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ABSTRACT 8 

During the first observation period of the HyMeX programme, the Mediterranean coasts of Spain 9 

were impacted by several heavy precipitating events (HPEs). The most damaging one occurred 10 

during IOP 8 resulting in cumulative rainfall amount over 180 mm in the area of Murcia-Valencia. 11 

Numerical simulations using a high-resolution atmospheric model provide a very realistic 12 

representation of the mesoscale convective systems (MCSs) at the origin of this HPE and of the 13 

associated low-level conditions, consisting in two cold sectors surrounding a warm sector. This 14 

study provides a detailed analysis of the mechanisms of deep convection initiation and maintenance 15 

between 1200 UTC on 28 September and 0000 UTC on 29 September 2012. On the coastal 16 

mountainous area, the conditionally unstable inflow feeding the MCS is uplifted by the relief 17 

whereas at sea, a strong low-level convergence plays the same role. At the coast, cold pools are 18 

generated and strengthened by a strong low-level jet (LLJ) carrying cold dense air parcels from the 19 

Gulf of Lion and by evaporation and cooling under the precipitating systems. These cold pools play 20 

a key role in triggering the deep convection, either by directly uplifting the air masses or by 21 

deflecting horizontally the inflow. They largely control the localisation and distribution of the heavy 22 
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precipitation at sea near Valencia. A weak barrier wind over the cold pools and a secondary cyclonic 23 

circulation result in a bending of the convergence line at sea, in agreement with radar observations.  24 

A sensitivity study to a more realistic representation of the sea state in the air-sea exchanges shows 25 

that the LLJ is decelerated by the increased sea-surface roughness, resulting in cold pools extending 26 

further at sea and shifting the precipitation patterns 50 km offshore.  27 

Keywords: heavy precipitation event; HyMeX; mesoscale convective system; sea state; 28 

Mediterranean Sea; air-sea exchanges; cold pool; deep convection 29 

1.Introduction 30 

Heavy precipitation events (HPEs) affect regularly the western Mediterranean coastal regions in 31 

autumn and result often in flash flooding and landslides susceptible to produce thousands of 32 

millions euros damages and even casualties (e.g. Ricard et al., 2012; Llasat et al., 2013). Daily 33 

rainfall cumulative amounts higher than 150 mm are frequently observed as generated by multi-cell 34 

quasi-stationary mesoscale convective systems (MCSs; e.g. Ducrocq et al., 2008; Buzzi et al., 35 

2014). These MCSs generally develop on the eastern edge of an upper-level trough extending from 36 

the British Isles to off the Iberian Peninsula associated with potential vorticity anomaly likely to 37 

generate low-level instability (Nuissier et al., 2011; Duffourg et al., 2016). A major ingredient 38 

common to all HPEs is the conditionally unstable moist marine flow extracting energy from the 39 

western Mediterranean sea surface, which is at its warmest in autumn and acts as a heat and 40 

moisture reservoir. This flow is directed towards the Spanish, Italian or French mountainous coastal 41 

regions where it undergoes continuously renewed lifting: the same local mechanisms enable 42 

uplifting at the same place. This lifting marks the onset of deep convection and precipitation on the 43 

coastal areas, and is a key ingredient of quasi stationarity. The complexity of the mountainous 44 

terrain and coastal topography has been demonstrated to be a factor influencing the orographic 45 
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triggering of the convection, along with the characteristics of the low-level inflow (Miglietta and 46 

Rotunno, 2010; 2012; Bresson et al., 2012). The precise role of the relief in determining the 47 

location and distribution of the heavy precipitation has been recently demonstrated on the 48 

Mediterranean islands (Corsica and Sardinia; Barthlott and Kirshbaum, 2013) and on the alpine 49 

foothills on the northern Adriatic coastal area (Di Muzio, 2014; Davolio et al., 2016). Low-level 50 

convergence upstream of the relief or over the sea is another mechanism triggering deep convection 51 

(Ducrocq et al., 2008; Duffourg et al., 2016).  52 

Besides the direct orographic forcing by the elevated terrain behind the coasts and the low-53 

level moisture convergence at sea, the formation of a low-level cold pool is another lifting 54 

mechanism susceptible to favour deep convection. Cold pools are usually generated by rainfall 55 

evaporation in subsaturated air masses around 1.5 km above sea level (asl - Ducrocq et al., 2008; 56 

Bresson et al., 2012). The resulting cold air parcels propagate downwards and spread to form cold 57 

pools. This cold pool, which is denser than the incoming low-level flow, acts like a relief by 58 

blocking and uplifting the moist and warm flow, resulting in a shift of the deep convection 59 

upstream. This cooling mechanism and the resulting cold pool has been demonstrated by a 60 

sensitivity study to be the main mesoscale ingredient for the quasi-stationarity of a MCS that 61 

occurred in September 2002 over the Gard plains rather than over the Massif Central foothills 62 

(Ducrocq et al., 2008). Cold pools may interact or compete with orographic lifting to determine the 63 

positioning of heavy precipitation depending upon the characteristics of the incoming conditionally 64 

unstable low-level flow. Air lifting and triggering of deep convection by cold pools are especially 65 

efficient when the incoming flow is relatively dry or weak (relative humidity around 85 % and low-66 

level wind around 15 m s
−1

, Bresson et al., 2012). Besides direct lifting of the air masses, cold pools 67 

may also deflect horizontally the incoming flow and favour or reinforce the low-level convergence 68 

(Duffourg et al., 2016).  69 
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Better understanding these competing or interacting processes at the origin of deep 70 

convection and heavy precipitation on the Mediterranean coasts in autumn is part of the objectives 71 

of the HyMeX (HYdrological cycle in the Mediterranean EXperiment) programme. HyMeX is an 72 

international programme dedicated to the study of the hydrological cycle and related processes in 73 

the Mediterranean (Drobinski et al., 2014). The first special observation period (SOP1) in autumn 74 

2012 aimed at monitoring and studying these heavy precipitating events over the Mediterranean 75 

coastal regions (Ducrocq et al., 2014). Several Intensive Operation Periods (IOPs) focused on the 76 

observation of the MCSs at the origin of these high-impact events and on investigating the 77 

associated processes.  78 

IOP8 on 28 September 2012 led to heavy precipitation on the Spanish Mediterranean coasts 79 

(more than 200 mm (24h)
-1

 in Andalusia, 190 mm (24h)
-1

 in the Murcia region and 140 mm (24h)
-1

 80 

in Valencia) and was the most damaging event observed during the SOP1 (Jansà et al., 2014; 81 

Ducrocq et al., 2016). The chronology of the event and an overview of the associated mechanisms 82 

have been the subject of previous studies. Using high-resolution numerical modelling, Röhner et al. 83 

