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Definition of the moist-air exergy norm: a comparison with existing "moist energy norms"

This study presents a new formulation for the norms and scalar products used in tangent linear or adjoint models to determine forecast errors and sensitivity to observations and to calculate singular vectors. The new norm is derived from the concept of moist-air available enthalpy, which is one of the availability functions referred to as exergy in general thermodynamics. It is shown that the sum of the kinetic energy and the moist-air available enthalpy can be used to define a new moist-air squared norm which is quadratic in: 1) wind components; 2) temperature; 3) surface pressure; and 4) water vapor content. Preliminary numerical applications are performed to show that the new weighting factors for temperature and water vapor are significantly different from those used in observation impact studies, and are in better agreement with observed analysis increments. These numerical applications confirm that the weighting factors for water vapor and temperature exhibit a large increase with height (by several orders of magnitude) and a minimum in the middle troposphere, respectively.

1 Introduction.

Several inner-products, based on "energy" squared norms, have been used in four-dimensional variational assimilation tools to minimize cost functions [START_REF] Talagrand | A study of the dynamics of fourdimensional data assimilation[END_REF][START_REF] Courtier | Application du contrôle optimal à la prévision numérique en Météorologie (Application of the optimal control to the numerical forecast in meteorology)[END_REF][START_REF] Thépaut | Fourdimensional variational data assimilation using the adjoint of a multilevel promitive-equation model[END_REF]. It was supposed that the "energy" corresponding to observational errors could be distributed equally among these different basic prognostic fields. Innerproducts based on these "energy" squared norms are used to define dry semi-implicit operators and dry normal modes of GCMs or NWP models, as long as they are invariant by the linear set of primitive equations [START_REF] Thépaut | Fourdimensional variational data assimilation using the adjoint of a multilevel promitive-equation model[END_REF].

Here, the term "energy" means that the sum of quadratic terms is considered for perturbations of the wind components (u ) 2 + (v ) 2 , temperature (T ) 2 and surface pressure (p s ) 2 or [ ln(p s ) ] 2 (see appendix A for the list of symbols). Moist-air generalizations of the "energy" squared norm have been suggested by Courtier (1987, hereafter C87), Ehrendorfer et al. (1999, hereafter E99) or Mahfouf and Bilodeau (2007, hereafter MB07), among others, by including the water vapor content via an additional quadratic term (q v ) 2 .

The same inner-products and norms are currently used for computing dry or moist singular vectors and for determining forecast errors or sensitivity to observations based on tangent linear and adjoint models [START_REF] Buizza | The singularvector structure of the atmospheric global circulation[END_REF][START_REF] Palmer | Singular-vectors, metrics, and adaptative observations[END_REF][START_REF] Mahfouf | Adjoint sensitivity of surface precipitation to initial conditions[END_REF][START_REF] Janisková | On the impact of the diabatic component in the forecast sensitivity observation impact diagnostics (also: ECMWF technical memorandum No. 786[END_REF]. However, all these norms suffer from a lack of consistency with physical relationships in thermodynamics, because: i) these "energy" squared norms are not based on the standard definition of energy as expressed in general thermodynamics; ii) the use of the squared norm for water including the quadratic term (q v ) 2 is poorly justified; iii) these definitions are not unique, with for instance an arbitrary tuning parameters which is often left undetermined for the water component.

Ideally, all these quadratic terms should be derived from some general laws of physics. This is true for the 1 arXiv:1807.06240v4 [physics.ao-ph] 28 Nov 2019 average of the kinetic energy (u 2 + v 2 )/2, which is the sum of the terms (u) 2 /2 + (v) 2 /2 computed with the mean state of wind plus the terms (u ) 2 /2 + (v ) 2 /2 computed with the perturbations of wind. This result is true if u = u -u and v = v -v, leading to (u ) = (v ) = 0. The squared norm for the wind components is computed in assimilation, singular vector and sensitivity studies with (u ) 2 /2 + (v ) 2 /2, where for instance u and v are the unbiased departures between analyses and short-range forecasts.

In contrast, the usual temperature component of the squared norm (T 2 )/2 = T 2 / 2 + (T ) 2 / 2 cannot be derived from the general definition of the energy and the first law of thermodynamics. Indeed, the dry-air internal energy or enthalpy varies linearly with temperature, with h ≈ c pd T for the enthalpy up to constant reference values. Consequently, the true energy and enthalpy cannot generate quadratic terms, due to h = c pd T = 0.

In order to derive quadratic squared norms in both wind components and temperature, a relevant method might be based on the study of the sum of the kinetic energy and "a form of the Available Potential Energy" (APE) of [START_REF] Lorenz | Available potential energy and the maintenance of the general circulation[END_REF]. This method is chosen in [START_REF] Talagrand | A study of the dynamics of fourdimensional data assimilation[END_REF], the old ARPEGE-IFS documentation (1989, unpublished), [START_REF] Joly | Global 4DVAR assimilation and forecast experiments using AMSU observations over land. Part I: impacts of various land surface emissivity parameterizations[END_REF], [START_REF] Joly | The stability of steady fronts and the adjoint method: Nonmodal frontal waves[END_REF], Ehrendorfer and Errico (1995), [START_REF] Errico | Moist singular vectors in a primitive-equation regional model[END_REF], E99, [START_REF] Ehrendorfer | Mesoscale predictability and the spectrum of optimal perturbations[END_REF], [START_REF] Errico | Interpretations of the total energy and rotational energy norms applied to determination of singular vectors[END_REF] and [START_REF] Descamps | Is a real cyclogenesis case explained by generalized linear baroclinic instability?[END_REF].

In these studies, the specific value of the approximate APE is written as (T ) 2 /(2 Γ), where both the perturbation of temperature T = T -T and the stability parameter Γ depend on T , where

Γ = T c pd - p R d ∂ T ∂ p . (1) 
The calculations of Γ are explicitly performed in [START_REF] Talagrand | A study of the dynamics of fourdimensional data assimilation[END_REF] and [START_REF] Descamps | Is a real cyclogenesis case explained by generalized linear baroclinic instability?[END_REF] by using a standard atmosphere for defining a reference profile T (p) which varies with height.

