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Abstract

Tropical cyclones are a major hazard for numerous countries surrounding the tropical-to-subtropical
North Atlantic sub-basin including the Caribbean Sea and Gulf of Mexico. Their intense winds,
which can exceed 300 km.h-1, can cause serious damage, particularly along coastlines where the
combined action of waves, currents and low atmospheric pressure leads to storm surge and coastal
flooding.  This  work presents future projections of  North Atlantic  tropical  cyclone-related wave
climate. A new configuration of the ARPEGE-Climat global atmospheric model on a stretched grid
reaching ~14 km resolution to the north-east  of the eastern Caribbean is  able to reproduce the
distribution of tropical cyclone winds, including Category 5 hurricanes. Historical (1984-2013, 5
members) and future (2051-2080, 5 members) simulations with the IPCC RCP8.5 scenario are used
to drive the MFWAM (Météo-France Wave Action Model) spectral wave model over the Atlantic
basin during the hurricane season. An intermediate 50-km resolution grid is used to propagate mid-
latitude swells  into a higher 10-km resolution grid over the tropical cyclone main development
region. Wave model performance is evaluated over the historical period with the ERA5 reanalysis
and  satellite  altimetry  data.  Future  projections  exhibit  a  modest  but  widespread  reduction  in
seasonal mean wave heights in response to weakening subtropical anticyclone, yet marked increases
in tropical cyclone-related wind sea and extreme wave heights within a large region extending from
the African coasts to the North American continent.

1. Introduction

Tropical  cyclones  (hereafter  TCs)  are  a  major  hazard  for  numerous  countries  surrounding  the
tropical-to-subtropical North Atlantic sub-basin including the Caribbean Sea and Gulf of Mexico.
According to the World Meteorological Organization (WMO), they accounted for over half of all
hydrometeorological and climate-related disasters reported in North America, Central America and
the Caribbean during recent decades, and for as much as 72% and 79% of the associated deaths and
economic losses,  respectively (WMO 2014).  The Saffir-Simpson scale  has  been used since  the
1970s to classify Atlantic TCs according to their intensity, estimated at any given time with their
maximum 10-m sustained wind speeds, and is related to potential damage on infrastructure. Yet, it
is  now known that strong winds are responsible  for less than 10% of TC-related deaths in  the
United States, while nearly 90% are due to water-related incidents: storm surge (49%), heavy rain
(27%), hazardous sea and surf  in  nearshore waters (6%) and further  offshore (6%) (Rappaport
2014). Thus about 6 fatalities out of 10 are induced by the marine response to TCs, where storm
waves play a key role both directly and indirectly through their contribution to storm surge called
wave set-up (e.g. Harris 1963, Komar 1998).
Further, wave run-up, which is the maximum height of instantaneous coastal water levels, is due to
water intrusions over the swash zone and onto the beach slope induced by wave breaking and set-up
(Stockdon et  al.  2006, 2014).  Particularly large run-ups caused by major  hurricanes  with wind
speeds of up to 300 km.h-1 or more can provoke coastal inundation and induce severe damage to
coastal infrastructure and ecosystems (Rey et al. 2019). In a context of climate change associated
with  inevitable  global-scale  sea  level  rise  (Church  et  al.  2013)  and  a  possible  increase  in  the
frequency of major hurricanes (Christensen et al. 2013), adaptation measures along coastlines of the
world  ocean,  and  the  North  Atlantic  in  particular,  therefore  require  an  assessment  of  future
projections of TC-related wave climate.
The number of studies dedicated to global and basin-scale wave climate projections has markedly
increased over the last decade (Mori et al. 2010, 2013, Fan et al. 2013, 2014, Hemer et al. 2013a,
Semedo et al. 2013, 2018, Wang et al. 2014, 2015, Guo et al. 2015, Shimura et al. 2015, Hemer and
Trenham 2016, Camus et al. 2017, Kishimoto et al. 2017, Timmermans et al. 2017, Vousdoukas et
al. 2018a,b, Webb et al. 2018, Morim et al. 2018), particularly in the framework of the Coordinated
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Ocean Wave Climate Project (COWCLIP, Hemer et al. 2014, 2018) WMO and Intergovernmental
Oceanographic Commission (IOC) joint working group (Hemer et al. 2013b, Morim et al. 2019).
The latter studies have compiled numerous individual studies to report robust future trends at the
global scale across large community-based multimodel ensembles, and to quantify the associated
uncertainties  due  to  global  climate  model  (GCM) wind forcing,  wave modeling,  and emission
scenarios (Morim et al. 2019). While there is no doubt that such multimodel approaches provide
invaluable information to decision makers as they significantly improve our confidence in wave
climate projections, they also suffer from relatively coarse resolutions for modelled wave fields
(~1°) and GCM wind forcings (1-2°). This is a strong limitation for the assessment of TC-induced
wave extremes (Wehner et al. 2015, Timmermans et al. 2017).
Indeed, while some GCMs exhibit weak TC-like vortices (Scoccimarro et al. 2011), resolutions of
35-50 km are necessary to improve their  representation,  although with limited performance for
major hurricanes (Chauvin et al. 2006, Jullien et al. 2014). Recent research suggests that resolutions
of 25 km and higher are needed to fully resolve the observed distribution of TC intensity (Wehner et
al. 2015, Chauvin et al. 2020) and associated wave extremes (Timmermans et al. 2017). Therefore,
while most of the aforementioned global- and basin-scale studies report on projected changes in
extreme wave heights (e.g. Fan et al. 2013, Semedo et al. 2013, Guo et al. 2015), their conclusions
remain questionable in TC regions. 
A few exceptions include the 20-km and 25-km winds used by Mori et al. (2010) and Timmermans
et al. (2017), respectively. The former study however used a rather coarse 1.25° wave model, which
is  also  likely  to  bias  TC  wave  extremes  compared  to  the  25-km  model  implemented  by
Timmermans et al. (2017), as demonstrated by Chen et al. (2018). The study by Timmermans et al.
(2017), which represents the state of the art  for global projections of  TC-related wave climate,
suggests possible large increases in extreme wave height in areas such as the tropical central and
eastern North Pacific. Nevertheless, the patterns of expected future changes were noisy and clearly
influenced by individual TCs, particularly in the Atlantic, because of the relatively short 23-year
simulations,  leaving  the  response  of  Atlantic  TC  wave  climate  to  global  warming  as  an  open
question. Alternative approaches include parametric TC winds (Krien et al. 2018, and references
therein) that provide reasonably realistic and computationally cost-effective high-resolution forcing,
combined with synthetic TCs statistically downscaled from GCMs under various climate scenarios
(e.g. Emanuel et al. 2013). However, the high-resolution wave models and associated computational
burden remain limiting factors, restricting this approach to regional studies (Appendini et al. 2017).
Here  we  use  ARPEGE-Climat,  an  atmospheric  GCM  with  a  stretched  grid  reaching  14  km
resolution in the tropical North Atlantic (Chauvin et al.  2020). It forces a 10-km regional wave
model, embedded into a 50-km wave model of the Atlantic Ocean, to infer projected future changes
in North Atlantic  TC-related wave climate. Unlike Timmermans et al.  (2017), 30-year ensemble
simulations generate a sufficient number of TCs to infer some robust changes in hurricane wave
climate  and  extreme  wave  heights.  In  addition,  dynamical  downscaling  is  used  to  assess  the
sensitivity of our projections to resolution of winds and waves in the TC main development region
(hereafter MDR). 
The atmospheric GCM simulations are forced with sea surface temperature (SST) from a single
IPCC (Intergovernmental  Panel  on  Climate  Change)  CMIP5  (Coupled  Model  Intercomparison
Project phase 5) coupled GCM under a single RCP8.5 greenhouse gas (GHG) emission scenario.
Most projected changes in TC activity found in this  model however tend to be consistent with
previous studies (Chauvin et al. 2020). In particular: increased proportion and intensity of Category
4 and 5 hurricanes, reduced total TC numbers, and a slight shift of TC activity towards the mid-
latitudes. Fig. 1 illustrates the latter two as a reduction in the frequency of TC days over most of the
North Atlantic including the Caribbean Sea and Gulf of Mexico, and an increase in the 40-50°N
band, although now regarded as barely significant after accounting for the multiple-testing problem
(Online Resource 1, section 1). It also exhibits a strong, robust increase in TC numbers around Cape
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Verde extending into the MDR, particularly at the hurricane season peak in September (not shown).
This had not been reported before and has been attributed to expected changes in African easterly
wave activity (Chauvin et al. 2020). Our results show that TC-related wave climate is sensitive to
these projected changes in TC activity, both in the MDR and the extratropics.
The present paper is organized as follows. The model and observed datasets and the methodology
are detailed in section 2. The results for model evaluation against historical data and for projected
future changes in seasonal mean, TC-mean and extreme wave climate are presented in section 3.
Section 4 is a discussion of the limitations of our study. Finally, concluding remarks are drawn in
section 5.