(2016) identified orographic forcing as the main mechanism for the triggering of deep convection 84 

over the coastal mountainous area, and strong low-level convergence as the mechanism at the origin 85 

of deep convection at sea. Using backwards trajectories helped them to identify heat and moisture 86 

local source for the conditionally unstable air masses in the Western Mediterranean basin for the last 87 

and more damaging part of the event. Khodayar et al. (2016) evaluated the adequacy of 88 

observational networks to provide information on the HPE. Describing the associated atmospheric 89 

circulation and stratification at broad scale, they identified three different convergence mechanisms 90 

leading to the development of deep convection over land, at the coast or at sea. These studies 91 

showed that the representation of IOP8 using high-resolution numerical modelling is good, and that 92 

its low-level dynamics is reasonably represented by the observations, making IOP8 a suitable case 93 
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for process study and sensitivity tests. However, they provide a rather general view of the events. In 94 

particular, none of these studies investigate in details the processes likely responsible for triggering 95 

deep convection along the coasts or on the mountainous foothills and their interplay. Especially, the 96 

presence of cold pools and their possible role in triggering deep convection are not included in the 97 

previous IOP8 studies. 98 

Consequently, the first objective of this study is to provide a detailed analysis of the 99 

processes at the origin of the heavy precipitation that impacted the Murcia and Valencia region 100 

between 1200 UTC on 28 September 2012 and 0000 UTC on 29 September 2012. The study area 101 

and associated timing were chosen because they are susceptible to involve most of the uplifting 102 

processes described above. It constitutes a good test bed for investigating the interaction of these 103 

mechanisms initiating and maintaining deep convection on the mountainous range, over sea and on 104 

the coast. The effect of the waves generated by the wind (hereafter wind sea) on the low-level flow 105 

is usually implicitly represented in atmospheric models through the Charnock parameter and 106 

roughness length (see Eq.1 in section 3.1). As shown by a previous study on the HyMeX SOP1 107 

IOP16a (Thévenot et al. 2016), a more realistic representation of the wind sea may have a 108 

significant impact on the turbulent air-sea exchanges and in the low-level flow. These authors 109 

obtained a slowing down of the low-level flow feeding the MCSs, resulting in a shift of the 110 

precipitation pattern towards sea, in better agreement with the observations. The second objective of 111 

the present study is thus to assess the impact of a better representation of the wind sea on the sea-112 

surface roughness, momentum and heat transfer between the ocean and the atmosphere, low-level 113 

wind field and precipitation. 114 

This paper is organized as follows. Section 2 provides an overview of the IOP8 with the 115 

synoptic context leading to the development of the HPE, the chronology of the events and a 116 

summary of the atmospheric conditions. In section 3, the numerical simulations performed on this 117 
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case study are presented together with their evaluation using satellite and field campaign 118 

observations. The outputs of the reference simulation are analysed in section 4 to provide a detailed 119 

description of the processes at the origin of deep convection and heavy precipitation on the Murcia-120 

Valencia region. The impact of the representation of the sea state in the parameterization of the air-121 

sea exchanges on these processes and on the precipitation is presented in section 5. Section 6 122 

concludes with a summary of the results. 123 

2. IOP8 overview 124 

2.1. Synoptic context  125 

The synoptic situation of the HyMeX IOP8 is characterized by an upper-level cut-off low over 126 

southern Portugal at 0000 UTC on 28 September 2012, progressing eastwards and reaching eastern 127 

Spain at 0000 UTC on 29 September 2012 (see Fig. 1a for the ARPEGE - Action de Recherche 128 

Petite Echelle Grande Echelle - analysis at 0000 UTC on 28 September, Fig. 1b for the synoptic 129 

analysis at 1800 UTC). The associated warm and cold surface fronts progressed northwards over 130 

the southwestern Mediterranean basin between 0600 UTC on 28 September 2012 and 0000 UTC on 131 

29 September 2012.  132 

2.2 Chronology of the precipitating events 133 

The Spanish and Catalonian networks of rain gauges (MeteoCat) provide hourly observations of the 134 

precipitation amounts with a good geographical coverage (Fig. 2; see also Fig. 3b for the names of 135 

major cities and geographical locations). Heavy precipitation affected Andalusia in the morning of 136 

the 28 September between 0600 and 1200 UTC, with cumulated amount above 200 mm (Fig. 2a, 137 

2b), then progressed eastwards to the Murcia region between 1200 and 1800 UTC (Fig. 2c, 2d) with 138 

cumulated amount of 190 mm. The Valencia region was also affected by heavy rain between 1800 139 

and 2400 UTC on the same day (Fig. 2e, 2f).  140 
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2.3 Mesoscale convective systems and low level conditions 141 

The multi-cell MCS responsible for the heavy rainfall on the Murcia and Valencia region originally 142 

developed around 1100 UTC over Almeria and progressed northeastwards before splitting into 143 

several systems around 1600 UTC. The near-surface wind field, as estimated by the ASCAT 144 

(Advanced SCATterometer, EUMETSAT) scatterometer onboard the Metop-A satellite between 145 

2100 UTC on 28 September and 0000 UTC on 29 September shows three different low-level flows 146 

(Fig. 3a). North of the Mallorca island, a flow initiates in the Gulf of Lion with moderate-to-fairly-147 

strong northerly-to-northeasterly winds converging with a slightly stronger northeasterly flow north 148 

of the Balearic Islands. This moderate low-level flow corresponds to the cold sector ahead of the 149 

warm front (hereafter ahead cold sector; Fig. 1b) and is blowing from the right side to the left side 150 

of the front. It reinforces locally to strong wind and is to some extent channeled between the 151 

Balearic Islands and the coast of Catalonia, before reaching the coasts of the Valencia region. South 152 

of Ibiza and between North Africa and the coasts of southeastern Spain, a southwesterly moderate 153 

flow characterizes the cold sector behind the cold front (hereafter rear cold sector). Between these 154 

two regions, the warm sector is characterized by a light-to-moderate easterly-to-northeasterly low-155 

level flow. This low-level flow distribution results in a strong surface convergence line located 156 

along the warm front between the warm and moist easterly flow on the warm sector and the rapid 157 

southwesterly flow between southern Spain and North Africa. In the following, we focus on the 158 

Murcia-Valencia region and we investigate the processes at the origin of deep convection 159 

(especially the possible role of cold pools) using the modelling tools that are presented in the next 160 

part.  161 
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3. Meso-NH simulations 162 

3.1. Meso-NH model and set-up 163 

The numerical simulations were performed with the non hydrostatic numerical research model 164 

Meso-NH (Lafore et al., 1998). The Meso-NH model was run over a 1125 × 1125 km
2
 domain 165 

covering the western Mediterranean basin from Gibraltar to the west of Sardinia (Fig. 3b). It 166 

encompasses the precipitating systems during their whole life-cycle as well as the different marine 167 

low-level moisture-supplying flows. The horizontal grid has a 2.5-km resolution, and the vertical 168 

grid is defined with 55 stretched vertical levels (Gal-Chen and Somerville, 1975) up to 20 km, with 169 

18 levels in the lowest 1500 m above the surface. The model resolution and associated physical 170 

parameterization package are the same as those used in previous studies of HPEs using Meso-NH 171 

(e.g. Nuissier et al., 2008, Thévenot et al., 2016, Duffourg et al., 2016).  172 

The prognostic variables of the model are the three components of the wind, the dry potential 173 

temperature, the turbulent kinetic energy and the mixing ratios of the water vapour and of five 174 

different classes of hydrometeors (cloudwater, rainwater, primary ice, snow aggregates, and 175 

graupel). The evolution of the water species are governed by a bulk microphysical scheme (Caniaux 176 

et al., 1994; Pinty and Jabouille, 1998). The parameterization of the turbulence is based on a 1.5-177 

order closure (Cuxart et al., 2000) with the diagnostic mixing length option following Bougeault 178 

and Lacarrère (1989). Thanks to its high horizontal resolution, the atmospheric deep convection is 179 

explicitly solved by the model. The surface conditions and the air–surface exchanges are governed 180 

by the SURFEX surface model (Masson et al., 2013). The sea-surface turbulent fluxes are 181 

parameterized using the COARE 3.0 formula (Fairall et al., 2003). The sea-surface roughness is 182 

related to the friction velocity u* using the Charnock coefficient αch: 183 
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z
0
=α

ch

u*

2

g
+0 .11

ν

u*          (1), 184 

where g is the gravitational acceleration and ν the kinematic viscosity.  185 

Simulations start on 28 September 2012 at 0000 UTC and last 24 h. They are initialised and 186 

driven at their lateral boundaries every 3 h from the high-resolution AROME-WMED analyses 187 