On the other hand, the stability parameter is often computed by using a constant reference value for T , which is denoted by T r or an equivalent. This leads to ∂ T / ∂ p = 0 in (1) and to Γ = T r /c pd . This is an explanation for the quadratic term (T ) 2 2 Γ = c pd (T ) 2 2 T r (2) which is retained in almost all present formulations of the temperature component of norms. A con-stant value T r is used in [START_REF] Courtier | Application du contrôle optimal à la prévision numérique en Météorologie (Application of the optimal control to the numerical forecast in meteorology)[END_REF], [START_REF] Thépaut | Fourdimensional variational data assimilation using the adjoint of a multilevel promitive-equation model[END_REF], [START_REF] Buizza | Computation of optimal unstable structures for a numerical weather prediction model[END_REF], Ehrendorfer and Errico (1995), [START_REF] Buizza | The singularvector structure of the atmospheric global circulation[END_REF], Mahfouf and Buizza (1996), E99, [START_REF] Errico | Interpretations of the total energy and rotational energy norms applied to determination of singular vectors[END_REF], [START_REF] Barkmeijer | Tropical singular vectors computed with linearized diabatic physic[END_REF], [START_REF] Zadra | Impact of the GEM model simplified physics on extratropical singular vectors[END_REF], [START_REF] Errico | Singular vectors for moisture-measuring norms[END_REF], [START_REF] Mahfouf | Adjoint sensitivity of surface precipitation to initial conditions[END_REF], [START_REF] Rivière | A novel technique for nonlinear sensitivity analysis: Application to moist predictability[END_REF], [START_REF] Holdaway | Inclusion of linearized moist physics in NASA's Goddard earth observing system data assimilation tools[END_REF], [START_REF] Janisková | On the impact of the diabatic component in the forecast sensitivity observation impact diagnostics (also: ECMWF technical memorandum No. 786[END_REF], among others.

However, it is worth noting that the use of a constant value T r for T (p) in ( 2) is not compatible with the stability term (1) that appears in the formulation of APE expressed with pressure coordinate, where T must be defined as the isobaric average of T according to [START_REF] Lorenz | Available potential energy and the maintenance of the general circulation[END_REF]. No other definition is allowed, and the use of a constant temperature T r makes the theory incompatible with that of Lorenz and weakens the theoretical basis for present formulations of the norm for temperature.

All temperature, pressure and water vapor components of existing squared norms correspond to the quadratic terms (T ) 2 , (p s ) 2 or [ ln(p s ) ] 2 and (q v ) 2 . It is thus tempting to consider these components as forming a "total energy" squared norm. However, it is explained in [START_REF] Errico | Interpretations of the total energy and rotational energy norms applied to determination of singular vectors[END_REF] that these squared norms are not based on clear thermodynamic definitions nor on any obvious energy norm of pressure or moisture ("Although it is called a measure of the energy, it has not been demonstrated that it is indeed such in the contexts to which it has been applied. The fact that it has units of energy per unit mass does not by itself qualify it as a measure of energy"). Moreover, the moist-air generalization of the APE by [START_REF] Lorenz | Available energy and the maintenance of a moist circulation[END_REF][START_REF] Lorenz | Numerical evaluation of moist available energy[END_REF] does not lead to any easy-to-use analytical formulation which could replace (T ) 2 /(2 Γ) with a moist-air version for Γ. This means that the APE approach can not be easily generalized to moist air.

Therefore, other ideas had to be tested in order to solve the problems described so far. Since the temperature component ( 2) is presently derived from an approximate version of the APE of Lorenz, which was improved by Pearce (1978) and [START_REF] Marquet | On the concept of exergy and available enthalpy: Application to atmospheric energetics[END_REF] for the dry air, and then by Marquet (1993, hereafter M93) for the moist air, this article examines the possibility of deriving the quadratic terms in temperature, pressure and water content from a general principle based on the concept of "moist available enthalpy" defined in M93.

The available enthalpy is one form of what is known as "exergy" in general thermodynamics. This new ex-ergy norm is used in [START_REF] Borderies | Impact of airborne cloud radar reflectivity data assimilation on kilometre-scale numerical weather prediction analyses and forecasts of heavy precipitation events[END_REF] to measure the relative impact of the assimilation of observations on the analysis and short-term forecasts for the French AROME model, with a large impact of the new water-content quadratic term. Indeed, the weighting factors of the exergy norm are significantly different from those used up to now in dry and moist squared norms, in particular by several orders of magnitude for the water content.

In order to achieve some numerical validation of the theoretical formulations for the exergy norm, the same comparisons of the squared norms with inverse analysis increment estimates are made as in MB07.

The motivations for these comparisons can be found in [START_REF] Errico | Singular vectors for moisture-measuring norms[END_REF], where a moist norm was used with weights "proportional to estimates of the variances of analysis uncertainty". It was also explained in [START_REF] Barkmeijer | Tropical singular vectors computed with linearized diabatic physic[END_REF] that "in the case of forecasterror covariance prediction, a norm at initial time based on the analysis-error covariance matrix is the more appropriate" [START_REF] Ehrendorfer | Singular-vector perturbation growth in a primitive equation model with moist physics[END_REF][START_REF] Palmer | Singular-vectors, metrics, and adaptative observations[END_REF][START_REF] Barkmeijer | Singular vectors and estimates of the analysis-error covariance metric[END_REF]. At that time, "the analysis-error covariance metric became the reciprocal of the total-energy metric currently used at ECMWF to compute singular vectors for the EPS" [START_REF] Barkmeijer | Singular vectors and estimates of the analysis-error covariance metric[END_REF]. And "a specific-humidity norm based on error variances" was experimented by [START_REF] Derber | A reformulation of the background error covariance in the ECMWF global data assimilation system[END_REF] at ECMWF, leading to a specific-humidity norm defined in [START_REF] Barkmeijer | Tropical singular vectors computed with linearized diabatic physic[END_REF] from the ECMWF "averaged error variances for q v ", with a strong decrease of this norm above 500 hPa, a property that has remained unexplained until now. This paper is organized as follows. Existing moistair squared norms are recalled in section 2.1. Section 2.2 presents some theoretical motivations for the use of exergy functions based on the concepts of relative entropy and Kullback-Leibler divergence. The derivations of the moist-air available-enthalpy are conducted in Appendix B to G and the corresponding quadratic approximate squared norm components are shown in section 2.3 for temperature, pressure and water. The datasets from the Canadian Meteorological Centre (CMC), the NASA Goddard Earth Observing System (GEOS) and the French ARPEGE models are described in section 3. These datasets are used to compare the norm components for water and temperature with the Root Mean Square (RMS) of analysis increments, with cross-sections and vertical profiles shown in section 4.1 to 4.3 for the three models, leading to an explanation of the decrease with height of the water vapor exergy terms described in section 4.4. Forecast observation impacts are described in section 4.5 for the GEOS model. Conclusions are drawn in section 5.

2 Theoretical considerations.

Existing moist-air energy norms.

A moist squared norm is defined in E99 by

N E99 = (u ) 2 + (v ) 2 2 dm Σ + R d T r g p r (p s ) 2 2 dΣ Σ + c pd T r (T ) 2 2 dm Σ + w q (z) (L v ) 2 c pd T r (q v ) 2 2 dm Σ . (3) 
The state vector is represented by the local departure from mean values of basic quantities, denoted by u , v , T , p s and q v . The differential mass dm = ρ dτ is equal to dpdΣ/g, where Σ is the horizontal surface area. The volume integrals over dm/Σ and the surface integral over dΣ/Σ represent energies per unit of horizontal area, all expressed in units of J m -2 . The pressure component is expressed in E99 as a volume integral of R d T r (p s ) 2 /(2 p 2 r ), but the expressions are equivalent providing that p s ≈ p r .