2. Data and methods

2.1. Model and observed data

2.1.1. ARPEGE-Climat atmospheric general circulation model

Wind fields  from a  high-resolution  atmospheric  GCM are  used  to  drive  a  wave model  of  the
Atlantic  basin and a  nested high-resolution model  of  the MDR. The GCM is  ARPEGE-Climat
(Batté  and  Déqué  2016),  the  atmospheric  component  of  the  CNRM-CM CMIP coupled  GCM
developed  at  Météo-France,  the  French  national  weather  service.  ARPEGE-Climat  offers  the
capability of a stretched grid, increasing the resolution over a given region at the computational cost
of a standard coarse-resolution GCM, thanks to degraded resolution over the antipodes. In addition
to  numerous  climate  studies,  it  has  been  combined  with  ocean wave models  to  perform wave
climate projections around France on a 60-80 km stretched grid (Charles et  al.  2012) and on a
uniform 50 km grid (Laugel et al. 2014). Its CMIP5 coupled coarse-resolution configuration (1.4°),
CNRM-CM5, was among the GCMs used in the multimodel wave climate projection studies by
Wang et al. (2014), Hemer and Trenham (2016), Camus et al. (2017), and Morim et al. (2019).
Here we use a new configuration of ARPEGE-Climat that is  being used for CMIP6 within the
CNRM-CM6 coupled GCM (Voldoire et al. 2019, Roehrig et al. 2020), except for a stretched grid
reaching ~14 km resolution to the north-east of the Lesser Antilles (Cantet et al. 2020). The model,
its configuration and the associated climate simulations have been described in detail by Chauvin et
al. (2020), so only a brief description is provided here. 
ARPEGE-Climat  has  been  forced  with  monthly  SSTs  from CNRM-CM5 under  historical  and
RCP8.5 climates. SSTs from the historical simulations over 1965-2013 (hereafter Hist-Model) were
previously  corrected  with  HadISST1  observed  monthly  SSTs  (Rayner  et  al.  2003)  to  ensure
unbiased  mean  climatology,  while  the  same  correction  was  applied  to  SSTs  from  RCP8.5
simulations over 2031-2080 for consistency. ARPEGE-Climat has also been forced with HadISST1
SSTs over 1965-2014 (hereafter Hist-Obs) for the purpose of model comparison with observations.
For each of these three climate experiments, 5 ensemble members differing only by their initial
conditions allow reaching robust statistics regarding TC-related extremes (Chauvin et  al.  2020).
Thanks to high resolution, the model is able to represent the distribution of TC winds fairly well,
including Category 5 hurricanes (Chauvin et al. 2020).
Six-hourly 10-meter winds from the climate experiments (Hist-Obs, Hist-Model, and RCP8.5) with
five members each (15 simulations in total) were interpolated onto regular 10-km and 50-km grids
over the MDR and whole Atlantic Ocean, respectively, to drive ocean wave models (2.1.2). Such
forcing, as well as wind field analysis were considered over the reduced 1984-2013 (Hist-Obs, Hist-
Model) and 2051-2080 (RCP8.5) periods (see details in 2.1.2). Winds at different vertical levels and
other  atmospheric  variables  were  also  interpolated  onto  a  15-km grid  over  most  of  the  North
Atlantic  for  the  full  fifty-to-sixty-year  time slices  in  order  to  apply  an automated  TC tracking
algorithm (Chauvin et al. 2020). The results have been used by Chauvin et al. (2020) to provide TC
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counts  and  climatology,  as  well  as  related  projected  future  changes.  We  use  some  of  that
information (over the reduced 30-year periods) to define the hurricane season (2.2.1) and extract
TC-related wave  climate  (2.2.2)  and  extreme  wave  heights  (2.2.3).  The  ARPEGE-Climat
experimental setup and grid characteristics are summarized in Tables 1 and 2, respectively.

2.1.2. MFWAM spectral wave model

We make use of the MFWAM (Météo-France Wave Action Model) spectral wave model, a version
of the WAM (WAMDI Group 1988) developed at Météo-France. MFWAM is a third generation
wave model that computes the evolution of sea state in the spectral space thanks to the energy
balance  equation.  It  uses  the  ECWAM-IFS-38R2  code  with  a  dissipation  term  developed  by
Ardhuin et al. (2010) and upgraded for the Copernicus Marine Environment Monitoring Service
(CMEMS).  This  term  involves  the  computation  of  the  wave-supported  stress  from  the  model
spectrum, which is used to modify wind friction velocity and ultimately wind stress through the
wave-supported  stress  effect  on sea surface  roughness.  Such parameterization  reduces  the  drag
coefficient and wind input for high wind speeds (Ardhuin et al. 2010), which is relevant for TCs
because wave growth would otherwise be overestimated (Powell et al. 2003). The wave spectrum is
discretized  in  24  directions  and  30  frequencies,  from 0.035  Hz  to  0.58  Hz  (1300  m to  5  m
wavelengths). 
The model applies watershed partitioning to split the wave spectrum into wind sea and various
swell components. In the first step, the part of the wave spectrum where wind speed exceeds phase
speed and wave propagation is aligned with surface winds is considered wind sea. A cosine factor is
used to treat neighboring wave directions. The swell part is then partitioned to retrieve sea states of
various origins. According to Hasselmann et al. (1996), wave spectra may be considered inverted
catchment  areas,  allowing  the use  of  hydrological  methods like  the  watershed algorithm.  Each
secondary maximum in the direction-frequency spectrum is thus considered a separate sea state.
The most energetic is named primary swell, the second is secondary swell, and so on. 
Several MFWAM configurations run every day at Météo-France. They are used to issue high surf
advisories,  watches  and  warnings  for  the  open  ocean  and  coastal  areas.  The  MFWAM  global
configuration is also dedicated to CMEMS wave products (Aouf 2018).
Our configuration is derived from an operational setup with a 10-km regional grid for the Lesser
Antilles and French Guiana (hereafter MFWAM01) nested in a 50-km global grid (MFWAM05). To
reduce the computational burden associated with long ensemble simulations, and recognizing that
distant  swells  from other basins have little  influence on North Atlantic sea states (Alves 2006,
Semedo et al. 2011), the MFWAM05 domain was restricted to the Atlantic (59.5°S-70°N, 99°W-
21°E). The South Atlantic was included to allow the propagation of Southern Hemisphere swells
into the North Atlantic, particularly in its eastern part as inferred from comparison to an experiment
with the model southern boundary located at 10°S (not shown). We however excluded the latitudes
north of 70°N where local swells are unlikely to influence lower latitudes in any significant way.
For  simplicity,  sea  ice  was  not  taken  into  account.  Although  not  global,  the  MFWAM05
configuration was only forced at the surface with ARPEGE-Climat winds without any prescribed
wave spectra along the open boundaries. 
The MFWAM01 domain was extended eastwards to make the most of highest-resolution MDR
winds  (5°N-28°N, 75°W-10°W).  Three-hourly  MFWAM05 spectra  were  prescribed at  the  open
boundaries for remote swell propagation into the MFWAM01 domain. MFWAM01 wave spectra
were however not fed back into the MFWAM05 domain (one-way nesting). Our purpose is to assess
the  sensitivity  of  our  results  to  the  resolution  of  winds  and  waves  (in  the  MDR),  rather  than
upscaling  effects  from  the  MDR to  basin  scale,  which  would  require  2-way  nesting.  Table  2
summarizes the MFWAM nested grid configuration.
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Since our focus is on TC-related wave climate, and given the high computational costs of dynamic
wave model simulations for the whole calendar year over fifty-to-sixty-year periods with available
ensemble wind data, temporal and seasonal subsampling had instead to be applied. For each climate
experiment and ensemble member (Table 1), only the last 30 years were considered. This is a trade-
off between numerical cost and periods long enough to minimize natural low-frequency variations,
thus isolating the anthropogenic global warming signal. For RCP8.5 wave simulations (hereafter W-
RCP8.5), we focus on long-term projections after the mid-21st century (2051-2080) and thus on the
potentially largest changes. For W-Hist-Model and W-Hist-Obs simulations forced with Hist-Model
and  Hist-Obs  winds  (1984-2013),  the  pre-satellite  era  (before  1979)  is  excluded,  guaranteeing
observations  of  the  highest  possible  quality  for  model  calibration  and  validation  (see  3.1).  In
addition,  only  the  hurricane  season  (about  4  months  from  July  to  November,  see  2.2.1)  was
simulated each year for the 15 available ARPEGE-Climat simulations (Table 1). Therefore, 450
simulations were run for MFWAM05 and MFWAM01. The analysis considers three-hourly outputs
for significant wave height Hs, mean wave period Tm, and Hs partitioning into wind sea and primary
swell (Hs0 and Hs1, respectively). Table 3 summarizes the MFWAM experimental setup.