(Application of Research to Operations at Mesoscale – Western Mediterranean; Fourrié et al., 188 

2015). The sea-surface temperature (SST) field comes from the initial AROME-WMED analysis, 189 

which is built with the 2D Optimal Interpolation of in situ measurements CANARI
 

(Code 190 

d’Analyse Nécessaire à Arpege pour ses Rejets et son Initialisation; Taillefer, 2002) blended with 191 

the Operational Sea Surface Temperature Ice Analysis (OSTIA; Donlon et al., 2012). This SST field 192 

remains constant during the 24-h integration. 193 

3.2 Sensitivity to sea state representation 194 

In order to test the sensitivity of the boundary-layer processes and of the HPEs to the sea state, two 195 

simulations were performed with and without explicitly representing the wave impact into the 196 

surface turbulent fluxes parameterization. The methodology used here follows closely the one used 197 

by Thévenot et al. (2016) with the use of the sea state analyses taken from the run of the Wavewatch 198 

III® wave model (Ardhuin et al., 2010; Tolman, 2014) in the Previmer project framework 199 

(http://www.previmer.org) as a surface forcing of the Meso-NH/SURFEX model.  200 

In the experiment with no wave impact (NOWAV hereafter, used throughout this study as a 201 

reference simulation), the COARE 3.0 algorithm is used with the formulation of the Charnock 202 

coefficient from Hare et al. (1999), i.e. αch is set to 0.011 for 10-m wind speed below 10 m s
−1

, then 203 

increases linearly up to 0.018 at 18 m s
−1

, and remains constant for larger wind speeds. In the 204 

experiment with explicit wave representation (WW3_F hereafter), the formulation of Oost et al. 205 
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(2002) is used with the wave peak period provided by the analysis every 3 h:  206 

α
ch
= 50(c p

/u*)
− 2 .5

         (2), 207 

where cp is the wave phase velocity. The Wavewatch III® wave parameters have been compared 208 

with two Météo-France buoy observations in the Gulf of Lion and Azur sites. Mean biases are of 209 

0.16 and 0.36 m for the significant wave height (root mean square 0.25 m) and of 1.0 and 0.9 s for 210 

the peak period (root mean square 0.6 and 0.5 s), respectively. This level of agreement is 211 

comparable to what has been obtained in a previous study (Thévenot et al., 2016) and makes us 212 

confident in using these analysed parameters as a forcing representative of the actual sea state over 213 

the western Mediterranean basin. 214 

4 Validation of the reference simulation 215 

The results of the NOWAV reference simulation were compared to observations in order to assess 216 

the skill of the simulation in representing the processes and the chronology of the events. All the 217 

observations used in this work were collected and have been made available in the HyMeX project 218 

framework.  219 

4.1 Precipitation 220 

The observations used in this part are taken from the Spanish rain gauge network including the 221 

dense network of METEOCAT. The amount and location of the precipitation simulated in NOWAV 222 

display a good match with the rain gauge 3-h cumulative precipitation from 0600 UTC on 28 223 

September 2012 to 0000 UTC on 29 September 2012 (Fig. 2a to 2f). The maximum cumulative 224 

amount observed by the rain gauges available for this study is 204 mm (24h)
-1

 over the whole 225 

domain, that compares favourably with the maximum predicted by the NOWAV simulation of 226 

212 mm (24h)
-1

. To assess more precisely the skill of our two simulations, scores against rain gauge 227 
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observations for the 24-h period starting at 0000 UTC on 28 September over the whole simulation 228 

domain have been computed. The simulated daily rainfall amounts are extracted at the closest grid 229 

point to the 1233 rain gauge stations. The mean bias, the standard deviation of the difference 230 

(SDD), and the correlation coefficient (r) are given in Table 1, as well as two categorical scores 231 

widely used for assessing skills of precipitation forecast: the Equitable Threat Score (ETS; Schaefer, 232 

1990) and the Hanssen and Kuipers discriminant (HK; Hanssen and Kuipers, 1965). Both scores 233 

assess the ability of the model to detect rainfall amounts above a given threshold (see Table 1) and 234 

give values between -1 and 1. The thresholds used here correspond roughly to the 4-, 5- and 6-235 

quantiles in the observations. ETS excludes the probability of detecting an event by chance, values 236 

equal to (resp. below) zero indicates that model skills are equal to (resp. below) a random forecast. 237 

HK measures the accuracy of the forecast both for events and non events, HK=0 corresponds to a 238 

constant forecast and HK=-1 to zero hits both for events and non-events forecasts.  239 

The scores obtained here are high, showing that the representation of this event by our two 240 

simulations is much better than random or constant forecast and performs very well in predicting 241 

both events and non events.  242 

4.2 Low-level flow and stability 243 

The wind field at the first vertical level of the model over sea is compared with the wind field 244 

obtained from the ASCAT scatterometer onboard Metop-A (Fig. 3) and shows a good agreement in 245 

intensity and direction. Especially, the near-surface convergence line corresponding to the front 246 

between Ibiza and Mallorca is well represented in the simulation, as well as the lower intensity of 247 

the low-level wind in the warm sector area. Here and in the rest of the study the cold and warm 248 

fronts are determined using the 2-m temperature gradients. The occluded front is determined using 249 

the low-level wind convergence. 250 
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The radiosoundings performed in Palma de Mallorca and Barcelona on 28 September at 251 

1800 UTC and on 29 September at 0000 UTC are used to assess the skills of the NOWAV 252 

simulation in reproducing the wind field at different levels and the air masses stability profiles from 253 

the equivalent potential temperature (θe, Fig. 4). These radiosoundings were assimilated in the 254 

AROME-WMED analyses used as large-scale forcing of our simulations (Fourrié et al., 2015). 255 

Their impact on the NOWAV simulation is probably weak, since they occur late in the simulation 256 

and far from the domain boundaries. Observed and simulated radiosounding profiles generally 257 

agree well on the θe and wind values. In Barcelona, the simulated wind speed is systematically 258 

lower than in observations especially at upper level, though the agreement on the direction is very 259 

good. In particular, the veering of the wind at 1800 UTC from east-north-east at the surface to south 260 

at 5000 m asl and south-west at upper level that can be observed on the two stations is well 261 

reproduced by the simulation. The tropopause height is close to 12 km at both locations and times.  262 

At 1800 UTC, the Palma sounding is still located in the cold sector ahead of the incoming 263 

warm front (Fig. 4a). The ground equivalent potential temperature is 50-55°C in the simulation, 264 

increasing up to 60°C at 1000 m asl, then decreasing to 50°C at 3000 m asl. The low-level wind is 265 

northeasterly, close to 12 m s
−1

, weakening to 5 m s
−1

 at 2000 m asl. At 0000 UTC on 29 September 266 

(Fig. 4b) Palma is now in the warm sector as shown by the increase of the surface θe up to 55-65 °C 267 

in the simulation. The simulated potential temperature at low level is generally higher than in 268 

observations though their profiles up to 3000 m asl are very similar. This warm and moist low-level 269 

layer goes up to 2000 m asl with some instability remaining up to 4000 m asl in the simulated 270 

profile. The low-level wind is weak (up to 4000 m asl) in the warm sector, as already noticed 271 

(section 2.3 and Fig. 3).  272 

The two Barcelona profiles exhibit a similar evolution between 1800 UTC and 0000 UTC 273 

