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Since the first International Cooperative for Aerosol Prediction (ICAP) multi-model
ensemble (MME) study, the number of ICAP global operational aerosol models
has increased from five to nine. An update of the current ICAP status is provided,
along with an evaluation of the performance of ICAP-MME over 2012–2017, with
a focus on June 2016–May 2017. Evaluated with ground-based Aerosol Robotic
Network (AERONET) aerosol optical depth (AOD) and data assimilation quality
MODerate-resolution Imaging Spectroradiometer (MODIS) retrieval products, the
ICAP-MME AOD consensus remains the overall top-scoring and most consistent
performer among all models in terms of root-mean-square error (RMSE), bias and
correlation for total, fine- and coarse-mode AODs as well as dust AOD; this is
similar to the first ICAP-MME study. Further, over the years, the performance of
ICAP-MME is relatively stable and reliable compared to more variability in the
individual models. The extent to which the AOD forecast error of ICAP-MME
can be predicted is also examined. Leading predictors are found to be the consen-
sus mean and spread. Regression models of absolute forecast errors were built for
AOD forecasts of different lengths for potential applications. ICAP-MME perfor-
mance in terms of modal AOD RMSEs of the 21 regionally representative sites over
2012–2017 suggests a general tendency for model improvements in fine-mode AOD,
especially over Asia. No significant improvement in coarse-mode AOD is found
overall for this time period.
KEYWORDS

aerosol, aerosol forecast, aerosol modelling, ensemble, global aerosol model,
multi-model ensemble, operational aerosol forecast, probabilistic forecast
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1 INTRODUCTION

Over the past decade, global aerosol modelling has grown
from a largely climate and geophysical science activity
to include operational forecasting and decision support sys-
tems. Weather, air quality, and health communities are
increasingly relying on aerosol analysis and forecast prod-
ucts. For example, near-real-time (NRT) aerosol forecasts
are used to provide situational awareness for civilian avi-
ation, military operations, and air-quality alerts. Opera-
tionally, aerosol particles can also interfere with many aspects
of modern-day Earth-system observing systems, including
retrievals of sea-surface temperature (e.g. Reynolds et al.,
1989; May et al., 1992; Bogdanoff et al., 2015), ocean colour
(e.g. Gordon, 1997), and land use systems (Song et al.,
2001), as well as atmospheric retrievals of temperature, water
vapour and other gases, which are used to constrain atmo-
spheric states in numerical weather prediction (NWP) models
(Houweling et al., 2005). Indeed, progress has been made
in accounting for aerosol impacts on radiances in satellite
retrievals through atmospheric corrections (Weaver et al.,
2007; Wang and Niu, 2013) and aerosol direct and indirect
impact on NWP forecasts (e.g. Mulcahy et al., 2014; Toll
et al., 2016).

With the rapid increase in the number of operational and
quasi-operational global aerosol models, the International
Cooperative for Aerosol Prediction (ICAP) was founded in
2010 (Benedetti et al., 2011; Reid et al., 2011; Colarco
et al., 2014a) with one of its goals being the develop-
ment of a global multi-model aerosol forecasting ensemble
(ICAP-MME) for basic research and eventual operational use.
The ICAP community, which consists of developers from
forecasting centres and remote-sensing data providers, has
met yearly since its inception to discuss issues pertaining
to operational aerosol forecasting with topics ranging over
aerosol observability (Reid et al., 2011), model validation and
verification (Benedetti et al., 2011), aerosol processes, and
aerosol data assimilation (http://icap.atmos.und.edu/).

As a relatively new community compared to NWP, ICAP
has positioned itself to take advantage of best practices
from the NWP community, including methodologies for data
assimilation, single-model ensembles (Molteni et al., 1996;
Toth and Kalnay, 1997), multi-model ensembles (Park et al.,
2008), and consensus products (Sampson et al., 2008). In
particular, the motivation for developing the ICAP global
multi-model ensemble aerosol optical depth (AOD) consen-
sus is based on NWP studies that have shown the usefulness
of ensemble-based predictions in understanding systematic
errors that arise from the imperfect nature of models and
the sensitivity of models to initial conditions. For example,
multi-model consensuses are found on average to produce
more-accurate forecasts of cyclone track and intensity than
the individual model members (e.g. Goerss et al., 2004;
Sampson et al., 2008). Likewise, the ICAP-MME aerosol

forecast consensus generally performed better than the indi-
vidual models in the first ICAP-MME global assessment
(Sessions et al., 2015).

The first ICAP-MME, as described in Sessions
et al. (2015), included four complete aerosol forecast
models (European Centre for Medium-range Weather
Forecasts–Monitoring Atmospheric Composition and Cli-
mate model (ECMWF-MACC), now under the Copernicus
Atmosphere Monitoring Service (CAMS); Fleet Numerical
Meteorology and Oceanography Center (FNMOC)/Naval
Research Laboratory (NRL) Navy Aerosol Analysis and
Prediction System (NAAPS); Japan Meteorological Agency
(JMA) Model of Aerosol Species in the Global Atmosphere
(MASINGAR); and National Aeronautics and Space Admin-
istration (NASA) Goddard Space Flight Center (GSFC)
Global Modeling and Assimilation Office (GMAO) Goddard
Earth Observing System, Version 5 (GEOS-5)), and one
dust-only model (National Oceanic and Atmospheric Admin-
istration/National Centers for Environmental Prediction
(NOAA NCEP) NOAA Environmental Modeling System
(NEMS) Global Forecast System (GFS) Aerosol Component
(NGAC)). Since then, forecast contributions from other fore-
casting centres have been added to ICAP-MME, including
dust aerosol forecasts from the Barcelona Supercomput-
ing Center (BSC) Chemical Transport Model (CTM), now
embedded in the Multiscale Online Nonhydrostatic Atmo-
spheRe CHemistry model (MONARCH), and the UK Met
Office (UKMO) dust models, and full-species aerosol fore-
casts from Météo-France Modèle de Chimie Atmospherique
à Grande Echelle (MOCAGE) and Finnish Meteorological
Institute (FMI) System for Integrated modeLling of Atmo-
spheric coMposition (SILAM). Additionally, numerous
updates were made to improve the quality of predictions from
the individual forecast models (e.g. better representation of
aerosol processes, more aerosol species, finer spatial and
temporal resolution, from offline to inline modelling, etc.),
the initial conditions (e.g. new observation types, improved
methods for processing and screening observations, and
improved data assimilation techniques), and improvements
in the driving meteorological model data. As a result of these
many updates, a new performance evaluation of ICAP-MME
was deemed necessary for the aerosol forecasting commu-
nity, as well as joining the larger ensemble community in
celebrating 25 years of ensemble prediction at ECMWF
(Buizza and Richardson, 2017).

The individual aerosol models that contribute to
ICAP-MME are independent in their underlying meteorol-
ogy and often in their aerosol sources, sinks, microphysics
and chemistry. The diversity of aerosol representation across
the aerosol forecast models, similar to that found in aerosol
climate models (Kinne et al., 2006), results in differences in
predicted aerosol properties and spatial/temporal distribu-
tions. In order to increase the accuracy of aerosol forecasts,
several centres have employed data assimilation of satellite-
and/or ground-based observations of aerosol optical depth

http://icap.atmos.und.edu/
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(AOD) – the most widely available and evaluated aerosol
parameter. For these models, the diversity in assimilation
methods, and the assimilated AOD observations, including
the treatments of the observations prior to assimilation (qual-
ity control, bias correction, aggregation, sampling, etc.), also
leads to differences in the AOD analyses and forecasts. In this
article, AODs at 550 nm from all models are evaluated region-
ally by representative Aerosol Robotic Network (AERONET)
sites and globally using a data-assimilation-grade satellite
aerosol product. We present the basic verification charac-
teristics of ICAP-MME and their evolution with time, and
identify regions of diversity in model analyses and fore-
casts across the ensemble members. We also evaluate the
usefulness of ICAP model ensemble mean and spread for
absolute forecast error estimate. Finally, we use this knowl-
edge to build forecast error regression models for potential
applications towards probabilistic forecasts.

2 METHODOLOGY

In this section, a brief description is provided of the models
that are included in the ICAP-MME and an outline is given
of the fundamental metrics for model performance in AOD
prediction. Drawing from the members of ICAP-MME’s lat-
est generation of quasi-operational aerosol models, AOD
analyses and 4-day AOD forecasts are analysed from four
multi-species models with AOD data assimilation (core
members): ECMWF/CAMS, JMA, NASA GSFC/GMAO
and NRL/FNMOC. For the evaluation of dust analyses
and forecasts, the UKMO dust model with dust AOD assimi-
lation is included. For dust forecast evaluation only, dust prod-
ucts are included from NOAA NGAC and BSC MONARCH,
which exclude data assimilation, leading to a total of seven
dust models. As per the ICAP agreement, individual mod-
els and their associated metrics are not specified. Instead,
the metrics are provided for the ensemble as a whole, as was
done in the first ICAP-MME paper (Sessions et al., 2015)
with an emphasis on the relative spread of performance for
both analyses and forecasts at different sites and regions. The
main analysis is conducted over a 1-year time period, June
2016 to May 2017, when the most recent validation data from
both AERONET and data assimilation (DA)-quality satellite
products are most abundant. Additionally, the start date of the
analysis time, June 2016, coincides with the operational tran-
sition of AOD data assimilation for one of the core members,
giving a total of four multi-species aerosol models with data
assimilation for evaluation.

2.1 Input models

The current ICAP-MME operation includes seven compre-
hensive global aerosol models: the ECMWF Copernicus
Atmosphere Monitoring Service (CAMS, former MACC),
GEOS-5, NAAPS, MASINGAR, NGAC, MOCAGE,

SILAM, and two dust-only global models: BSC MONARCH
(former BSC-CTM) and UKMO Unified Model. The basic
properties and configurations of these participating models
are outlined in Table 1 and detailed descriptions of individual
models are given in Appendix A. During the study period,
there were insufficient data to fully evaluate the MOCAGE,
SILAM and NGAC full-species models with the exception
of the NGAC dust component. Therefore, while descriptions
are included of these models, MOCAGE, SILAM and the
non-dust species of NGAC are not used in the evaluation
presented here.

The ICAP models are mostly driven by independent
operational/quasi-operational meteorological models that are
developed at each NWP/research centre, and aerosol variables
are either calculated dynamically and concurrently with the
meteorological fields (“inline”) or run in a separate calcu-
lation forced by stored NWP fields (“offline”). Depending
on the resolution of the underlying meteorology, the aerosol
models have different horizontal and vertical resolutions,
ranging from 0.25◦ × 0.31◦ latitude/longitude and 72 vertical
layers to 1.4◦ × 1◦ and 24 layers. All of the models include
dust aerosol, although with different size bins. The compre-
hensive models carry a full set of aerosol species, including
dust, sea salt, biomass-burning smoke (combined black car-
bon and organic carbon from some models) and varying
forms of pollution aerosols (sulphate and possible nitrates).
The aerosol sources (e.g. biomass-burning emissions), sinks,
microphysics and chemistry are also quite different across the
models, with the exception of NOAA NGAC and GEOS-5
which use a similar aerosol module.

For the models that have aerosol data assimilation, aerosol
forecasts are initialized with analysis fields from their respec-
tive DA systems, ranging from two-dimensional variational
(2D-Var), 3D-Var and 4D-Var to ensemble systems. One con-
sistency across these data assimilation systems is the use of
data from the MODerate-resolution Imaging Spectroradiome-
ter (MODIS) with its daily global spatial coverage. How-
ever, the treatments applied to the MODIS observations are
different among the members. For example, FNMOC/NRL
applies strict quality assurance and quality-control processes
to convert MODIS level 2 data into filtered, corrected and
aggregated AOD observations with associated uncertainty
estimates. This processing is described for MODIS Collec-
tion 5 over-ocean Dark Target AOD by Shi et al. (2011a),
and over-land by Hyer et al. (2011). For MODIS Collection
6 data, all correction and filtering coefficients were recalcu-
lated, and the method used to screen and correct Dark Target
over-land retrievals was applied to Deep Blue retrievals also.
NASA GMAO also uses MODIS, but adapts a neural network
retrieval trained using AERONET data to translate observed
MODIS radiances into ground-based calibrated AOD (Ran-
dles et al., 2017). The UK Met Office develops their own dust
AOD product derived from MODIS-retrieved aerosol prop-
erties (Pradhan, 2017). Furthermore, since satellite-retrieved
AOD is a column-integrated observation, aerosol speciation
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and vertical distribution are not constrained by assimilation
of AOD. The operations used to convert AOD into 3-D
speciated aerosol fields and vice versa constitute another layer
of diversity across models that include data assimilation.

2.2 ICAP-MME

The ICAP-MME is a consensus-style multi-model ensem-
ble where all members are equally weighted. The ensemble
of model AODs is generated daily with 1◦ × 1◦ resolution
at 0000 UTC for 6-hourly forecasts out to 120 h with a 1-day
latency. The l-day latency allows aerosol forecasts from all
centres, including centres that generate their aerosol predic-
tions on a delayed cycle, to be collected and aggregated into
ICAP-MME. Daily products include AOD distribution maps,
mean-spread plots, verification plots and threat scores, as well
as the ICAP-MME data themselves. Currently, the ensemble
is limited to speciated AOD at a standard 550 nm wavelength.
It is anticipated, by the end of 2019, that surface mass con-
centrations of speciated aerosols will also have been included
in ICAP-MME. Due to differences in data policy for partic-
ipating members, plots and data products of each individual
member are only available to participating centres. How-
ever, plots of ICAP-MME consensus and spread are available
on the NRL webpage (http://www.nrlmry.navy.mil/aerosol/)
and Network Common Data Form (NetCDF) data files includ-
ing the 550 nm dust, fine-mode (mostly from pollution and
biomass-burning smoke aerosol), coarse-mode (mostly from
dust and sea-salt aerosols) and total AOD (from all aerosol
species) are available on the US Global Oceans Data Assim-
ilation Experiment (GODAE) website at https://usgodae.org/
cgi-bin/datalist.pl?dset=nrl_icap_mme&summary=Go, both
last accessed on 15 March 2019.

The data stream for the individual ICAP models and the
MME over time is shown in Figure 1. Because of the opera-
tional nature of these models, data stream outages sometimes
occur due to network issues or hardware/software issues, for
example. The ICAP-MME is generated daily for the previ-
ous 3 days to minimize outages. Most members have data
availability greater than 90%, and the ICAP-MME data are
produced with 99.8% availability.