2.1.3. Reanalysis and altimetry wind and wave data

The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis (Hersbach
et al. 2020) is used as a reference to assess surface winds in the ARPEGE-Climat Hist-Obs runs
over the North Atlantic. Specifically, 6-hourly 10-meter winds (interpolated at 0.5° resolution) over
the 1984-2013 hurricane seasons (July 9 to November 9, see 2.2.1) and their standard deviation are
compared to those from the 5-member GCM archive (Table 1).
ERA5 features an ocean wave component coupled with the atmospheric reanalysis called ECWAM
(European Centre Wave Action Model), which is the ECMWF version of WAM with a dynamical
core  similar  to  MFWAM. Similarly  to  surface  winds,  6-hourly  outputs  are  interpolated  at  0.5°
resolution. They are used to assess the MFWAM05 and MFWAM01 model performance in terms of
mean Hs and Tm as well  as their  standard deviation.  On the other hand, the older ERA-Interim
reanalysis (Dee et al. 2011) was used to calibrate MFWAM in terms of the wave growth coefficient
βmax to minimize model bias (see 3.1.2). ERA5 could not be used because the data was not yet
available  over  the  entire  1984-2013  period  when  the  MFWAM  simulations  were  performed.
However, our calibration appears reasonable in the light of the comparison of model bias relative to
ERA5 and altimetry data (3.1.2).
To assess the uncertainty in observed wave climate, MFWAM mean Hs and its standard deviation
were also compared to those from the remotely-sensed ESA CCI (European Space Agency Climate
Change Initiative) Sea State 1° monthly level-4 multimission product version 1.1 (Piolle et al. 2020,
Dodet et al. 2020). The comparison was performed over the available 1991-2013 record and the
months of August to October (ASO). This is the longest sequence of complete months within the W-
Hist-Obs hurricane season. The base data are the median Hs values over each satellite track portion,
within each 1° bin over a one-month period. They are hereafter referred as hmp (p=1,…,nm), where
nm is the number of such values for each month m. Various statistics particularly suitable for wave
climate studies are provided (Timmermans et al. 2020, Dodet et al. 2020). ASO mean  significant
wave height H̄ s was estimated by ensemble-averaging the 69 available monthly averages of hmp. For
each month m, the sum of squared hmp and nm are also available. The ASO standard deviation of Hs

over 1991-2013 was then estimated as :
                  

σ=√ 1
N
∑
m=1

69

∑
p=1

nm

hmp
2 − H̄ s

2,            (1)
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where N=∑
m=1

69

nm is the total number of median Hs values over the entire period.

2.2. Methods

In this section, the methodologies used to estimate the hurricane season dates and to extract mean
and  extreme  TC  wave  climate  are  presented.  The  statistical  methods  used  to  assess  sampling
uncertainties in our projections are detailed in the Online Resource 1.

2.2.1 Estimation of the hurricane season

According to WMO, the Atlantic hurricane season officially extends from June 1 to November 30.
Yet, it was not necessarily appropriate to consider these dates. Indeed, our projections of TC-related
wave climate are driven by climate models that are not able to reproduce the exact dates of the
hurricane season. In addition, shifts in the season dates are expected (see 3.2). Since statistics over
the  W-Hist-Model  and  W-RCP8.5  hurricane  seasons  are  compared,  it  requires  independent
definitions  for  historical  and  future  seasons.  Last,  for  matters  of  computational  cost,  a  less
conservative definition was sought to reduce season length. The use of fixed, standard dates may
however be useful for matters of reproducibility (section 4.6).
For each climate experiment (Hist-Obs, Hist-Model, RCP8.5), the hurricane season was defined as
the period of the year when at least 30 so-called TC days were found for each calendar day among
the 150-year multimember archive (Table 3).  A given date is  a TC day if  at  least  one TC was
detected in the North Atlantic sub-basin with the methodology of Chauvin et al. (2020). Therefore,
the hurricane season is the time of the year with TC daily return period below 5 years. 
Projected changes in extreme TC-related wave heights over the season peak when TC activity is
highest are also of interest. Unlike the previous approach based on TC track data, we focus here on
return  periods  of  extreme  wave  heights  directly  as  diagnosed  from  MFWAM01.  To  provide
meaningful results in terms of potential impacts on coastal human settlements and ecosystems, the
analysis is restricted to a region around the Lesser Antilles in the eastern Caribbean. Indeed, these
small islands are the first landmasses crossing the path of TCs generated in the MDR.
Let p(HSmax≥3 m) be the occurrence probability that the MFWAM01 maximum Hs over the eastern
Caribbean (11.7-19°N, 59-64°W) exceeds 3 m for any given calendar 3-hourly time step among the
30-year, 5-member archive. The hurricane season peak was then arbitrarily defined as the period
when p(HSmax≥3 m)≥4.5% (on average every 1.35 years out of 30). It is thus the time of the year
with 3-hourly return period of these extreme events below ~22 years. Thresholds of 2 m and 4 m
captured  events  that  were respectively too frequent  -  thus  neither  extreme nor  necessarily  TC-
related - and too rare, leading to noisy and not robust results (not shown). 

2.2.2. Estimation of TC-related wave climate

One question addressed here is how the contribution to mean ocean wave climate of all TCs taken
together  (from  tropical  storms  to  major  hurricanes),  hereafter  referred  to  as  TC-related wave
climate, is likely to change under a RCP8.5 scenario. Therefore, one needs to estimate TC-related
wave climate in  W-Hist-Model and W-RCP8.5. For a given parameter (Hs, Hs0, Hs1, Tm), the first
step is to compute a composite average over all the TC days identified in the 150 model runs for
each experiment (Table 3). More accurately, the average is computed over all the 3-hourly outputs
included within TC days: 58845 and 52861 time steps in total for the 5 members of W-Hist-Model
and W-RCP8.5, respectively. This is performed at every grid point with all time steps weighted
equally.
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However, this is not representative of mean TC-related wave climate because on any given TC day,
TC conditions will only dominate over a fraction of the sub-basin. Sea states in other regions may
be influenced by various drivers such as remote swells of extratropical origin, trade wind swells,
local wind sea etc. In fact, composite averages appear similar to seasonal means because TCs are
sufficiently rare at any given location for their average contribution to be minor. To reveal it, one
thus needs to remove the hurricane-season mean field (i.e. averaged over both TC and non-TC days
from the 150 simulated seasons) from the composite  field (averaged over TC days only).  It  is
assumed that other wave drivers are mostly uncorrelated with TCs and therefore not much different
on average on TC and non-TC days. The derived anomalous field then represents TC-related wave
climate,  and  the  difference  between  the  corresponding  W-RCP8.5  and  W-Hist-Model  fields
represents its future evolution.

