriculture and natural ecosystems, in general, are affected by 

solar irradiance, and it is therefore necessary to study it to understand the current impact of 

                                                           

In this paper, we use the abbreviations IC for information criteria, BIC for Bayesian information criterion, MDL 

for minimum description length, TAG for time-dependent autoregressive Gaussian, pdf for probability density 

function, cdf for cumulative density function, KL for Kullback–Leibler, and KSI for Kolmogorov–Smirnov 

Integral. 
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climate change (Stanhill and Cohen, 2001). In terms of energy, the design and sizing of 

systems using solar energy input (such as solar water heaters, photovoltaic cells, or solar 

thermal concentrators) require solar data to simulate and test their long-term energy efficiency 

(Mellit et al., 2008). In architecture, simulating the energy performance of buildings in urban 

areas also requires solar irradiance data (input data) to size additional clean energy production 

systems (solar thermal, photovoltaic, etc.) that are able to meet heating and electricity needs 

while optimizing the total energy consumption of buildings (Amado and Poggi, 2012). In all 

these areas, as in others, solar irradiance data represented by medium and long-term time 

series are often necessary. 

The time series of solar irradiance can be obtained from data measured by either ground 

measuring stations or satellites (Marie-Joseph et al., 2013), or by selecting periods of 

representative measurement data and calculating an irradiance average year, called a typical 

meteorological year (Bilbao et al., 2004). 

However, these methods, although simple, have disadvantages. In the first case, the time 

series are limited to reproducing historical data and do not reproduce the full variability range 

of irradiance data; they are sometimes also liable to be incomplete. In the second case, there is 

no guarantee that the developed typical meteorological year includes the statistical 

characteristics of the long-term climate of the chosen location, or that it reproduces the 

extreme values of irradiance. Finally, another disadvantage is that in many areas the low 

density of ground measuring stations and/or the absence of measures derived from satellite 

irradiance data precludes the use of these methods. Most of the time, all these constraints 

require resorting to temporal series of irradiance generated synthetically at different temporal 

resolutions (hours, days, etc.) depending on the user's needs. 

During the past two decades, several methods have been developed to synthetically 

generate time series of solar irradiance. All models must meet the following condition 

(Hansen et al., 2010): produce series with the same statistical content as that of time series 

observed over a particular locality. In addition, the simulated irradiance values must be 

statistically consistent with those that have been measured. Some of the best known methods 

include:(1) using an autoregressive moving average originally developed by Graham and 

Hollands (1988) and improved by Collares and Pereira (1992),and also used by other authors 

(Muselli, 1998;Tiba and Fraidenraich, 2004); (2) using a Markov model associated with a 

transition matrix (Markov transition matrix model) developed by Aguiar et al. (1988) and 

taken forward by other authors, including, notably, the use of neural networks to configure the 

transition matrix of the Markov model (Linares-Rodríguez, 2011; Poggi, 2000); (3) the 

method developed by Boland (1995), which combines the autoregressive model with Fourier 

analysis; and (4) a method developed by Polo (2011) to model a time series from a mean 

value to which a random fluctuation is added, whose characteristics (amplitude and 

frequency) depend on cloud conditions of the sky. 

The first three methods use, for convenience, a Gaussian distribution to represent the term 

of the modeling error (random term). This was the choice for most of the tools that help 

determine the parameters of autoregressive (or autoregressive moving average) models, 

because in the field of time series analysis, assuming the random term as a Gaussian white 
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noise is a simplifying condition for determining the model. However, in reality, solar 

irradiance time series are physically confined; that is, they contain only positive values and 

cannot exceed a maximum value corresponding to the extraterrestrial solar irradiance (solar 

irradiance measured above the atmosphere). Therefore, the Gaussian distribution does not 

perhaps provide the best representation of the error associated with the models, as shown by 

Boland (2008). 

The last method, Polo's model (Larrañeta, 2015, Polo, 2011),, uses a beta distribution to 

model the random fluctuation of the irradiance (the random term). However, in the literature, 

in addition to the beta distribution, there are also other distributions (Boltzmann, gamma, and 

exponential) that approximate the probabilistic laws of solar irradiance time series. 