The ICAP MME evaluation results presented in this article
are based on the unweighted arithmetic mean of the ensemble
members (“ensemble mean”), and the standard deviation of
the ensemble members (“ensemble spread”). We also tested
using the ensemble median for the June 2016 to May 2017
study period and our evaluation results and conclusions were
unchanged.

2.3 Verification

The AErosol RObotic NETwork (AERONET: http://aeronet.
gsfc.nasa.gov) is a ground-based and global-scale Sun pho-
tometer network, which has been providing high-accuracy

FIGURE 1 Data availability of ICAP models and ICAP-MME between
December 2011 and January 2019. [Colour figure can be viewed at
wileyonlinelibrary.com].

measurements of aerosol properties since the 1990s (Hol-
ben et al., 1998). AERONET instruments measure Sun
and sky radiance at several wavelengths, ranging from the
near-ultraviolet to near-infrared during daytime. It is often
used as the primary standard for validating satellite products
and model simulations (e.g. Colarco et al., 2010; Levy et al.,
2013). For this study, we use the quality-assured AERONET
Version 3 level 1.5 product, which has better cloud-screening
and better preservation of high AOD values that were often
discarded in previous versions. The complete set of Version
3 cloud-screening and quality assurance algorithms and com-
parisons of the Version 3 product to Version 2 are provided
in Eck et al. (2018). While final quality-assured Version 3
level 2 data are preferable, complete datasets are posted with
delays as long as 18 months, after instruments have been
brought back from the field for laboratory recalibration. How-
ever, as data are converted to level 2, calibration constants
are back-applied to level 1.5 data ensuring the best possible
available data while completing timeliness requirements. The
Version 3 AERONET data from sites with post-deployment
calibration re-processing have AOD uncertainty very similar
to AERONET Version 2 level 2 of ∼0.01 in the visible and
near-infrared (Eck et al., 2018), since calibration is the dom-
inant source of the measured AOD uncertainty. Other data
with only pre-deployment calibration applied (since these
instruments are still operating in the field) may have AOD
uncertainties that are somewhat higher depending on the mag-
nitude of calibration drift, but will typically be ∼0.02 or less
since level 1.5 data have passed the Version 3 cloud-screening
and quality assurance (QA) filtering. The ICAP DA mod-
els have a capability of assimilating AERONET AOD in
their research mode (e.g. Rubin et al., 2017), but none of
the operational runs apply AERONET AOD assimilation.
So the AERONET data serve as an independent dataset for
validation purposes.

For this analysis, 21 AERONET sites are selected (Table 2)
based on regional representativeness, and the availability of
contiguous data records covering June 2016 to May 2017, the

http://www.nrlmry.navy.mil/aerosol/
http://usgodae.org/cgi-bin/datalist.pl?dset=nrl_icap_mme&summary=Go
http://usgodae.org/cgi-bin/datalist.pl?dset=nrl_icap_mme&summary=Go
http://aeronet.gsfc.nasa.gov
http://aeronet.gsfc.nasa.gov
http://wileyonlinelibrary.com
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TABLE 2 For each of the 21 AERONET sites used in this study, AERONET Version 3 level 1.5 mean total AOD at 550 nm and RMSE for 6 h and 72 h
forecasts from the four core ICAP models and the ICAP-MME for June 2016–May 2017. RMSE values are listed in order from low to high, and ICAP-MME
results are shown in boldface. Sample size refers to the number of valid 6 h average AERONET AOD observations over this 12-month time period

Site Location
Main Aerosol
type

Mean
Aeronet
total AOD 6 h forecast RMSE 72 h forecast RMSE

Sample
size

Alta Floresta Brazil, 9◦S, 56◦W Smoke 0.21 0.11 0.13 0.13 0.14 0.21 0.12 0.14 0.14 0.15 0.16 248

Amsterdam Island Southern Indian Ocean,
38◦S, 78◦E

Sea salt 0.07 0.04 0.04 0.05 0.07 0.08 0.04 0.04 0.05 0.06 0.09 273

Banizoumbou Sahel, 13◦N, 2◦E Dust 0.49 0.21 0.22 0.23 0.29 0.29 0.24 0.24 0.27 0.30 0.33 641

Beijing China, 39◦N, 116◦E ABF, dust 0.54 0.41 0.41 0.42 0.47 0.48 0.46 0.46 0.49 0.52 0.56 451

Capo Verde Sub-tro. Atlantic,
16◦N, 22◦W

Dust 0.42 0.14 0.14 0.16 0.19 0.22 0.18 0.19 0.21 0.25 0.26 393

Cart Site Great Plains, 36◦N,
97◦W

Clean 0.09 0.05 0.06 0.06 0.07 0.09 0.05 0.06 0.06 0.08 0.10 612

Chapais Quebec, 49◦N, 74◦W Clean 0.07 0.03 0.04 0.04 0.04 0.07 0.04 0.04 0.05 0.05 0.06 245

Chiang Mai Thailand, 18◦N, 98◦E Smoke 0.42 0.20 0.22 0.22 0.26 0.29 0.23 0.24 0.25 0.29 0.31 295

Gandhi College Rural India, 25◦N, 84◦E Dust, pollution 0.62 0.23 0.23 0.24 0.25 0.29 0.27 0.27 0.28 0.31 0.33 308

GSFC E. CONUS, 38◦N,
76◦W

Pollution 0.10 0.05 0.05 0.06 0.07 0.09 0.07 0.07 0.07 0.09 0.11 614

Ilorin Sahel, 8◦N, 4◦E Smoke, dust 0.73 0.33 0.33 0.34 0.37 0.43 0.32 0.39 0.39 0.47 0.51 407

Kanpur Urban India, 26◦N,
80◦E

Pollution, dust 0.62 0.29 0.30 0.31 0.32 0.32 0.37 0.39 0.39 0.44 0.45 655

Minsk Western Asia, 53◦N,
27◦E

Pollution, smoke 0.13 0.06 0.07 0.07 0.08 0.10 0.07 0.09 0.11 0.11 0.14 397

Moldova Eastern Europe, 47◦N,
28◦E

Pollution 0.17 0.09 0.11 0.11 0.11 0.12 0.10 0.11 0.13 0.13 0.15 383

Monterey W. CONUS, 36◦N,
121◦W

Clean 0.27 0.27 0.46 0.46 0.56 1.01 0.28 0.56 0.58 0.59 1.01 148

Palma de Mallorca Mediterranean, 39◦N,
2◦E

Dust, ABF 0.12 0.05 0.05 0.05 0.07 0.08 0.08 0.08 0.08 0.08 0.12 767

Ragged Point Caribbean, 13◦N, 59◦W African dust 0.17 0.06 0.06 0.07 0.08 0.10 0.08 0.08 0.09 0.10 0.12 416

Rio Branco Brazil, 9◦S, 67◦W smoke 0.23 0.15 0.15 0.19 0.20 0.21 0.18 0.20 0.20 0.22 0.25 232

Singapore Maritime Cont., 1◦N,
103◦E

ABF, smoke 0.28 0.19 0.20 0.22 0.22 0.22 0.22 0.23 0.23 0.25 0.25 410

Mezaira Southwest Asia, 23◦N,
54◦E

Dust 0.36 0.15 0.16 0.18 0.21 0.24 0.18 0.19 0.23 0.24 0.43 641

Yonsei University South Korea, 38◦N,
127◦E

Dust, Pollution 0.45 0.25 0.26 0.26 0.28 0.30 0.30 0.30 0.32 0.33 0.33 523

main study period, as well as the longer 2012–2017 period to
allow for evaluation of model performance over time. Addi-
tionally, sites were selected to maintain as much consistency
as possible with the original ICAP-MME evaluation (Ses-
sions et al., 2015), to enable comparisons between previous
and current evaluations. Of the original 21 sites, 18 were
retained, including 10 sites dominated by dust influence. The
3 sites that were replaced for this analysis due to large data
gaps or site decommissioning include the remote oceanic
site Crozet Island, which is replaced with Amsterdam Island,
the Arabian Peninsula dust site Solar Village replaced with
Mezaira, and the South Korea site Baengnyeong replaced
with Yonsei University site following the regional represen-
tativeness requirement.

Since AERONET instruments do not directly measure at
550 nm, measurements from multiple wavelengths (380 nm to
1,020 nm) were used to estimate both fine- and coarse-mode
AODs at 550 nm, based on the Spectral Deconvolution
Algorithm (SDA) of O’Neill et al. (2001; 2003). The SDA
product is capable of capturing the full modal characteristics

of fine and coarse particles, based on verifications using
in situ measurements (Kaku et al., 2014). SDA-derived fine-
and coarse-mode AERONET AODs are then compared to
model-predicted fine mode, represented as pollution plus
biomass-burning smoke, and coarse mode, represented as sea
salt plus dust. To facilitate comparison between ground-based
AERONET observations and gridded model output, the
1◦ × 1◦ ICAP model grids within which the AERONET V3
level 1.5 data fall are first identified and model AOD is
sampled from the identified grid. To account for temporal
differences, AERONET data are binned into 6 h intervals cen-
tred at the model synoptic output times of 0000, 0600, 1200
and 1800 UTC and then averaged within the bins. AERONET
coarse-mode AOD is used for dust AOD validations at sites
dominated by dust influence (Table 3) for all models. Fine and
total AOD validations only apply to the full-species models.

While AERONET serves as a useful verification dataset
due to the small measurement error, sites are only present over
land, and are sparse in many regions, limiting the evaluation
of global model output. In order to generate a global-scale
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TABLE 3 AERONET Version 3 level 1.5 mean coarse-mode AOD at 550 nm, and ICAP models RMSE from their 6 h and 72 h forecasts for June
2016–May 2017 for dust-influenced sites. The RMSEs for the 8 ICAP members and ICAP-MME (bold) are listed sequentially from low to high for each site

Site
Mean AERONET
coarse AOD 6 h dust forecast RMSE 72 h dust forecast RMSE

Banizoumbou 0.37 0.18 0.18 0.19 0.22 0.23 0.27 0.29 0.45 0.21 0.22 0.22 0.22 0.26 0.28 0.34 0.47

Beijing 0.15 0.12 0.12 0.13 0.15 0.15 0.15 0.20 0.29 0.12 0.13 0.13 0.15 0.16 0.17 0.22 0.36

Capo Verde 0.33 0.13 0.13 0.14 0.14 0.17 0.21 0.21 0.22 0.16 0.16 0.18 0.19 0.22 0.23 0.23 0.25

Gandhi College 0.22 0.11 0.11 0.11 0.13 0.14 0.14 0.17 0.21 0.10 0.10 0.11 0.13 0.15 0.15 0.17 0.22

Ilorin 0.42 0.17 0.20 0.20 0.21 0.24 0.24 0.26 0.30 0.17 0.20 0.20 0.24 0.24 0.29 0.30 0.34

Kanpur 0.22 0.11 0.12 0.12 0.13 0.13 0.15 0.16 0.19 0.10 0.13 0.14 0.14 0.14 0.15 0.16 0.20

Palma de Mallorca 0.06 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.09 0.06 0.06 0.07 0.07 0.07 0.07 0.10 0.10

Ragged Point 0.14 0.07 0.08 0.08 0.08 0.10 0.10 0.11 0.11 0.07 0.09 0.10 0.10 0.10 0.10 0.12 0.12

Mezaira 0.22 0.11 0.13 0.13 0.14 0.15 0.21 0.25 0.31 0.12 0.15 0.15 0.16 0.22 0.23 0.36 0.42

Yonsei University 0.12 0.07 0.08 0.08 0.10 0.10 0.11 0.11 0.12 0.07 0.07 0.08 0.10 0.11 0.12 0.12 0.15

assessment of model performance, the ICAP-MME analyses
and forecasts are also evaluated against the data assimila-
tion quality MODIS C6 AOD product. The methodology to
develop the DA-quality MODIS C6 AOD product is similar to
that of MODIS C5 AOD product (Hyer et al., 2011; Shi et al.,
2011a; 2011b); however, the DA-quality C6 product includes
combined AOD retrievals from the Dark Target and Deep
Blue algorithms, providing more data coverage (compared to
Dark Target only) over desert/bright surfaces (screened using
the same methods as the Dark Target over-land retrievals).
These DA-quality MODIS C6 AOD data are a level 3 product
that is produced at the same spatial and temporal resolution
as the ICAP-MME products (1◦ × 1◦ spatial/6 h temporal res-
olution). Since the C6 data product includes total AOD only,
not speciated or size-resolved AODs, verification against this
product is limited to the four full-species aerosol models.

The DA-quality MODIS C6 AOD was derived from
MODIS products, which all the ICAP DA model’s assimila-
tion systems use to various extents. Thus the verification here
is not fully independent. The MODIS C6 AOD used as a ver-
ification dataset is not identical to the data assimilated in real
time by any of the ICAP models. The MODIS C6 product
used for verification was not widely used by ICAP models
until early 2017, so what the DA models assimilated during
the study period (July 2016–June 2017) were mostly based on
the MODIS C5 products. Secondly, as mentioned in section
2.1, the treatments applied to the MODIS observations before
AOD data assimilation are different among the members.

Verification with AOD products from other sensors was
not included in this study because available products either
have much smaller daily global coverage (for example,
the Cloud–Aerosol LIdar with Orthogonal Polarization
(CALIOP) and the Multi-angle Imaging SpectroRadiome-
ter (MISR)), or are insufficiently characterized (e.g. Polar
Multi-sensor Aerosol product (PMAp)). The verification
using the DA-quality MODIS product provides complemen-
tary spatial context to the AERONET comparison which is
limited by the selective placement of the AERONET sites (Shi
et al., 2011b).

Root-mean-square error (RMSE) incorporates both bias
and variance information, and was used as a major metric
for model validation in the first ICAP-MME paper (Sessions
et al., 2015). We continue to use this metric in this updated
study, but with more recent model data and with two more
dust members. Other core verification metrics include mean
error, mean absolute error, and coefficient of determination
(r2). Definitions of terms used in this article are provided in
Appendix B.