2.2.3. Estimation of extreme TC-related wave heights

In addition to the contribution of all TCs to ocean wave climate, the wave response to expected
changes in extreme TCs is also of interest.  While many extreme wave height events during the
hurricane season are induced by TCs, mid-latitude swells may also drive large waves, especially
towards the season end (October and November) that coincides with autumn and seasonal increases
in the frequency and strength of mid-latitude low-pressure systems. To filter  out such non TC-
related wave extremes, only TC days are considered.
Following Wang et al.  (2014),  extreme TC-related Hs  are estimated according to  extreme value
analysis.  Independent  and  identically  distributed  realizations,  which  are  necessary  to  compute
unbiased  statistics  (Online  Resource  1,  section  4),  are  obtained  by  only  retaining  the  annual
maximum value of Hs over TC days for each model grid point. In the rare cases with no TC days for
a given year and ensemble member, which only occurred when the computation was restricted to
the hurricane season peak (section 3.2.3), the annual maximum Hs is taken over non-TC days (4 and
2 instances out of 150 for W-Hist-Model and W-RCP8.5,  respectively).  A Generalized Extreme
Value (GEV) distribution is then fit to the resulting 150-value sample (Table 3) at each grid point,
from which  a  10-year  return  level  and its  associated  95% confidence  interval  are  derived.  As
detailed in the Online Resource 1 (section 4), the statistical significance of the associated projected
changes is assessed considering any overlap between the confidence intervals from W-Hist-Model
and W-RCP8.5.

3. Results

3.1. Atmospheric and wave model performance

3.1.1. ARPEGE-Climat model performance

ARPEGE-Climat TC track analysis (see 2.2.1) yields the following model hurricane season dates:
July 9 to November 9, July 6 to November 10, and July 20 to November 3 for Hist-Obs, Hist-
Model, and RCP8.5, respectively (Fig. 2). Repeating with IBTrACS best-track data (Knapp et al.
2010) over 1984-2013 yields a season extending from July 5 to November 13. Hist-Obs and Hist-
Model  thus  represent  the  hurricane  season  timing  fairly  well.  ARPEGE-Climat  however
underestimates the number of TC days during the hurricane season, particularly around the season
peak early September, while overestimating it off season (see also Chauvin et al. 2020, Cantet et al.
2020).
We then assess patterns of mean present-climate hurricane-season wind forcing using ERA5 as a
reference. Hist-Obs features realistic low-level circulation compared to reanalysis data (Fig. 3ab).
The subtropical anticyclone is however weaker with a systematic bias of ~-1 m.s-1 (Fig. S2), which
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possibly results from the lack of data assimilation in the GCM. In contrast, surface wind standard
deviation is overestimated by 20-30% across the sub-basin, particularly between the US East Coast
and the Azores Islands (Fig. 3c). On the other hand, a slight underestimation (5-10%) is visible near
5-10°N between Africa and the Lesser Antilles. In fact, the standard deviation bias pattern appears
quite similar to present-climate frequency of TC days (black contours on Fig. 1), suggesting it may
result from large TC activity in the subtropics compared to ERA5. Indeed, this is consistent with
more TCs in the extratropics and less in the MDR compared to best-track data (Chauvin et  al.
2020). Such data is however subject to some uncertainty (Knapp et al. 2010) and the relatively low-
resolution reanalysis (native resolution is ~30 km) cannot adequately grasp TC wind speeds, which
may explain part of the model bias in the standard deviation. The secondary maximum at 15-20°N
in  standard  deviation  bias  (Fig.  3c)  may  result  from  very  strong  TC  winds  compensating
underestimated MDR TC numbers (Chauvin et al. 2020). Noteworthy, the comparison of ERA5 and
Hist-Model (instead of Hist-Obs) yields almost identical bias in mean winds and their standard
deviation (not shown).

3.1.2. MFWAM model performance

More frequent TCs and associated strong winds in the GCM subtropics than in reality trigger overly
large waves and long-period swells in MFWAM05. Indeed, extratropical Hs and Tm were initially
overestimated in a single-member set of W-Hist-Obs simulations by as much as +0.5-1 m and +1-
1.5 s relative to ERA5, respectively (not shown). To compensate for the excessive wind variability,
the wave growth coefficient βmax was reduced for both MFWAM05 and MFWAM01 after succinct
calibration/validation against ERA-Interim from 1.52 (operational configuration) to the value of
1.13 also used by Stopa (2018). Positive Hs and Tm biases were thereby reduced almost everywhere
and particularly in the extratropics. It appeared difficult to reduce such biases (~+0.4 m and ~+0.5 s,
Fig. 4ab) any further because of negative Hs bias of similar intensity in the tropics (Fig. 4a). 
The comparison of  model  Hs with  altimetry  allows us  to  qualify  these results  to  some extent.
Despite the gridded ESA Sea State CCI data being only available over the reduced 23-year record
and shorter ASO period shared with the wave model, the associated Hs bias pattern is similar (Fig.
S3a).  Compared  with  ERA5,  the  ESA  Sea  State  CCI  mean  Hs is  larger,  consistently  with
Timmermans et al. (2020) and Dodet et al. (2020). As a result, the MFWAM05 positive (negative)
bias in the subtropics (tropics) is reduced (slightly enhanced) when referred to ESA Sea State CCI.
Although  ESA  Sea  State  CCI  level-4  data  is  gridded  at  1°,  it  is  mostly  a  collection  of  1-Hz
alongtrack measurements with careful quality control and extensive calibration against wave buoys.
As  such,  it  is  considered  at  least  as  reliable  as  ERA5  Hs data,  which  underestimate  buoy
observations at various locations including the northwestern Atlantic (Timmermans et al.  2020).
Overall  ERA-Interim appears  as  a  reasonable choice for MFWAM05 calibration,  other  datasets
revealing that biases are modest in Hs, although significant in Tm.
After calibration, the pattern of MFWAM05 Hs standard deviation is reasonable, featuring a marked
increase with latitude similarly to mean Hs (not shown). However, Hs standard deviation is also
overestimated  in  the  extratropics  by as  much as  50-60% compared to  ERA5. This  most  likely
results from the overestimated wind variability, judging from the striking similarity in the respective
bias  patterns.  See  for  example  the  positive  and negative  biases  near  30-40°N/40-50°W and  5-
10°N/15-50°W, respectively (Fig. 3c, 4c). Satellite estimates confirm the excessive extratropical Hs

variability though with weaker bias, while weak negative biases are found over the tropics and high
latitudes (Fig. S3b).  More variable mid-latitude wave heights than in the real ocean induce more
variable swell periods in the tropics and along the sub-basin boundaries by up to 50% (Fig. 4d).
Noteworthy, the overestimated Tm variability tends to concentrate in the MDR and along the US
East Coast,  right around the model TC region (Fig. 1). Overall,  these findings suggest that our
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calibration, which is driven by a reduction in mean biases, does not necessarily lead to systematic
overestimation of sea state variability (and possibly of extreme wave heights).

3.2. Projected future changes

3.2.1. Seasonal mean wave climate

First of all, one may note a slight shortening of the hurricane season that starts two weeks later and
ends one week earlier in the future projections (Fig. 2). In ARPEGE-Climat under RCP8.5, trade
winds and westerlies slow down by 0.5-1.5 m.s-1, as shown on Fig. 5a by blue shading together with
westerly and easterly wind vector anomalies near 10°N and 50°N, respectively. These differences in
U10 between the two ensembles are significant at the 5% level, as indicated by hatchings over most
of the sub-basin. Such weakening of the subtropical anticyclone is accompanied by slight poleward
migration of low-level circulation: zonal bands of positive wind speed anomalies in the subtropics
and high latitudes are found to the north of the weakening easterly trade winds and westerlies,
respectively. This is consistent with previously reported poleward widening and weakening Hadley
cell  with  global  warming  (Johanson  and  Fu  2009,  Gastineau  et  al.  2009),  and  specifically,
decreasing wind speeds in the North Atlantic mid-latitudes (Kar-Man Chang 2018).
Weaker  future  winds  trigger  moderate  yet  robust  5-10%  sub-basin-wide  reduction  in  Hs,
particularly  in  the  mid-to-high  latitudes  and  east  of  the  Lesser  Antilles  (Fig.  5b),  in  general
agreement with CMIP3 and CMIP5 multimodel studies (Hemer et al. 2013b, Morim et al. 2019).
Conversely, projected changes in Tm are weak over most of the sub-basin, except for a significant
reduction along numerous coastal regions across the North Atlantic (Fig. 5c), possibly in response
to weaker distant swells in W-RCP8.5.
The reduction in Hs extends over the entire hurricane season (Fig. 6a-c). It is however smallest and
not statistically significant in late August and September, both in the mid-latitudes (Fig. 6a) and
tropics (Fig. 6bc). The reduction in mean Hs may be partly compensated by maximum increases in
TC-related extreme wave heights at the hurricane season peak (see section 3.2.3). Downward trends
in mean Hs are evident in the mid-latitudes, ~-1 cm/decade and ~-2.5 cm/decade for W-Hist-Model
and W-RCP8.5, respectively, and in the eastern Caribbean with ~-1 cm/decade for W-RCP8.5 (Fig.
7).  They  are  however  modest  compared with  year-to-year  variations  and  inter-member  spread:
standard deviation and confidence interval width range from 3 to 10 cm and from 6 to 12 cm,
respectively. These results exhibit little sensitivity to horizontal resolution of wind and waves, at
least in the MDR and eastern Caribbean that are included in the MFWAM01 domain (Fig. 8ab).
This is  because projected changes  in seasonal means mostly result  from changes in large-scale
atmospheric patterns as argued here.