The purpose of this paper is therefore to determine the probabilistic laws best describing 

the statistical distribution of each random term impacting two well-known synthetic solar 

irradiance generation models: Aguiar and Pereira's (1992) and Polo's (2011). 

To determine these distributions, we will introduce a law selection method based on IC 

(Alata et al., 2013), which is also called the generalized entropic criteria and will be preferred 

to the classical maximum likelihood. From several criteria, we choose the BIC (Schwarz, 

1978) and the  (El Matouat and Hallin, 1996) criteria on account of their strong 

consistency (almost certain convergence). They generally require a fairly large amount of 

data, which we do have, as will be shown later, in the experimental phase. 

This remainder of the paper is organized as follows. 

- In Section 2, we recall the statistical and physical concepts used later: the IC and 

the generation of solar irradiance time series. 

- In Section 3, we describe the law identification process between various proposal 

laws corresponding to the random term laws introduced in the generation models, 

and also describe the validation process. 

- In Section4, we present the results obtained from the law identification process in 

the previous section and also select the laws best representing the random terms. 

- In section 5, we compare synthetic irradiance data generated from the selected laws 

with measured data, in order to analyze the performance of synthetic models and 

validate or invalidate the conclusions of the law identification process. 

 

2. Concepts from statistics and physics 

2.1. The information criteria (IC) 

The IC (for a state of the art, see, for example, Olivier and Alata (2009)) are tools that provide 

a partial response to the parsimony problem: given a set of realizations or data or observations 

x
N
 = (x1, ..., xN) of a random process X, and given , a family of parametric models chosen a 

priori, what is the model 


of that best corresponds to the process X? In other words, we 

are looking for the number and values of the free parameters of a model


, the optimal model 

in the sense of the IC. 
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The concept of IC pertains to assigning each competing model I of a penalty term 

"offsetting" the classical log-likelihood term L(i), which involves minimizing the expression 

  IC(i) = L(i)+ |i|.C(N)        (1) 

where C(N) is a term usually dependent on N, the number of observations; and |i| is the 

number of free parameters of the model i. Recall that the only criterion of maximum 

likelihood (satisfied here by minimizing L(i)) is insufficient when |i| varies because the 

maximum likelihood leads to an over-parameterization. 

The expression of the penalty |i|.C(N) is obtained by minimizing the cost between models, 

in general of the f-divergence as KL or Bayesian stochastic complexity, and differs according 

to criteria. The best-known and oldest one is the Akaike criterion (Akaike, 1974) but it is 

inconsistent. In our study, we select only the Schwarz (1978) and El Matouat and Hallin 

(1996)criteria, denoted by BIC and, respectively, and we exclude the other criteria that are 

not strongly consistent, that is, not almost surely convergent when N + ∞ (see Olivier and 

Alata (2009)). For example, Hannan and Quinn's (1979) criteria, denoted byis weakly 

consistent (convergence in probability). 

Regarding BIC, we have: NNC log)(  , and for, we have NNNC loglog)(  , with0 

<< 1.  

Let us note that the MDL criterion(Rissanen,1989), well-known in information theory 

(arithmetical binary encoding of compression norms), is also strongly consistent, although it 

differs from BIC only by negligible terms when N is large; which is why we consider only the 

BIC criterion. The criterion can be seen as a compromise between the BIC/MDL and  

criteria. 

Regarding , Jouzel et al. (1998) have shown that we have a finer condition, 

N

N

log

loglog
min  << 1-min, 

to warrant strong consistency, and that it has been shown (see Olivier and Alata., 2009) that

min is the best value of  in numerous applications. 

Let us note that one of the advantages of is that it generalize the whole criteria by one 

expression; thus, the limit case  = 0 corresponds to , whereas the solution of 

NNn logloglog 
corresponds to the BIC/MDL criteria (Alata et al., 2013). 

Finally, the inequality IC(i)< IC(j) means the model I achieves a better compromise 

between adequacy to data, as measured by likelihood L(i),and the cost of that choice of 

model, as measured by|i|.C(N). Therefore, I is selected over model j. The successful model

̂ is therefore the one that minimizes the IC criteria: 
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)]([minargˆ
iIC

i


 



  (2) 

In this paper, these criteria will be applied to the selection of models of probability laws. 