Since ICAP-MME is run daily at 0000 UTC for fore-
casts out to 5 days, validations of the so-called “6 h” or
“72 h forecasts” in this article would be based on the fore-
cast runs initialized at 0000 UTC. This notation is also used
in forecast error estimates for forecasts with different fore-
cast lengths. Given AERONET and MODIS data are only
available during local daytime, this corresponds to 6–24 h of
forecast time for any data day moving from the American
continents, the Atlantic, Europe and Africa, to Asia and the
Pacific in sequence. This gives the American continents a
beneficial regional verification bias, but we do not think this
will impact any of our key results. This limitation is the same
as in Sessions et al. (2015). Also, for historical technical rea-
sons, ECMWF did not report an analysis field of AOD at 0000
UTC prior to January 2017. Thus, the 6 h forecast valid at
0000 UTC from all models with AOD data assimilation is
used to approximate their analysis AODs.

3 ICAP-MME PERFORMANCE FOR JUNE
2016–MAY 2017

3.1 Verification with AERONET AOD

Tables 2 and 3 provide total AOD and dust RMSE of all
models (individual models and MME) from their 6 h and
72 h forecasts respectively at each AERONET site. Figure 2
presents these RMSEs and additionally RMSEs for the fine
and coarse AODs against each site’s mean AOD. RMSE
values for the fine and coarse AODs can be found in the Sup-
porting Information Tables S1 and S2 respectively. Similar to
the earlier evaluation findings (Sessions et al., 2015) for total
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and coarse AODs, the ICAP-MME RMSE is either the leader
or the second best in RMSE in nearly all cases. For fine-mode
AOD, the ICAP-MME sometimes ranks third; however, the
RMSE difference is less than 0.02 for both the 6 h and 72 h
forecasts compared to the top-ranked models, except for the
Monterey site.

The MME dust forecast based on 7 dust members is not as
skilful regarding ranking as in the previous evaluation, where
the 5-member dust ensemble ranked the first for almost all
dust sites and forecast hours in RMSE. But MME still ranks
the first and second for 6 out of 10 sites, and its RMSE is very
close to the top-ranked models for sites where it ranks the
third or fourth place over the other 4 sites (RMSE difference
less than 0.02 for the 6 h forecast and less than 0.04 for the 72
h forecast).

Based on the slope of the RMSE versus AOD value lin-
ear regression for each site in Figure 2, the RMSEs of
ICAP-MME 6 h forecast are approximately 50% of the yearly
mean AOD value. Dust AOD forecasting is better than the
individual fine- and coarse-mode AOD components, with its
RMSE about one-third of the mean AOD. The RMSEs of the
72 h forecast are about 10% larger for the AODs in each size
mode compared to the 6 h forecast. These results are simi-
lar to the previous findings for total, fine and coarse AODs
(Sessions et al., 2015).

Overall, the models have reasonable correlation and con-
sistency across the AERONET sites. Capo Verde, a very
widely used benchmark site for African dust, consistently has
RMSE approximately one-third of its annual mean for total
and coarse-mode AOD, below the average of 50% for all sites
for the 6 h forecast. Sea-salt aerosol particles can be a contrib-
utor to coarse-mode AOD at this site, but dust is the dominant
coarse-mode species. To allow for all ICAP models to be ver-
ified, model dust AOD instead of coarse-mode AOD (only
available from four models) is verified again AERONET
coarse-mode AOD. There is generally good agreement on
dust and total AOD time series between observations and
models (Figure 3). Overall, the ICAP-MME has a relatively
better combined RMSE, correlation and dynamic range of
data (95, 90, 75, 50, 25, 10 and 5th percentiles of data) in dust,
fine-mode and total AOD in both the 6 h and 72 h forecasts
compared to the individual models. Most background sites
performed equally well, except Monterey on the central coast
of California, with RMSE values approximately twice the
mean AOD. Monterey, in normal years, is quite clean and has
some of the best air quality in the United States. However, the
local Soberanes wild fire that occurred in July–October 2016
makes 2016 an unusual year. The biomass-burning smoke
inventories used by models may not provide correct smoke
fluxes, with large errors in both amplitude and pattern (e.g.
Goodrick et al., 2013). Also, the site is influenced by the sea
breeze and other mesoscale systems, which may not be well
represented in the global models. As a result, the high smoke
aerosol level and its large spatial and temporal variability was
a big challenge for all global aerosol models. As an outlier,

this site is excluded in the linear regression of RMSE against
AOD in Figure 2.

Different from the last evaluation, the remote oceanic site
Crozet Island located in the “Roaring Forties” (high wind
area) of the Southern Ocean is now replaced with Amster-
dam Island, which is just off the strong climatological wind
belt in the southern Indian Ocean. The performance of the
ICAP models over Amsterdam Island is similar to other back-
ground sites with no indication of the significant overestima-
tion of sea-salt production that was found for Crozet Island
in Sessions et al. (2015). However, the ICAP MME mean
sea-salt AOD values over the Southern Ocean between the
recent years and earlier years (including 2012 when Sessions
(2015)’s evaluation was based) are comparable to the daily
AOD distribution maps shown on-line. These indicate that
the ICAP models have problems specific to the high-wind,
high sea-salt production areas of the Southern Ocean, and
suggest a requirement for better sea-salt parametrizations and
potential problems with the widely used exponential relation-
ship between surface wind and sea-salt production in current
aerosol models.

Also of note is the Beijing site for which the models con-
tinue to demonstrate poor forecasting skill, with RMSE values
for total AOD similar to the mean AOD. This is owing to
the strong inversions and complex secondary production pro-
cesses that result in thick haze that frequents the area (e.g.
Guo et al., 2014; Zhang et al., 2014). However, the RMSE
values at this site are smaller than during the 2012 time
period used in the first ICAP-MME paper (also see section
4). The relatively poorer skill at fine-mode AOD compared to
dust/coarse-mode is the main contributor to the overall large
RMSE (Figure 4). Fine-mode AOD from AERONET exhibits
great temporal variability on day-to-week time-scales. All the
individual core models and the MME have difficulty in cap-
turing this large variability in fine-mode AOD. They tend to
overestimate in clean conditions and underestimate in highly
polluted conditions. It is very common for global aerosol
models to yield a smaller range of AOD values compared to
observations and fail to capture the magnitude of big events
(Kinne et al., 2006; Sessions et al., 2015). This may be due to
emissions or aerosol processes that are not fully understood
or characterized. This behaviour is also expected mathemati-
cally based on the spatial scales of models and observations,
but is enhanced by other properties of models, for example,
representations of surface gustiness, orographic flows and
other boundary-layer processes relevant to aerosol sources
and sinks. This behaviour can also be seen in global aerosol
reanalysis products (Lynch et al., 2016; Randles et al., 2017;
Yu et al., 2017).

All of the four core multi-species models have AOD data
assimilation. However, even with DA models did not appear
to reproduce the high AODs above the 90th percentiles
for Beijing. This is because (a) satellite retrievals are also
challenged by the complicated aerosol and land environ-
ment over East Asia, often flagging thick haze events as
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FIGURE 2 ICAP model 550 nm total, fine, coarse, and dust AOD RMSE versus corresponding mean AODs for AERONET sites listed in Table 2.
Verification of the 6 h forecasts are on the left, and the 72 h forecasts on the right. Large black dots are ICAP-MME consensus means. Individual models are
in small coloured dots. Validation of dust AOD is based on AERONET coarse-mode AOD at dusty sites listed in Table 3. Monterey site is excluded in the
total and fine AOD validation/regression as it is an outlier with its anomalously high and variant biomass-burning smoke levels that resulted from a
months-long local wildfire event in the autumn of 2016 [Colour figure can be viewed at wileyonlinelibrary.com].

http://wileyonlinelibrary.com
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FIGURE 3 Comparison of ICAP models and AERONET V3 L1.5 550 nm AODs at 550 nm for Capo Verde, an African-dust-influenced site off the west
coast of Africa. Included are (a) dust AOD from the 6 h forecasts of ICAP models (individual members in colours and ICAP-MME in black) and the
coarse-mode AERONET AOD; (b) same as (a) except for total AOD. (c–e) Percentiles (95, 90, 75, 50, 25, 10 and 5th) of Dust/Fine/Total AODs of the ICAP
model 6 h forecasts and the paired AERONET data (paired with ICAP-MME, in red). Also shown are the mean model/AERONET AOD values (black plus),
RMSE of each model (green triangles) and the coefficient of determination (r2, red dots) against AERONET observations. (f)–(h) Same as (c)–(e) except for
the 72 h forecasts. All available model data are used in the time series plots, and only paired (paired with AERONET) data are used in the histograms [Colour
figure can be viewed at wileyonlinelibrary.com].

cloud, and (b) variational data assimilation can have diffi-
culty spreading what little observational data are available,
and specifically reproducing strong gradients found near sur-
face sources (Rubin et al., 2017). There can be coexistence of
dust and pollution particles of different sizes, sometimes the
AOD is too high for valid retrievals (Shi, 2015), and some-
times interaction and transport of aerosols with cloud and/or
fog prevents retrievals (Eck et al., 2018). A severe haze event
that occurred on 13 October 2016 is an example for which all
the ICAP models failed to predict the high AOD. As shown

in the Terra MODIS true colour image (Figure 4i), heavy
haze is covering northeast China where Beijing is located. The
haze was so thick that no valid AOD retrievals were avail-
able (Figure 4j), possibly due to a combination of the low
cloud masks, the upper limit of AOD retrieval at 5 and the
inland water mask in the regular MODIS retrieval algorithm.
A modified MODIS retrieval algorithm targeting high AOD
situations is being developed and tested, shedding light for
improvement of the satellite AOD product for cases like this
(Shi et al., 2019). However, it may take time for the research

http://wileyonlinelibrary.com
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FIGURE 4 Comparison of ICAP models and AERONET V3 L1.5 AODs at 550 nm for Beijing. Included are (a) dust AOD from the 6 h forecasts of ICAP
models (individual members in colours and ICAP-MME in black) and the coarse-mode AERONET AOD; (b) same as (a) except for fine-mode AOD. (c–e)
Percentiles (95, 90, 75, 50, 25, 10 and 5%) of Dust/Fine/Total AODs of the ICAP model 6 h forecasts and the AERONET data (paired with ICAP-MME, in
red). Also shown are the model mean AOD (black plus), RMSE of each model (green triangles) and the coefficient of determination (r2, red dots) against
AERONET observations. (f)–(h) Same as (c)–(e) except for the 72 h forecasts. (i, j) Terra true-colour image and AOD respectively for 13 October 2016, with
“B” marking the location of Beijing [Colour figure can be viewed at wileyonlinelibrary.com].

http://wileyonlinelibrary.com
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algorithm to mature and be incorporated into the operational
retrieval algorithms for modelling purposes. Regardless, with
current available retrieval products, the nearest quality obser-
vations no doubt have lower AODs than the peak regions.
Since total AOD is the common variable being assimilated,
there are no constraints on fine/coarse aerosol partitioning or
aerosol speciation. Even if the total AOD product is perfect in
quality, the resulting speciated AODs and modal AODs can
be very different.

The bias of coarse-mode AOD or dust AOD is much smaller
compared to the bias of fine-mode AOD, and the range of
dust AOD in MME is comparable to that of the observations.
However, correlations for dust AOD are low, suggesting the
models have difficulty producing the timing of dust events.
Those factors combined result in poor verification scores
for ICAP-MME over Beijing, although it still ranks the top
among all models with respect to RMSE, correlations and
dynamic range of AODs. Improvements in data assimilation
systems currently under development (e.g. Rubin et al., 2017)
show significant promise for improving aerosol prediction in
these conditions.

3.2 Verification with DA-quality MODIS AOD

In order to globally evaluate the performance of the ICAP
models, total AOD at 550 nm from the individual ICAP
models and the MME are compared with the DA-quality
MODIS C6 product. The geographic distribution of MODIS
DA-quality AOD averaged over the 1-year study period is pre-
sented in Figure 5, as well as the pairwise total AOD from
the ICAP-MME. The global distribution of the total num-
ber of 6-hourly 1◦ × 1◦ MODIS observations is also shown.
The DA-quality product includes albedo filtering based on
MODIS 16-day surface albedo/Bidirectional Reflectance Dis-
tribution Function (BRDF) product (MCD43C3: Schaaf et al.,
2002), excluding areas with low signal-to-noise as diagnosed
using a 10+ year dataset comparing AERONET and MODIS
(Hyer et al., 2011). Coverage over bright areas is improved by
using MODIS Deep Blue retrievals, but many bright surfaces
are still excluded in the DA-quality product. Areas with high
cloud coverage, including the intertropical convergence zone
(ITCZ), the Maritime Continent and the subtropical stratus
cloud-deck regions, have relatively less data. Cloudy condi-
tions, problems retrieving over snow, and polar night limit
retrievals of AOD at high northern latitudes. Over the South-
ern Ocean, MODIS AOD retrievals exhibit an anomaly which
has been shown to be partially but not entirely attributable to
undetected cloud (Toth et al., 2013; Christensen et al., 2015);
because of this, retrievals south of 40◦S are excluded from
this analysis.

The global distribution of mean total AOD from
ICAP-MME looks similar to that of the DA-quality
MODIS AOD. Prominent high AOD features exist over
dust-influenced regions, including north Africa, Sahel, Ara-
bian Peninsula and central Asia; biomass-burning-dominated

FIGURE 5 Mean total AOD at 550 nm averaged between June 2016 and
May 2017 for (a) ICAP-MME 6 h forecast (spatially and temporally
sampled to match MODIS DA-quality data), and (b) DA-quality MODIS
C6, and (c) the total number of 6-hourly DA-quality MODIS AOD data. In
(a) and (b), only area with DA-quality MODIS data count greater than 15 is
shown [Colour figure can be viewed at wileyonlinelibrary.com].

central and south Africa, South America, peninsular South-
east Asia and Siberia; and East Asia and India, which are
impacted year round by pollution and seasonally by dust
and biomass burning. There are also areas of significant dis-
agreement between the MODIS C6 DA-quality dataset and
ICAP-MME. For example, ICAP-MME total AOD is lower
over East Asia, India and Siberia, and higher over central
Asia and the Arabian Peninsula, indicating biases relative to
MODIS C6 (also Figure 7). ICAP-MME is also relatively
high over the western USA, which may reflect differences
between MODIS Collection 5 AOD assimilated into the
ICAP models and Collection 6 MODIS AOD used for this
comparison (e.g. Levy et al., 2013; Sayer et al., 2014). The
Collection 6 MODIS Deep Blue products also have a docu-
mented problem with elevated terrain that can be seen as a
low bias in MODIS AOD over Iran and other elevated areas
in Asia and North America. This problem is corrected in the
newer Collection 6.1 version (https://modis-atmosphere.gsfc.
nasa.gov/sites/default/files/ModAtmo/modis_deep_blue_c61

http://wileyonlinelibrary.com
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_changes2.pdf), but the newer data were not available in time
to use in this study.

