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Abstract

In CNRM-CM6-1 (Voldoire et al., 2019), the method used to interpolate river discharges simulated
by the river routing CTRIP model to the NEMO ocean model is not conservative locally. This
document explains the reasons of non-local conservation and proposes a new interpolation method
that ensures local conservation. The consequences of this new interpolation are assessed in long term
piControl type simulations in which forcing are fixed to preindustrial levels. In these simulations, we
observe a strong impact on sea-ice extent and volume in both hemispheres. This in turn impacts the
large-scale ocean mass transport (AMOC and ACC). Nevertheless, the resulting Arctic sea-ice extent
is unrealistically large and it raises the need to tune the model ones the new interpolation method is
included. More investigations would require such a tuning to be done.

The new interpolation method can be applied to any other models given that the models ocean
and river grids are dealt with in the OASIS coupler. This interpolation method could also be used
for other quantities: biogenic fluxes, calving, etc. To this aim, it will be made available directly in
OASIS future versions.

1 Root Causes of non local conservation

In CNRM-CM6-1 (Voldoire et al., 2019) and in its derived versions CNRM-ESM2-1 (Séférian et al., 2019)
and CNRM-CM6-HR, the interpolation method used to interpolate river discharge from the river routing
model TRIIP to the ocean model NEMO has been chosen among the available methods in OASIS (Craig
et al., 2017). There was not any interpolation method very appropriate for this type of remapping,
so we used the simple method of distance-weighted interpolation. The conservative remapping was not
appropriate since river discharge does not span the entire NEMO ocean grid points. The distance weighted
interpolation method was thought to be less erroneous since outflow were distributed to ocean grid point
closed to the river bank and since it takes into account the distance between source and target grid points.

1.1 Respective model areas of grid points are not taken into account

However, the area of TRIP (0.5◦ resolution) and NEMO (ORCA1 grid, 1◦ resolution) grid points are one
order magnitude different (Fig. 1). Given that distance-weighted does not take into account the area of
source-target grid points, this remapping method does not conserve the amount of water exchanged that
are provided by TRIP in kg/m2. The integral of this quantity should be conserved (ie flux∗area).

The total area of river discharge grid points in TRIP is 7 106 km2, whereas it is spread over 64
106km2 on the NEMO grid. There is a large mismatch in between these quantities. We could reduce the
mismatch by increasing the number of masqued grid points on the ocean NEMO grid. The mismatch
would also been reduced if the resolution of the two grids were closer. Such methods would reduce the
local non conservation but would not ensure a perfect conservation.
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Figure 1: Area of non masqued points for the river model TRIP grid (left) and for the NEMO ocean
model grid (right) in 103km2

1.2 Non coastal river bank

In the TRIP grid, there are river bank that are not closed to the sea. For instance, there are many river
bank over central Eurasia. These river discharges correspond to river discharges to small lakes. The
water mass budget of these lakes is not dealt with in the current version of CNRM-CM6-1. In the OASIS
distance-weighted interpolation algorithm, these grid points does not have an identified neighbour in the
target ocean grid (Fig. 2), even if 10 neighbours are searched for (Fig 2b). This problem would also
appear for bilinear or conservative interpolations. Thwater mass should be taken into account in the
CNRM-CM6-1 system to properly close the water budget.

Therefore, in CNRM-CM6-1, there are 2 steps for the interpolation:

• remapping following a distance-weighted interpolation (DISTWGT OASIS) with only one neighbour

• global conservation procedure to ensure a global conservation of the water mass coming from the
TRIP river model.

As we only take one neighbour in the first step, the number of river discharge point not taken into
account during the first step is large (Fig. 2a). Note that even if we had taken 10 neighbours, the number
of unused grid points would remain important.