3.2.2. TC-related wave climate

The spatial pattern of W-Hist-Model TC-related Hs (i.e. the hurricane-season mean contribution of
TCs to Hs, contours on Fig. 9a) is qualitatively similar to the Hist-Model frequency of TC days
(contours on Fig. 1), suggesting that the methodology described in 2.2.2 is adequate. Indeed, TC-
related wave heights are highest around Bermuda near 30-35°N, 65°W (~0.45 m i.e. ~25% of mean
Hs)  and extend from the tropics to the mid-latitudes, particularly in the sub-basin western half.
Compared to TC activity (Fig. 1), the Hs pattern is somewhat smoother and more isotropic (Fig. 9a).
This  is  mostly  because  of  swell  propagation  away  from  TC-induced  wind  fetches.  The
corresponding  Hs0 pattern  is  more  zonal  and  closer  to  TC-day  frequency  (Fig.  9b,  contours)
compared to the wider and smoother Hs1 pattern (Fig. S4a, contours): meridional scales are ~3500
km and ~2000 km for Hs1 and Hs0, respectively, as inferred from the 0.05 m contour.
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The pattern of projected future changes in  TC-related Hs (shading on Fig. 9a) is also somewhat
similar to changes in TC activity (shading on Fig. 1), with widespread 2-5 cm reduction across the
sub-basin and 3-4 cm increases off the African continent and northeastern United States. However,
notable differences are found. The increase off Cape Verde extends all the way across the MDR into
the Caribbean Sea, while that off New England does not extend across the sub-basin mid-latitudes,
unlike the increase in TC activity (Fig. 1). Even more importantly, the projected changes in TC-
related Hs are not statistically significant. This is also the case for Hs1 (Fig. S4a) and Tm (Fig.
S4b), but not for Hs0, which exhibits a significant 2-5 cm increase across most of the MDR (Fig.
9b).  Although  a  closer  relationship  with  wind  changes  is  expected  for  Hs0 compared  to  other
variables, this finding is somewhat surprising, as these changes extend much farther west compared
to those in TC frequency (Fig. 1). Projected changes in TC activity only considered the locations of
TC centers (Chauvin et al. 2020) and not the large associated wind fetches considered in Hs0, which
may be one explanation. Alternatively, TCs around Cape Verde may be associated with background
conditions that favor enhanced U10 in the trade wind belt.
Conversely  to  mean  wave  heights,  expected  changes  in  TC-related wave  heights  show  some
sensitivity  to  spatial  resolution  of  winds and waves.  Indeed,  while  the  magnitude  of  projected
changes in MDR TC-related Hs0 is similar in MFWAM01 (Fig. 9d) and MFWAM05 (Fig. 9b), the
former are significant over wider regions. In particular, the increase in MFWAM01 TC-related Hs0
is significant not only west of Cape Verde but also east of the archipelago all the way up to the
African continent. This may be related to small-scale wind changes in the region of sharp increase
in TC activity (Fig. 1) being better accounted for in the higher-resolution wave model. On the other
hand, projected changes in TC-related Hs, Hs1, and Tm are not very sensitive to resolution (Fig. 9ac,
S4).

3.2.3. Extreme TC-related wave heights

In  W-Hist-Model,  10-year  TC-related Hs during  the  hurricane season  range from 2-3 m in  the
equatorial Atlantic to 15-16 m near 60°W, 40°N off northeastern United States (contours on Fig.
10a). Such a pattern is broadly consistent with mean TC-related Hs (Fig. 9a) but slightly displaced
northeastward.  Unlike  mean  TC-related Hs,  it  also  presents  a  broad,  homogeneous  pattern  of
elevated values (10-11 m) north of 50°N. This is  likely a residual signal mostly from non-TC-
related Hs: 10-year Hs computed over both TC and non-TC days exhibits a secondary maximum
near 60°N (not shown). ‘‘Post-TCs’’ resulting from extratropical transitions may also play a role,
particularly because of lagged wave response to winds due to wave growth in developing seas and
swell propagation after TC decay (see 4.5). 
Nevertheless,  restricting the  computation  of  10-year  TC-related Hs to  the  season peak yields  a
sharper decay north of ~45°N while conserving a maximum at 40°N with values ~14 m (contours
on Fig. 10b). Indeed, the analysis of MFWAM01 extreme wave heights leads to the definition of the
following periods for the season peak (see 2.2.1): August 17 to September 15 for W-Hist-Model and
August 17 to September 18 for W-RCP8.5 (Fig. 8d). These findings are consistent with stronger TC
activity and weaker mid-latitude storm activity from mid-August to mid-September compared to
late  hurricane season in October-November.  Note that 10-year TC-related Hs are slightly larger
when  computed  over  the  entire  season (Fig.  10ab)  because  annual  maxima occasionally  occur
outside of the season peak.
Repeating the analysis for Hs1 and Hs0 yields similar patterns (contours on Fig. S5). The gradient of
extreme wave heights between the northwestern part of the basin and the MDR is however larger
for Hs0 compared to Hs1: maximum values near 40°N exceed 12/15 m (respectively 8/10 m) for Hs0