The surface pressure contribution of the squared norm is often expressed differently, in terms of the logarithm of surface pressure, leading to

R d T r p r g [ { ln(p s ) } ] 2 2 dΣ Σ . ( 4 
)
This formalism is retained in C87, [START_REF] Thépaut | Fourdimensional variational data assimilation using the adjoint of a multilevel promitive-equation model[END_REF], [START_REF] Buizza | Computation of optimal unstable structures for a numerical weather prediction model[END_REF], [START_REF] Buizza | The singularvector structure of the atmospheric global circulation[END_REF], [START_REF] Rabier | Sensitivity of forecast errors to initial conditions[END_REF], [START_REF] Palmer | Singular-vectors, metrics, and adaptative observations[END_REF], [START_REF] Errico | Interpretations of the total energy and rotational energy norms applied to determination of singular vectors[END_REF].

The two formalisms using the surface pressure or its logarithm are nearly equivalent, providing that p s ≈ p r . Indeed, the departure term must be computed as { ln(p s ) } = ln(p s ) -ln(p s ) in (4) and the perturbation of pressure is equal to p s = p s -p s in (3), leading to { ln(p s ) } = ln(1 + p s /p s ) -ln(1 + p s /p s ) ≈ p s /p s up to small higher order terms.

The justification for the last integral of (3) depending on the variance of water vapor content can be found in Ehrendorfer et al. (1995), [START_REF] Buizza | The singularvector structure of the atmospheric global circulation[END_REF], Mahfouf et al. (1996) and E99. The water contribution of the squared norm is derived from the temperature contribution c pd (T ) 2 /(2 T r ) with the additional hypothesis that changes of temperature and moisture are related by c pd T ≈ -L v q v , namely by assuming a conservation of the moist static energy c pd T + L v q v + φ at constant height for all moist (condensation) process. A similar quadratic term was suggested in C87, where two scale factors for height (H r ) and water content (Q r ) were defined, leading to the equivalent formulation g H r (q v ) 2 / (Q r ) 2 .

The question addressed in E99 is the relevance of that special formulation for the water contribution. Due to the uncertainty in the assumption c pd T + L v q v ≈ 0 (particularly in frequently under-saturated moist areas without condensation processes), an additional relative weight w q (z) (also denoted by w 2 or , depending on papers) is added in the last integral of (3). The effects of making this relative weight larger or smaller than the standard value 1 are discussed in E99 and [START_REF] Barkmeijer | Tropical singular vectors computed with linearized diabatic physic[END_REF], where w q (z) may increase with height in the upper troposphere and in the stratosphere.

An alternative definition of the water contribution of the squared norm is proposed in MB07 by replacing the assumption of conservation of perturbed moist static energy by a conservation of relative humidity approximated by q v /q sw . This assumption is expected to be realistic in cloudy areas where relative humidity reaches 100 %, however it may not be realistic in frequently under-saturated moist areas. The constraint of zero departure (at constant pressure) in the quantity q v /q sw (T, p) corresponds to q v = (Γ q ) T , where Γ q = q v ∂ ln(q sw )/∂ T . The alternative contribution proposed in MB07 can be written as

c pd T r 1 (Γ q ) 2 (q v ) 2 2 dm Σ . (5) 
MB07 found that this revised formulation for the water component of the norm better match the RMS of the analysis increments than the E99 norm. Indeed, the MB07 formulation better reflects the typical size of perturbations produced by data assimilation systems and (5) accounts for the exponential decrease of specific humidity with altitude, leading to much smaller absolute errors than with the original constant contribution in the last integral of (3). This result agrees with the increase of w q (z) with altitude considered in [START_REF] Zadra | Impact of the GEM model simplified physics on extratropical singular vectors[END_REF] in moist singular vector computations. The aim was to suppress the impact of humidity perturbations in the stratosphere according to the results of [START_REF] Buizza | The singularvector structure of the atmospheric global circulation[END_REF] and E99, who showed that for increasing w q the contribution of the dry fields dominates initially, whereas the contribution of moisture dominates at the final time (and vice versa when w q is smaller).

According to [START_REF] Errico | Singular vectors for moisture-measuring norms[END_REF] and MB07, the grid-point discretization of either (3) or (5) can be written as the inverse variance weighted squared norm ijk

(u ijk ) 2 V u + (v ijk ) 2 V v + (T ijk ) 2 (V T 1 ) jk ω ij ∆σ k + ij (p s ) 2 ijk (V p1 ) jk ω ij + ijk (q v ) 2 ijk (V q1 ) jk ω ij ∆σ k , ( 6 
)
where ∆σ k is the thickness of the layer k in the σ vertical coordinate and ω ij is the fractional coverage of the model grid box defined by the zonal (i) and meridional (j) indices.

The weighting factors V u , V v , (V T 1 ) jk , (V p1 ) j and (V q1 ) jk will hereafter be referred to as "V -terms". They are interpreted as variances of analysis errors in [START_REF] Errico | Singular vectors for moisture-measuring norms[END_REF] and MB07. The indices j and k mean that temperature, surface pressure and water variances can a priori depend on latitude (j) and/or altitude (k).

From (3) and ( 6), the V -terms in E99 can be written as

V u = V v = 2 = V 0 , V T 1 = V 0 T r c pd = V 0 (T r ) 2 c pd T r , (7) 
V p1 = V 0 (p r ) 2 R d T r , (V q1 ) k = V 0 w q (z) c pd T r (L v Q r ) 2 (Q r ) 2 . (8)
The four terms V u , V v , V T 1 and V p1 are all constant, whereas (V q1 ) k may depend on altitude for water, via the arbitrary weight w q (z).

All terms in parentheses in (6) are dimensionless in [START_REF] Errico | Singular vectors for moisture-measuring norms[END_REF] and MB07, where the dimensions of the square root of (V T 1 ) jk , (V p1 ) j and (V q1 ) jk are K, hPa and kg kg -1 , respectively. The squareroot of these V -terms will be called "SqV -terms" hereafter. The dimensionless characteristic of (6) can be explained by first multiplying all terms of (3) by the dimensionless value 2, and then by dividing all terms by the same energy term V 0 = 2 J kg -1 . Therefore, the dimensions of c pd T r , R d T r and L v Q r are same as the one of V u = V v = V 0 , namely in units of m 2 s -2 or J kg -1 . The value of the dummy specific content Q r has no impact in (8); it is introduced to highlight the relevant dimension of kg 2 kg -2 for (V q1 ) jk .

The definition (5) proposed by MB07 corresponds to

(V q2 ) jk = V 0 T r c pd (T ) 2 T q sw ∂ q sw ∂ T 2 (q v ) 2 , (9) (V q2 ) jk ≈ V 0 T r c pd L v q v R v (T ) 2 2 . ( 10 
)
From ( 9), (V q2 ) jk is expressed in kg 2 kg -2 , because c pd (T ) 2 /T r has the same dimension as V 0 . This means that the dimension of the square root of (V q2 ) jk is the same as the specific content q v , which is expressed in kg kg -1 and, from (10), varies with altitude via the ratio of the average terms q v and (T ) 2 .