1.3 Effects on local conservation

The TRIP simulated mean river outflow over the Amazon region (Fig. 3a, green bars) is systematically
larger than the river outflow received by the ocean model (blue bars), whatever month considered. This
is reversed over the south Greenland region (Fig. 3b). If we consider the globe (Fig. 3c), the amount of
water received by the ocean model corresponds to the amount of water sent by the TRIP river model.
However, due to the difference in mean area, the amount of water on the ocean grid after the first step,
ie, the distance-weighted interpolation is dramatically overestimated. This is partly compensated by the
non coastal river outflow not taken into account during this first step. This means that the error would
have probably been larger if all river discharge grid points were taken into account. The ratio applied to
conserve the global mean is thus large and the resulting regional outflow is severely modified. This ratio
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a) b)

Figure 2: Number of neighbours in the NEMO ocean grid for each river bank grid point. In blue, the
TRIP grid point has a neighbour in the target ocean grid, in red, no neighbour is found. a) Left panel is
when interpolation is based on only one neighbour, b) right panel is based on 10 neighboors interpolation.

a) b) c)

Figure 3: Mean annual cycle of water outflow (in tons) integrated over the a) Amazon region ([70W-30W,
3S-3N]), b) south of Greenland [60W-30W, 50N-70N]) and c) globally on the TRIP river grid (green),
after distance-weighted interpolation (magenta) and received on the ocean grid after global conservation
step (blue). Note that the vertical axis has a logarithmic scale.
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Figure 4: Water mass flux sent at each TRIP river discharge grid points (top) and water mass received by
the ocean NEMO model (bottom) over the Amazon region (left) and the south Greenland region (right).
The title of each plot indicates the total water mass (in kg) integrated over the region considered.

is indeed the same for all regions but depending on the error made during the first step of interpolation,
this results in regions of underestimation and regions of overestimation of the river discharge.

OASIS interpolate these water masses as fluxes, ie the local values are relatively consistent between
the two grids (figure 4). However, the total water mass is very different depending on the grid : 98 tons
are simulated by TRIP over the Amazon and only 35 tons are received on the NEMO grid over the same
region.

2 New method proposed

2.1 Description of the interpolation method

The interpolation should consider the water mass integrated over each grid points rather than the water
mass flux and there is the need to take into account properly the ”inland” river outflow. In general,
interpolations in OASIS are written so as to provide a value on each unmasked target grid points. The
idea is that the target model needs a value on each unmasked grid points. Here, to be appropriate, the
new interpolation method should consider all input grid points and we do not need absolutely to get
a value on each unmasked target grid points. The question is thus reversed: we take the interpolation
links from a reverse interpolation distance-weighted from the ocean grid to the river grid. This allows
to know for each river discharge grid points one (or several neighbours) in the ocean grid and there is
no river discharge grid points unsused. Note that this means that there can be several ocean grid points
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associated to one river grid point, the resulting water mass flux to the nemo grid points can be written :

Fnemo =
∑
i

Ftrip(i) ∗ areatrip(i)/areanemo (1)

and the new weights are calculated following :

ww(i) = aire(i)/airenemo (2)

In the case of using a n-neighbours distance weighted interpolation, then the effective area should
take into account the number of neighbours effectively used for each river grid points :

areaefftrip(i) = areatrip(i)/nneighbourseff (3)

2.2 Offline application to CNRM-CM6-1 outputs

Here, the new interpolation method is applied to TRIP outputs taken from a piControl CMIP6 simulation,
and provides a new field on the NEMO ocean grid. As expected, the total mass of water over the domain
is conserved. Over the amazon region, the results is close to 98 tons (figure 5). The small differences
obtained arise from the fact that the domains considered are not ”closed”, ie there are river banks close
to the northern border of the domain (Orinoco river) that partly spread over ocean grid points of the
region. This also explains that the mismatch is larger when more neighbours are taken into account
which means that more neighbours of the Orinoco river are in the region considered and thus more water
from this river ends in the local domain. By looking at a closed domain like the Island coast, we have
assessed that the local conservation is obtained (not shown). Figure 6 confirms the local conservation
over the annual cycle for both regions.

The choice of the number of neighbours remains subjective, more neighbours are taken, more the flux
is spread over the ocean and less there is a risk of numerical explosion in the ocean model in case of
strong outflow.

2.3 Inland river discharge management

The new interpolation method remains problematic for inland river outflows. For these points, the closer
ocean grid point can be very far from the river outflow and it would be unrealistic to discharge this
water mass on such localised places. In the TRIP river atlas, the river outflow grid points are provided
following two categories, the second one corresponds to these inland outflows. To limit the problem, we
can thus apply a different treatment to these outflow regions. Figure 7 is an updated version of figure 2
in which inland outflow grid points which do not have any neighbours are coloured green. In this new
figure, the number of red grid points, ie coastal river outflow according to TRIP but no neighbour using
the old method, is drastically reduced and most of them are closed to the ocean so we can rely on the
new interpolation method to deal with them correctly. Note however, that there are still few inland grid
points (over east Africa for instance). This means that we may not avoid totally some spurious effects
where these inland outflow will be spread on ocean coastal grid points.