(respectively Hs1) over the season peak/whole season, and decrease below 2 m (respectively 3 m)
near 5-10°N. Smoother variations in Hs1 are consistent with hurricane swell propagation over large
distances.  Interestingly,  a secondary maximum near 60°N in 10-year TC-related Hs0 only arises
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when the analysis extends over the whole season (Fig. S5c) and is not seen for H s1 (Fig. S5ab). It is
again consistent with extratropical storm rather than TC forcing north of 45°N.
Under RCP8.5 climate, 10-year TC-related Hs, Hs1, and Hs0 increase markedly over the hurricane
season near the central and northern US East Coast by up to 2-3 m (shading on Fig. 10a, S5ac),
although only limited areas southeast of Cape Hatteras, Cape Cod, and Nova Scotia experience
statistically significant changes. Chauvin et al. (2020) found a statistically significant increase in the
intensity of major hurricanes over the North Atlantic. However, this result may not apply locally
where the largest expected changes in extreme wave heights are found. Indeed, since TC tracks are
also  projected  to  change  (Chauvin  et  al.  2020),  finding  localized  robust  changes  is  not
straightforward.  Instead,  projected  changes  in  the  spatial  structure,  lifetime,  phase  speed  or
trajectories of major hurricanes might favor more efficient growth as waves propagate away from
the storm center, consistently with the wider patch of significant Hs1 increase (Fig. S5a).
A 1-2  m increase  in  10-year  TC-related  Hs is  also  found within  the  MDR along a  northwest-
southeast oriented band extending from Cape Verde to ~60°W, 20°N, but is only significant near
30°W (Fig. 10a). Unlike the increase in the northwestern Atlantic, it is associated with a statistically
significant increase in Hs0 rather than Hs1 (Fig. S5ac). This is consistent with the strong increase in
TC activity around Cape Verde reported by Chauvin et al. (2020) and the significant increase in TC-
related Hs0 in the MDR (Fig. 9bd). Further south and closer to the equator, a robust reduction in
extreme Hs, Hs1, and Hs0 is also found. Its extension and orientation are similar to those of the
extreme wave height increase, suggesting both may combine to form a dipole, possibly associated
with poleward displacement  of extreme wave heights.  In fact,  projected TC frequency changes
exhibit a similar dipole (Fig. 1). 
When the projected changes in extreme wave heights are restricted to the season peak (Fig. 10b,
S5bd), they are larger (over 4-m Hs increase off the US East Coast), mostly positive, and  more
robust in the MDR and northwestern Atlantic. This again is consistent with Chauvin et al. (2020)
who found an overall reduction in TC numbers over the season (see the widespread decrease on Fig.
1),  yet  a  strong increase in September with a  pattern similar  to  those found for extreme wave
heights (Chauvin et al. 2020, their Fig. 10).
The comparison of  projected changes  in MDR 10-year  wave heights  between MFWAM05 and
MFWAM01 illustrates the sensitivity of our results to resolution (see also 3.2.2). The magnitude of
these changes is similar in the two grids (Fig. 10) but they are statistically significant over slightly
wider areas in MFWAM01. These results are qualitatively consistent with those found for MDR
TC-related Hs0 (Fig. 9bd) and advocate for increased model resolution including wave models, not
just the GCMs.
Projected changes in the return periods of extreme wave heights depending on the season phase
(early season, peak phase, late season) are also of interest. The likelihood that wave heights exceed
certain thresholds within the mid-latitudes, MDR, and eastern Caribbean varies through the season
(Fig. 6d-f), as anticipated from seasonal variations in TC activity (Fig. 2). For both W-Hist-Model
and  W-RCP8.5,  the  frequency  of  extreme  wave  heights  increases  sharply  after  late  July/early
August, reaches a maximum a month later, before decaying again in the second half of October. In
the eastern Caribbean, extreme wave height frequency rises again in early October (Fig. 6f), which
may result from remote swells of extratropical origin rather than TC-related storm waves.
Future projections show changes similar to those in TC numbers (maximum number of TC years
rises by 7% from ~16.2 for Hist-Model to ~17.4 for RCP8.5, Fig. 2): a 20-30% increase in August-
September in the three regions, although not statistically significant (Fig. 6d-f). The sign of the
change in the early and late seasons is however region-dependent: an increase in the mid-latitudes
(Fig. 6d), little change in the MDR (Fig. 6e), and a decrease in the eastern Caribbean (Fig. 6f).
Although none of these regions exhibits statistically significant increases in extreme wave event
frequency during the season peak (Fig. 6d-f), the lack of significance for the concurrent decrease in
mean wave heights  (Fig.  6a-c)  suggests  that  the increase may be robust.  In  the tropical  North
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Atlantic,  the frequency of wave extremes decreases in October,  possibly because of concurrent
reductions in the frequency of mid-latitude storms and associated swells. On the other hand, strong
interannual variations and inter-member spread in  W-Hist-Model and  W-RCP8.5 complicate the
detection of long-term trends in wave extremes to an even greater extent than mean Hs (Fig. 11):
standard deviations are typically ~0.02 i.e. 45-90% of the mean, and confidence interval width is
~0.03 on average.
Similarly  to  mean  TC-related Hs0 and  10-year  TC-related Hs (Fig.  9bd,  10),  the  frequency  of
extreme wave heights  is  sensitive  to  the  spatial  resolution  of  winds and waves  (Fig.  8cd,  S6),
particularly within the MDR: extreme Hs values are much more frequent with increased resolution,
consistently with Timmermans et al. (2017) and Chen et al. (2018). The associated projected future
changes are however still not statistically significant.

4. Discussion

4.1. Choice of GCM, prescribed SST, and GHG forcing

An obvious limitation to this study is the use of a single combination of GCM, prescribed SST, and
GHG emission scenario. Considering more combinations would help better quantify uncertainties,
but is beyond the scope of this study because of constraints set by computational cost and lack of
resources. Nevertheless, our projections of TC activity are consistent with previous studies. Key
results  include  reduced  TC  numbers,  increased  proportion  and  intensity  of  major  hurricanes,
poleward displacement of TC activity to some extent (Chauvin et al. 2020, Fig. 1), and slightly
shorter hurricane season (Fig.  2,  Table 3, see also Diro et  al.  2014).  Therefore and despite the
uncertainties, our results represent an ocean wave response to projections of TC activity that are
consistent with state-of-the-art knowledge.

4.2. Wave model calibration and bias correction

The use of a single wave model is another important source of uncertainty, which may be reduced
with further  calibration and improved physics (Morim et  al.  2019).  In particular,  only a partial
sensitivity study of Hs bias to the wave growth coefficient βmax was conducted and led to the use of a
value of 1.13 that is substantially lower than in the operation configuration (1.52, lowered in 2018
to 1.48). An intermediate value of 1.30 was tested, but more exhaustive study may have led to
slightly larger or lower value than 1.13.
Lemos et al.  (2020) underlined the importance of bias correction that is widely used in climate
impact  studies  (e.g.  Déqué  2007,  Cantet  et  al.  2014)  but  hardly  for  wave  climate  projections
(Charles  et  al.  2012).  Using  the  GOW2  hindcast  that  reproduces  extreme  TC  wave  heights
remarkably well (Perez et al. 2017), they show that mean and extreme present-climate Hs can be
efficiently  corrected,  and  that  future  projections  are  sensitive  to  such  corrections.  The  authors
however considered coarse-resolution GCMs (1-3°) and wave models (1°) that cannot grasp the
magnitude and small-scale structure of TC winds and waves, unlike our high-resolution models.
Therefore, correcting our simulations may not improve TC wave heights as significantly as Lemos
et al. (2020) did. Nevertheless, future research should consider calibration and bias correction for
further control of model bias and reduced uncertainties.

4.3. Lack of ocean/atmosphere/wave coupling

Projected changes in extreme Hs  are related to those found for major hurricanes by Chauvin et al.
(2020). Although ARPEGE-Climat reproduces the distribution of Atlantic TC intensities fairly well,
the authors recognize a tendency for overestimation. They argue that it may result from a lack of
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small-scale air-sea coupling, among other factors such as details of the turbulence scheme (Roberts
et al. 2020a). Indeed, uncoupled simulations lack the wind-driven ocean cooling through vertical
mixing and upwelling and consequent feedback to the atmosphere (e.g. Jullien et al. 2014). The
very  large  changes  in  extreme  Hs expected  over  parts  of  the  North  Atlantic  may  thus  be
overestimated. Future work should consider high-resolution coupled GCM forcing, which is starting
to become available as high-performance computing continues to progress rapidly (Roberts et al.
2020b).
Wave-atmosphere  coupling  is  also  important  for  TCs.  Chen  and  Yu  (2017)  showed  that  wave
simulations driven by Hurricane Katrina (2005) are significantly improved when a wave boundary
layer model (WBLM, Moon et al. 2004) is used to compute wind stress, compared to standard bulk
formula. MFWAM includes a wind stress parameterization that accounts for wave effects on sea
surface roughness and effectively reduces the drag coefficient for high winds (Ardhuin et al. 2010),
as  expected  from TC wind observations  (Powell  et  al.  2003).  Its  efficiency compared to  other
parameterizations (e.g. WBLM) has however not been assessed and may be improved. For example,
introducing a cut-off frequency for the wave spectrum further limits the drag coefficient for strong
winds in a newer version of MFWAM (Aouf et al. 2018). 
Improvements in TC wave projections will continue gradually, incorporating one feedback loop at a
time before a fully coupled ocean-atmosphere-wave model may be built.

4.4. Child model nesting

Our choice for the nested model domain is retrospectively questionable. First, because Chauvin et
al. (2020) found that MDR TC numbers are underestimated by a factor two. And second, because
the largest  increases  in  extreme Hs were found elsewhere,  in  the northwestern Atlantic.  Future
studies  shall  improve the spatial  distribution  of  TC activity,  and downscale  wave models  right
where projected changes in extreme Hs are strongest. Besides, high-resolution runs with either high-
or coarse-resolution winds could be used to disentangle the roles of TC wind distributions and
small-scale wave processes.