2.2 Relative entropy, Exergy and Available enthalpy.

Due to the uncertainty and plurality in V T 1 , V q1 or V q2 defined in E99 or MB07, and due to the arbitrary values for w q (z), it is necessary to find a more general and comprehensive "measure," "norm" or "distance" between a perturbed thermodynamic state defined by (T 2 , q v2 , p s2 ) and a reference one defined by (T 1 , q v1 , p s1 ).

It is explained in section 3 of [START_REF] Marquet | Reply to "comments on 'a third-law isentropic analysis of a simulated hurricane[END_REF] that this distance can be measured by the quantity referred to as "relative entropy" by [START_REF] Shannon | A mathematical theory of communication[END_REF] and then defined in [START_REF] Kullback | On information and sufficiency[END_REF] and [START_REF] Kullback | Information theory and statistics[END_REF] by

K(x||y) = n j=1 x j log(x j /y j ) (11) 
where the x j 's represent a real state (x) and the y j 's a reference state (y) of the system (see [START_REF] Cover | Elements of Information Theory[END_REF]). 1

This Kullback-Leibler divergence K is usually interpreted as being a non-symmetric measure of how much the x j 's deviate from the y j 's. It also represents the "gain in information" of the state characterized by the distribution (x j ) with respect to the equilibrium distribution (y j ). Therefore, it is unclear whether K corresponds to the measure or the distance between the two thermodynamic states (T 2 , q v2 , p s2 ) and (T 1 , q v1 , p s1 ).

The main difficulty lies in determining the x j 's and the y j 's that correspond to these two thermodynamic states. Moreover, the relative entropy K is clearly different from the entropy s(x) = -n j=1 x j log(x j ) of [START_REF] Shannon | A mathematical theory of communication[END_REF], with a change of sign and another reference state y j included in (11). However, it is possible to show that the macroscopic value of K roughly corresponds to the free energy function e i -T r s, which is different from the entropy s because it depends on the internal energy e i and a reference temperature T r . More precisely, it is shown for instance in [START_REF] Procaccia | Potential work: A statistical-mechanical approach for systems in disequilibrium[END_REF], Eriksson and Lindgren (1987) and [START_REF] Karlsson | Energy, Entropy and Exergy in the atmosphere[END_REF] that the exergy of moist air can be computed by the "available energy" function a e = k B T r K, with K(x||y) given by ( 11). This function a e can be written in terms of the local atmospheric variables (p, T , q n ), leading to

a e = (e i -e ir ) + p r (α -α r ) -T r (s -s r ) - n µ rn (q n -q rn ) , (12) 
where the subscript "r" denotes a reference state and where the sum over "n" represents the dry air, water vapor, liquid water and ice species. The specific volume is α = 1/ρ and the specific contents q n are multiplied by the reference Gibbs functions µ rn = h rn -T r s rn . The quantity a e given by ( 12) is called "maximum available work from a nonflow system" by Bejan (2016, Eq.5.12) for system at rest reaching a pressure equilibrium with the environment (the laboratory). The last sum over n in ( 12) is called "chemical exergy" by Bejan, while the other terms form the "nonflow exergy."

The sum of the terms (e i -e ir ) and -p r (α -α r ) in ( 12) must be replaced by the difference in specific enthalpy (h -h r ) to form the "thermomechanical and chemical flow exergy" defined in Bejan (2016, Eq.5.25). It is the sameavailable enthalpy function as that studied in [START_REF] Marquet | On the concept of exergy and available enthalpy: Application to atmospheric energetics[END_REF] and M93 and corresponding to (B-1), with all other terms of (12) remaining the same, leading to

a m = (h -h r ) -T r (s -s r ) - n µ rn (q n -q rn ) . (13)
The use of the specific enthalpy h to replace the internal energy is motivated by the natural application of h to the flowing moist-air atmosphere. No hypothesis is made from this point of view, since the use of enthalpy does not impose movements that would be made "at constant pressure". The change in the variable h = e i + p/ρ is simply mathematical, with no underlying physical assumptions. One of the interests of the introduction of the enthalpy h is the existence of the Bernoulli function h + g z + (u 2 + v 2 )/2, which is constant during stationary, adiabatic and frictionless motions, with a similar Bernoulli's law derived in M93 for a m + g z

+ (u 2 + v 2 )/2.
The flow exergy a m given by ( 13) ensures the definition of the aforementioned general distance between a perturbed atmospheric state and a reference one. Indeed, since the available enthalpy is the maximum work (or energy) that a system can deliver when passing from a reference state to the real state, this work is produced by transformations from different forms of energy to other forms of energy.

In particular, it is shown in M93 that a Bernoulli equation exists and that the sum a m (T, p, q v , q l , q i ) + (u 2 + v 2 )/2 + φ is conserved along any streamline of an adiabatic frictionless and reversible steady flow of a closed parcel of moist air. This means that the conversions between the potential energy, the kinetic energy and the temperature, pressure and water components of a m (T, p, q v , q l , q i ) given by ( 13) can be evaluated with the weighting factors V T , V p and V q , ensuring relevant thermodynamic transformations of energy from one form to another.

The new moist-air available-enthalpy norm.

The three components of the squared norm based on the M93 exergy function given by ( 13) are derived in the Appendices B to G. They can be written in terms of the square of the perturbations of temperature (G-4), surface pressure (G-11)-(G-13) and water vapor (G-18), leading to

N T = c pd T r (T ) 2 (T ) 2 2 dm Σ , (14) 
N p = R d T r g p s (p s ) 2 2 = R d T r (p s ) 2 (p s ) 2 2 dm Σ , (15) 
N v = R d T r (r 0 r v ) (r v ) 2 2 dm Σ . ( 16 
)
The new V -terms corresponding to ( 7)-( 10) for temperature, pressure and water content can be written as

(V T ) jk = V 0 T r c pd T T r 2 , (V p ) j = V 0 p 2 r R d T r p s p r 2 , ( 17 
) (V q ) jk = V 0 r 0 r v R d T r = p r -e r e r V 0 r r r v R d T r = V 0 r v R v T r . (18) 
From the first formulation in ( 18), (V q ) jk is independent of r r . The last formulation in ( 18) is obtained with R v = R d /r 0 and r 0 = r r (p r -e r )/e r ≈ 622 g kg -1 , where r 0 is proportional to the reference mixing ratio r r . This shows that the dimensions of (V q ) jk and of r r r v are both kg 2 kg -2 , since V 0 = 2 m 2 s -2 and R d T r have the same dimension. Therefore, the square root of (V q ) jk has the dimension of a mixing ratio, as expected.

From ( 8) and ( 17) the pressure V -terms V p1 and (V p ) j may be close to each other if p r ≈ p s ≈ 1000 hPa, with (V p ) j only depending on p s and being independent on p r .