 

 2.2. Generation of synthetic time series of solar irradiance 

Surface solar irradiance (global irradiance) can be represented as a combination of two 

components: deterministic and stochastic. The former represents the daily and seasonal 

irradiance variations and can be described by the well-established astronomical equations that 

describe the position of the sun relative to the latitude and longitude of the location being 

studied. The stochastic component is the result of random events that affect surface solar 

irradiance, such as the frequency and height of clouds, their optical properties, and the 

turbidity of the atmosphere linked to its composition (aerosol, water vapor, ozone contents, 

etc.) 

The standard procedure for modeling a time series of synthetic irradiance from a time 

series of irradiance measurements is to eliminate the contributions of the deterministic 

components, to make the series stationary, and then attempt to model the time series of the 

stochastic term. Once the stochastic term has been modeled, simply reintroduce the 

deterministic component to obtain a synthetic time series. 

To isolate the stochastic component, we either use the methods based on the Fourier 

analysis (Linares-Rodríguez et al., 2011) (one then proceeds by subtracting the frequency 

contributions of the deterministic component), or the clearness index kt (Aguiar and Collares-

Pereira, 1992; Bilbao, 2004; Graham, 1988; Hansen, 2010, Polo, 2011).The clearness index kt 

is the ratio of the overall ground irradiance G and the extraterrestrial Ioh global irradiance on a 

horizontal plane: 

 oht IGk /    (3) 

 zscoh EII cos0
   (4) 

where Isc is the irradiance produced by the solar constant, E0 is the correction factor of 

eccentricity, and z is the solar zenithal angle.  

Eccentricity defines the shape of the Earth's elliptical orbit around the sun; and 

characterizes the flattening of the Earth's ellipse with respect to a circle. 

The solar zenith angle at any given location is the angle between the straight line from the 

ground location to the sun and the perpendicular direction to the surface of the place 

considered (zenith). 

The clearness index compares the irradiance measurements taken at different times without 

losing information on the amplitude of the irradiance and is then denoted by kt(h), where h is 

the time considered. The clearness index, kt, can be defined for different time intervals on 

hourly, daily, and monthly bases. 
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Graham et al. (1988) find that seasonal variations in daily radiation are due to changes in 

the extraterrestrial radiation, and these seasonal variations can be captured by the use of 

clearness index. This finding enabled the development of many algorithms that synthesize 

radiation data at a finer scale from measurements at a larger scale (monthly or yearly). 

Although clear sky index (in the limit of a perfect clear sky model) generates a truly 

stationary time series we do not use it because the present study investigates the random term 

impacting two synthetic solar irradiance generation models that synthesize solar radiation data 

at a finer scale from measurements at a larger scale. As part of our study, we consider two 

types of models using kt. 

 

2.2.1. The TAG model 

Aguiar and Collares-Pereira's (1992) TAG model generates synthetic hourly irradiance data 

using an autoregressive model, not homogeneous in time, and assumes a Gaussian 

distribution. As its sole input, it uses the monthly average of the daily clearness index, 

denoted by KT. The wide availability of the monthly average data worldwide makes it an 

easily usable model. The TAG model has the advantage of being flexible enough to model the 

main features of solar irradiance, and accurate enough to be used in energy applications. The 

study of the sequential properties of solar irradiance by Aguiar and Collares-Pereira (1992) 

has shown that it essentially depends on the value of the irradiance from the previous hour, 

which led them to propose the following model: 

y(h) = (KT)y(h-1) + rTAG(h)    (5) 

)5.24.7cos(06.038.0)(  TT KK
  (6) 

 

This is an autoregressive (Equation 5) model where rTAG(h) is the random term whose 

distribution we are seeking to identify, h is the hourly variable time, KT) is a correlation 

coefficient depending on the KT index (see equation (6), and y(h) (see equation (6)) is the 

normalized clearness index. Normalization of the clearness index kt(h) provides a highly 

stationary time series. The resulting model fits the data from different measurement sites: it is 

the invariance of the probabilistic law relative to the localization. 

Normalizing kt(h) is carried out according to the following expression:   

     
),(

),()(
)(

hK

hKkhk
hy

T

Ttmt




     (7) 

where ktm(KT,h) is the hourly average of kt(h), and (KT, h)is the standard deviation of 

kt(h).Both depend on the monthly average clearness index KT.  