(Fig. 4c and d), with equivalent potential temperatures close to 40°C at the surface. Barcelona 274 
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profiles are in the ahead cold sector at both time periods, with the occluded front approaching from 275 

the south on 29 September at 0000 UTC. At both times the wind is weak from east close to the 276 

ground, about 15 m s
−1

 at 1000 m asl, and from south to southeast at upper level. At 1800 UTC, the 277 

low-θe air masses close to the ground transported from the sea by the northeasterly low-level flow 278 

are topped by a thick layer of warmer, stable air (θe close to 55°C) from 700 to 3000 m asl. At 279 

0000 UTC on 29 September, the low-θe layer below 700 m asl is still present with a sharper vertical 280 

gradient (likely maintained by the low-level cold and moist easterly flow) but the warmer air layer 281 

located just above is now thinner with θe close to 50 °C up from 2000 m asl. This can be explained 282 

by a strong and homogeneous flow observed in the simulation outputs between 2000 and 4800 m 283 

asl transporting drier air with θe below 48 °C from the south of the western Mediterranean basin 284 

(not shown).  285 

In summary, the reference simulation succeeds in reproducing the stability (θe) variations 286 

observed in the radiosoundings. The profiles of wind direction and wind speed at first order is also 287 

well reproduced by the model (except in Barcelona for the wind speed). We consider in the 288 

following that this simulation can be confidently used to investigate the fine-scale processes leading 289 

to deep convection and heavy precipitation in the Murcia-Valencia region. 290 

5. Process study 291 

In this part, the reference simulation outputs are used to study the different processes at play on the 292 

eastern Spanish coast between Murcia and Valencia between the 28 September 2012, 1600 UTC 293 

(corresponding to the start of convective precipitation in the Murcia region) and the 29 September 294 

2012, 0000 UTC.  295 

5.1 Conditional instability, moisture convergence and low-level jet 296 

As seen in the previous part, the low-level flow over the western Mediterranean on the afternoon of 297 
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the 28 September is organized in three main areas: the ahead cold sector on the Balearic Sea and the 298 

Gulf of Lion; the warm sector from the Balearic Islands to Murcia and the coasts of North Africa; 299 

and the rear cold sector on the Alboran Sea up to Murcia. This organization is well reproduced by 300 

the NOWAV simulation with a strong low-level convergence line (Fig. 5a) along the surface cold 301 

and occluded fronts. The equivalent potential temperature at the first level of the model (Fig. 5b) 302 

shows value above 64°C in the warm sector with maximum values above 70°C on a large area north 303 

of the Algerian coasts. This warm sector is limited by very sharp θe gradients: to the south by a low-304 

level rather uniform southerly flow bringing warm and much drier air from the African continent 305 

and to the southwest by the cold front with the rear cold sector with equivalent potential 306 

temperature below 58°C. On its north edge, the θe gradient corresponding to the warm front is much 307 

smoother. However, θe decrease to 54°C on a large area of the Gulf of Lion and the northern 308 

Balearic Sea. Over Spain θe is lower, confirming that there is no local feeding or development of 309 

convective systems on land away from the coasts (Röhner et al., 2016). The Convective Available 310 

Potential Energy (CAPE) at the same time (Fig. 5c) shows values above 1000 J kg
-1

 and up to more 311 

than 2000 J kg
-1

 on a large area within the warm sector, ahead of the low-level flow close to the 312 

cold front. This high-CAPE area is limited to the north by the ahead cold sector and to the south by 313 

the low-level still warm but much drier southerly flow from North Africa. Its southwestern 314 

boundary corresponds to the cold front off Murcia at that time, where strong moisture convergence 315 

occurs. The Convective Inhibition (CIN, Fig. 5d) is relatively high in the main part of the warm 316 

sector, especially north of the North African coast due to the warm and dry southerly flow. By 317 

contrast, it shows low values in the westernmost part of the warm sector in the lee of the warm and 318 

moist flow. This area at the southwestern edge of the warm sector – with high CAPE and low CIN 319 

values – is thus the area the most prone to feed deep convection processes.  320 

The simulated radar reflectivities show values above 40 dBz corresponding to convective 321 
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precipitation at two different places (Fig. 5b to d, green contour): along the occluded front the low-322 

level moisture convergence above 3 10
-5

 kg m
-3

 s
-1

(Fig. 5a, green contour); and on land close to 323 

Murcia, probably as a result of stationarity of a previous convective system. At sea, the mechanism 324 

responsible for the convective precipitation is clearly the strong low-level convergence that remains 325 

present along the occluded front and on the triple point between 1500 UTC on 28 September and 326 

0000 UTC on 29 September. 327 

In the ahead cold sector, the 10-m northeasterly wind of 12 to 15 m s
−1

 reinforces to 16 to 328 

20 m s
−1

 at 500 m asl (Fig. 5a, 6a). At 1500 m asl, by contrast, the NOWAV simulated wind field is 329 

a more uniform southeasterly flow around 12 m s
−1

 on the ahead cold sector and part of the warm 330 

sector (Fig. 6b). The ahead cold sector flow corresponds therefore to a strong low-level jet (LLJ) . 331 

Note that this LLJ is clearly visible in the observed and simulated radiosounding profiles in Palma 332 

de Mallorca at 1800 UTC and in Barcelona at 1800 UTC and at 0000 UTC (Fig. 4). Oppositely to 333 

what has been frequently observed in HPE studies (e.g. Ducrocq et al., 2008), this LLJ is not 334 

located in the warm sector corresponding to the conditionally unstable feeding of the convective 335 

systems but in a cold sector with θe at low level between 48 and 60°C. It corresponds likely to a 336 

low-level jet associated with the low-level pressure gradient ahead of the warm front (e.g. Shapiro 337 

and Keyser, 1990).  338 

This low-level flow is not saturated in humidity as shown by the surface latent heat flux 339 

values up the 500 W m
-2

 on a large area at 1600 UTC on 28 September (Fig. 7a - corresponding 340 

relative humidity values between 70 and 80 %). The ahead cold sector is the only place in the 341 

western basin where such values are observed at that time (except very locally under the convective 342 

systems, probably in link with wind gusts). This is due to the conjunction of this strong LLJ with 343 

dry air masses over the Gulf of Lion and with SST above 23 °C all over the Balearic Sea as seen in 344 

the OSTIA analysis (not shown). By contrast, the SST in the Gulf of Lion is much colder (18 to 345 
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20°C) due to an episode of Mistral-Tramontane in the previous days; this results in weak 346 

evaporation. As a result of this very strong evaporation on the Balearic Sea, the mixing ratio in the 347 

LLJ ranges between 8 and 10 g kg
-1

 over the main evaporative patch (Fig. 7b). It increases 348 

gradually when approaching the eastern Spanish coasts, up to 13 g kg
-1

 (see also Fig. S1 and S2 in 349 

the Supporting Information). This rising of humidity from 8 g kg
-1

 to more than 12 g kg
-1

 was 350 

already seen along backward trajectories in the study of Röhner et al. (2016). These air masses 351 

coming from the Gulf of Lion have potential temperatures between 18 and 20°C. They warm up 352 

slightly over the northern Balearic Sea thanks to the strong turbulent heat transfer and approach the 353 

Spanish coasts with potential temperature close to 23°C (see Fig. S1 and S2).  354 

Cold and relatively dry air masses originating from the Gulf of Lion are transported by the 355 

LLJ to the Spanish coasts close to Valencia. They moisten and get slightly warmer due to turbulent 356 

exchanges with a warmer sea over the Balearic Sea. 357 

5.2 Initiation and maintenance processes 358 

We now investigate in more details the processes responsible for the initiation and maintenance of 359 

the deep convection in the Murcia-Valencia region, between 1600 and 2300 UTC on 28 September. 360 