Figure 6 shows global distributions of interquartile val-
ues (median, 25th and 75th percentiles) of the MODIS
DA-quality AOD for the 1-year study period, and ratios
of the same quantities from the 6 h and 72 h forecasts of
ICAP-MME to the MODIS AOD. “Analysis mode” and “fore-
cast mode” refer to the 6 h forecasts and 72 h forecasts from
now on. The median of MODIS AOD is very similar to
the mean (Figure 5b) except over Siberia, where the mean
is much higher than the median, likely because the sample
size is relatively small (less than 60) and the mean is domi-
nated by some high AOD observations associated with large
biomass-burning events. Similarly, the ICAP-MME median
looks very much like the mean except over Siberia (not
shown). Consistent with the aforementioned bias analysis, the
ICAP-MME median AOD is higher than MODIS over central
Asia and the western USA, and lower over East Asia, India
and Siberia. There is a very clear tendency for ICAP-MME
to be lower than MODIS in the 75th percentile AOD over the
globe, except for the high-biased regions. The higher AOD
in these regions could be a result of differences between
the satellite data assimilated into the model and the veri-
fication dataset, as discussed above. In the 25th percentile
AOD, ICAP-MME is generally higher than MODIS except
in low-biased regions. These results are approximately true
for both the analysis and the forecast modes, except that the
biased regions tend to be slightly more biased in the forecast
mode. Similar patterns are seen for all of the individual mod-
els (Supporting Information Figure S3). This means that, in
general, the ICAP-MME and all the contributing global mod-
els tend to overestimate in clean conditions and underestimate
in severe aerosol conditions. This result is consistent with the
validation with AERONET in section 3.1 and other global
aerosol modelling studies (e.g. Kinne et al., 2006; Sessions
et al., 2015; Lynch et al., 2016). Figure 7 shows global
distributions of biases, RMSEs and the coefficients of deter-
mination of the four core models and ICAP-MME for their
analysis mode (from 6 h forecast). The validation patterns for
the forecast mode (72 h forecast) look similar; except that
biases and RMSEs are slightly larger and the correlations
are slightly lower (Supporting Information Figure S2). There
are consistent low biases across the models over Siberia and
India, especially the southern foothill of the Himalayas, most
likely resulting from under-prediction of smoke over Siberia
and anthropogenic and biogenic aerosols over India in the
models. Consistent high biases are found over central and East
Asia dust-dominant regions. Other regions tend to have mixed
results. It is also noted that Model 1 has a slight high bias
over the entire globe, much of which disappears over water in
the forecast mode (Supporting Information Figure S2). This
implies that the AOD observations assimilated into Model 1
were slightly higher than the DA-quality MODIS C6 product
used here.

RMSEs are commonly higher over the biased regions,
which are often the climatologically high AOD regions. Cor-
relations are high over the oceanic areas where large-scale
transport of dust, smoke and pollution occur downwind of
their continental sources. Over land, r2 is relatively lower
overall because land is the main source of aerosols studied
here except sea salt, and there are much larger uncertain-
ties and stronger gradients due to local aerosol sources than
large-scale transport events in aerosol modelling. AOD data
assimilation helps improve r2 over land, but it helps more
over ocean, because of longer transport times as well as the
higher signal/noise ratio of AOD retrieval over ocean (e.g.
Levy et al., 2005). High overland r2 occurs over the pure (not
mixed with other aerosol species) biomass-burning dominant
regions, including southern Africa, South America, South-
east Asia and the boreal burning regions, resulting from the
fact that all ICAP models (see Table 1) use smoke emission
inventories based on satellite observations which are updated
in near-real time. Other sources, including dust and sea-salt
emissions, are generally parametrized based on limited field
measurements. Emissions for anthropogenic and biogenic
sources have even more degrees of freedom for uncertainty
given their complex chemistry and interactions with mete-
orology. Thus, correlations are low in these source regions.
Because of small dynamic ranges of AOD in the most remote
regions, correlations are also low in areas far from aerosol
sources or transport paths, e.g. the subtropical Pacific and
Indian Oceans.

Consistent with the validation result against AERONET,
ICAP-MME performs the best among all the ICAP
full-species models verified with the DA-quality MODIS
total AOD. The ICAP-MME global mean absolute error and
RMSE are the smallest, with similar magnitude to these of
the individual models. Correlation of ICAP-MME is sig-
nificantly higher than individual models, with global mean
r2 higher than individual models for both the analysis and
forecast modes. The r2 increases from 0.42 on average for
individual models to 0.53 for the MME in the analysis mode.
In the forecast mode, the single-model r2 averages 0.26 ver-
sus 0.35 for the MME. This can be related to situations in
which the MME captures events missed in some models but
captured by other models. As expected, the performance of
all models is worse in their forecast modes (Supporting Infor-
mation Figure S2) as they move away from the time of data
assimilation. Overall, with some exceptions, the ICAP core
models have similar performance regionally and globally,
with small divergence among the models for both the analysis
and the forecast modes, despite great diversity among sys-
tems. The consistently challenging regions across the ICAP
models are dusty regions over land and regions with two or
more dominant species. These include India and East Asia,
influenced by pollution and dust, and the Sahel, influenced
by dust and biomass-burning smoke.

https://modis-atmosphere.gsfc.nasa.gov/sites/default/files/ModAtmo/modis_deep_blue_c61_changes2.pdf
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FIGURE 6 DA-quality MODIS C6 (a) median, (b) 25th and (c) 75th percentiles of total AOD at 550 nm for June 2016–May 2017, and ratios of these
quantities from ICAP-MME (d–f) 6 h and (g–i) 72 h forecasts to MODIS. ICAP-MME data are spatially and temporally sampled to match MODIS C6 data.
Same as Figure 5, only area with DA-quality MODIS data count greater than 15 is shown [Colour figure can be viewed at wileyonlinelibrary.com].

4 ENSEMBLE MEAN AND SPREAD OF
ICAP MODELS AND POTENTIAL FOR
PROBABILISTIC PREDICTION

One of the goals of ICAP is to advance probabilistic aerosol
forecasting, which provides aerosol forecasts with associ-
ated uncertainties. This is an advantage over deterministic
forecasts, especially for severe events, in that the predic-
tions have an associated confidence level. It is analogous
to NWP and tropical cyclone (TC) ensemble predictions,
where severe precipitation or temperature events or TCs are
predicted with certain possibility levels of hit or miss for a
location. If predictions from all individual models converge,
this indicates a prediction with high confidence or high possi-
bility. This probabilistic prediction facilitates better decisions
in preparation for such severe weather events. Similarly, prob-
abilistic predictions for severe aerosol events, e.g. pollution,
dust and biomass-burning smoke events, are desired, moti-
vating both single and multi-model aerosol ensembles. The
utility of the ensemble systems for such a purpose will be
evaluated. AOD verification against observations in section 3
shows the ICAP-MME consensus and diversity of model per-
formance in analysis and forecast modes. In order to make use
of the information for probabilistic prediction, it is necessary
to quantify the mean and spread of the models and evaluate
the usefulness of these variables for forecast uncertainty esti-
mates. As defined above, ensemble mean is the unweighted
arithmetic mean of ensemble members, and ensemble spread
is estimated using the standard deviation of ensemble mem-
bers.

4.1 Ensemble mean and spread of the ICAP models
in analysis and forecast modes

Figure 8 presents the global distributions of yearly average
ICAP ensemble mean and ensemble spread of total, fine-
and coarse-mode AODs for the analysis mode and the differ-
ences between the forecast and analysis modes. As expected,
ensemble spread tends to be large over high AOD regions
and small over low AOD regions. This is true for both the
fine and coarse modes and the total AOD. However, different
behaviour is observed in India, where the mean fine and total
AODs are comparable to those over East Asia and southern
Africa, but the ensemble spreads are much smaller. This could
be a result of consistent low bias (as shown in Figures 6 and
7) and less variability over India across the ICAP models. The
impact on the capability of ICAP-MME for regional proba-
bilistic predictions will be discussed in section 4.2. Compared
to the analysis mode, the total AOD ensemble mean for
the forecast mode is smaller overall, mainly attributed to
smaller fine-mode AOD (about 10% decrease). The observed
ensemble mean decrease in the forecast mode occurs over
biomass-burning impacted regions including South America,
Sahel, southern Africa, the Maritime Continent, Siberia, and
heavily polluted northern India, suggesting insufficient emis-
sions in the forecast mode. There are slight increases over
North Africa, Australia and the Arabian Peninsula, and slight
decreases over the subtropical North Atlantic in coarse-mode
AOD in the forecast mode, suggesting possible overestima-
tion of dust emission overall and excessive removal over
water.

http://wileyonlinelibrary.com
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FIGURE 7 The 550 nm mean AOD bias (left), RMSE (middle) and coefficient of determination (r2) (right) of the 6 h forecasts (initialized with 0000 UTC
analysis) from the four ICAP core models and ICAP-MME verified against the DA-quality MODIS C6 data for June 2016–May 2017. The numbers inside
AOD bias, RMSE and r2 plots are global mean absolute error (AE), RMSE and r2. Same as Figures 5 and 6, statistics are only calculated for grids with
DA-quality MODIS data count greater than 15 [Colour figure can be viewed at wileyonlinelibrary.com].

The ensemble spread is generally larger for the forecast
modes compared to the analysis modes, in which AOD is
constrained by data assimilation in varying degrees in these
models. Some deviations include the western United States,
the Andes of South America and the Maritime Continent
for total and fine-mode AODs, where ensemble spread is
smaller in the forecast mode than the analysis mode. This
could be attributed to the diversities of the AOD data and/or
the pre-treatment of these data that were assimilated into
these models in the analysis mode. After all, large differences
are found in satellite AOD products over these mountain-
ous regions because of different capabilities of dealing with
highly reflective and varying surface conditions in retrieval
algorithms (Shi et al., 2011b; Loria-Salazar et al., 2016). An
additional contributor could be divergence in model meteoro-
logical variables that impact aerosol processes. For example,
precipitation, controlling aerosol wet removal, can be more
divergent in the analysis mode than the forecast mode in the
NWP models, given the differences between satellite precip-
itation products assimilated and NWP models (Ebert et al.,

2007). By using satellite-derived versus model precipitation
in an aerosol modelling study, Xian et al. (2009) found signif-
icant differences in AOD levels over many regions, including
the Andes and Maritime Continent. The ensemble spread of
fine-mode AOD is also smaller in the forecast mode than
the analysis mode over remote oceanic areas, which is asso-
ciated with slightly smaller ensemble mean total/fine AOD.
This is because one of the four data assimilation models has
slightly higher background AOD over ocean in its analysis
mode, but similar background AOD in the forecast mode
when compared to the other models. This is consistent with
the comparison to the MODIS DA-quality product shown in
section 3.2 (Figure 7 and Supporting Information Figure S3).

Figure 9 shows global distributions of yearly average ICAP
ensemble mean and ensemble spread of dust AOD from the
DA models at their analysis mode and the differences from
their forecast mode, and the differences from all models at the
analysis and forecast modes. Error growth from analysis to
forecast mode is a function of NWP forecast errors, errors in
prediction of sources and sinks, and relaxation from aerosol

http://wileyonlinelibrary.com
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FIGURE 8 Average ensemble mean and spread of (a,d,g,j) total, (b,e,h,k) fine- and (c,f,i,l) coarse-mode AODs at 550 nm among the four core ICAP models
for their analysis (approximated with the 6 h forecasts) mode and the difference relative to the forecast mode (using the 72 h forecasts) for June 2016–May
2017. The two columns on the left are ICAP-MME (a–c) mean and (d–f) spread of total/fine/coarse AODs for the analysis mode. The two columns on the
right are the (g–i) difference and (j–l) spread of difference between the forecast mode and the analysis mode. Global mean values of the ensemble
mean/spread and the differences are also shown for each size mode and forecast mode [Colour figure can be viewed at wileyonlinelibrary.com].

analysis state (for models with aerosol data assimilation).
Models without aerosol data assimilation are evaluated here
together with the DA models at 6 h forecasts for probabilis-
tic forecast purposes. The dust AOD ensemble mean based on
the five DA models at the analysis mode (Figure 9a) shows
the main dust-active regions including North Africa, Arabian
Peninsula, central Asia, South Asia, Australia, western USA
and southwest South America, and their downwind regions.
As expected, high dust AOD regions also exhibit high ensem-
ble spread. The general tendency for all models at both their
analysis and forecast modes and the DA models at their fore-
cast mode to have higher dust AOD over North Africa and
the Arabian Peninsula, and lower dust AOD over South Asia,
suggests possible excessive emission over North Africa and
the Arabian Peninsula, and insufficient emission over South
Asia. There is also a tendency towards lower dust AOD in
the forecast modes over the subtropical Atlantic, which is
the long-range transport region of African dust, indicating
excessive removal of dust over water in the models.

Since AOD is constrained with satellite-retrieved AOD at
the analysis time in DA models, ensemble spread of the DA
models in the analysis mode is reduced overall compared to all
models and their forecast modes (Figure 9d,f,h). The spread

of the DA models is discernibly reduced more over water
than over land in the analysis mode. This is because satel-
lite AOD products have much larger uncertainties over land
than over water (e.g. Zhang et al., 2008; Hyer et al., 2011;
Levy et al., 2013). Moreover, there is much less DA-quality
AOD data over bright desert for models to assimilate (e.g.
Figure 5c). Although some models assimilate satellite AOD
products with coverage over desert, others using different
AOD products or with very strict QA/QC processes may not
have much data to assimilate over some desert areas. Also
notable is the small difference in ensemble spread over East
and South Asia dust areas for the DA and all models, and
for analysis and forecast modes. This reflects the challenge of
dust modelling and AOD retrieval in this complicated aerosol
environment, in which dust and various kinds of pollution are
mixed, and complex chemistry of precursors and secondary
organic aerosols convolve with meteorology (e.g. Zhang et al.,
2014).