We calculate ktm(KT,h) as follows (Aguiar and Collares-Pereira, 1992): 

)
)sin(

)(
)(()(),(

j

T
TTTtm

h

K
KKhKk


     (8) 

where 
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)8exp(24.012.119.0)( TTT KKK 
  (9) 

2)5.0(6.132.0)(  TT KK
    (10) 

32
51.227.219.0)( TTT KKK 

 (11) 

)sin(1.(exp(.),( jT hBAhK     (12) 

2)35.0(20exp(.14.0  TKA   (13) 

52 .16)45.0.(3 TT KKB     (14) 

 

and hj is the solar hourly angle. 

2.2.2. Polo's model 

Polo et al. (2011) allow a time series to be modeled from a mean value and standard deviation 

of random values. This method generates a synthetic time series of the clearness index, kt, 

from measurements of an average clearness index, ktm, over a given period. One of the main 

conditions imposed by the method is that the frequency and amplitude of fluctuations in 

synthetically generated irradiance values are statistically representative of real conditions, that 

is, the function(s) of distribution of the original data is (are) comparable to that of 

synthetically generated data. 

The method to generate synthetic hourly clearness index values involves adding two 

contributions: that of the average for the period (time) considered and of the stochastic 

fluctuations around this average. Mathematically, the expression of the synthetic clearness 

index at a time h can be formulated as follows: 

kt(h) = ktm(j)+ A(h).sign(s)    (15) 

where ktm(j) is the average daily value of the clearness index for day j, A(h) is the random 

amplitude of the fluctuation of the clearness index for the hour h, A(h) is also the random term 

whose distribution we are seeking to identify, sign(s) is the sign of the random signal and s is the 

realization of a normal Gaussian distribution centered with zero mean and standard deviation 

unit. 

The hourly average of irradiance, ktm(j), can be obtained from the data measured in situ, 

and the second term of equation (12), A(h).sign(s), can be generated using the following 

procedure: 

- Generate standard deviation values from a distribution f (e.g., by pulling random 

numbers from a uniform distribution and finding the corresponding value of the 

inverse distribution f
--1

). 

- To obtain A(h),multiply the generated standard deviation values by the maximum 

value of the measured standard deviations. 

- Generate a random signal s and assign the sign of s, sign(s), to A(h), and add the 

result to the average value ktm(j). 
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For Polo's model, the analysis of the probability distribution of process A(h) is conducted 

under different types of skies. We create three classes of average clearness indices 

corresponding to three types of sky cloudiness: cloudy, partly cloudy, and clear sky (C1 to 

C3classes, respectively). The thresholds for the three classes were chosen in order to obtain a 

number of measurements that are approximately equivalent in each of the classes: 

- C1:(cloudy sky): ktm 0.42; 

- C2: (partly cloudy sky): 0.42<ktm<0.54; 

- C3: (clear sky): ktm 0.54. 

 

2.3. Data used  

To identify and validate the distribution laws of the random terms rTAG and A, we use hourly 

irradiance data from the Meteo France agency measured by two ground weather stations 

located at Rochambeau and Ile Royale in French Guyana. The weather stations measure 

hourly means of global irradiance on a horizontal plane and have Kipp and Zonen 

pyranometers of type CM6B, equipped with a ventilation fan. The CM6B instruments fulfill 

the accuracy requirements of a secondary standard pyranometer defined in WMO (2008), 

which are specified as 3%. Meteo France provides preventive maintenance every two months 

(e.g., cleaning of the air filter and the glass dish, desiccant exchange). Standard exchange of 

the pyranometers is systematically carried out every two years. Each pyranometer is 

calibrated in the Radiometry National Center of Meteo France located in Carpentras, France. 

Once installed, the coefficients of the new pyranometer are then entered into the data 

acquisition system of the in situ station. . 

The two stations are located on the Atlantic coast as shown in Figure 1. The Rochambeau 

station is located at an altitude of 4m above the sea level and the surrounding area includes the 

Félix Eboué airport. The Ile Royale station is located at an altitude of 48m on the island of the 

same name located in the Atlantic Ocean, 14 km away from the coast of French Guyana. In 

situ observations have an hourly temporal resolution and are issued at each hour (HH00 UTC-

3). The clearness indices for these two sites have been obtained with the extraterrestrial hourly 

irradiance data calculated at the top of the atmosphere. The data time range spans the years 

1996 to 2010, on a daily basis, from 7 a.m. to 5 p.m. 