At this time period, various processes leading to heavy precipitation interact and compete with each 361 

other. 362 

The virtual potential temperature (θv) is directly related to the density of air masses and 363 

commonly used as a proxy for cold pools (e. g. Ducrocq et al., 2008; Bresson et al., 2012). In the 364 

following, we use θv values under 23°C to identify cold pools, in addition to θe characterizing the 365 

heat and moisture content of the inflow. 366 

At 1600 UTC, low values of θv are associated with the LLJ in the western part of the Balearic 367 

Sea. They correspond to the cold and moist air masses transported from the Gulf of Lion by the 368 
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LLJ, as previously described. These air masses are sufficiently cold to make them dense in spite of 369 

their moisture and they accumulate on the foothills of the relief at the latitude of Valencia (Fig. 8a). 370 

The role of this LLJ in initiation of the cold pool on the coast is confirmed on the vertical cross 371 

section along this LLJ (Fig. 8c). Dense air masses with low θv are present up to 600 m asl and 372 

transported by this 15-to-18 m s
−1

 flow towards the coast. Convective precipitation with 373 

instantaneous rates above 20 mm h
-1

 are present southwest of Xabia on land and offshore (Fig. 8b). 374 

They correspond to strong vertical velocities at 500 m above ground level (agl) (Fig. 8a, white 375 

contour) and moisture convergence rates above 3 10
-5

 kg m
-3

 s
-1

 at the surface (Fig. 8b, blue 376 

contour). Strong convergence at sea is thus the mechanism initiating the convection at that time, 377 

with both the LLJ in the ahead cold sector and the weaker flow in the warm sector contributing to 378 

the moisture feeding. South of Valencia, along the 2D profile (Fig. 8c) strong convective 379 

precipitation correspond to strong vertical velocities (white and black contours) and are located 380 

close to the maximum of the topography. The horizontal convergence on the relief slope (vertical 381 

blue arrows, Fig. 8c) is the mechanism responsible for the uplift and the corresponding deep 382 

convection at that place and time.  383 

At 1830 UTC (Fig. 9), the warm and cold fronts bounding the conditionally unstable air mass 384 

have moved northeastwards. On the southernmost part of the area, the limit of the convective 385 

precipitation with instantaneous rates above 20 mm h
-1 

matches exactly the northern edge of the 386 

cold pool (north of Murcia) which is also accurately collocated with strong uplift (Fig. 9a, white 387 

contour) and strong moisture convergence rates (Fig. 9b, blue contour). At sea, convective 388 

precipitation patches are located on the cold and occluded fronts, and corresponds also to strong 389 

convergence rates (Fig. 9b, blue contour). Along the coasts south of Valencia, very high 390 

instantaneous rain rates (50 mm h
-1

) are obtained over the sea not associated with high convergence 391 

rates (Fig. 9b, 9c). However, their contour (see the instantaneous rates above 20 mm h
-1

 on Fig. 9b) 392 
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matches the cold pool present along the coast at the latitude of Valencia, which is the result of both 393 

moisture feeding by the northeast LLJ and rain evaporation. Vertical cross sections exhibit two 394 

different mechanisms contributing to initiating the deep convection by uplift of the air masses. On 395 

the relief as precedently, strong uplift with vertical velocities above 5 m s
−1

 is obtained, resulting in 396 

instantaneous rain rate of 50 mm h
-1

. Over the sea, close to the edge of the cold pool which has 397 

developed since 1600 UTC, vertical velocities above 1 m s
−1

 above 1500 m agl (white contour, Fig. 398 

9c) result in deep convection. The horizontal convergence (blue vertical arrows, Fig. 9c) is strong at 399 

the edge of the cold pool. As no convective cells are present at that place yet, the cold pool is very 400 

likely at the origin of the uplift here. On the cold pool itself, strong uplift (white contour) and strong 401 

convergence (blue arrows) are collocated with downdraughts with θe below 52 °C and subsidence 402 

below -1 m s
−1

 (black contour), and strong precipitation. At this place, the active convective cells 403 

and strong precipitation seem to maintain (and enhance) the cold pool. 404 

At 2000 UTC, the main convergence zone along the occluded front is now located south of 405 

Valencia (Fig. 10a). The two areas of strong convective precipitation are still present on the relief, 406 

northwest of Xabia and south of Valencia. They are collocated with strong convergence rates (Fig. 407 

10a, white contour; Fig. 10b, blue contour) and high evaporation at low level on the relief and on 408 

the cold pool (not shown). Conversely, at sea off Valencia, strong precipitation rates are not 409 

collocated with strong moisture convergence (Fig. 10b), they rather correspond to the coldest patch 410 

of the cold pool at sea (Fig. 10a). The surface covered by the cold pool over the sea has slightly 411 

increased and the minimum θv on land has decreased down to 17°C. Strong uplifts (white contour, 412 

Fig. 10c) collocated with strong horizontal convergence (blue arrows, Fig. 10c) and strong 413 

precipitation (Fig. 10b) are located at the edge of the cold pool. Convergence and uplift at the edge 414 

of the cold pool are the processes resulting in deep convection here. The already active convection 415 

on the relief generates downdraughts (black contour, Fig. 10c) that in turn contribute to the 416 
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maintenance of this cold pool on the relief foothills and at sea. On these cold pools at the latitude of 417 

Valencia, a deflection of the low-level wind from east-north-east to north-north-east corresponds to 418 

the initiation of a barrier wind (Fig. 10a, insert). Barrier winds have been observed and modelled in 419 

previous studies, mostly around the Adriatic Sea (Di Muzio, 2014, Davolio et al., 2016). The 420 

altitude of the montainous area around Valencia makes it comparable to what is obtained by Di 421 

Muzio (2014) with a medium-height orography.  422 

At 2130 UTC, the surface covered by the cold pools has further extended at sea, in particular  423 

off Xabia (Fig. 11a) and the main moisture convergence zone has reached the latitude of Valencia 424 

(Fig. 11b, blue contour, Fig. 11c). The very strong convergence zone offshore is still present with 425 

high precipitation rates (see Fig. 11c, blue arrows) in collocation with modelled uplift and 426 

downdraughts. On the relief at the latitude of Valencia, high precipitation rates are also collocated 427 

with the strong convergence line that progresses northwards with the precipitation patterns. 428 

Between these two areas, large patches of very strong precipitation (instantaneous rain rate up to 429 

130 mm h
-1

, Fig. 11c) are obtained along the coast, at the latitude of Valencia, in very good 430 

collocation with the cold pool extending at sea. Clearly, low-level convergence (blue arrows Fig. 431 

11c) is the mechanism responsible for the uplift triggering the deep convection here. It is however 432 

difficult to attribute this convergence to the cold pools effect only, as convective cells are already 433 

present here. A secondary cyclonic circulation has formed at low level (Fig. 11a, insert), due to the 434 

deflection of the low-level wind by the cold-pool edge. It results in shifting the eastern edge of the 435 

cold pool southeastwards, and the patches of strong moisture convergence northwards (Fig. 11b). 436 

This low-level secondary circulation has already been observed on HPEs (Berthou et al., 2016; 437 

Duffourg et al., 2016) as a result of a barrier wind formation. It corresponds here to the minimum of 438 

sea-level pressure (see Fig. 12a) and results in a slight bending of the convergence zone at sea. In 439 

order to check whether these instantaneous high rain-rates at sea are also present in the 440 
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observations, the radar reflectivities obtained in the NOWAV simulation at 2100 UTC are compared 441 

with the corresponding observations from the OPERA radar reflectivity Odyssey composite (Fig. 442 