Differently, the temperature and water V -terms can differ significantly because T and r v vary with height. This is especially true for (V q ) jk since r v may vary by 3 orders of magnitude from the surface to the stratosphere.

The comparison of ( 18) with ( 8) allows a computation of the unknown dimensionless weighting factor w q (z) in E99, leading to

w q (z) = c pd R v (T r ) 2 (L v ) 2 1 r v (z) , (19) 
w q (z) = (c pd T r ) (R d T r ) (L v r r ) 2 e r p r -e r r r r v (z) , (20) 
where

R v = (R d e r )/[ (p r -e r )
r r ] is used to derive the formulation (20), which better shows the dimensionless feature due to the compensation of the terms c pd T r and R d T r with L v r r , also of e r with p r -e r and of r r with r v .

The exergy weighting factor (20) explains the expected behavior for w q (z), which increases with height for decreasing values of r v (z). A similar decrease holds with the MB07 value derived from the comparison of the constant relative humidity V -term (10) with the constant MSE V -term (8), leading to

w q2 (z) ≈ (c pd T r ) 2 (R d T r ) 2 (L v r r ) 4 e r p r -e r 2 r r q v (z) 2 . ( 21 
)
A comparison of ( 21) with (20) shows that w q2 ≈ (w q ) 2 because r v ≈ q v . Therefore, the MB07 value is approximately the square of the available enthalpy value, Figure 1: The seasonal averages of the RMS of analysis increments for water S q (g kg -1 ) are computed for ARPEGE outputs every 6 hours and plotted in latitude-pressure sections for: (a) winter (DJF); and (c) summer (JJA). The corresponding seasonal averages of the exergy SqV -term V q given by ( 18) are plotted for: (b) winter (DJF); and (d) summer (JJA).

leading to an enhanced variation of w q2 (z) with height in MB07.

Although the reference value of water content has no impact on the water term (V q ) jk given by ( 18), it is possible to compute, for the sake of internal consistency and realism, both e r and r r for several of the values of T r and p r which, from Table 1, are typically used in atmospheric research (semi-implicit algorithms, computation of singular vectors and studies of sensitivity to observations or forecast errors). The result is shown in Table 2 for saturating pressures e r = e sw (T r ) or e si (T r ) with respect to the more stable state (liquid water or ice), depending on the temperature T r . The zero Celsius and 280 K temperatures are added to show the rapid increase of both e r and r r with T r for an increase of a few degrees between 270 and 280 K. The higher temperature T r = 350 K leads to unrealistically large values of r r , which are even undefined (negative) for 367.8 hPa. The explanation for these impossible values for some couple (T r , p r ) comes from the fact that e r is defined as the saturation pressure at the temperature T r . We therefore assume that p r > e r , which is not verified for example for T r = 350 K for which e r = 411 hPa is greater than 367.8 hPa in Table 2. But this assumption p r > e r does not limit the validity of the theory, in the same way that the assumption p > e for humid air does not limit the two state equations for dry air and water vapour. Therefore the available enthalpy function and the exergy norm are well-defined for values T r < 300 K for which the ratios |X v /Y v | are Table 1: The reference temperatures T r (K) and pressures p r (hPa) used (from the left to the right) in: Pearce (1978) and M93, [START_REF] Buizza | The singularvector structure of the atmospheric global circulation[END_REF] and Mahfouf andBuizza (1996), E99 and[START_REF] Holdaway | Inclusion of linearized moist physics in NASA's Goddard earth observing system data assimilation tools[END_REF], [START_REF] Errico | Singular vectors for moisture-measuring norms[END_REF] and MB07, [START_REF] Janisková | On the impact of the diabatic component in the forecast sensitivity observation impact diagnostics (also: ECMWF technical memorandum No. 786[END_REF] The reference mixing ratio r r (T r , p r ) defined as r 0 e r (T r )/[ p r -e r (T r ) ] in g kg -1 and the saturated pressure e r (T r ) in hPa computed for several reference temperatures T r in K and pressures p r in hPa. 3 The Datasets.

The RMS of analysis increments S q and the SqVterms are computed for three systems using 3DVAR or 4DVAR algorithms. The periods correspond to either individual days, month or seasonal periods. The aim is to show that the temperature and water components of the exergy norm lead torobust results (i.e. that are valid for a wide range of durations and for different systems).

ARPEGE is the NWP model used at the French weather service at Météo-France [START_REF] Courtier | The arpege project at meteo france[END_REF]. The horizontal Gauss grid is based on a Schmidt projection with a spectral truncation T1198 and a stretching factor of 2.2 (i.e. with a varying resolution from 7 km over France to 33 km over the South Pacific). The vertical grid has 105 hybrid levels extending from 10 m to 0.1 hPa. The data assimilation is based on a 6-hourly incremental 4DVAR [START_REF] Courtier | A strategy for operational implementation of 4D-Var, using an incremental approach[END_REF], with increments computed at the truncations T149c1 (135 km) and T399c1 (50 km).

The Global Environment Multiscale (GEM) model (Côté et al., 1998a,b) studied in MB07 is used at the Canadian Meteorological Centre (CMC). The global horizontal grid has a uniform resolution of 1.5 degrees in longitude and latitude. The resolution is variable in the vertical, with 28 σ levels extending from the surface up to 10 hPa. The analysis increments are diagnosed by the CMC 3DVAR system [START_REF] Gauthier | Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada[END_REF].

The Goddard Earth Observing System version 5 (GEOS-5) is an atmospheric global circulation model developed by the National Aeronautics and Space Administration's (NASA) Global Modeling and Assimilation Office (GMAO). The model is based on the finite volume cubed-sphere (FV3) dynamical core [START_REF] Putman | Development of the finitevolume dynamical core on the cubed-sphere[END_REF]. The Modern-Era Retrospective analysis for Research and Applications (MERRA-2) Version 2 [START_REF] Gelaro | The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2)[END_REF] is a global reanalysis produced by GMAO using the GEOS forecast model and gridpoint statistical analysis data assimilation system [START_REF] Wu | Three-dimensional variational analysis with spatially inhomogeneous covariances[END_REF]Kleist et al., 2009). The 3D-Var system MERRA-2 produces an analysis every 6 hours from 1980 to the present day. The horizontal resolution of the data assimilation and model is around 50 km, or 0.5 degree. In the vertical, 72 hybrid sigmapressure levels are used, reaching from the surface to 0.01 hPa. The linearized version of GEOS includes the FV3 dynamical core and a linearization of the relaxed Arakawa-Schubert convection scheme (Holdaway et al., 2014, hereafter H14), single moment cloud scheme [START_REF] Holdaway | A linearized prognostic cloud scheme in NASA's Goddard earth observing system data assimilation tools[END_REF] and a simplified boundary layer scheme.

4 The results.

Seasonal means of ARPEGE:

the water norms.