 

The radiation database was divided into two phases: for law identification and for testing 

the selected laws. For the first phase, we choose data from: 

- the Royale station over four years (1998, 2002, 2007, and2009); and 

- the Rochambeau station over seven years (1996, 1998, 2000, 2003, 2005, 2007, and 

2009). 

This gives us data of the order of O(10
5
). 

For the phase of law validation, we choose measured data independent of that used for 

identification (base of learning) of the laws (see §.3.1). Therefore, we use data from: 

- the Royale site over four years (1999, 2006, 2008, and 2010); and 
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- the Rochambeau site over seven years (1997, 1999, 2002, 2004, 2006, 2008, and 

2010). 

 

3. Methods 

3.1. Identification process  

The purpose of the identification process is to determine the probabilistic laws best 

describing the statistical distribution of each random term impacting the two synthetic solar 

irradiance generation models: Aguiar and Pereira's (1992) and Polo's (2011).We assume that 

both random terms are independent and identically distributed (i.i.d.) and that we can produce 

a time series. We extract, from the measured data of the identification phase (section 2.3), the 

time series of the random terms rTAG and A as follows: 

- rTAG(h) hourly values are obtained from equation (5), by computing y(h)and (KT) 

with the monthly average of daily clearness index values, KT, and the solar hourly 

angle values, hj , obtained from the in situ solar irradiance data. 

- A(h).sign(s) values are obtained from equation (12). 

The identification of the probability distribution best describing the random terms is made 

on the basis of candidate laws: 

- For the TAG model, in view of the literature and the shape of the probability laws, 

we select as candidate laws only the Gauss, Logistic and Extreme Value laws. 

- Unlike the previous model, nine laws with one or two parameters are tested for the 

Polo’s model: Rayleigh and exponential, for the laws with one parameter; and Beta, 

Gamma, lognormal, inverse Gaussian, Rice, Nakagami, and Weibull, for the laws 

with two parameters. 

We refer to the Appendix for the expression of these 12 laws. 

Each candidate law defines a modelof a model familyaccording to the TAG or Polo 

models. It is therefore a matter of two model selection problems in which the best process A 

or rTAG is sought for generating the two variables y(h) and k(h)with |i| being the number of 

free parameters of the considered probabilistic distribution of the random terms rTAG or A. In 

reality, the penalty term has an influence only on Polo's model (one or two parameters 

following the nine candidate laws), so for the TAG model, with the three candidate laws with 

two settings, only log-likelihood term L(i) is influential. 

To determine the best probability distributions describing the statistical distribution of rTAG 

and A, we use a law selection method based on the BIC criteria (Schwarz, 1978) and the 

criteria. The steps of the identification process are listed below: 

- For each model and class, we divide the random terms (rTAG and A) into 100 packets of 

10000 values. 
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- We use the candidate laws to calculate both information criteria (BIC and ) for all 

the 100 packs and compute their average value. 

- We then seek the minimum average values and determine the best candidate law for 

each model and class. 

 

3.2. Validation process 

The validation process seeks to assess the goodness of the best candidate laws selected 

with the IC. First, synthetic hourly means of solar irradiance have been simulated on the 11 

years reserved for the phase validation (section 2.3) by using the best candidate laws to 

generate the random terms as follows: 

- Identify the parameters of the candidate distributions by generating the time series of 

random terms (rTAG and A(h)) as shown in the identification procedure described 

above and by using in situ data; 

- Generate synthetic series of random terms (rTAG and A(h)) with the parameters of the 

candidate distributions obtained previously; 

- Calculate the synthetic clearness index: 

- for TAG model by using equations (5) and (7); 

- for the Polo’s model by using equation(15)after calculating the average daily 

clearness index of each day by using the in situ data; 

- Compute the synthetic solar irradiance data from equation (3) by multiplying the 

synthetic clearness index by extraterrestrial irradiance, which gives: 

Gsynt (h) = ktsynt
(h) ∗ Ioh (h)    (16) 

 

Second, we compare the pdfs and cdfs between the measured solar irradiance (i.e., 

observed) and the synthetic solar irradiance generated from the candidate laws. Comparisons 

are made by using KSI parameter between cdfs and KL divergence between pdfs.  

