

Automatic detection of boundary layer height using Doppler lidar measurements

Thomas A Rieutord, W Alan Brewer, R Mike Hardesty

▶ To cite this version:

Thomas A Rieutord, W Alan Brewer, R Mike Hardesty. Automatic detection of boundary layer height using Doppler lidar measurements. CIRES rendez-vous 2014, May 2014, Boulder, United States. , 2014. meteo-01379589

HAL Id: meteo-01379589 https://meteofrance.hal.science/meteo-01379589

Submitted on 11 Oct 2016 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Automatic detection of boundary layer height using Doppler lidar measurements

Purpose

Boundary layer height (BLH) is an essential parameter for air quality research, and forecasting. Doppler lidars provide continuous information such as wind speed and direction, turbulence information and backscatter intensity with high resolution (both spatial and temporal). This work aims to find an algorithm able to <u>automatically detect the BLH</u> using all the lidar-measured variables. Two methods will be presented : one based on peak detection, one based on <u>cluster analysis</u>.

<u>2. Data</u>

From campaign : <u>TXFlux</u> – Texas Flux Study Period : Mar, Apr, Oct, 2013 Main goal of the campaign : Study the methane emissions fluxes downwind of oil/gas large fields. **Type of lidar :** <u>HRDL</u> – λ =2 μ m, PRF=200, Data rate=2Hz, Range gate size = 30m.

Turbulence must maintain high values all the way to the ground. 1) Define a peakbased threshold 2) Look for the

highest point

BLH = highest point connected to the ground

Thomas A. Rieutord¹, W. Alan Brewer², R. Mike Hardesty^{2,3}

¹Météo-France, ENM; ²Chemical Sciences Division, NOAA; ³Cooperative Institute for Research in Environmental Sciences

3. Peak detection method

Two types of profile

Idea: BL top is a transition between BL and free atmosphere (FA). We identify peaks in both the turbulence and the gradient of the aerosol backscatter profiles.

Peaks connected <u>to the ground</u>

above the threshold

Aerosol content

Peaks that track a transition

Transitions such as BL top are peaks in gradient of aerosol backscatter profiles. 1) Compute the gradient profile with <u>Haar</u> <u>wavelet</u> <u>transform</u> Record peaks in 2) gradient profile We <u>choose among</u> the peaks with a continuity test.

<u>4. Continuity test</u>

For each peak, we look for neighbors in a <u>window of</u> <u>height and time</u>. All the peaks in the same window are linked together by a thread.

Idea : BL air is

characterized by

turbulence

content

We track the BL

air by gathering

these high

values in

clusters

High aerosol

High

Algorithm : "K means" (non-hierarchical clustering). Used mainly in data-mining. **From :** Toledo et al. (2013)* **Description :** Iterative algorithm with three steps in the main loop :

1) Calculate point-to-seed distances. 2) Link each point with its closest seed. *3) Redefine the seed.*

*Reference : Toledo D. et al. (2013): Cluster analysis: a new approach applied to lidar measurements for atmospheric boundary layer height estimation. J.Atm.Oceanic Tech, 31, 422-436.

Step 3

6.2 A bad day

Estimator	Kmeans	VS var	VS RCI	B
Successful days	13 (62%)	17 (81%)	9 (43%)	11

7. Conclusion and next steps

At this point, we have an estimation of BLH from each of the data (velocity variance, aerosol backscatter, wind), independently. But each one have its drawback (range, availability, accuracy). Mixing them intelligently could be a way to build a full time available and accurate estimator. The clustering analysis method mixes the data from the > beginning, but not yet the wind info. The main drawback is representativeness of the cluster.

6. Results

- Add wind information (wind speed and wind) direction) in clustering Investigate the convergence of the seeds (are the final clusters representative?)
- Improve the mechanism to choose the peaks Mix the 6 peak estimators into a single one Evaluate the algorithms on a extended dataset