Concerning inland river discharge, as the objective is mainly to close the water budget of the coupled
system and not to spread this amount of water in spurious regions, we can spread the total amount of
water provided by these grid points over the whole ocean, as is already done for the lake water budget.
Spread over the ocean, this represent a very small water flux locally that should have a negligible effect.
This allows to close the water budget without introducing a spurious spatialisation.
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Figure 5: Water mass flux sent at each TRIP river discharge grid points (top) and water mass received
by the ocean NEMO model using the new interpolation method with one neighbour (middle) and 10
neighbours (bottom) over the Amazon region (left) and the south Greenland region (right). The title of
each plot indicates the total water mass (in kg) integrated over the region considered
.
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a) b)

Figure 6: Mean annual cycle of river discharge (in tons) averaged over the period 2350-2359 of the
piControl CMIP6 simulation done with CNRM-CM6-1 integrated over the a) Amazon region ([70W-
30W, 3S-3N]) and b) south of Greenland [60W-30W, 50N-70N]) calculated on the TRIP river model
grid (green), on the NEMO model grid (after applying global conservation) using the distance-weighted
interpolation used in CNRM-CM6-1 (blue) and with the new method with 10 neighbours (orange) and
one neighbours (red).

a) b)

Figure 7: Same as Figure 2 where grid points without any neighbour which are considered as inland river
outflow in TRIP are mouved to green color. Remaining red grid points thus represents coastal grid points
according to TRIP which have no neighbours using the old interpolation method with a) one neighbour
and b) 10 neighbours.
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3 Impact of the new method

3.1 Experiments performed

3 sensitivity experiments have been performed based on the CMIP6 piControl simulation with CNRM-
CM6-1 to assess the impact of the new treatment of the coupling between rivers and ocean:

• interp n10: new interpolation method using 10 neighbours (each river grid points has 10 neighbours
in the ocean)

• interp n1: new interpolation method using 1 neighbour

• all changes: apply a different treatment for river discharge depending on its location (inland or
coastal) and interpolation with the new method with one neighbour for the coastal discharge. In
this simulation, there is also a new land-sea mask introduced in the atmospheric-surface model
to better match the ocean model land-sea mask and avoid mismatches. This feature has been
developped for CMIP6 but was not valided anough to be activated in CNRM-CM6-1, it is only
activated in CNRM-CM6-HR.

For all these experiments, the reference simulation is the piControl CNRM-CM6-1 simulations pub-
lished for CMIP6 in which there is no local conservation (old interpolation method). All simulations
use constant greenhouse gases and aerosol forcings representative of the preindustrial era as provided for
CMIP6 and all share the same equilibrated initial state.

Simulation interp n10 was the first test done and has allowed to validate the interpolation method
ensuring no numerical explosion would happen. Using one neighbour appeared less questionable sci-
entifically. As there was not any numerical problem using only one neighbour, it has been decided to
extend only interp n1. Finally, interp n10 has been run over 150 years, whereas interp n1 and all changes
experiments are 300 years long.

3.2 Results

3.2.1 Impact on the global mean climate

Figure 8 shows the time series of several key quantities summarising the global mean climate of these
simulations. The impact of the change in river-ocean coupling on global mean temperature (Fig. 11a) is
similar in all three sensitivity experiments. There is a decrease of temperature over the first 50 years then
a weak warming tendency is observed but the mean temperature remains colder than in the reference
simulation even after 300 years for interp n1 et all changes. interp n10 is shorter but its evolution is similar
to the others. The Arctic sea-ice volume is larger in all three sensitivity experiments (Fig. 11b). On the
contrary, the impact on the Antarctic sea-ice volume is negligible in interp n1 and interp n10 whereas
there is a net increase in all changes. The origin of this difference are further explained in section 3.2.3.
The impacts on the large-scale ocean circulation are consistent with the sea-ice changes. In all three
sensitivity experiments, we observe a strong weakening of the mean Atlantic Meridional Overturning
Circulation (AMOC, Fig. 11d) that stabilizes after 70 years of simulation to 11.5 Sv. The large AMOC
low-frequency variability observed in the reference experiment nearly disappears. The AMOC seems less
stable in all changes, but a longer simulation would be necessary to confirm this feature. The impact on
the Antarctic Circumpolar Circulation (ACC, Fig. 11e) differs in between the sensitivity experiments.
Consistently with the southern hemisphere sea-ice volume changes, there is a large increase of the ACC
only in all changes where it reaches 117Sv on average over the last 50 years whereas it is 110Sv in the other
experiments and in the reference experiment. In the following, we focus on the all changes experiment in
which there are impacts on the sea-ice volume in both hemispheres.
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a)