The ARPEGE seasonal averages of RMS of analysis increments S q and exergy SqV -term V q are shown in Fig. 1. The winter and summer averages are computed with data 4 times per day (0, 6, 12, 18 UTC).

The general patterns for S q and V q are roughly similar, with a large vertical decrease with height (from 0.5 to less then 0.005 g kg -1 ) and seasonal latitude oscillations following the regions of maximum surface temperatures (from -15 degree in DJF to +15 degree in JJA).

Values close to the ground are of the same order of magnitude for the analysis increments (≈ 0.7 g kg -1 ), the exergy term (≈ 0.4 g kg -1 ) and the E99 term ( V q1 ≈ 0.31 g kg -1 or 0.57 g kg -1 computed with T r = 300 K and w q = 1.0 or w q = 0.3).

The JJA and DJF seasonal means of the "constant RH" value V q2 derived in MB07 are shown in Fig. 2. The seasonal latitude oscillation is similar to that of S q and V q in Fig. 1. The decrease with height of V q2 is larger than for the exergy norm, due to the property w q2 ≈ (w q ) 2 derived from ( 20)-( 21) leading to values of V q2 smaller than 0.0005 g kg -1 in the stratosphere (purple color). These values of V q2 are close to those for the RMS of analysis increments above the level 200 hPa.

Vertical profiles are plotted in Fig. 3 for the horizontal means of the RMS of analysis increment S q and for the V -terms V q (exergy), V q1 (E99) and V q2 (MB07).

Almost the same features are observed for the two seasons and for the three latitude domains. The large decrease with height by at least 3 orders of magnitude for the analysis increments S q cannot be represented by the E99 constant values V q1 ≈ 0.31 or 0.57 g kg -1 with w q = 1.0 or w q = 0.3, nor for any other constant value for w q .

The differences between the vertical profiles of the RMS of analysis increments, those for the exergy terms and those for the MB07 term remain small from the surface up to about 200 hPa (less than one order of magnitude). The exergy term V q is almost similar to the RMS of analysis increments for the layer 500-250 hPa in the tropical and summer extra-tropical regions, with the blue and red lines intersecting each other. For levels above 100 hPa, the MB07 term is closer to the RMS of analysis increments than the exergy term, with a rapid decrease with height that the exergy term cannot reproduce.

For these reasons, the RMS of the analysis increments, the exergy norm and the MB07 norm are thus similar to each other, while the values for E99 are more different from the other three. The aim was not to perfectly simulate the RMS of the analysis increments, but to approach them qualitatively, both for their vertical variation and for their order of magnitude.

The lack of a contribution from condensed water species to the moist-air exergy norm, together with the absence of any latent heat terms L v or L s , may seem d,e,f ). The E99 water terms V q1 (purple dotted lines) are given by ( 8) with w q = 1.0 and w q = 0.3. The exergy water term V q (red dashed lines) is given by ( 18). The MB07 water term V q2 (black dashed lines) is given by (10). The RMS of analysis increments in water vapor is S q (blue solid lines).

surprising. However, the condensed water contents q l and q i do exist in (B-1) for the moist-air exergy function a m , which forms the starting point for deriving the moist exergy squared norm.

It is this theory that ultimately allows q l and q i to be neglected in the squared norm components N T , N p and N v , as small correction terms. Moreover, the seasonal averages plotted in Fig. 1 for ARPEGE confirm that there is no need to add independent norms related to the condensates q l or q i , because the comparisons between the latitude-section of S q and V q do not reveal missing structures related to the convective regions where q l and q i are large (tropical cumulus and extra-tropical frontal regions).

Seasonal means of ARPEGE:

the temperature norms.

The exergy norm seemed able to induce new results, especially for the moisture term V q due to the term r v (p) in ( 18), a result confirmed in the previous section. Similarly, since the ratio T (p)/T r in (17) varies with pressure, and therefore with height, one may wonder whether this variation predicted by the theory is realistic or not.

For this purpose, ARPEGE winter averages of the RMS of analysis increments for temperature S T and of the temperature exergy term √ V T are shown in Fig. 4. The corresponding vertical profiles of horizontal mean values are plotted in Fig. 5. The summer averages exhibit similar results (not shown).

Although the comparisons of norms for each latitude and pressure are less relevant for the temperature components than for the water components (especially within the tropics), the general appearance for S T and √ V T is approximately similar, with a maximum near the surface (between 1000 and 800 hPa), and a minimum in the tropical troposphere for medium and high levels (between 600 and 100 hPa).

The variations with height of √ V T are similar to those for S T , while the constant value deduced from the E99 temperature component of the norm ( √ V T 1 ≈ 0.77 for T r = 300 K) is further from the S T profile.

Therefore, although variations with height of S T and √ V T are smaller than those for S q and V q , the similarity between the vertical profiles of the seasonal averages of S T and √ V T confirms the possible crude interpretation of the RMS of analysis increments with the temperature term computed from the squared exergy norm, and with a realistic impact for the ratio (T (p)/T r ) 2 in (17).

A specific day for CMC and GEOS

systems.

The results presented in the previous sections regarding ARPEGE seasonal averages are encouraging, but the need for daily applications of the exergy norm would require similar variations with height and latitude for a given situation for both the analysis increments and the norms. In addition, the encouraging results obtained with the 4D-Var incremental assimilation of the ARPEGE variable mesh model must be confirmed with different models and/or assimilation schemes.

To do this, the results obtained for the humidity variable are shown in Figs. 6 for one single analysis (26 December 2002, 00 UTC). Outputs from the GEM-CMC system are on the left in (a, c, e) and those from the GEOS-MERRA-2 system are on the right in (b, d, f). The latitude-pressure sections for the RMS of analysis increments S q in (a, b) are similar to those in Figs. 1 (a,b). The vertical profiles of the exergy term V q , the MB07 term V q2 and the E99 terms V q1 computed with T r = 300 K and w q = 1.0 or w q = 0.3 are similar to those in Figs. 3 a.

While the RMS of analysis increments are noisier for those GEM-CMC and GEOS-MERRA-2 daily outputs than for the ARPEGE seasonal averages, the same de-cay with height and relative maxima in the lower layers in the tropics is observed for this particular day. The differences between the three ARPEGE, GEM-CMC and GEOS-MERRA-2 systems are more pronounced above 200 hPa in the upper troposphere and in the stratosphere, where GEM-CMC exhibits larger analysis increments than ARPEGE, while those for GEOS-MERRA-2 are smaller than ARPEGE.

The latitude-pressure sections plotted for the water component of the exergy norm in Figs. 6 (c,d) for GEM-CMC and GEOS-MERRA-2 are similar to those for ARPEGE in Figs. 1 (a,b).

The water exergy SqV -term V q is relatively smooth and not noisy because it depends on the averaged value of the water vapor q v computed on a circle of latitude, which is less variable in space than the daily RMS of analysis increments S q .