13; the Odyssey product is not available at 2130 UTC; http://www.knmi.nl/opera/). The rain 443 

amounts are comparable between observations and simulation outputs, and the bending of the 444 

convection patterns due to the cold pool and associated to the secondary cyclonic circulation in the 445 

NOWAV simulation is also present in the observations.  446 

The mechanisms at the origin of heavy precipitation in the Murcia-Valencia region involve 447 

orographic forcing on the coastal mountainous range, very strong moisture low-level convergence 448 

at sea along the cold front and lifting of the moist LLJ by cold pools that developed on the relief 449 

foothills and propagated offshore. These cold pools induce a northerly-to-northwesterly weak 450 

barrier wind along the coast, and the setup of a low-level secondary cyclonic circulation resulting in 451 

the bending of the convective patterns. These processes play a key role in the location and 452 

distribution of heavy precipitation (rainfall cumulative amount above 140 mm in 6 hours) in the 453 

Valencia region. In particular, they explain the rainfall patterns at sea as observed in the radar 454 

reflectivity images (Fig. 13).  455 

6. Impact of wave representation 456 

In this part, we discuss the impact of representing explicitly the waves in the WW3_F simulation 457 

through the forcing of the Meso-NH model at the surface using the 3-h Wavewatch III® analyses. 458 

The objective here is to test the sensitivity of the atmospheric response to the representation of the 459 

surface roughness. As shown by Thévenot et al. (2016) on another HPE case study, representing the 460 

surface roughness variability due to the wind sea can result in a slowing down of the low-level wind 461 

and in a shift of the precipitation place. As shown by the scores of the WW3_F simulation, which 462 

are not significantly different from those of NOWAV (Table 1), the overall representation of the 463 
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high precipitation is comparable in both simulations. 464 

6.1 Instantaneous effect on the low-level flow 465 

We first examine the wave parameters as simulated by the Wavewatch III® model at 1500 UTC on 466 

28 September, and their instantaneous impact on the oceanic and atmospheric surface parameters. 467 

The simulated significant wave heights are the largest (more than 2.5 m) on the Balearic Sea and 468 

south of the Balearic Islands along the coasts of Spain, between Murcia and Xabia (Fig. 14a). The 469 

resulting surface roughness difference as parameterized in COARE 3.0 depends mainly on the 10-m 470 

wind speed at sea and on the state of development of the wind sea (represented by the significant 471 

wave height). This difference is then the biggest in the ahead cold sector, where both strong winds 472 

at 10 m (Fig. 5a) and waves in equilibrium with the wind (Fig. 14a) are present. Roughness length 473 

differences are above 5 10
-4

 m over a large area (Fig. 14b), which result in a difference on the drag 474 

coefficient Cd of 0.2 10
-3

 over the whole ahead cold sector (Fig. 14c). Local strong increase of the 475 

roughness length (up to 8 10
-3

 m) and of the drag coefficient is also observed more locally under the 476 

convective systems and in the rear cold sector. These general increases over the ahead cold sector 477 

result in a slowing down of the 10-m wind of more than 0.5 m s
−1

 over a very large area of the 478 

ahead cold sector (Fig. 14d). The part of the rear cold sector close to the front shows slowing down 479 

of the same magnitude and local patches of wind slowing down by more than 5 m s
−1

 are also 480 

observed under the convective systems, collocated with the surface roughness increase. These 481 

patches concern very limited areas and are collocated with strong wind and gusts under the 482 

convective clouds. 483 

 This instantaneous impact of the waves on the low-level flow is different from what has 484 

been obtained on another case study (IOP16a) using the same methodology (Thévenot et al., 2016) 485 

by two aspects. Firstly, the wind slowing down is weaker than what was obtained by these authors 486 
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in average (0.5 m s
−1

 to be compared to 3 m s
−1

), but concerns a larger area. Secondly, this slowing 487 

down concerns the two cold sectors, especially the ahead cold sector that contribute to the cold pool 488 

initiation and maintenance, but does not impact the warm sector and the feeding of the convective 489 

systems by conditionally unstable air masses.  490 

In atmospheric and oceanic surface conditions corresponding to HPEs, the turbulent heat 491 

transfer over the sea is generally dominated by the latent heat flux. This is the case here, with strong 492 

evaporative fluxes in a large area of the ahead cold sector (see Fig. 7a) between 1500 and 493 

1900 UTC, as well as locally in the rear cold sector. The differences on the latent heat flux due to 494 

the wave representation in the surface forcing of the model are however very weak: 5 W m
-2

 495 

increase on average with mean values of the latent heat flux close to 200 W m
-2

 in the two cold 496 

sectors of this simulation. The effect on the low-level air masses participating in the feeding of the 497 

systems (θe, mixing ratio) is consequently not significant. As in the study of Thévenot et al. (2016), 498 

the mechanisms responsible for a possible change in the deep convection and associated heavy 499 

precipitation are to be found more likely in dynamical effects of the low-level flow than in the 500 

thermal exchanges.  501 

6.2 Impact on the precipitation field 502 

We now compare the equivalent and virtual potential temperature fields at the first level of the 503 

model, at 2130 UTC in the region of Murcia-Valencia, in order to investigate the impact of the wave 504 

representation on the convective systems and precipitation. Few differences are observed in the 505 

low-level flow feeding the systems itself (Fig. 12; see also Fig. S3 in Supporting Information). The 506 

main differences concern the cold pools that extend further east at sea in the WW3_F simulation, 507 

especially at the latitude of Valencia. They also show colder θv on the coast north of Valencia. As a 508 

consequence of this cold pool shift, the precipitation field above 5 mm h
-1

 (instantaneous rain rate; 509 
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see yellow contour in Fig. S3) is displaced eastwards. In every simulation, the patterns 510 

corresponding to 5 mm h
-1

 rain rate closely follow the edge of the cold pools (corresponding to θv 511 

under 23°C). This is due to the displacement of the moisture convergence line at the surface on the 512 

edge of the cold pool (Fig. 12).  513 

The secondary cyclonic circulation at the eastern edge of the cold pool, which is observed at 514 

2130 UTC in the NOWAV simulation (section 5.2, Fig. 11a and 12a), is weakened and displaced at 515 

sea in the WW3_F simulation (Fig. 12b). In both simulation outputs, the 10-m wind field is 516 

deflected and bended by the cold pool edge, resulting in the WW3_F simulation in a shift of this 517 

cyclonic circulation 30 km eastwards. The sea-level pressure field at 2130 UTC on 28 September 518 

2012 in the reference simulation NOWAV shows two minima close to 1000 hPa at the latitude of 519 

Valencia, corresponding to the well-organized secondary low-level circulation (Fig. 12a). In the 520 

WW3_F simulation, higher sea-level pressures up to 1012 hPa are observed near the coast, and the 521 

sea-level pressure minimum of 1001 hPa is displaced 30 km towards Ibiza, out of the cold pool 522 

(Fig. 12b). This weakening of the local sea-level pressure minimum has been observed in previous 523 

sensitivity studies and can be explained by the slowing down of the low-level wind in WW3_F. 524 

Relative higher pressures result, in turn, in an anticyclonic shift of the surface wind and of the 525 

displacement of the cyclonic circulation towards sea (Berthou et al., 2016). A weak barrier wind 526 

effect is also observed on the cold pools in both simulation.  527 

As a result, the precipitation cumulated over 6 h from 1800 UTC on 28 September to 528 