b)

c)

d)

e)

Figure 8: Evolution of the annual mean a) global temperature, b) Arctic sea-ice volume, c) Antarc-
tic sea-ice volume d) Atlantic Meridional Overturning Circulation (AMOC) at 26◦N and e) Antarctic
Circumpolar Circulation (ACC) for the reference piControl CMIP6 experiment (black) and sensitivity
experiments interp n10 (orange), interp n1 (blue) and all changes (red). The bold line represents the
low-pass filtered time series with 10 years cut-off.

9



a) b) c)

d) e) f)

Figure 9: Arctic sea-ice volume in march (in m, top) and annual maximum mixed layer depth (in
m, bottom) averaged over the last 50 years of each experiments (2100-2149) a) and d) for the reference
experiment, b) and e) for the all changes experiment and c) and f)for the difference all changes - piControl.
Dots indicate significant changes at the 95% significance level.

3.2.2 Impacts on the Arctic region

Figure 9 shows the sea-ice volume in the Arctic in march (the month of maximum extension). The sea-ice
cover is now over-estimated over northern Atlantic and Pacific. Such an extension limits the deep water
formation in these regions. The change is even drastic in the Labrador Sea (Fig. 9d-e) where in the
all changes experiment, the annual maximum mixed layer depth is reduced from more than 500 m to
100 m. The change in sea-ice and mixed layer depth are very similar in interp n1. Thus, this reduction
in deep water formation in the region probably explains the large AMOC weakening obtained in the
sensivity experiments. As seen on figure 6b, the impact of the new interpolation method on the local
river discharge is large particularly in winter. This probably explains a larger sea-ice extent. As the
Arctic sea-ice extension obtained is unrealistic, this points out that sea-ice tuning made for the reference
experiment to reach a realistic sea-ice extent is not appropriate in the sensitivity experiment. A new
tuning would be necessary to better match with the observed sea-ice extent.

3.2.3 Impact on the Antarctic region

The impact on the Antarctic sea-ice volume is more realistic than the Arctic sea-ice change, as is the
increase in ACC. However, in this region, the impact is not similar in all three sensitivity experiments.
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a) b) c)

d) e) f)

Figure 10: Same as Fig. 9 for the Antartic with sea-ice volume in september.

As there is no impact in interp n1 and interp n10, this indicates that it is not the interpolation method
which is at play to explain the different sea-ice cover.

To better understand what happens in the austral ocean, Figure 11 shows the evolution of the water
fluxes south of 60S. On coastal grid points, the river discharge simulated by TRIP is weaker in the
all changes experiment than in other experiments mainly due to a reduction of TRIP river runoff on
Antarctica (Fig. 11a). On this figure, the dashed line indicates the amount of water that originates from
inland river discharge (a uniform value applied all over the ocean that originates from all inland river
discharge grid points). This flux is much weaker than the coastal discharge around Antarctica and does
not greatly impacts the coastal runoff. Now, if we consider the budget over all ocean grid points south
of 60S (Fig. 11b), the water flux from rivers is higher in the all changes experiment than in the others.
This is due to the integration of the global inland river discharge over this large domain which results in
a large contribution relative to the regional coastal runoffs that are very weak aroud Antarctica. Indeed,
in all other experiments, the river discharge flux is zero over non coastal grid points. Even if the value
is very weak on all grdi points in the all changes experiment (7.5.10−3kg.m−2.d−1), integrated over the
whole ocean surface, this flux is higher than the regional coastal river discharge. However, this remains
a small contribution to the surface water budget over open ocean south of 60S since the iceberg flux
represents 0.3kg.m−2.d−1 in the same region, this is one order of magnitude higher.