The results presented in this section for a specific day and for two different systems are therefore broadly comparable to those shown for the ARPEGE seasonal averages. We can therefore be confident that the results derived in this paper from the exergy norm will be robust for other systems with similar patterns of analysis fields. ). On the center (c, d): sections of exergy norms V q (g kg -1 ). At the bottom (e, f ): vertical profiles of horizontal averages of E99 (dotted purple), MB07 (dashed black) and Exergy (dashed red) norms and the analysis increments S q (solid blue).

Figure 7:

The dimensionless exergy weighting factor w q (q v )

given by ( 19) plotted with q v in ordinates.

Figure 8:

The dimensionless exergy weighting factor w q (z)

given by ( 19) for the vertical profile of average values q v (p) of the GEM-CMC dataset used to plot the Fig. 6c.

4.4

The decrease with height of w q .

The advantage of the exergy approach is that it provides an analytic formulation for the weighting factor w q given by (19). As an example, values of w q (q v ) are plotted in Fig. 7 for 0.1 < q v < 25 g kg -1 .

The weighting factor w q (r v ) is smaller than unity for moist low levels where q v > 6.7 g kg -1 for T r = 300 K, and it is equal to 0.33 for q v ≈ 20 g kg -1 . Conversely, it is much larger than unity for small values of q v , reaching w q ≈ 67 for q v ≈ 0.1 g kg -1 in the upper troposphere and w q ≈ 6700 for q v ≈ 0.001 g kg -1 in the stratosphere.

It is also possible to plot the vertical profiles of w q in terms of the horizontal mean value q v (p) computed from the GEM-CMC simulation, shown in Fig. 8. The large increase of w q with height, with a factor varying non-linearly from 1 to 40 for the pressure varying from 1000 hPa to 300 hPa, is similar to the one proposed empirically in previous studies; for instance, a weight of w q (r v ) ≈ 5 was evaluated for the lower part of the atmosphere in [START_REF] Barkmeijer | Tropical singular vectors computed with linearized diabatic physic[END_REF] from the ECMWF averaged error variances for q v , with w q (r v ) strongly increasing above 500 hPa. This description is consistent with the exergy weight displayed in Fig. 8.

The same relation used to plot these diagrams "w q in terms of q v " is used to plot the exergy norm in the pressure (p) and latitude (ϕ) sections shown in Figs. 1 (b andd) and 6 (c and d), where the zonal averages q v (ϕ, p) varies with both pressure and latitude.

FSOI.

The Forecast Sensitivity to Observation Impact (FSOI) method can be used to assess and compare the capacity of various observing systems to reduce a given short-range forecast error produced by a NWP model, e.g. [START_REF] Baker | Observation and background adjoint sensitivity in the adaptive observation targeting problem[END_REF], [START_REF] Langland | Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system[END_REF], [START_REF] Cardinali | Monitoring the observation impact on the short-range forecast[END_REF], [START_REF] Gelaro | The THORPEX observation impact intercomparison experiment[END_REF]. Typically, fields from a 24 h forecast are compared against a verifying analysis, in terms of u, v, T , p s and q v using an inner product based on the E99 energy norm with different values of w q in the moist term. The adjoint of the forecast model is used to propagate a sensitivity backwards from verifying time (24 h) to obtain a sensitivity at analysis time (0 h). The adjoint model can include both dry physical processes (turbulent diffusion, radiation, gravity wave drag) and moist processes (large scale condensation, moist convection).

Impacts shown in the present paper are examined in averages per observation system and for the global domain with the E99 norms ( 7)-( 8) where T r = 270 K, p r = 1000 hPa and w q = 0.3. The value of 0.3 is chosen empirically in H14 to produce approximately equal weighting between the temperature and specific humidity components of the norm.

The metrics monitored at GMAO are: impact per analysis, impact per observation, fraction of beneficial observations, and observation count per analysis. The observation impacts are computed as reductions in the final 24 h forecast errors due to any given extra set of observations included in the initial analysis. The adjoint model can be used to propagate the final energy norm gradient backward 24 h in order to obtain sensitivities of these forecast errors at the initial time [START_REF] Trémolet | Computation of observation sensitivity and observation impact in incremental variational data assimilation[END_REF]. These sensitivities are then passed through the adjoint of the data assimilation system to convert them into observation space and to provide the impacts.

Figure 9: The 24-h forecast observation impacts per analysis for each observation system. Comparisons of: i) the Dry norm (white); ii) the moist norm E99 with w q = 0.3 (grey), namely the same as Fig. 9 in H14; and iii) the moist exergy norm (dark).

Fig. 9 compares the 24 h forecast error reductions produced by various observing systems included in the MERRA-2 data assimilation system with three different inner products for the estimation of the global forecast error: the E99 "dry energy squared norm" with w q = 0.0, the E99 "moist energy squared norm" with w q = 0.3, and the "exergy squared norm" N T +N p +N v introduced in Eqs. ( 14)-( 16) of Section 2.3.

Table 3: The increase in observation impacts (in percentage) corresponding to Fig. 9 for the change of the Dry norms to the moist E99 with w q = 0.3 (first line), and then to the moist Exergy (second line). The impacts of the dry energy E99 squared norms are those computed and studied in Fig. 9 of H14 for the month 17 March-17 April 2012. The impacts for the two moist squared norms (E99 with w q = 0.3 and exergy formulations) are computed for another month (1-30 September 2015). For convenience, the impacts of the three dry and moist squared norms are compared on the same plot despite having been computed over those two distinct periods. In all experiments, the adjoint model includes a comprehensive set of physical processes with moist processes as described in H14.

AMSU-A IASI

As expected from the definition of the moist energy norm, impacts are larger when they include the moist term, as already shown in H14. It is interesting to note that the increase in observation impacts not only holds for observations sensitive to atmospheric water vapor, such as radiosoundings, but also for observation systems where only a small subset of the observations directly measure moisture, such as IASI (Infrared Atmosphere Sounding Interferometer) radiances, AMSU-A (Advanced Microwave Sounding Unit) radiances which are sensitive to atmospheric temperature, and AMVs (Atmospheric Motion Vectors) which are directly sensitive to horizontal wind components. These results show that a reduction of forecast error in the moisture field is possible through observations of temperature and wind. This could occur through dynamical balance, for example.

The ranking, in terms of contributions of the various observing systems to the forecast error reduction, is unchanged when moving from E99/w q = 0.0 to E99/w q = 0.3. Similarly, when examining the impact with the exergy norm instead, it is clear that the overall observation impact is larger, but that the ranking of the observation systems relative to each other is almost the same. Larger values come from the difference in the weighting factor w q applied to the moisture at upper levels, which does not depend on height for the E99 norm and increases with height for the exergy norm according to Fig. 8.

The most striking feature, when using the exergy norm, is the very large increase by a factor of three (or > +200 %, see Table .3) of the only observing system highly sensitive to atmospheric water vapor: the Microwave Humidity Sounder (MHS). According to Fig. 9, RAOB ranks first for the exergy norm, which may have important implications given that the operational radiosonde observing network is expensive to operate. These results suggest that radiosonde humidity sensors play an important role in the 24 h forecast accuracy, even more than MHS.