4.2 Estimation of ICAP-MME absolute forecast error

In order to evaluate the usefulness of ICAP-MME
for probabilistic forecasts, we first explore the relationships

http://wileyonlinelibrary.com
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FIGURE 9 Average ensemble mean and spread of dust AOD at 550 nm of the ICAP DA models at their analysis mode, and the differences from their
forecast mode, and from all models at their analysis and forecast modes for June 2016–May 2017. (a,b) Ensemble mean and spread of the 6 h forecasts of the
DA models; (c,d) difference from the 72 h forecast of the DA models; (e,f) difference from the 6 h forecasts of all 7 dust models. (g,h) difference from the 72
h forecasts of all 7 dust models [Colour figure can be viewed at wileyonlinelibrary.com].

between the possible predictors and the ICAP-MME abso-
lute AOD forecast errors. The predictors examined include
ensemble mean, ensemble spread and forecast AOD change
(defined as the forecasted change of AOD in 24 h). Linear cor-
relations between ensemble mean and error, ensemble spread
and error, and forecast AOD change and error are calculated
for modal AODs and dust AOD respectively. Some statisti-
cally significant correlations for the dominant aerosol modes
are found over most of the selected 21 AERONET sites for the
6 h and the 72 h forecasts (coefficients of determination
for the 72 h forecasts are shown in Supporting Information
Table S2, and those for the 6 h forecasts are similar). In gen-
eral, correlations between ensemble mean and forecast error
are slightly higher than correlations between ensemble spread
and forecast error. However, weak or insignificant correla-
tions are found between forecast AOD change and absolute
forecast error for the 6 h and 72 h forecasts (not shown).

For dust AOD, ensemble mean and spread show statisti-
cally significant correlations with consensus forecast error
over most of the dust sites for both the 6 h and the 72 h fore-
casts (Table 4). No correlation or low correlation is found
over Gandhi College, Kanpur and Yonsei University sites,
indicating ensemble mean and spread have little or limited
skill in ensemble mean error estimates for these sites. How-
ever, it is also noted that for Gandhi College, most available
AERONET observations coincide with periods of calm winds
and minimal dust production, and strong dust events reflected
in the ICAP-MME cannot be verified with AERONET (not
shown). Similarly, there is no correlation between ensemble

mean/spread and forecast error over Gandhi College and Kan-
pur for total and fine-mode AODs (Supporting Information
Table S3), mostly due to the consistent low biases and small
ensemble spread among the models.

It is also found that, for all sites, coefficients of determi-
nation (r2) between the ensemble mean and spread are high,
on the order of r2 = 0.4–0.9 for total, fine and coarse AOD
forecasts (Supporting Information Table S1) and on a similar
order for dust AOD forecasts. This is consistent with Figures 8
and 9.

Our analysis shows that forecast error is correlated slightly
more with ensemble mean than ensemble spread in the ICAP
MME aerosol forecasts. This indicates a large room for
improvement in global aerosol modelling, and before these
models reach maturity other factors may also play a role in
ensemble error estimates. We expect that with continuous
development of individual models, the ensemble spread will
carry more weight in the error forecast model, as is seen in
the evolution of error forecast model for tropical cyclone (TC)
track and intensity ensemble forecasts for the past decade.

Following the studies on prediction of consensus TC track
and intensity forecast errors (Georss, 2004), we regress abso-
lute AOD forecast error on the related predictors, including
ensemble mean and ensemble spread, and derive regres-
sion models for ICAP consensus forecast error based on
all available model and AERONET data from the 21 rep-
resentative sites for total AOD (Table 5) and the 10 dusty
sites for dust AOD (Table 6). For the total AOD forecast,
ensemble mean is found to be the leading predictor, with
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TABLE 4 Coefficient of determination (r2) between 2 out of 3 variables: ensemble mean, ensemble spread and absolute forecast error (AFE) of
the ICAP MME for dust AOD 6 h and 72 h forecasts at the dusty AERONET sites. All calculations are based on model and AERONET V3 level
1.5 data during June 2016–May 2017. Value less than 0.04 means the correlation is not statistically significant at 95% level by Student’s-t test

6 h dust fcst 72 h dust fcst

Site

Ensemble
mean and
AFE

Ensemble
spread
and AFE

Ensemble
mean and
spread

Ensemble
mean and
AFE

Ensemble
spread
and AFE

Ensemble
mean and
spread

Sample
size

Banizoumbou 0.13 0.08 0.52 0.10 0.06 0.60 647

Beijing 0.13 0.12 0.86 0.16 0.14 0.83 451

Capo Verde 0.19 0.15 0.47 0.12 0.07 0.61 401

Gandhi College 0.05 0.03 0.88 0.06 0.04 0.87 315

Ilorin 0.17 0.09 0.70 0.24 0.16 0.82 409

Kanpur 0.04 0.01 0.59 0.01 0.00 0.68 663

Palma de Mallorca 0.27 0.20 0.83 0.48 0.38 0.79 776

Ragged Point 0.11 0.11 0.83 0.13 0.10 0.80 420

Mezaira 0.54 0.46 0.70 0.57 0.45 0.59 649

Yonsei University 0.03 0.02 0.79 0.03 0.02 0.83 530

TABLE 5 Estimated forecast error for total AOD based on linear
regressions of absolute forecast errors (AFE) on ensemble mean, ensemble
spread and both respectively for forecasts with different forecast hours.
Coefficient of determination (r2) between the predicted forecast errors using
the equations below and forecast error of the ICAP MME consensus is also
listed. All the r2 values here are statistically significant at 95% level by
Student’s-t test (criteria of 0.04)

Forecast
hour Total AOD forecast error estimate r2

6 h AFE= 0.00+ 0.36(+-0.01)*mean 0.27

AFE= 0.06+ 0.59(+-0.01)*spread 0.17

AFE= 0.00+ 0.31(+-0.01)*mean+
0.14(+-0.02)*spread

0.27

24 h AFE= 0.01+ 0.43(+-0.01)*mean 0.26

AFE= 0.07+ 0.79(+−0.02)*spread 0.22

AFE= 0.02+ 0.30(+-0.01)*mean+
0.36(+-0.02)*spread

0.28

48 h AFE= 0.02+ 0.47(+-0.01)*mean 0.25

AFE= 0.09+ 0.74(+-0.02)*spread 0.20

AFE= 0.03+ 0.35(+-0.01)*mean+
0.28(+-0.02)*spread

0.26

72 h AFE= 0.01+ 0.43(+-0.01)*mean 0.23

AFE= 0.07+ 0.61(+-0.01*spread 0.16

AFE= 0.01+ 0.37(+-0.01)*mean+
0.12(+-0.02)*spread

0.23

96 h AFE= 0.01+ 0.45(+-0.01)*mean 0.22

AFE= 0.07+ 0.63(+-0.02)*spread 0.16

AFE= 0.02+ 0.38(+-0.01)*mean+
0.16(+-0.02)*spread

0.23

r2 ranging from 0.27 to 0.22 monotonically corresponding
to forecast lengths of 6 h, 24 h, 48 h, 72 h and 96 h.
Ensemble spread is the second predictor, with r2 varying
between 0.16 and 0.22 for forecasts with the same forecast
lengths. The forecast error prediction based on multivari-
ate linear regressions of both ensemble mean and spread
yields the best correlation with forecast error. The addition
of ensemble spread adds only a small skill improvement
on top of the ensemble mean to the forecast error estimate
though.

TABLE 6 Same as Table 5, except for dust AOD forecast.

Forecast
hour Dust AOD forecast error estimate r2

6 h AFE= 0.04+ 0.23(+-0.01)*mean 0.24

AFE= 0.04+ 0.45(+-0.01)*spread 0.20

AFE= 0.03+ 0.18(+-0.01)*mean+
0.14(+-0.02)*spread

0.24

24 h AFE= 0.04+ 0.28(+-0.01)*mean 0.24

AFE= 0.05+ 0.52(+-0.01)*spread 0.19

AFE= 0.04+ 0.24(+-0.01)*mean+
0.10(+-0.03)*spread

0.24

48 h AFE= 0.04+ 0.35(+-0.01)*mean 0.24

AFE= 0.05+ 0.61(+-0.02)*spread 0.23

AFE= 0.04+ 0.30(+-0.01)*mean+
0.13(+-0.03)*spread

0.29

72 h AFE= 0.04+ 0.28(+-0.01)*mean 0.26

AFE= 0.05+ 0.44(+-0.01)*spread 0.21

AFE= 0.04+ 0.23(+-0.01)*mean+
0.10(+-0.02)*spread

0.26

96 h AFE= 0.04+ 0.27(+-0.01)*mean 0.26

AFE= 0.05+ 0.43(+-0.01)*spread 0.22

AFE= 0.04+ 0.22(+-0.01)*mean+
0.11(+-0.02)*spread

0.26

A similar regression result is found for dust AOD forecast
error, in which ensemble mean is the leading predictor. The
forecast error prediction based on multivariate regressions of
both the ensemble mean and spread again yields the best cor-
relations for 6 h to 96 h forecasts although linear regression
based on solely ensemble mean yields the same correlations
for some forecast lengths. Comparisons of predicted total/dust
AOD errors using the multivariate regression models and the
ICAP-MME forecast error for the 72 h forecasts are shown
in Figure 10 as an example. Time series of error estimates of
dust AOD at a relatively skilful site, Capo Verde, and total
AOD at a less skilful site, Beijing, are given in Figure 11.
There are times that absolute errors are much larger than those
predicted. These points correspond to the cases that all mod-
els are consistently low biased and with small spreads. These
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common issues warrant model improvements, but the results
here demonstrate the potentials of such error regression mod-
els for applications in probabilistic AOD forecasts.

The correlation relation between AOD absolute forecast
error and ensemble mean/spread shows strong regional dif-
ferences, which might be relevant to model skill in resolving
different dominant species (e.g. dust, smoke and pollution
haze) and/or regional meteorology that impacts aerosol pro-
cesses. Similar error forecast models can also be developed
for individual regionally representative sites or regions and
for different size-modes (fine vs. coarse) for potential appli-
cations in the future. Each individual model’s contribution
to ICAP-MME is evaluated by removing one model from
the MME and quantifying changes in the 1-year mean abso-
lute forecast error. The results are mixed for different models
and different sites for dust AOD forecasts (Table 7). The per-
centage changes for all sites are averaged in order to give an
overall evaluation. For dust AOD forecasts, the mean abso-
lute forecast errors (AFE) increase about 5% with removal
of Models 5 and 7 (slightly more error increase), and about
2–3% with removal of Model 2 for the 6 h and 72 h forecasts,
suggesting that these three models are contributing positively
to the consensus mean. However, the mean AFE decreases
6%/2% for the 6 h/72 h forecast, with removal of Model 6,
suggesting the model is contributing slightly negatively to the
consensus mean. The other three models have mixed results:
AFE slightly increases for one (analysis or forecast) mode and
slightly decreases for the other mode, or with AFE unchanged,
indicating their contributions to the MME are approximately
neutral. Similar evaluations are done for the total, fine-mode
and coarse-mode AOD forecasts with removal of one of the
four full-species models. It is found that all the four core
models contribute positively to the ICAP-MME total AOD
forecasts, with a 2%–3% average (of all 21 AERONET sites)
reduction in RMSE from removing each of the four mod-
els in the 6 h and 72 h forecasts (Supporting Information
Table S4). However, for the MME fine-mode AOD forecasts,
Model 1 contributes negatively most likely due to its slightly
high bias over relatively clean regions (see also Figure 7),
while the other three models contribute positively (Support-
ing Information Table S5). For the MME coarse-mode AOD
forecasts, contributions are positive from Model 2 and Model
3, neutral from Model 1 and slightly negative from Model
4 (Supporting Information Table S6). These results suggest
that the full-species models perform similarly in terms of total
AOD in general, but their performances in terms of fine- and
coarse-mode AODs are different. This also reflects the fact
that data assimilation of total AOD can help constrain total
AOD, but it does not constrain contributions from different
aerosol species. We acknowledge that this evaluation of each
individual model’s contribution to the MME is quite arbitrary,
yet it reflects the complex impact on the MME performance
of adding more independent ensemble members. With rapid
evolution in the individual member models these numbers are
expected to change.

5 EVOLUTION OF ICAP-MME
PERFORMANCE OVER 2012–2017

Since its initial operation in 2011, ICAP-MME has incor-
porated a few more deterministic global aerosol models
(Figure 1), and numerous updates have been implemented on
individual models by the contributing centres. Those updates
include adding new species, e.g. organic aerosols and nitrate
aerosols, and expanding from a single dust species to a
multi-bin dust representation, as well as updates of aerosol
processes, e.g. inventories for emissions and parametrizations
for removals. Regarding aerosol data assimilation, updates
include new and improved AOD products for DA and/or
changes in their treatments prior to DA, or even major changes
from no DA to DA. Furthermore, the underlying NWP mod-
els from all of these centres have also seen updates, ranging
from finer spatial and temporal resolution, better physics
and dynamics, to additional observational data and advanced
methodologies for DA. Whether these updates improved the
ICAP-MME performance over the years is examined here.

Figure 12 illustrates the evolution of ICAP-MME per-
formance in terms of 550 nm total AOD RMSE at all the
selected AERONET sites for the 6 h forecasts. The evolu-
tion of ICAP-MME performance in terms of fine-mode and
coarse-mode AOD RMSEs are provided in Figures S3 and
S4, respectively. Interannual variability in the performance of
MME is noted for many sites, Singapore and Monterey being
the most obvious two with extremely large variability within
the 2012–2017 study period. Consistent with the results of
Sessions et al. (2015) and Figure 2, the RMSE generally
increases with AOD. The anomalously high RMSEs in 2015
and 2016 for the two sites, respectively, are associated with
high fine-mode AODs and high variability resulting from
severe wildfire conditions. Singapore was impacted by the
particularly strong and wide-spread biomass-burning events
across the Maritime Continent in 2015 due to a strong El
Niño (Huijnen et al., 2016; Tacconi, 2016; Fanin and van der
Werf, 2017), whereas Monterey, California, which is typically
pristinely clean, was influenced from time to time by smoke
from wildfires lasting over two months in the nearby area in
its dry season in 2016. As mentioned earlier and in other
studies (Kinne et al., 2006), global models tend to underesti-
mate extremely high AOD events, which leads to anomalously
high RMSE in unusual years. A similar performance pattern
is found for 72 h forecasts, except for slightly higher RMSEs
(not shown).