The net water flux received at the ocean surface (Fig. 11c) is not significantly changed over the region.
This means that the difference comes from the geographical distribution of the river water fluxes. Figure
(11d) shows the difference in annual mean river discharge between interp n1 and all changes experiments
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and picture the reduction in coastal water flux around Antarctica, without a clear regional pattern.
To summarize, the difference between interp n1 and all changes comes from the way the inland river
outflow are distributed over the ocean. In interp n1, it is concentrated on coastal grid points whereas in
all changes it is spread out over a large region. This raises the sensitivity of the Antarctic sea-ice and
ACC to fresh water fluxes treatment in the region.

It could be raised that the change in behavior is due to the land-sea mask change. The land-sea mask
change could impact the all changes simulation via an initial chock that would modify irreversibly the
large-scale ocean circulation. In the all changes experiment, the ocean is in equilibrium and a shock could
only reflect a disequilibrium in the land surface water content. To check this possibility, an additional
experiment has been run in which the initial land water (including snow) reservoirs are better initialised.
In this experiment, the large-scale ocean circulation is similarly impacted as in the all changes experiment,
confirming the role of the design of the river-ocean coupling in explaining the difference in Antarctic sea-
ice cover.

4 Conclusion

A new way to couple river discharges to ocean is proposed and rely on two new features:

• implementation of a new interpolation method from the TRIP river model grid to the NEMO ocean
grid to ensure local conservation of water. This new method is independent of the models used so
can be useful in other models and applied to other coupling fields (such as calving or geochemical
fluxes). The method can be adapted to any model grid supported by the OASIS coupler. The
OASIS development team will include this new interpolation method in a future version of OASIS.
This feature is very easy to implement, there is only to change the interpolation weights file without
model code change.

• separate treatment of coastal river discharges and inland river discharges from TRIP: use of the new
interpolation method for coastal river discharges and uniform spreading over the ocean for inland
river discharges. This second feature requires modification of TRIP and NEMO codes as well as
the addition of a new coupling field to be indicated in the OASIS nameliste file.

Using the new interpolation method, the local conservation of river discharges is assessed on long
term control simulations. These changes have large impacts on the sea-ice volume and large-scale ocean
circulation. The new interpolation method modifies significantly the extent of the Arctic sea-ice and
the deep water formation in the northern Atlantic. The separate treatment of coastal and inland river
discharges has a clear impact on the Antarctic sea-ice by limiting the amount of fresh water entering the
ocean along the coast. These sensitivity experiments confirm that the treatment of river discharge is an
important feature in climate models that has a large impact on the mean climate. This coupling should
be implemented carefully. This new method will be implemented in future versions of CNRM-CM along
with a new tuning of the sea-ice properties.
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a)

b)

c)

d)

Figure 11: Evolution of a) the river discharge (kg.m−2.d−1) received on the NEMO ocean grid averaged
along coastal points south of 60S b) the river discharge received on the NEMO grid averaged over all
ocean grids points south of 60S, on a) and b) the dashed line indicates the flux received from non
coastal grid points as a uniform value over the ocean surface for the all changes experiment, c) net water
flux received at the ocean surface averaged south of 60S for the reference piControl CMIP6 experiment
(black) and sensitivity experiments interp n10 (orange), interp n1 (blue) and all changes (red). The bold
line represents the low-pass filtered time series with 10 years cut-off. d) Annual mean river discharge
anomaly between simulations all changes and interp n1 averaged over 2100-2149 (the last 50 years of each
simulation). Dots indicate significant changes at the 95% significance level.
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a) b)

c) d)

Figure 12: a) Annual mean river discharge to the ocean averaged over 50 years (2100-2149) for the
reference piControl experiment, and anomaly to the reference experiment for b) interp n1, c) interp n10
et d) all changes. Note that for the all changes experiment the flux contains the inland discharges and
explains the significant differences found all over the ocean.
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a) b)

c) d)

Figure 13: Same as Fig. 12 for the net outgoing water flux at the ocean surface. Dots indicate significant
changes at the 95% confidence level.

a) b)

c) d)

Figure 14: Same as Fig. 13 for the sea surface salinity.
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a) b)

c) d)

Figure 15: Same as Fig. 13 for the sea surface temperature.
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