4.5. Selection of TC days

The chronological approach based on TC days and used to eliminate non-TC related sea states has
limitations.  For instance,  extratropical storms sometimes occur simultaneously with TCs further
south, and their effects are erroneously included. Yet, such artefacts are likely modest given the
focus on the hurricane season (mid-latitude storms are more active in winter) and the generally
uncorrelated tropical and extratropical drivers. An additional complexity is however introduced by
the extratropical transition that TCs often undergo during their decaying phase (Bieli et al. 2019a,b).
This is particularly true for Chauvin et al. (2020)’s ARPEGE-Climat simulations that overestimate
subtropical North Atlantic TC activity.
Most previous studies have similar limitations. Fan et al.  (2013) and Timmermans et al.  (2017)
presented projections of extreme wave heights and compared them qualitatively with projected TC
activity,  without  explicit  criteria  to  extract  TC  wave  signals.  Appendini  et  al.  (2017)  used  a
methodology  similar  to  ours  by  computing  extremes  over  each  TC  event.  Their  domain  was
however limited to the Gulf of Mexico, thus focusing on wind sea by construction and avoiding the
issue of the attribution to other drivers.
An exception is the study of western North Pacific TC wave projections by Shimura et al. (2015),
where TC waves are determined from TC center locations considering a 500-km radius. TC tracks
were obtained by Murakami et al. (2012) with a methodology similar to ours. Such geolocalization
has not been considered here because hurricane swell can propagate over much larger distances
(Zelinsky 2019). The benefit of our approach is that extreme wave heights outside TC regions but
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subject to such remote swells are accounted for. In addition to a residual effect from non-TC-related
extremes, the lack of georeferencing may however lead to underestimated TC wave climate and
future projection outside TC regions, as suggested by the not statistically significant changes in TC-
related Hs and Hs1 (Fig. 9ac, S4ac). 
A limitation to both this study and Shimura et al. (2015) is that no delay was considered between
TC tracks  and  associated  sea  states.  Therefore,  the  propagation  of  swell  generated  during  TC
decaying phase is mostly not accounted for. The solution is not straightforward. Such delay should
depend  on  storm intensity,  structure  and  translation  velocity,  which  affect  wind  fetches,  wave
periods  and  ultimately,  swell  phase  speeds.  It  was  however  not  considered  critical  for  wave
extremes  because  at  most  locations  over  long  periods,  these  should  be  driven  by  TC lifetime
maximum winds before the decaying phase (except maybe for mid-latitude Hs0, Fig. S5c). 

4.6. Definition of the hurricane season

The method based on the seasonality of TC return periods (see 2.2.1) relies on objective criteria and
may provide a benchmark for GCMs to reproduce the season dates compared to best-track data. It
however depends on the somewhat arbitrary choice of a return period threshold. Nevertheless, TC
return periods in the historical runs agree well with IBTrACS even in June and November (Fig. 2),
meaning that if it were not for computational constraints, a lower threshold (e.g. a 10-year return
period) could have been used to more closely match the WMO standard. On the other hand, the
projected season shortening would have been more pronounced in such case (Fig. 2), suggesting
potential  sensitivity of our results to this choice.  In addition, the application to other numerical
models may yield different dates, complicating any comparison between different studies. As such,
it  raises  the  question  of  reproducibility,  which  is  particularly  important  for  climate  projection
studies as emphasized by coordinated community efforts such as CMIP or COWCLIP.
Fixed, standard dates have the advantage of simplicity and easier reproduction, despite undesired
effects in case of shifting future seasons. ASO is the longest sequence of complete months within
the W-Hist-Obs, W-Hist-Model and W-RCP8.5 hurricane seasons (Table 3). It lies at the core of the
observed season (Fig. 2), therefore providing a relevant testbed for future studies. The sensitivity of
some of our key results  to the alternative choice of the ASO period was then assessed for this
purpose. It was found to be weak, as illustrated by the comparison of Fig. S7, S8 with Fig. 5, 10a,
S5ac, suggesting that the conclusions drawn here are not much sensitive to the choice of the exact
time period used to represent the hurricane season. The same holds for the season peak. Indeed, the
peak of TC activity, around mid-August to mid-September in the model and IBTrACS (Fig. 2),
tends to be in phase with the peak of extreme wave activity not only in the eastern Caribbean but
also in the mid-latitudes and MDR (Fig. 6d-f, 8cd).

4.7. Statistical significance

The robustness of wave climate projections in this paper is assessed with various approaches used
to compute statistical significance at the standard 5% level (Online  Resource 1, sections 1 to 4).
According to these, some projected changes were very robust, namely those in mean U10 and Hs that
appear statistically significant over the whole sub-basin (Fig. 5ab) and most of the hurricane season
(Fig. 6a-c). Others are significant at specific locations only, e.g. changes in TC numbers, TC-related
Hs0, or 10-year return levels (Fig. 1, 9bd, 10). Finally, a few changes were not found significant at
all, such as exceedance probabilities for extreme Hs thresholds or TC-related Hs (Fig. 6d-f, 9ac).
The reader is however advised against systematically dismissing results that are not statistically
significant (and taking significant results for granted) because this is not unambiguous evidence of
the null  hypothesis,  as emphasized by Amrhein et  al.  (2019). The  p<0.05 threshold is  not only
arbitrary,  it  can  erroneously  lead  to  opposed conclusions  from studies  using very  similar  data.
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Additional evidence including  physical  arguments  needs  to  be  considered  before  drawing
conclusions. For example, we relate the non-significant yet sharp peak-season increase in extreme
Hs to the concurrent mean Hs decrease, which is smallest and not significant only  then (Fig. 6).
Although not statistically significant, the increases in MDR TC-related Hs and Hs1 are consistent
with  significant  increases in  Hs0 and in  Cape Verde  TC numbers  (Fig.  1,  9,  S4).  This  may be
particularly relevant for 10-year Hs, for which a conservative and somewhat subjective method had
to be adopted (Online  Resource 1, section 4).  The associated changes may be robust over wider
areas than those hatched on Fig. 10 (see also Fig. S5, S8), as suggested by widespread and strong
increases in TC regions particularly at the season peak (~+2 to +5 m), and by the similar pattern of
projected September increases in TC numbers (Chauvin et al. 2020).

4.8. Implications for future work

While TCs make a major contribution to the climatology of extreme wave events in the North
Atlantic, mid-latitude storm activity is also a recurrent seasonal source of energy for large wind sea
during  winter,  roughly  from November  to  April.  The  associated  powerful  remote  swells  affect
shorelines across the sub-basin and as far south as the eastern Caribbean, thousands of kilometers
away where  they  can  cause  significant  damage (Jury 2018).  The smaller  islands  of  the  Lesser
Antilles are particularly vulnerable to large ocean wave events of both TC and extratropical origin
and to the associated storm surge hazard because of their isolation, limited surface and densely
populated  shorelines,  among  other  factors.  Incoming  ocean  swells  are  modified  by  a  range  of
complex processes occurring at both the island and regional scales due to the north-south alignment
of islands located in the path of these swells. How future projections of TC-related and mid-latitude
extreme wave climate will affect shorelines of small tropical islands such as the Lesser Antilles is a
key question from both societal and scientific points of view. The modeling framework presented in
this study may then serve as an appropriate framework for downscaled projections over the Lesser
Antilles at sub-kilometer-scale resolution in order to address this question. This will be the topic of
future research.

5. Conclusion

High-resolution ensemble atmospheric GCM simulations under present and future RCP8.5 climates
were used to drive basin-scale 50-km wave simulations for the Atlantic Ocean and nested 10-km
simulations for the TC main development region (MDR) to infer projected future changes in North
Atlantic  TC-related wave  climate.  Overall  realistic  GCM  mean  low-level  circulation  and  TC
characteristics allowed obtaining plausible projections in the associated wave response. 
Our  main  conclusions  include  a  large-scale  decrease  in  average  wave  heights  throughout  the
hurricane season driven by a weaker and poleward-displaced anticyclone, yet concurrent increases
in extreme TC-related wave heights in the MDR associated with stronger TC activity around Cape
Verde and related changes in wind sea. The largest expected changes in extreme wave heights were
however found near the coast of northeastern United States, possibly related to slight poleward
displacement of TC activity, and highest during the season peak phase from mid-August to mid-
September. Changes were found to be statistically robust in some specific areas. 
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Climate 
Experiment

Monthly SST Forcing Time Slice 
(Chauvin et al 2020)

Time Slice
(this study)

Number of 
Ensemble Members

Hist-Obs HadISST1 1965-2014 1984-2013 5

Hist-Model CNRM-CM5, historical, corrected 1965-2013 1984-2013 5

RCP8.5 CNRM-CM5, RCP8.5, corrected 2031-2080 2051-2080 5

Table 1. Summary of the ARPEGE-Climat simulations used to drive the wave models.
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Numerical 
Model

Geographical 
Domain

Horizontal 
Resolution

Boundary 
Forcing

ARPEGE-
Climat

Global Variable (Chauvin et al. 2020, their Fig. 1)
Atlantic: TC regions 14-30 km (Gulf of Mexico ~35 km), 
subpolar regions 30-60 km, South Atlantic 30-100 km

None

MFWAM05 Atlantic 
59.5°S-70°N/99°W-21°E

50 km None

MFWAM01 MDR 
5°N-28°N/75°W-10°W

10 km MFWAM05 
3-hourly 
wave spectra

Table 2. Summary of the horizontal grids considered for ARPEGE-Climat and for the MFWAM nested domains.
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Climate 
Experiment

6-hourly ARPEGE-
Climat Wind Forcing

30-Year 
Time Slice

Period Simulated 
Each Year

Number of 
Ensemble Members

Number of Simulated
Hurricane Seasons

W-Hist-Obs Hist-Obs 1984-2013 July 9 - November 9 5 150

W-Hist-Model Hist-Model 1984-2013 July 6 - November 10 5 150

W-RCP8.5 RCP8.5 2051-2080 July 20 - November 3 5 150

Table 3. Summary of the MFWAM wave climate simulations. The information provided applies to both MFWAM05
and MFWAM01.