0000 UTC on 29 September 2012 show a significant difference in both their amount and their 529 

location between WW3_F and NOWAV (Fig. 15). Taking into account the wave effect on the 530 

surface roughness results in rain amount more distributed along an east-west profile (Fig. 15b). The 531 

peak of precipitation on this 6-h time period over the whole simulation domain reaches 159 mm in 532 

the WW3_F simulation with respect to 258 mm in the NOWAV simulation. The total amount on the 533 
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Valencia area is the same in both simulations with an average of 2.05 mm km
-2

. As seen in Figure 534 

15a, the precipitation pattern in the WW3_F simulation results is displaced of 50 km towards sea. 535 

Note however that this displacement concern precipitation located mainly at sea and does not affect 536 

the forecast scores (Table 1) since they were computed using raingauges observations. 537 

This impact of a weakening of the low-level wind field of less than 1 m s
−1

 due to wave 538 

representation on the formation and maintenance of cold pools in the coastal domain can be 539 

explained by the results of previous studies. Cold pools are known to develop more easily and over 540 

larger areas with slower low-level winds (Bresson et al., 2012; Davolio et al., 2016). Lower wind 541 

speeds results in more time for the convective cells to develop and for the cold pools to strengthen 542 

themselves from evaporating precipitation (Bresson et al., 2012). This relatively low but uniform 543 

weakening of the low-level wind induces a significant change on the cold pool extent and location, 544 

resulting in a corresponding displacement of the heavy precipitation patterns. 545 

7. Summary and conclusion 546 

This study is part of the HyMeX programme, the objectives of which include a better understanding 547 

of the mechanisms triggering the deep convection responsible for heavy precipitation, and the role 548 

of the air-sea exchanges in the case of Mediterranean HPEs. In the framework of this programme, 549 

the SOP1 IOP8 has been the subject of several studies, either using high-resolution simulations for 550 

describing the main mechanisms responsible for deep convection (Röhner et al., 2016), or using 551 

observations for a general description of the event (Khodayar et al., 2016). These authors do not 552 

provide a detailed study neither of the different mechanisms responsible for uplifting the air masses 553 

in a coastal area, leading to strong precipitation, nor of the role of the sea surface exchanges in the 554 

event. 555 

 Here, we focused on the local processes leading to heavy precipitation in the Murcia-556 
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Valencia region between 1600 and 2300 UTC on the 28 September 2012, on their interaction, and 557 

on the role of the sea state representation in a model. The use of the non-hydrostatic, convection-558 

permitting model Meso-NH without and with a more realistic representation of the sea surface 559 

roughness provides very accurate representation of the low-level flows and atmospheric stability 560 

patterns. In particular, the precipitation amounts, distribution and chronology from 1200 UTC on 28 561 

September to 0000 UTC on 29 September are well reproduced by both simulations. The 562 

precipitation scores of the reference simulation computed with different thresholds give also 563 

excellent results. We then consider these reference simulation outputs suitable for investigating the  564 

mechanisms at the origin of this HPE with maximum cumulative rain amount above 200 mm in 565 

24 h.  566 

 Several mechanisms represented in the simulation outputs have been described in previous 567 

studies on the same HPE (Röhner et al., 2016; Khodayar et al., 2016). For instance, the warm and 568 

cold sector associated play a role in the moisture and heat feeding of the system when it moves 569 

northwards along the Mediterranean Spanish coast from Gibraltar to Catalonia. Low-level 570 

conditionally unstable air masses with very high CAPE and low CIN reach eastern Spain in a 571 

easterly weak-to-moderate flow. The two main mechanisms mentioned in previous studies, 572 

responsible for the lifting of these air masses and leading to the triggering of the deep convection - 573 

namely orographic forcing on land and strong low-level moisture convergence at sea - were 574 

assessed in our reference simulation. The present study reveals other mechanisms at the origin of 575 

the deep convection and heavy precipitation (see Fig. 16 for a synthetic scheme). The LLJ is 576 

observed here in the ahead cold sector rather than in the main warm low-level fuelling the MCS. It 577 

originates in the Gulf of Lion and transports very cold air masses, which barely warm up over the 578 

warmer surface waters of the Balearic Sea. These cold thus dense air masses contribute to initiate 579 

cold pools on the relief foothills close to the sea. Rain evaporation in the subsaturated mid-level 580 
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layer results in downdraughts further developing and maintaining these cold pools. They eventually 581 

act as triggering mechanisms of the deep convection when the air masses at their leading edge are 582 

thick and dense enough to uplift the incoming conditionally unstable air masses. A weak barrier 583 

wind develops from 2000 UTC on 28 September at low level over the cold pool at sea, leading to a 584 

cyclonic deflection of the incoming low-level flow (Fig. 11a). A secondary cyclonic circulation 585 

results in a bending of the cold pool edge, and in a deflection of the strong low-level convergence 586 

zones at sea and of the corresponding convective precipitation. Cold pools play here a key role in 587 

the localization of the deep convection and associated heavy precipitation at sea off Valencia rather 588 

than on the relief foothills. 589 

Representing in a more realistic way the sea state using the 3-hourly Wavewatch III® 590 

analyses as a forcing has a significant impact on the simulation results. It first increases the surface 591 

roughness, resulting in an increase of the wind stress, thus in a slight decrease of the low-level 592 

wind.  The main conditionally unstable low-level flow feeding the convective systems in warm and 593 

moist air is not impacted, but the moderate wind slowing down over a large part of the secondary 594 

flow in the ahead cold sector (low-level jet) is sufficient to affect significantly the location of the 595 

heavy precipitation at sea in the Valencia region. The cold pools are displaced further at sea, 596 

strengthened, and shift accordingly the place of strong convergence and convective precipitation. 597 

The sea-level pressure field is changed towards higher pressures and the low-level wind field is 598 

modified accordingly by an anticyclonic shift.  599 

Conversely, no impact of the wind sea on the heat exchanges at the sea surface has been 600 

observed in this study. The mean change of the latent heat flux of 5 W m
-2

 over the Balearic Sea 601 

does not change significantly the moisture content or equivalent potential temperature in the LLJ 602 

feeding the convective systems. This reinforces the similar results obtained in a previous study on 603 

the HyMeX SOP1 IOP16a (Thévenot et al., 2016). Either developed wind sea concerns the area of 604 
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warm and moist air directly feeding the HPE, as this was the case in IOP16a, and the low-level flow 605 

is already saturated in humidity; as a result, the latent heat transfer change due to waves is weak. Or 606 

it concerns an area not saturated in humidity yet as this is the case in IOP8, and this flow plays only 607 

a secondary role in the HPE. This shows that the effect of the sea state on the heat exchanges in 608 

systems leading to HPEs is likely very small. 609 

This study of the sensitivity to wave impact uses an atmospheric model at high resolution 610 

forced by realistic modelled sea states. The conclusion of this part of our study would probably be 611 

different if the simulation was carried out using a full coupling between the atmospheric and the 612 

wave model.  613 
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 Mean bias SDD Correlation r ETS   HK   

Threshold   5 mm 15 mm 25 mm 5 mm 15 mm 25 mm 

NOWAV 0.4 15.5 0.74 0.63 0.78 0.64 0.79 0.90 0.80 

WW3_F 0.4 16.0 0.72 0.63 0.74 0.61 0.79 0.89 0.79 

 

Table 1: Mean bias, standard deviation difference, ETS and HK scores (see text) of the NOWAV 

and WW3_F simulations against 24-h accumulated rain gauge observations on 28 September 2012 

(mean bias and SDD in mm). 
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Figure 1: Synoptic conditions of the IOP8 with (a) ARPEGE analysis showing the height of potential vorticity 
anomaly equal to 2.0 PVU (colour chart, km), the 500 hPa geopotential (isobars, m) and the 300 hPa wind 
(above 10 m s-1) at 0000 UTC on 28 September 2012 and (b) synoptic Meteo-France analysis with fronts 

and isobars, at 1800 UTC on 28 September 2012.  
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Figure 2: Three-hour cumulated rain amount from the NOWAV simulation (see Table 1 and  sections 3.1 and 
3.2) and measured by rain gauges (coloured squares) starting at (a) 0600 UTC, (b) 0900 UTC, (c) 1200 

UTC, (d) 1500 UTC, (e) 1800 UTC and (f) 2100 UTC on 28 September 2012.  
 