3.2.1. KSI parameter 

In order to compare the similarities between cdfs of synthetic solar irradiance and cdf of 

measured solar irradiance we used a variant of the KS test: the Kolmogorov-Smirnov test 

Integral (KSI) developed by Espinar et al. (2009). The KS test originally defines a D statistic 

as the maximum value of the absolute difference between two cdfs. The belonging Null 

hypothesis can be formulated as follows: if the D statistic is lower than a threshold value Vc, 

the two data sets could statistically be the same and in this case the Null hypothesis is 

accepted. However the application of the KS test only materializes in the acceptance or 

rejection of the Null hypothesis and it cannot be used to compare several cdfs each other with 

respect to a reference cdf. The KSI test define the D statistic over n intervals (n = 100) of the 

entire data range ([xmin ,.., xmax]). So instead of getting one value D, we get a series of n values 

Dn and the KSI parameter is defined as the integral of the series Dn. Then the KSI parameter is 

the integral of the differences between the cdfs of two sets of data. More detailed information 

on the method can be found in Espinar et al. (2009). The KSI parameter formulation is: 



11 
 

𝐾𝑆𝐼 =   𝐷𝑛
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛  
𝑑𝑥     (17) 

The minimum value of the KSI parameter is zero, which means that the cdfs of the two sets 

compared are equal. We used the KSI parameter to compare the similarities between cdfs of 

synthetic solar irradiance generated from the candidate laws and cdf of measured solar 

irradiance. We stated that the recognized cdf is the one that gets the lowest KSI parameter (the 

one that best fits the cdf of measured solar irradiance). We repeated the comparisons 500 

times on N = 10.000 generated and measured samples. The recognition percentage of each 

candidate law is given by the following ratio :  

𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
number of recognitions

number of experiences
 

 

3.2.2. Kullback-Leibler divergence 

The Kullback-Leibler divergence, DKL, measures the difference between two probability 

densities (pdf) fx and fy. fx is the probability density of a measured data while fy is the 

theoretical density of a statistical law. In practice, the calculation of DKL is done with the 

histogram H constructed from the measured data and the theoretical probability density fy. If 

we denote by H(x) the height of one class of the histogram H at a point x, the KL divergence 

from this class is calculated by an integral (H(x) - fy(x)).log(H(x)/fy(x)) on the interval [bl; 

bu], where bl and bu are the lower and upper limits of the class. Thus, for a k classes histogram, 

DKL is given by the following equation: 

𝐷𝐾𝐿 𝐻, 𝑦 =
1

2
   𝐻 𝑥 − 𝑓𝑦 𝑥  log⁡(

𝐻 𝑥 

𝑓𝑦  𝑥 
)

𝑏𝑢
𝑏𝑙

𝑘
𝑖=1    (18) 

In order to assess the goodness of the best candidate laws selected with the IC we 

computed the KL divergence for these candidate laws, and we stated that the recognized pdf is 

the one that gets the lowest KL divergence (the one that best fits the in situ pdf). We repeated 

the comparisons 500 times on N = 10.000 generated and measured samples. The recognition 

percentage of each candidate law is given by the same ratio formula as for KSI.  

 

4. Results 

We present the identification results in Tables 1 and 2, for both models and their candidate 

laws. The values shown in Table 1 and Tables 2ato 2c are those with the average values of IC; 

100 packets of N = 10000 data are considered, regarding random terms observed on an hourly 

basis variable h.  

In case of the TAG model (Table 1), results are consistent concerning both IC. We find the 

traditionally admitted Gaussian distribution law in the top three, but in the second position. 

The most adequate law, in the sense of our selection criteria, is the logistic law, and the least 

adequate is the extreme value law. 

Table 1: Average values of criteria for all three candidate laws, regarding the TAG model. 