25

1015

1016
1017



Fig. 1. Projected changes in the frequency of TC days between RCP8.5 (2031-2080) and Hist-Model (1965-2013).
Values are expressed as a distance-weighted number of TC days per 20 years by 5°x5° square. Gaussian diffusion has
been applied. Hist-Model frequency of TC days is overlaid as black contours. Hatchings are for the 5% significance
level (Online Resource 1, section 1). Adapted with permission from Chauvin et al. (2020).
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Fig. 2. Ensemble mean number of years with a TC day for each calendar day from RCP8.5 (2051-2080, red), Hist-
Model (1984-2013, green), Hist-Obs (1984-2013, blue), and IBTrACS (1984-2013, black). The horizontal dotted line
indicates the threshold used to define the hurricane season (6 years out of 30  i.e. every 5 years). A 30-day moving
average was applied to filter out high-frequency noise.
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a)

b)

c)

Fig. 3. (a,b) Mean present-climate (1984-2013) hurricane-season surface winds (arrows) and wind speed U10 (shading,
m.s-1) in a) Hist-Obs and b) ERA5. c) Relative differences in the standard deviation of present-climate hurricane-
season U10 between Hist-Obs and ERA5 (shading, %), with ERA5 values overlaid as black contours (m.s -1). All the
data have been interpolated onto a 0.5° grid and are masked over land.
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a) b)

c) d)

Fig. 4. Differences in the (a,b) mean and (c,d) standard deviation of present-climate (1984-2013) hurricane-season
(a,c) significant wave height Hs (m) and (b,d) mean wave period Tm (s) between MFWAM05 W-Hist-Obs and ERA5
(shading), with ERA5 values overlaid as black contours. The ERA5 data have been interpolated onto a 0.5° grid.
Differences exceeding +/-0.6 m or +/-1.0 s are masked.
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a)

b)

c)

Fig. 5. Projected changes in hurricane-season mean a) surface winds (arrows) and wind speed U 10 (shading, m.s-1)
from ARPEGE-Climat, b) significant wave height Hs (m) and c) mean wave period Tm (s) from MFWAM05 between
W-RCP8.5 (2051-2080) and  W-Hist-Model (1984-2013).  W-Hist-Model values for U10, Hs, and Tm are overlaid as
black contours. Hatchings are for the 5% significance level (Online Resource 1, section 2). ARPEGE-Climat data are
masked over land. The arrows on (a) are for the difference between W-RCP8.5 and W-Hist-Model wind vectors.
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a) b) c)

d) e) f)

Fig. 6. (a-c) Mean significant wave height Hs (m) for each calendar 3-hourly time step during the hurricane season
from MFWAM05 W-RCP8.5 (2051-2080, red) and W-Hist-Model (1984-2013, green) simulations over the a) mid-
latitudes (30-50°N, 20-80°W), b) MDR (5-28°N, 10-75°W), and c) eastern Caribbean (11.7-19°N, 59-64°W). (d-f)
Ensemble mean likelihood (over 30 years) that the maximum significant wave height Hs over d) the mid-latitudes
exceeds 15 m, e)  the MDR exceeds 10 m, and f) the eastern Caribbean exceeds 3 m for each calendar 3-hourly time
step during the hurricane season from MFWAM05 W-RCP8.5 (red) and W-Hist-Model (green) simulations. Thick red
lines are for differences W-RCP8.5 minus W-Hist-Model significant at the 5% level (Online Resource 1, sections 2
and 4).  A 30-day moving average was applied to filter out high-frequency noise.
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a) b)

c) d)

e) f)

Fig. 7. Annual time series of hurricane-season mean significant wave height H s (m) from
MFWAM05  (a,c,e)  W-Hist-Model  (1984-2013,  solid  green  line)  and  (b,d,f)  W-RCP8.5
simulations (2051-2080, solid red line) over the (a,b) mid-latitudes, (c,d) MDR, and (e,f)
eastern Caribbean. The dashed green/red lines indicate the associated confidence intervals
(Online Resource 1, section 5).
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a) b)

c) d)

Fig.  8. (a,b)  same  as  Fig.  6bc  and  (c,d)  same  as  Fig.  6ef,  except  from
MFWAM01. The horizontal dotted line on (d) indicates the threshold used to
define the hurricane season peak phase (4.5% i.e. 1.35 years).
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a) b)

c) d)

Fig. 9. Projected changes in mean TC-related (a,c) significant wave height Hs (m) and (b,d) significant height of wind
waves Hs0 (m) from (a,b) MFWAM05 and (c,d) MFWAM01 between  W-RCP8.5 (2051-2080) and  W-Hist-Model
(1984-2013).  W-Hist-Model  values  for  Hs and  Hs0 are  overlaid  as  black  contours.  Hatchings  are  for  the  5%
significance level.
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a) b)

c) d)

Fig. 10.  Projected  changes in 10-year  TC-related significant wave height Hs (m) from (a,b) MFWAM05 and (c,d)
MFWAM01 during (a,c) the hurricane season and (b,d) its peak phase between W-RCP8.5 (2051-2080) and W-Hist-
Model (1984-2013). W-Hist-Model values are overlaid as black contours. Hatchings are for the 5% significance level.
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a) b)

c) d)

e) f)

Fig. 11. Annual time series of the likelihood (over the hurricane season) that the maximum
significant wave height Hs from MFWAM05 (a,c,e) W-Hist-Model (1984-2013, solid green
line)  and (b,d,f)  W-RCP8.5 simulations (2051-2080,  solid  red line)  over (a,b)  the mid-
latitudes exceeds 15 m,  (c,d)  the MDR exceeds  12 m,  and (e,f)  the  eastern  Caribbean
exceeds  3  m.  The  dashed  green/red  lines  indicate  the  associated  confidence  intervals
(Online Resource 1, section 5).
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a)

b)

c)

Fig. S1. Projected changes in decorrelation time scales (days) for hurricane-season a) surface wind speed U10 from
ARPEGE-Climat, b) significant wave height Hs and c) mean wave period Tm from MFWAM05 between W-RCP8.5
(2051-2080) and W-Hist-Model (1984-2013).  W-Hist-Model values are overlaid as black contours. ARPEGE-Climat
data are masked over land.
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Fig. S2. Differences in the mean present-climate (1984-2013) hurricane-season surface winds (arrows) and wind speed
U10 (shading) between Hist-Obs and ERA5. ERA5 values for U10 are overlaid as black contours. The data have been
interpolated onto a 0.5° grid, and are masked over land. The arrows are for the difference in wind vectors. Units are
m.s-1.
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a) b)

Fig. S3. Differences in the a) mean and b) standard deviation of 1991-2013 ASO significant wave height Hs (m)
between MFWAM05 W-Hist-Obs and ESA Sea State CCI (shading), with ESA Sea State CCI values overlaid as black
contours. The MFWAM05 data have been interpolated onto a 1° grid. Differences exceeding +/-0.6 m are masked in
white.
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a) b)

c) d)

Fig. S4. Same as Fig. 9ac, except for (a,c) significant height of primary swell Hs1 (m) and (b,d) mean wave period Tm

(s).
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a) b)

c) d)

Fig. S5. Same as Fig. 10ab, except for significant height of (a,b) primary swell Hs1 and (c,d) wind waves Hs0 (m).
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a) b)

c) d)

Fig. S6. (a,b)  same as  Fig.  11cd and (c,d)  same as  Fig.  11ef,  except  from
MFWAM01.
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a)

b)

c)

Fig. S7. Same as Fig. 5, except averaged over ASO.
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a)

b)

c)

Fig. S8. (a), (b), (c) same as Fig. 10a, S5a, S5c, respectively, except over ASO.
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