278x183mm (300 x 300 DPI)  

 

 

Page 36 of 51Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 3: Sea surface wind (m s-1) (a) from ASCAT onboard Metop-A between 2100 UTC on 28 September 
and 0000 UTC on 29 September and (b) from the NOWAV simulation (see sections 3.1 and 3.2) at 2230 UTC 
on 28 September 2012, with the surface fronts superimposed. V denotes Valencia, B Barcelona, M Murcia, X 

Xabia, and P Palma de Mallorca. The topography (grey scale, m) and main geographical areas are also 
indicated (b).  
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Figure 4: Vertical profiles (height in km) of equivalent potential temperature (°C) and horizontal wind 
(vector) from radio soundings (black) and from NOWAV simulation (red) in Palma de Mallorca (a) at 1800 
UTC on 28 September 2012 and (b) at 0000 UTC on 29 September, and in Barcelona (c) at 1800 UTC on 28 

September and (d) at 0000 UTC on 29 September 2012.  
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Figure 5: (a) 10-m wind (m s-1), (b) equivalent potential temperature (°C), (c) convective available potential 
energy (J kg-1), and (d) convective inhibition (J kg-1) from the NOWAV simulation, at 1600 UTC on 28 

September 2012. The green contour in (a) indicates the moisture convergence rate above 3 10-5 kg m-3 s-1 

at the surface. The green contour in (b), (c), (d) indicates the simulated radar reflectivity at 2000 m above 
40 dBz. The red (resp. blue) line indicates the warm (rep. cold) front, the purple line the occluded front. V 

denotes Valencia, B Barcelona, M Murcia, X Xabia, and P Palma de Mallorca.  
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Figure 6: Wind field from the NOWAV simulation (m s-1) at 1600 UTC on 28 September 2012, (a) at 500 m 
and (b) at 1500 m agl. The red (resp. blue) line indicates the warm (rep. cold) front, the purple line the 

occluded front.  
 

186x90mm (300 x 300 DPI)  

 

 

Page 40 of 51Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 7: (a) Surface latent heat flux (W m-2) and (b) mixing ratio at 200 m (g kg-1) from the NOWAV 
simulation at 1600 UTC on 28 September 2012. The grey contour in (b) indicates the area with surface 

evaporation above 400 W m-2. The red (resp. blue) line indicates the warm (rep. cold) front, the purple line 
the occluded front. V denotes Valencia, B Barcelona, M Murcia, X Xabia, and P Palma de Mallorca.  
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Figure 8: (a) Equivalent potential temperature and virtual potential temperature at the surface (°C, colour 
scale), 10-m wind (vectors), and vertical velocities above 1 m s-1 at 500 m agl (white contour); (b) 

Instantaneous rain rate (mm h-1, colour scale), and moisture convergence rate above 3 10-5 kg m-3 s-1 at the 
surface (blue contour); (c) vertical profiles of the equivalent potential temperature and virtual potential 
temperature (°C, colour scale ; height scale in km), projection of the wind (black arrows), instantaneous 

rain rate (vertical bars), vertical velocities above 1 m s-1 (white contour) or below -1 m s-1 (black contour), 
cloud precipitating water above 1 g kg-1 (light blue, dashed contour), and horizontal convergence at 120 m 

agl (blue arrows) from the NOWAV simulation at 1600 UTC on 28 September 2012. The black line in 

(a)  indicates the vertical cross section used in (c). The virtual potential temperature in (a) and (c) replaces 
the equivalent potential temperature when under 23°C to indicate cold pools. The red (resp. blue) line in (a) 
and (b) indicates the warm (rep. cold) front, the purple line indicates the occluded front. V denotes Valencia, 

B Barcelona, M Murcia, X Xabia, and P Palma de Mallorca.  
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Figure 9: Same as Figure 8, but at 1830 UTC on 28 September 2012.  
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Figure 10: Same as Figure 8, but at 2000 UTC on 28 September 2012. The insert in (a) (grey frame) 
represents in more details the 10-m wind field on the coast at the level of Valencia.  
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Figure 11: Same as Figure 10, but at 2130 UTC on 28 September 2012.  
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Figure 12: Sea-level pressure (colour scale, hPa), surface wind (black arrows), cold pool edges as identified 
by θv ≤ 23°C (brown contour), and areas of moisture convergence rate above 3 10-5 kg m-3 s-1 at the 

surface (blue contour) from the (a) NOWAV and (b) WW3_F simulations at 2130 UTC, on 28 September 
2012. V denotes Valencia, and X Xabia.  
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Figure 13: Radar reflectivities (dBZ) at 2000 m agl in the Valencia region at 2100 UTC on 28 September 
2012 (a) from the Odyssey composite product, and (b) from the NOWAV simulation. The red (resp. blue) 
line indicates the warm (rep. cold) front. V denotes Valencia, B Barcelona, M Murcia, X Xabia, and P Palma 

de Mallorca.  
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Figure 14: (a) Wave significant height from the Wavewatch III® model outputs (m), (b) surface roughness 
length difference (10-4 m), (c) drag coefficient difference (10-3) and (d) 10-m wind speed difference (m s-1) 
between the WW3_F and NOWAV simulations at 1500 UTC on 28 September 2012. The red (resp. blue) line 

indicates the warm (rep. cold) front, the purple line the occluded front. V denotes Valencia, B Barcelona, M 
Murcia, X Xabia, and P Palma de Mallorca.  
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Figure 15: (a) Six-hour cumulated rain difference (mm) between the WW3_F and NOWAV simulations, and 
(b) six-hour cumulated rain (mm) in the NOWAV (black solid line) and WW3_F (red dashed line) along the 

A-B profile between 1800 UTC on 28 September 2012 and 0000 UTC on 29 September 2012.  
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Figure 16: Schemes of the low-level flows and forcing mechanisms resulting in heavy precipitation on the 
Murcia-Valencia region (a) at 1600 UTC and (b) at 2130 UTC on 28 September 2012. The surface cold 

(warm) front is indicated with a blue (red) line. LLJ corresponds to low-level jet, ACS to ahead cold sector, 
WS to warm sector and RCS to rear cold sector.  

 
186x114mm (100 x 100 DPI)  

 
 

Page 50 of 51Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Processes leading to deep convection and sensitivity to sea-state representation during HyMeX 

IOP8 heavy precipitation event, M.-N. Bouin
 *
, J.-L. Redelsperger, and C. Lebeaupin Brossier 

Using numerical simulations, the processes leading to deep convection ad heavy precipitation 

during the HyMeX-SOP1 IOP8 are investigated. Cold pools and associated inflow deflection play a 

key role in positioning heavy precipitation, in addition to orographic effects and moisture 

convergence at sea. Representing in a more realistic way the sea surface roughness results in a 

displacement of the rain patterns of 50 km offshore. 

 

 

 

 

 

 

 

Figure caption: Equivalent potential temperature (°C) and virtual potential temperature (°C) at the 

surface as a proxy of cold pools, 10-m wind field (arrows) and convective precipitation (green 

contour) in northeastern Spain at 2130 UTC on the 28 September 2012.  
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