 Gaussian Logistic Extreme 

value 
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BIC 35985 28045 44771 

min  35973 28033 44759 

 

In the case of Polo's model (Tables 2a to 2c), after the IC test, we selected only the laws in 

the top five best recognition rates. The negative values of the IC criteria in Table 2 are 

justified by the impulsive nature (at maximum amplitude >> 1) of candidate laws. The BIC or 

min criteria selected the same top five laws, regardless of the cloudiness class. These are the 

Nakagami, Weibull, Beta, Gamma, and exponential laws. We ignore the other four laws in all 

three tables. We note that for both models, the BIC and 
min criteria provide the same 

ranking, which is normal because of the high quantity of considered data (N = 10000), 

remember that both criteria are consistent (almost certain convergence). Neither criteria offers 

better benefit than the other. In Tables 2a to 2c, the results are quite different for the different 

classes of cloudiness; and this is justified by the variability of the model according to the 

intensity of solar irradiance. Regarding the C1 and C2classes, the beta and Nakagami laws are 

clearly distinguishable from the Weibull law, whereas the latter differs a little from the 

gamma law (in the top two) but differs strongly from the other three candidates in the case of 

low cloudiness (class C3). 

 

Table 2: Average values of criteria for the laws in the top five, according to the three classes 

of cloudiness for Polo's model. 

(a) class C1 

 Beta Weibull Exponential Gamma Nakagami 

BIC -14 897 -14 748 -14 130 -14 572 -14 938 

min  -14 915 -14 767 -14 139 -14 570 -14 957 

(b) class C2 

 Beta Weibull Exponential Gamma Nakagami 

BIC -9 965 -9 664 -8 527 -9 335 -9 944 

min  -9 983 -9 682 -8 537 -9 354 -9 962 

(c) class C3 

 Beta Weibull Exponential Gamma Nakagami 

BIC -11202 -11577 -10883 -11507 -11285 

min  -11220 -11596 -10893 -11526 -11595 
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5. Validation of models 

To discuss the previous findings, the validation method described above has been used to 

assess the goodness of the best candidate laws. In view of the IC values obtained at the stage 

when laws are selected, we apply the validation method on all the five candidate laws and 

present only the more significant results, those of the laws adopted in the top two. In Tables 3 

and 4, we present, regarding the TAG model and then Polo's model, the recognition 

percentages of each of the top two laws following the considered KL distance and KSI 

parameter. 

In the case of the TAG model, results in Table 3 confirm the findings of Table 1. These 

results show that the IC-based method permits to identify the probabilistic distributions 

introduced in the TAG model. We can therefore accept that a white logistical random term 

yields to a best representation of the error associated with the model proposed by Aguiar and 

Collares-Pereira (1992) rather than a Gaussian one, which would confirm Polo's findings 

(2011). This method also contributes to the highlighting of the time invariance of distribution 

laws representing the random term. 

 

Table 3: Recognition percentage according to the KSI parameter and KL distances between measured 

and generated laws for the TAG model. 

 Gaussian Logistic 

KSI 35% 65% 

KL 34% 66% 

 

Table 4: Recognition percentage according to the KSI parameter and KL distances between 

measured and generated laws for Polo's model. 

 

 class C1 class C2 class C3 

 Beta Nakagami Beta Nakagami Gamma Weibull 

KSI 33% 67% 37,2% 68,2% 48% 52% 

KL 33,2% 66,8% 38,2% 61,8% 41,2% 59,8% 

 

Results in Table 4 confirm that the IC-based method allows the identification of the 

probabilistic distributions introduced by the Polo's model in case of low (C3) or high 

cloudiness (C1). In the case of partial cloudiness (C2), the validation process recognizes the 

Nakagami law as being the distribution law of measured data, whereas the proximity of the IC 

values does not permit us to definitively decide between Nakagami and Beta in the 

identification process. In Figure 1, we provide the pdf (a) and the cdf (b) of five candidate 

laws in the event of the Polo’s model to the disputed case of class C2 for 10000 values. We 

see the similarity of the curves, and their behavior is close to the measured values for the Beta 

and Nakagami laws, and thus it is difficult to decide definitively between these two laws in 

case of partial cloudiness. Despite this difficulty, the results are converging since the IC-based 
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method clearly identifies two probabilistic distributions for modeling the random term of the 

Polo’s model, and the validation process recognizes one of these two probabilistic 

distributions. 