A significant decreasing trend in RMSE is present for Bei-
jing, where ICAP-MME RMSE is reduced by half from 2012
to 2017 (from 0.64 to 0.30). This RMSE decrease is associated
with decreases in the yearly means of total AOD observed by
AERONET over Beijing for the study period. The decrease in
total AOD is consistent with reported negative trends found
in other studies using satellite AOD retrievals over East Asia
(Zhang et al., 2017). The main contributor to the total AOD
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(a) (b)

FIGURE 10 ICAP MME absolute AOD forecast error (AFE) of the 72 h forecasts versus predicted error using the multivariate regression equations listed in
Tables 5 and 6. (a) Total AOD, (b) Dust AOD. “M” stands for ensemble mean and “S” for ensemble spread in the regression relations inside the plotting area

FIGURE 11 Time series of AERONET AOD and ICAP-MME consensus mean AOD with forecast error estimate derived from the multivariate regression
models for the 72 h forecasts of (a) dust AOD at Capo Verde, (b) total AOD at Beijing. Magenta crosses indicate AERONET AOD observations [Colour
figure can be viewed at wileyonlinelibrary.com].

decrease is the decrease in fine-mode AOD with similar mag-
nitude, with only a very slight decrease in dust levels over the
years (Figure 13 and Supporting Information Figures S3, S4).
Time evolution of the fine-mode AOD RMSEs from the four
core models and the ICAP-MME show that all the ICAP mod-
els have decreasing trends of varying magnitude in fine-mode
AOD RMSE over Beijing (Figure 13).

There are no significant changes in mean dust levels and
variance over Beijing. However, performance of all the indi-
vidual models in terms of dust forecast is more divergent
among the models and over the years. ICAP-MME dust AOD
RMSE is not always the lowest, but is relatively stable com-
pared to individual models over the years. This is one of the
benefits of multi-model ensembles. A similar conclusion can
also be made with respect to regional performances. Individ-
ual models perform differently regionally. One model may
perform better in some regions, but worse in other regions
compared to other models. But ICAP-MME has more stable
performance across all regions.

There is a tendency for smaller RMSE, especially in
fine-mode AOD, over other Asian sites as well. Small
decreasing trends in RMSE of total and fine-mode AOD are
discernible for Kanpur and Gandhi College, the two Indian
sites (Figure 12 and Supporting Information Figure S4). Dif-
ferent from Beijing, there is no clear trend in the yearly mean
total and fine AODs and their standard deviations, suggesting
the decreasing trend is a result of model improvements, espe-
cially in fine-mode AOD forecasts, over the region from 2012
to 2017 (Figure 13). Yonsei University, Korea, and Chiang
Mai Met Station, Thailand, also show decreased fine-mode
AOD RMSEs without significant decreases in their annual
mean fine-mode AODs (Supporting Information Figure S4),
indicating model improvements in fine-mode AOD forecasts
over the years. It is known that some models incorporated
organic aerosols and/or nitrate aerosols in the fine mode, and
updated emission inventories, which would improve the low
bias over India, East and Southeast Asia, where severe anthro-
pogenic pollution often occurs. Additionally, one of the four
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TABLE 7 Contribution of each individual model to the ICAP MME in the 6 h and 72 h forecasts for dust AOD at 550 nm. One-year mean (June 2016–July
2017) absolute forecast errors from the ICAP MME are listed, as well as those from ensembles based on 6 of 7 dust models with Model 1 (M1), Model 2
(M2), Model 3 (M3), Model 4 (M4), Model 5 (M5), Model 6 (M6) and Model 7 (M7) removed from the ensembles respectively. Percentage change of
mean absolute forecast error resulting from the removal of each individual model at each site and the average change of all sites are also shown.

Site
Dust 6 h
fcst error w/out M1 w/out M2 w/out M3 w/out M4 w/out M5 w/out M6 w/out M7

Banizoumbou 0.14 0.16 8% 0.15 5% 0.15 1% 0.15 6% 0.14 −1% 0.12 −15% 0.15 4%

Beijing 0.08 0.07 −3% 0.08 1% 0.07 −4% 0.07 0% 0.08 5% 0.08 1% 0.08 10%

Capo Verde 0.08 0.09 4% 0.09 7% 0.09 4% 0.09 2% 0.08 1% 0.08 −7% 0.09 3%

Gandhi College 0.11 0.11 −1% 0.11 4% 0.11 −1% 0.10 −5% 0.11 3% 0.10 −8% 0.12 12%

Ilorin 0.10 0.10 2% 0.10 4% 0.10 −1% 0.10 0% 0.10 3% 0.10 2% 0.10 6%

Kanpur 0.09 0.09 1% 0.09 2% 0.09 −2% 0.08 −5% 0.09 1% 0.08 −9% 0.10 18%

Palma de Mallorca 0.03 0.03 −2% 0.03 3% 0.03 3% 0.03 −1% 0.03 5% 0.03 0% 0.03 10%

Ragged Point 0.05 0.05 0% 0.05 2% 0.05 −3% 0.05 −4% 0.05 0% 0.05 −3% 0.06 15%

Mezaira 0.09 0.09 1% 0.10 4% 0.09 0% 0.09 1% 0.10 12% 0.08 −13% 0.09 2%

Yonsei University 0.06 0.06 −2% 0.06 −3% 0.06 0% 0.06 −4% 0.07 10% 0.06 −5% 0.07 10%

average Dust 6 h fcst 1% 3% 0% −1% 4% −6% 9%

average Dust 72 h fcst −1% 2% 0% 2% 6% −2% 5%

FIGURE 12 Evolution of ICAP-MME performance in terms of RMSE of
total AOD at 550 nm of the 6 h forecasts for the 21 AERONET sites shown
in Table 1, over 2012–2017. The number inside of each grid represents
yearly mean AERONET V3 L1.5 total AOD at 550 nm for the site and year.
RMSE is shown in colour. “NaN” means not enough data points (at least
100) for evaluation [Colour figure can be viewed at wileyonlinelibrary.com].

core models (the other three had DA since ICAP inception)
incorporated AOD data assimilation in the middle of 2016,
which may have also contributed to the RMSE improvement
in the most recent two years.

No significant trends in ICAP-MME performance in terms
of total AOD RMSE are found for other sites. Biomass burn-
ing and dust-impacted sites tend to have large interannual
variabilities in terms of AOD RMSE, mean and standard devi-
ation because of the nature of these events. This may have

blocked weak signals of model improvement if there are any.
It is difficult to detect RMSE trends at background sites due
to a small average and range of AOD.

Finally, the rankings of ICAP-MME among all the mod-
els in terms of total AOD RMSE of the 6 h and the 72
h forecasts for all the sites over 2012–2017 is shown in
Figure 14. As expected, ICAP-MME is in either the first
or second place for most sites and years for both the anal-
ysis and forecast modes, indicating MME performance is
good and stable over the years. Individual models could rank
first for some sites/regions and years, but none of the indi-
vidual models have high and stable rankings like the MME
over time (Supporting Information Figure S6). This is under-
standable as global operational aerosol models evolve quickly
and the dynamic nature of significant aerosol events, such
as related to large wildfire outbreaks or heavy dust seasons.
When there is a model upgrade, there is usually an abrupt per-
formance change associated with it. An upgrade can impact
some regions more than others or some aerosol species more
than others. Sometimes it may not be a model upgrade, but
just model physics that can result in a good simulation for
one scenario but bad simulation for another. In the long run,
MME wins due to its averaging nature. Similar behaviour of
multi-model ensembles is also observed in the TC track and
intensity forecasts where consensus prediction wins over indi-
vidual models over a longer time span (e.g. DeMaria et al.,
2014). This is also why a consensus mean, i.e. even-weighting
for all the participating models, is adopted in the ICAP-MME.

6 DISCUSSIONS AND CONCLUSIONS

This article provides an update on the International Coop-
erative for Aerosol Prediction (ICAP) global operational
aerosol multi-model ensemble (MME) AOD consensus prod-
uct. Compared to the first ICAP-MME analysis (Sessions

http://wileyonlinelibrary.com
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FIGURE 13 Evolution of ICAP individual models and MME fine-mode and dust 550 nm AOD RMSE of the 72 h forecasts at (a,b) Beijing and (c,d) Kanpur
over 2012–2017. Individual models are in colour bars and ICAP-MME in black bars. Models 1–7 are in red, green, blue, orange, light blue, scarlet and dark
green, respectively, which are also in sequence in the dust AOD histograms. Also shown are AERONET yearly mean fine-mode and coarse-mode AOD in
purple pluses and standard deviation in purple stars [Colour figure can be viewed at wileyonlinelibrary.com].

et al., 2015), the multi-species models are still the four mod-
els: ECMWF CAMS, JMA MASINGAR, NASA GEOS-5,
NRL NAAPS; while the dust models have expanded from
the original five (aforementioned four, plus NOAA NGAC)
to include the additional BSC MONARCH and UKMO uni-
fied dust model, making seven dust models in total in this
study. The newer ICAP members, namely NOAA full-species
NGAC, Météo-France MOCAGE and FMI SILAM, are not
included in this study because of shorter data records. A
recent full year of data, from 1 June 2016 to 31 May
2017, is used for detailed ICAP-MME performance statistics
compared to observations and to evaluate the usefulness of
ICAP-MME for probabilistic forecasts. The evolution of the
ICAP-MME performance during 2012–2017 is also exam-
ined. We expect rapid evolution in the individual member
models based on the results shown here and similar exercises
with ICAP-MME products, so the error metrics may be out
of date for the better by the time this article is published. The

current state of the ICAP-MME, and the similarities and dif-
ferences between these findings and the initial ICAP-MME
evaluation made with the first year of ICAP data, which
was 5 years older (Sessions et al., 2015), are documented
by our results, along with the usefulness of ICAP-MME for
aerosol probabilistic forecasts. The main conclusions from
this analysis are listed as follows:

1 ICAP-MME ranks first overall among all individual mod-
els in terms of overall RMSE, coefficient of determination
(r2), and bias for both analysis and forecast modes for
total, fine- and coarse-mode and dust AOD based on veri-
fications against AERONET Version 3 L1.5 observational
data and DA-quality MODIS C6 product. This result is
similar to the first ICAP-MME evaluation by Sessions
et al. (2015).

2 In general, the AOD spread of models with data assimila-
tion at their analysis mode is smaller than the AOD spread
of all models at their analysis mode, which is smaller

http://wileyonlinelibrary.com


198 XIAN ET AL.

FIGURE 14 Ranking of ICAP-MME among all the models in terms of total AOD RMSE over 2012–2017 for (a) the 6 h forecasts and (b) the 72 h forecasts.
The number inside each grid represents total number of paired 6-hourly AERONET and ICAP-MME data for the site and year. Ranking of ICAP-MME is
shown in colour. This is basically what is shown in Table 2, except for consecutive years [Colour figure can be viewed at wileyonlinelibrary.com].

than the spread of all models at their forecast mode. This
is true for total, fine- and coarse-mode and dust AODs
over the globe, except over India and the dusty East Asia
region, where global models have common low biases and
small spread for cases of heavy regional pollution and
sometimes mixed dust. These regions remain a challenge
for global models, although model skills at AOD forecasts
for these regions have been improved in the past 5 years
(see conclusion no. 4).

3 ICAP-MME ensemble mean and spread have skills for pre-
dicting absolute AOD forecast error globally, except for
over India, where they have little correlation with forecast
error. Multivariate regression models of absolute fore-
cast error are derived based on both ensemble mean and
spread for total and dust AOD forecasts at different fore-
cast lengths. These regression models can potentially be
applied for probabilistic AOD forecasts.

4 ICAP-MME performance in terms of modal AOD RMSEs
of the investigated 21 regional representative sites over
2012–2017 shows a general tendency for model improve-
ments in fine-mode AOD, especially over Asia. No sig-
nificant improvement in coarse-mode AOD was found
overall. Interannual variability in regions influenced by
biomass-burning smoke and dust may obscure small sig-
nals of potential model improvement.

5 ICAP-MME performance is stable and reliable over
the years compared to individual models. AOD RMSE
of ICAP-MME is not always the lowest for a given

species, site or year, but it is relatively low and
stable. Individual models may perform better in some
regions/years/scenarios and worse in others and may
experience abrupt performance changes associated with
upgrades. Consensus MME wins in the long run because
of its averaging nature of independent models.

Individual contributing centres have their own plans for
future aerosol model developments, with the development
focus depending on their customer needs and current model
status. These plans may include addition of aerosol species,
update of emission inventories, addition/update of aerosol
data assimilation, increased model resolution, improved
parametrization of physical, chemical and/or optical proper-
ties and processes. These future plans also stress requirements
for aerosol observations in the context of the operational
activities carried out at various centres (Benedetti et al.,
2018).

Currently the ICAP-MME products and the evaluations of
ICAP-MME performance are based on speciated or modal
AODs because AOD has the most abundant observations and
global coverage and it provides a big picture of column-total
amount of aerosols. The next big move for the ICAP MME
is towards surface PM2.5 (Particulate Matter with aero-
dynamic diameter less than 2.5 μm) and PM10 (Particu-
late Matter with aerodynamic diameter less than 10 μm)
ensembles. Data collected from global observational net-
works for these properties will be used for evaluations.
The evaluations of these new ensemble properties would

http://wileyonlinelibrary.com
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help the operational aerosol communities to identify issues
relevant to surface/lower boundary-layer properties and lead
to potential improvements. In the future, aerosol vertical dis-
tributions can also be investigated through the ICAP-MME
framework.
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APPENDIX A: MEMBER MODEL
DESCRIPTIONS

A.1 BSC MONARCH

The Nonhydrostatic Multiscale Model on the
B-grid–Multiscale Online Nonhydrostatic AtmospheRe
CHemistry model (NMMB-MONARCH v1.0: Pérez et al.,
2011; Haustein et al., 2012; Jorba et al., 2012; Spada
et al., 2013; Badia et al., 2017), formerly known as
NMMB/BSC-CTM, is a fully on-line integrated system
for meso- to global-scale applications developed at the
Barcelona Supercomputing Center (BSC). The model pro-
vides operational regional mineral dust forecasts for the
World Meteorological Organization (WMO) (https://dust.
aemet.es/), and participates in the WMO Sand and Dust
Storm Warning Advisory and Assessment System for North-
ern Africa–Middle East–Europe (http://sds-was.aemet.es/).
Since 2012, the system has contributed with global min-
eral dust and sea-salt aerosol forecasts to the multi-model
ensemble of ICAP at a resolution of 1.4◦ × 1◦ on 24 hybrid
sigma-pressure levels. NMMB-MONARCH v1.0 has been
enhanced with a new hybrid sectional-bulk multicomponent
mass-based aerosol module (Spada, 2015). The aerosol mod-
ule is designed to provide short- and medium-range forecasts
of the atmospheric aerosols for a wide range of scales, with
the option to adjust the complexity of the chemistry scheme
as desired. The module describes the lifetime of dust, sea-salt,
black carbon, organic matter (both primary and secondary),
sulphate and nitrate aerosols. While a sectional approach is
used for dust and sea salt, a bulk description of the other
aerosol species is adopted. The CB05 chemical mechanism
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(Yarwood et al., 2005) can be selected to solve the gas-phase
chemistry or, alternatively, climatologies of the most impor-
tant oxidants are used for simplified global aerosol runs
and forecasts. A simplified gas–aqueous–aerosol mechanism
has been introduced in the module to account for the sul-
phur chemistry and a two-product scheme is used for the
formation of secondary organic aerosols (Spada, 2015). An
upgrade of the NMMB-MONARCH v1.0 ICAP aerosol fore-
cast was implemented in July 2018. The system will provide
forecasts of mineral dust, sea salt, carbonaceous aerosols
and sulphate at a resolution of 0.7◦ × 0.5◦ on 48 hybrid
sigma-pressure levels. Global anthropogenic emissions from
the AeroCom-HTAP v2 dataset (Hemispheric Transport of
Air Pollution: Janssens-Maenhout et al., 2015) together with
online Model of Emissions of Gases and Aerosols from
Nature biogenic emissions (MEGAN: Guenther et al., 2006),
and Global Fire Assimilation System v1.2 biomass-burning
analysis (GFAS: Kaiser et al., 2012) are used. Additionally,
an aerosol data assimilation capability has been recently
implemented in NMMB-MONARCH v1.0 (Di Tomaso et al.,
2017). An ensemble-based data assimilation scheme (namely
the local ensemble transform Kalman filter – LETKF) will
be utilized in the near future to optimally combine model
ensemble forecasts and observations, using a perturbed
physics ensemble of NMMB-MONARCH v1.0. Results
assimilating mineral dust optical depth derived from satellite
retrievals (MODIS AOD Dark Target and Deep Blue) show
a significant improvement in the forecast of mineral dust.

A.2 Copernicus/ECMWF CAMS IFS

Starting in 2008, ECMWF has been providing daily aerosol
forecasts including dust as part of the EU-funded projects
Global and regional Earth-system Monitoring using Satellite
and in situ data (GEMS), MACC and MACC-II and con-
tinuing operationally as part of the Copernicus Atmosphere
Monitoring Service (CAMS), which provides predictions of
global atmospheric composition and regional European air
pollution. All data are publicly available online at https://
atmosphere.copernicus.eu/. The current model resolution is
∼40 km with 60 vertical levels. A detailed description of the
ECMWF Integrated Forecast System (IFS) forecast and anal-
ysis model including aerosol processes is given in Benedetti
et al. (2009) and Morcrette et al. (2009). The initial package
of ECMWF physical parametrizations dedicated to aerosol
processes mainly follows the aerosol treatment in the Labo-
ratoire d’Optique Atmospherique/Laboratoire de Météorolo-
gie Dynamique model (LOA/LMD-Z: Boucher et al., 2002;
Reddy et al., 2005). Five types of tropospheric aerosols are
considered: sea salt, dust, organic and black carbon, and sul-
phate aerosols. Prognostic aerosols of natural origin, such as
mineral dust and sea salt are described using three size bins.
For dust, bin limits are at 0.03, 0.55, 0.9 and 20 μm, while for
sea salt bin limits are at 0.03, 0.5, 5 and 20 μm. Emissions of
dust depend on the 10 m wind, soil moisture, the UV–visible

component of the surface albedo and the fraction of land
covered by vegetation when the surface is snow free. A cor-
rection to the 10 m wind to account for gustiness is also
included (Morcrette et al., 2008). Sea-salt emissions are diag-
nosed using a source function based on work by Guelle
et al. (2001) and Schulz et al. (2004). In this formulation,
wet sea-salt mass fluxes at 80% relative humidity are inte-
grated for the three size bins, merging work by Monahan
et al. (1986) and Smith and Harrison (1998) between 2 and
4 mm. Sources for the other aerosol types, which are linked to
emissions from domestic, industrial, power generation, trans-
port and shipping activities, are taken from the Monitoring
Atmospheric Composition and Climate (MACCity) monthly
mean climatology (Granier et al., 2011). Emissions of organic
matter (OM), black carbon (BC) and SO2 linked to fire emis-
sions are obtained using the GFAS v1.2 based on MODIS
satellite observations of fire radiative power, as described
in Kaiser et al. (2012). In the absence of a chemical model
of secondary organic aerosol production from anthropogenic
volatile organic compounds (VOCs), an additional source of
OM proportional to anthropogenic CO emissions (as a proxy)
is included. Several types of removal processes are consid-
ered: dry deposition including the turbulent transfer to the sur-
face, gravitational settling, and wet deposition including rain-
out by large-scale and convective precipitation and washout
of aerosol particles in and below the clouds. The wet and dry
deposition schemes are standard, whereas the sedimentation
of aerosols follows closely what was introduced by Tompkins
(2005) for the sedimentation of ice particles. Hygroscopic
effects are also considered for organic matter and black carbon
aerosols.

MODIS AOD data at 550 nm are routinely assimilated in
a 4D-Var framework which has been extended to include
aerosol total mixing ratio as extra control variable (Benedetti
et al., 2009). A variational bias correction for MODIS AOD
is implemented based on the operational set-up for assim-
ilated radiances following the developments by Dee and
Uppala (2009). The bias model for the MODIS data con-
sists of a global constant that is adjusted variationally in the
minimization based on the first-guess departures. Although
simple, this bias correction works well in the sense that the
MACC analysis matches well the de-biased MODIS obser-
vations. The observation error covariance matrix is assumed
to be diagonal, to simplify the problem. The errors have
been chosen based on the departure statistics and are pre-
scribed as fixed values over land and ocean for the assim-
ilated observations. The aerosol background error covari-
ance matrix used for aerosol analysis was derived using
the Parrish and Derber method (also known as the NMC
(National Meteorological Center, now National Centers for
Environmental Prediction) method: Parrish and Derber, 1992)
as detailed by Benedetti and Fisher (2007). This method
was long used for the definition of the background error
statistics for the meteorological variables and is based on
the assumption that the forecast differences between the 48 h
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and the 24 h forecasts are a good statistical proxy to estimate
the model background errors. Since 2017, the Metop PMAp
550 nm AOD product (https://navigator.eumetsat.int/product/
EO:EUM:DAT:METOP:PMAP) has also been included in
the assimilation in a similar way, except that errors provided
with the product are used directly.

A.3 JMA MASINGAR

The Model of Aerosol Species in the Global Atmosphere
(MASINGAR) is an aerosol transport model developed at
Meteorological Research Institute (MRI) of Japan Meteo-
rological Agency (JMA) (Tanaka et al., 2003; Tanaka and
Ogi, 2018). The aerosol model considers major tropospheric
aerosol species including sulphate (and its precursors), BC,
organic aerosols (OA), sea salt and mineral dust. Dust and
sea-salt aerosols are logarithmically divided into 10 discrete
size bins from 0.1 to 10 μm in radius, while sulphate, BC and
OA are assumed to have a log-normal size distribution and
treated with total mixing ratio. The transport of aerosol is cal-
culated with three-dimensional semi-Lagrangian advection,
subgrid vertical diffusion, convective transport, and gravita-
tional settling. Removal processes of aerosol include rainout,
washout and dry deposition. The chemistry of sulphate pro-
duction includes oxidation processes of dimethyl sulphide
(DMS), sulphur dioxide (SO2), sulphur trioxide (SO3), and
carbonyl sulphide (OCS) with oxidants (OH, H2O2, HO2

and NO3). The mixing ratios of the oxidants are taken from
simulated monthly averaged fields from the output of MRI
Chemistry Climate Model, version 2 (MRI-CCM2: Deushi
and Shibata, 2011), as described in Tanaka et al. (2003) and
Tanaka and Ogi (2018). BC and OA include hydrophobic and
hydrophilic components. It is assumed that the hydrophobic
BC and OA gain hydrophilicity with an e-folding time of
1.2 days by aging processes, following Cooke et al. (1999).
The secondary organic aerosol is assumed to be formed from
10% of monoterpene and 1.2% of isoprene emission calcu-
lated by MEGAN v2 used in the Chemistry–Climate Model
Initiative project (CCMI: Sindelarova et al., 2014). Emission
flux of sea-salt aerosol is estimated by the formulation of
Gong (2003) as a function of surface wind speed at 10 m
altitude. Emission flux of dust is calculated as a function
of the friction velocity, soil moisture, soil type, snow cover
and vegetation cover described in Tanaka and Chiba (2005),
which is based on the saltation-bombardment dust emission
(Shao et al., 1996). Anthropogenic emissions of SO2, BC
and OA are specified by the monthly MACCity emission
inventory (Granier et al., 2011). Daily emissions of SO2,
BC and OA from biomass burning are incorporated from
the GFAS inventory obtained from ECMWF (Kaiser et al.,
2012).

MASINGAR runs coupled (“inline”) with an atmospheric
general circulation model, MRI-AGCM3 (Yukimoto et al.,

2012), which provides meteorological variables (horizon-
tal winds and air temperature) and ground properties (sur-
face temperature, soil moisture, snow cover, etc.). The
meteorological variables (horizontal winds and air temper-
ature) are constrained by JMA’s operational global analysis
(GANAL: Japan Meteorological Agency, 2002) and global
forecast at 6-hour intervals by Newtonian nudging. The JMA
Global Merged SST analysis is used for the sea-surface tem-
perature. MASINGAR has been employed by JMA for opera-
tional dust prediction since 2004, and is also used for climate
research (e.g. CMIP6 and CCMI) as a part of the climate pro-
jection model Coupled General Circulation Model version 3
(MRI-CGCM3: Yukimoto et al., 2012). The model also con-
tributes to the WMO Sand and Dust Storm Warning Advisory
and Assessment System for Asia (http://eng.nmc.cn/sds_was.
asian_rc/).

Two types of aerosol data assimilation systems are
available in MASINGAR. The variational-based system
(MASINGAR/2D-Var: Yumimoto et al., 2018) was used in
the development of the JRAero aerosol reanalysis product (Yu
et al., 2017) and scheduled for operational use for dust pre-
diction using the Aerosol Optical Thickness (AOT) from the
geostationary satellite Himawari-8. The ensemble-based sys-
tem (MASINGAR/LETKF: Sekiyama et al., 2016; Yumimoto
et al., 2016a) was developed as a research version and applied
to assimilation experiments with both a space-based lidar and
Himawari-8 inputs (Sekiyama et al., 2010; Yumimoto et al.,
2016b).

For ICAP-MME, the model resolution was upgraded from
T106L30 Gaussian grid (approximately 110 km with 30 verti-
cal layers in the hybrid sigma-pressure levels from the surface
to 0.4 hPa) to TL319L40 grid (approx. 60 km with 40 verti-
cal layers from the surface to 0.4 hPa) in 2013. The horizontal
grid resolution was further enhanced to T479 (approx. 40 km)
in February 2017. A quality-controlled AOT from MODIS
NRT L3 product (MCDAODHD: Zhang and Reid, 2006) has
been assimilated every 6 h in the variational-based system
since August 2016.

A.4 FMI SILAM

The System for Integrated modeLling of Atmopspheric com-
position (SILAM) (http://silam.fmi.fi) has been developed in
FMI for operational (since 2001) and research calculations of
atmospheric composition at regional to global scale. SILAM
has two transport cores: Lagrangian particle model (Sofiev
et al., 2006) and Eulerian (Sofiev et al., 2015). The Eule-
rian transport scheme used in all atmospheric composition
simulations is combined with an adaptive vertical diffusion
algorithm (Sofiev, 2002). A detailed aerosol dry deposition
scheme of Kouznetsov and Sofiev (2012) is accompanied
with the gaseous surface uptake scheme based on the resis-
tance analogy approach. For secondary inorganic aerosol
formation, the chemistry scheme of the Dispersion Model of
Atmospheric Transport (DMAT: Sofiev, 2000) is extended
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with the coarse-nitrate formation in the marine boundary
layer. Dynamic emission schemes have been developed for
sea salt (Sofiev et al., 2011), wild-land fires IS4FIRES system
v.2 (Sofiev et al., 2009; Soares et al., 2015), wind-blown dust
following the modified saltation approach (Marticorena and
Bergametti, 1995; Zender, 2003), and biogenic VOC emission
after Poupkou et al. (2010).

Being an offline model, SILAM has an interface
to widely used sources of meteorological information,
such as ECMWF, HIgh Resolution Limited-Area Model
(HIRLAM), HIRLAM ALADIN Research on Mesoscale
Operational NWP In Europe (HARMONIE) and Weather
Research and Forecasting (WRF) models, as well as to the
general-circulation model (GCM) systems, such as ECMWF
model HAMburg version (ECHAM) and Norwegian Earth
System Model (NorESM). The model includes a meteoro-
logical pre-processor for ensuring the solenoidal wind flow
and for diagnosing the basic features of the boundary layer
and the free troposphere (such as diffusivities, similarity
scales, and latent and sensible heat fluxes) from the input
meteorological fields (Sofiev et al., 2010).

SILAM implements several data assimilation techniques
for 3D-Var, 4D-Var, ensemble Kalman filter and ensem-
ble Kalman smoother data-assimilation techniques (Vira and
Sofiev, 2012; Vira et al., 2017). The model is also capa-
ble of stand-alone adjoint simulations for, e.g., sensitivity
analysis.