 

 

(a) Probability density functions 

 

(b) Cumulative density functions 

Figure 1: The pdfs (a) and cdfs (b) of data generated by the Polo’s model in the case of C2 (partly 

cloudy sky) and measured solar irradiance data 

 

6. Conclusion 
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In this article, we have tried to improve modeling of the distributions involved in generation 

models of synthetic solar irradiance in the inter-tropical zone. 

We analyzed 14 years of solar ground irradiance measurements from two weather stations 

located in French Guiana with a method based on IC. This method has permitted the 

identification of the probability laws that best describe the statistical distribution of each 

random term playing in two generation models of synthetic solar irradiance: Aguiar and 

Pereira's TAG model and Polo's model. 

The identified probability laws were validated by comparing the synthetic data generated 

over 11 different years with in situ measured data and by using the KL divergence and KSI 

parameter as comparison criteria. A strong correlation was noted in Aguiar and Pereira's TAG 

model between the identified and validated probabilistic laws. This result demonstrates the 

non-Gaussian nature of the random term of the original autoregressive model (1). Polo’s 

model also found good matches between these two probability laws in cases of low and high 

cloudiness.  

In the case of partial cloudiness, the proximity of the values of identification criteria does 

not permit us to definitively decide between these two laws, whereas the validation process 

recognizes the Nakagami law as being the distribution law of measured data. 

In conclusion, a new IC-based method has been defined and implemented on two models 

with results that ensure the identification of the probability laws that best describe the 

statistical distribution of the random terms of the two models. This method permits the 

modeling of synthetic solar irradiance data comparable in their statistical content to the 

measured solar irradiance data. This method could be extended to other measurement sites 

and applied to other synthetic generation models of hourly or daily solar data to validate these 

conclusions on a larger scale. 
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Appendix 

 

We recall here the probability distribution of the various candidate laws used in this paper. 

1. For the TAG model, three laws are considered: 

• The Gaussian law 

 

With µ being the average of the distribution and σ the standard deviation of distribution. 

 The extreme value law 
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withµ and σ being the parameters of the form of the distribution. 

 The logistic law 
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 With µ being the mean and s a parameter of the form linked to the variance.  

2. For the Polo-based model, nine laws are considered: 

  The Beta law 
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 = 0 otherwise 

with both and  being the form and distribution parameters. 

 The Gamma law 
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With being a parameter of form and distribution, an intensity parameter, and Г() the gamma 

function. 

 The exponential law 
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 = 0 otherwise 

With µ being the mean and the distribution. 

 The Nakagami law 
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 = 0 otherwise,  

With m being a form parameter,  a parameter permitting to control the propagation of the distribution, 

and (m) the gamma function. 

 The Rayleigh law 

 0x  

 = 0 otherwise,  

With m being the distribution mode. 

 The Rice law 
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  = 0 otherwise,  

With s and σ being the form and distribution parameters, andI0 being the Bessel function of the 1
st
 kind 

of the 0
th
 order. 

 The Weibull law with two parameters 
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 = 0 otherwise, 

With k being a form parameter and a scale parameter. 

 The inverse Gaussian law 
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With µ being the mean and  a form parameter.  
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 The normal-log law 
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 = 0 otherwise, 

With µ being the mean and  the standard deviation of the variable logarithm.  
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List of abbreviation 

 

Clearness index definition 

kt : clearness index 

Ioh : global irradiance on a horizontal plane 

Isc : irradiance produced by the solar constant 

E0 : correction factor of eccentricity 

z :  solar zenithal angle 

 

TAG model 

kt(h) : clearness index of the TAG model 

y(h) : normalized clearness index of the TAG model 

rTAG(h) : random term of the TAG model 

KT) : correlation coefficient depending on the KT index 

h :  hourly variable time 

KT : monthly average of the daily clearness index  

ktm(KT,h) : hourly average of kt(h) 

(KT, h) : standard deviation of kt(h) 

Polo model 

kt(h) : synthetic clearness index of the Polo model at a time h 

ktm(j) : average daily value of the clearness index for day j 

A(h) : random amplitude of the fluctuation of the clearness index for the hour h 

sign(s) : sign of the random signal  

s : realization of a normal Gaussian distribution centered with zero mean and standard 

deviation unit 

h : time 
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