Scales of the SILAM applications vary from gamma-
mesoscale up to global with characteristic resolution of
0.1–0.5◦ (Lehtomäki et al., 2018; Sofiev et al., 2018). SILAM
is a part of Copernicus Atmospheric Service CAMS-50
(Marécal et al., 2015). The model has been evaluated against
air-quality observations in Europe and worldwide via both
dedicated studies and within the operational quality assurance
procedures (Huijnen et al., 2010), http://macc-raq-op.meteo.
fr/ (Solazzo et al., 2012a; 2012b).

A.5 Météo-France MOCAGE

MOCAGE (Modèle de Chimie Atmospherique à Grande
Echelle) is an offline chemistry transport model used for
research at Météo-France in a wide range of scientific stud-
ies on tropospheric and stratospheric chemistry at various
spatial and temporal scales. It was used for example for
studying the impact of climate on chemistry (Teyssèdre
et al., 2007; Lacressonnière et al., 2012; Lamarque et al.,
2013) or tropospheric–stratospheric exchanges using data
assimilation (El Amraoui et al., 2010; Barré et al., 2013).
MOCAGE is also used for daily operational air-quality fore-
casts in the framework of French platform Prev’Air (Rouil
et al., 2009, http://www2.prevair.org/) and in the European
CAMS project by being one of the models contributing
to the regional ensemble forecasting system over Europe
(Marécal et al., 2015, http://macc-raq-op.meteo.fr/index.
php). MOCAGE uses the semi-Lagrangian advection scheme

for the grid-scale transport, while the convective transport
and the turbulent diffusion are parametrized. Required mete-
orological fields are taken from operational analysis from
the ARPEGE model (Action de Recherche Petite Echelle
Grande Echelle) operated at Météo-France (Courtier et al.,
1991). MOCAGE includes the Regional Atmospheric Chem-
istry Mechanism (RACM) scheme for tropospheric chemistry
and the REactive PROcesses ruling the Ozone Budget in the
Stratosphere (REPROBUS) scheme for stratospheric chem-
istry (Stockwell et al., 1997). MOCAGE allows representa-
tion of desert dust, sea salt, black carbon, primary organic
carbon and secondary inorganic aerosols (ammonium sul-
phate, nitrate). It uses a sectional representation with six bins
for each aerosol, ranging from 2 nm to 50 μm (Guth et al.,
2016; Sič et al., 2016).

A.6 NASA GEOS-5

The Goddard Earth Observing System model, version 5
(GEOS-5), is a global Earth system model developed at the
NASA Global Modeling and Assimilation Office (GMAO:
Rienecker et al., 2008; Molod et al., 2015). GEOS-5 serves
NASA (a) as a state-of-the-art modelling tool to study climate
variability and change, (b) as a provider of research-quality
reanalyses for use by NASA instrument teams and the scien-
tific community at large, and (c) as a source of near-real time
forecasts of aerosol and atmospheric constituents in support
of NASA aircraft campaigns (e.g. KORUS-AQ, ORACLES).
GEOS-5 includes components for atmospheric circulation
and composition (including atmospheric data assimilation),
ocean circulation and biogeochemistry, and land surface pro-
cesses. Components and individual parametrizations within
components are coupled under the Earth System Modeling
Framework (ESMF: Hill et al., 2004). GEOS-5 has a mature
atmospheric data assimilation system that builds upon the
Grid-point Statistical.

Interpolation (GSI) algorithm jointly developed with NCEP
(Rienecker et al., 2008) and is currently evolving into a
hybrid ensemble-variational assimilation system. The ver-
sion of GEOS-5 documented here is run in near-real time on
a cubed-sphere grid at a nominal 25 km horizontal resolu-
tion (output is saved on a 0.25◦ × 0.3125◦ latitude× longitude
grid) with 72 vertical hybrid sigma levels from the surface to
approximately 85 km.

In addition to traditional meteorological parameters (winds,
temperatures, etc.), GEOS-5 includes modules to represent
aerosols and tropospheric–stratospheric chemical con-
stituents, and their respective radiative feedback. Aerosols are
handled through a version of the GOddard Chemistry Aerosol
Radiation and Transport model (GOCART: Chin et al., 2002;
Colarco et al., 2010), run on-line and radiatively coupled in
GEOS-5. GOCART treats the sources, sinks and chemistry of
dust, sulphate, sea salt and black and organic carbon aerosols.
Aerosol species are assumed to be external mixtures. Aerosol
and precursor emissions in the near-real time system are
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similar to those in the recent GEOS-5-produced Modern-Era
Retrospective analysis for Research and Analysis, Version
2 (MERRA-2: Randles et al., 2017). Dust and sea salt have
wind speed-dependent emissions and discretize the particle
size distribution across five size bins apiece. Total mass of
sulphate and hydrophobic and hydrophilic modes of car-
bonaceous aerosols are tracked. Biomass-burning emissions
of sulphur dioxide and carbonaceous aerosols are from the
Quick Fire Emission Dataset (QFED: Darmenov and da
Silva, 2013). Aerosol optical property assumptions are as in
Randles et al. (2017), including a treatment for non-spherical
dust particles (Colarco et al., 2014b). In January 2017 the
near-real time GEOS-5 system was updated to include a
series of tracers for nitrate aerosols (including three size bins
of nitrate) following the methodology in Bian et al. (2017).

The aerosol data assimilation methodology also fol-
lows from the description in Randles et al. (2017). In
near-real time, GEOS-5 includes assimilation of AOD
observations from the MODIS sensors on both Terra and
Aqua satellites. Based on the work of Zhang and Reid
(2006) and Lary et al. (2009), we originally developed a
back-propagation neural network to correct observational
biases related to cloud contamination, surface parametriza-
tion and aerosol microphysics. This empirical algorithm has
been adapted to retrieve AOD directly from cloud-cleared
MODIS reflectance. On-line quality control is performed
with the adaptive buddy check of Dee et al. (2001), with
observation and background errors estimated using the max-
imum likelihood approach of Dee and da Silva (1999).
Following a multi-channel AOD analysis, three-dimensional
analysis increments are produced exploring the Lagrangian
characteristics of the problem, generating local displacement
ensembles intended to represent misplacements of the aerosol
plumes.

A.7 NOAA NGAC

In March 2017, NCEP implemented the NEMS GFS Aerosol
Component (NGAC) version 2 (NGACv2) multi-species
aerosol forecast into operation (Wang et al., 2018; Bhattachar-
jee et al., 2018). The aerosol species include organic carbon
aerosols, black carbon aerosols, sea salt and sulphate aerosols
and dust. NGACv2 uses an updated atmosphere model Global
Forecast System (GFS) implemented in May 2016. Version
1 of the model became operational in 2012 producing global
dust only forecast upto 5 days (Lu et al., 2016). The con-
vection scheme is changed to the Relaxed Arakawa–Schubert
scheme (the RAS scheme: Moorthi and Suarez, 1992; 1999)
due to the need of vertical aerosol transport. The aerosol
model is NASA/GSFC’s GOCART aerosol module (Colarco
et al., 2010). Black carbon and organic carbon aerosols are
tracked separately. The organic carbon is presented as particu-
late organic matter. The chemical processing of carbonaceous
aerosols as a conversion from a hydrophobic to hydrophilic
mode follows Cooke et al. (1999) and Chin et al. (2002)

with an e-folding time-scale of 2.5 days (Maria et al., 2004).
Following Colarco et al. (2014b), five size bins of sea-salt
aerosol particles with a dry radius range of 0.03–10 um are
considered for an indirect production mechanism from burst-
ing bubbles (Monahan et al., 1986), and later modified
by Gong (2003). Four sulphate tracers: dimethyl sulphide
(DMS), sulphur dioxide (SO2), sulphate (SO4) and methane
sulphonic acid (MSA), are tracked. Sulphate chemistry
includes the DMS oxidation by hydroxyl radical (OH) dur-
ing the day and by nitrate radical (NO3) at night to form SO2,
and SO2 oxidation by OH in the gas phase and by hydro-
gen peroxide (H2O2) in the aqueous phase to form sulphate,
as described in Chin et al. (2002). The AOD is computed
from the complex refractive indices, size distributions, and
the hygroscopic properties of aerosols following Chin et al. A
computational error on dust AOD calculation is fixed, and the
removal process has been tuned to improve dust performance.

NGACv2 runs at T126 L64 resolution and provides 5-day
multi-species forecasts, twice per day for the 0000 UTC and
1200 UTC cycles. The aerosol initial conditions are taken
from the 12 h NGAC forecast from the previous cycle while
meteorological initial conditions are from the downscaled
high-resolution Global Data Assimilation System (GDAS)
analysis. NGACv2 provides products in addition to those from
NGACv1 dust-related products. Total Aerosol Optical Depth
(AOD) and AOD from each species are produced to sup-
port global and regional multi-model ensemble aerosol fore-
casts. Single-scattering albedo and asymmetric factor for total
aerosols at 340 nm, produced to support the UV-index fore-
cast, are available. Besides these fields, the three-dimensional
mixing ratios for each aerosol species at model levels are also
produced. The data are publicly available at: https://nomads.
ncep.noaa.gov/pub/data/nccf/com/ngac/prod/.

A.8 UKMO Unified Model

The dust forecasts from the UK Met Office are produced
by the global NWP configuration of the Met Office Uni-
fied Model (MetUM). The dust scheme is essentially that of
Woodward (2001) with modifications as described in Wood-
ward (2011) and Collins et al. (2011). The dust emission
scheme is based on Marticorena and Bergametti (1995) and
represents an initial horizontal/saltation flux in a number of
size bins with subsequent vertical flux of bare soil particles
from the surface into the atmosphere. The global NWP model
transports only two bins (0.1–2 μm and 2–10 μm radii), cal-
culated from the emissions with the original nine bins using
a prescribed size distribution broadly consistent with Kok
(2011). The magnitude of the emission is a cubic function
of the exceedance of the friction velocity over bare soil with
respect to a threshold value, where this friction velocity is
determined from the model wind field and boundary-layer
structure, and the threshold friction velocity is increased by
the presence of soil moisture according to Fécan et al. (1999).
The conversion from the horizontal flux to the vertical flux is

https://nomads.ncep.noaa.gov/pub/data/nccf/com/ngac/prod/
https://nomads.ncep.noaa.gov/pub/data/nccf/com/ngac/prod/
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first limited using the clay fraction in the soil texture dataset,
according to Gillette (1978), and then partitioned into the new
bins by prescribing the emitted size distribution. Once the
dust is lifted into the atmosphere it is transported as a set of
tracers by the model 3-D wind field. Johnson et al. (2011)
gave in-depth description and evaluation of the Met Office
dust forecasts, in a local area model over North Africa. Dust is
assimilated in a 4D-Var framework following Benedetti et al.
(2009), using aerosol observations from MODIS on board
NASA’s Aqua platform. Initially, MODIS (Collection 5.1)
observations (best quality, dust filtered) were assimilated only
over the land based on MODIS Dark Target (Kaufman et al.,
1997; Levy et al., 2007; 2009) and Deep Blue (Hsu et al.,
2004; 2006) retrievals. Incremental updates to the operational
system include MODIS observations over ocean in February
2015, and an updated version of MODIS AOD (Collection
6.0) in December 2017.

A.9 US NAVY NAAPS

The Navy Aerosol Analysis and Prediction System (NAAPS)
is the US Navy’s global aerosol forecast model, which
produced the world’s first operational global aerosol fore-
casts and then was the first with aerosol data assimila-
tion. In its current operational configuration, NAAPS makes
6-day forecasts, four times a day at 1080× 540 global
(1/3◦) spatial resolution and 35 vertical levels driven by the
Navy Global Environmental Model meteorology (NAVGEM:
Hogan et al., 2014). It has multiple research versions, includ-
ing the NAAPS reanalysis (Lynch et al., 2016) and ensemble
NAAPS (Rubin et al., 2016). Quality-controlled retrievals
of AOD from the Moderate-resolution Imaging Spectrora-
diometer (MODIS: Zhang and Reid, 2006; Hyer et al., 2011;
Shi et al., 2014) are assimilated through the Navy Atmo-
spheric Variational Data Assimilation System (NAVDAS) for
AOD (NAVDAS-AOD: Zhang et al., 2008) in the operational
run, while the model has capabilities of assimilating other
quality-controlled observations, including lidar backscatter
vertical profiles and AOD products from other platforms
through either variational or ensemble methods (Hyer et al.,
2018; Zhang et al., 2011; Rubin et al., 2017).

NAAPS characterizes anthropogenic and biogenic fine
(ABF, including sulphate, and primary and secondary organic
aerosols), dust, biomass-burning smoke and sea-salt aerosols.

A first-order approximation of secondary organic aerosol
(SOA) processes is adopted in which production of SOA
from its precursors is assumed to be instantaneous and
included with the sulphate species to form a combined anthro-
pogenic and biogenic fine (ABF) species (Lynch et al., 2016).
Smoke from biomass burning is derived from near-real time
satellite-based thermal anomaly data used to construct smoke
source functions with regional corrections (Reid et al., 2009).
Dust is emitted dynamically and is a function of modelled
friction velocity to the fourth power, surface wetness and
surface erodibility (Westphal et al., 1988). Sea-salt emission
is driven dynamically by sea-surface wind, according to the
parametrization described by Witek et al. (2007).

APPENDIX B: DEFINITION OF
TERMINOLOGIES

Root-Mean-Square Error (RMSE):

RMSE =

√√√√1
n

n∑
i=0

(𝜏model − 𝜏obs)2i ,

where 𝜏 represents AOD, and n is the total number of obser-
vational or model data.

Bias ∶ 𝜏model − 𝜏obs.

Mean error ∶ 1
n

n∑
i=1

(𝜏model − 𝜏obs)i.

Mean absolute error ∶ 1
n

n∑
i=1

|𝜏model − 𝜏obs|i.
Coefficient of determination ∶

r2 =
(∑n

i=1(xi − x̄)(yi − ȳ)
)2

∑n
i=1(xi − x̄)(yi − ȳ)

∑n
i=1(xi − x̄)(yi − ȳ)

,

where x̄ and ȳ are the mean values of variables x and y.
Absolute Forecast Error (AFE): |𝜏model − 𝜏obs| for fore-

cast mode.
Ensemble mean: 1

m

∑m
i=1 xi where m is the total number of

the individual models.
Ensemble spread is defined as the standard deviation of all

the individual models, i.e.

𝜎 =

√√√√ 1
m

m∑
i=1

(xi − x̄)2.