Conclusions.

The main objective of this paper is to provide a general and more satisfactory method for combining thermodynamic variables of the atmosphere into a norm. There are several formulations for these norms currently in use for a wide variety of important applications, yet until now all have been derived using heuristic methods and approximations.

It is argued in this paper that such approximations can be avoided by instead considering the principles of fundamental physics more carefully. Specifically, the approach is to start with some general exergy functions, which are constructed by combining the first (enthalpy) and second (entropy) law of thermodynamics, leading to the available enthalpy function a m derived in M93. This kind of exergy function is also based on the concept of relative entropy or Kullback distance, two equivalent concepts which are already used in many papers dealing with assimilation techniques.

The choice of the exergy (available enthalpy) squared norms provides not only the quadratic terms (T ) 2 , (p s ) 2 and (q v ) 2 , but also values for the weighting factors which multiply these quadratic terms. It is shown in the present paper that the weighting factors for T and q v vary with height in the same way as the RMS of analysis increments. This ensures an even weighting of all variables and all levels when computing the global norm. Such results are valid for both seasonal average periods and for a particular day.

The fact that the weights for the exergy norm for T and q v are close to the RMS of analysis increments is not straightforward. Indeed, if the observation system is radically changed, the increments could be very different, while the exergy-norm weights would not be modified. To better understand the complex links that can exist between fields as different as thermodynamics, information theory and data assimilation, it is possible to refer to papers cited in section 3 of [START_REF] Marquet | Reply to "comments on 'a third-law isentropic analysis of a simulated hurricane[END_REF].

Inspired by previous studies by Kleeman (2002) and [START_REF] Majda | A mathematical framework for quantifying predictability through relative entropy[END_REF], the paper of [START_REF] Xu | Measuring information content from observations for data assimilation: relative entropy versus Shannon entropy difference[END_REF] examined the use of the relative entropy or Kullback-Leibler distance K(x||y) given by ( 11) "to measure the information content of the pdf produced by an optimal analysis of observations (or compressed super-observations) with respect to a prior background pdf used by the analysis (...) where the background pdf can be always considered as an approximation of the analysis pdf." Xu showed that the integral form of the relative entropy K(x||y) "is a quadratic form of the analysis increment vector weighted by B -1 ", and "yields an explicit formulation in which the signal part is given by inner-product of the analysis increment vector weighted by the inverse of the background covariance matrix" (B -1 ).

Since [START_REF] Xu | Measuring information content from observations for data assimilation: relative entropy versus Shannon entropy difference[END_REF] demonstrated a close relationship between K(x||y) and the weighting factors V u , V v , V v , V p , V T and V q , the next step is to use the close relationship shown by [START_REF] Procaccia | Potential work: A statistical-mechanical approach for systems in disequilibrium[END_REF], Eriksson and Lindgren (1987), Eriksson et al. (1987), [START_REF] Karlsson | Energy, Entropy and Exergy in the atmosphere[END_REF] and [START_REF] Honerkamp | Statistical Physics: an advanced approach with applications[END_REF] between K(x||y) and exergy functions, to foresee a direct link between the moist-air exergy defined in thermodynamics and the weighting factors used in data assimilation.

The new exergy (available enthalpy) squared norm may solve the main disadvantage of using the constant E99 moist V -term stated in [START_REF] Rivière | A novel technique for nonlinear sensitivity analysis: Application to moist predictability[END_REF], namely that the weight for water is no longer proportional to the weight for temperature with the exergy formulation, leading to new results with the use of the V q term. A first usage of the exergy norm in the context of FSOI experiments has shown that it increases observation impact in a way similar to what has previously been described when going from a dry energy norm to a moist energy norm (e.g. H14). However, the enhancement of the impact is larger, since the exergy norm accounts more evenly for moisture forecast errors between the various atmospheric layers, whereas the moist energy norm penalizes the upper tropospheric levels. The results are very similar among the various observing systems, however with a noticeable difference for the MHS and RAOBs, for which the contributions are particularly enhanced with the exergy norm. This is in agreement with the known impact of microwave humidity sounders from direct observing system experiments (Karbou et al., 2010;[START_REF] Chambon | Investigating the impact of the water-vapour sounding observations from saphir on board megha-tropiques for the arpege global model[END_REF]. In consequence, it is expected that the various observing systems would be more fairly ranked through more balanced contributions between wind, temperature and water vapor forecast errors through the use of the exergy norm in FSOI experiments.

Another usage of the exergy norm has been shown by [START_REF] Borderies | Impact of airborne cloud radar reflectivity data assimilation on kilometre-scale numerical weather prediction analyses and forecasts of heavy precipitation events[END_REF] to demonstrate the impact of airborne cloud radar reflectivity data assimilation.

The important point is that the analytical formulation of the exergy norm is not complicated. It is comparable in complexity to existing formulations (E99, MB07) and can be easily coded and used in operational systems, for moist singular vector and FSOI calculations as well as forecast verifications. The only new aspect is the need to take into account horizontal averages, or averages on each latitude circle, for the mean temperature and vapor content variables T and r v that appear in ( 14)-( 18) to define N T , N v , V T and V q .

Appendix A. List of symbols and acronyms.

B p

a dummy notation for a pressure norm AP E the global available potential energy (Lorenz) α the specific mass of moist air (the density 1/ρ) a e the moist specific available energy a h , a m the dry and moist specific available enthalpies a T , a p temperature and pressure components of a h and a m a v the water component of a m c pd specific heat of dry air (1004.7 J K -1 kg -1 ) c pv spec. heat of water vapor (1846.1 J K -1 kg -1 ) c l spec. heat of liquid water (4218 J K -1 kg -1 ) c i spec. heat of ice (2106 J K -1 kg -1 ) c p the moist-air spec. heat at constant pressure, 

= q d c pd + q v c pv + q l c l + q i c i δ = R v /R d -1 ≈ 0.
L f = h l -h i : latent heat of melting L v = h v -h l : latent heat of vaporization L s = h v -h i : latent heat of sublimation L f (T r ) = 0.334 10 6 J kg -1 L v (T r ) = 2.501 10 6 J kg -1 L s (T r ) = 2.835 10 6 J kg -1 m
a mass of moist air dm the element of mass (= ρ dτ ) N the global available enthalpy squared norms ω ij the fractional coverage of the model grid box x j , y j the micro states which define the function K p the pressure (p = p d + e) p s the surface pressure q the specific content (ex.

q v = ρ v /ρ) Q r
a dummy specific water content (C87) r the mixing ratio (ex.

r v = ρ v /ρ d ) r 0 = R d /R v ≈ 0.622 = 1/1.608 ρ specific mass of moist air (= ρ d + ρ v + ρ l + ρ i ) R d
dry-air gas constant (287.06 J K -1 kg -1 ) R v water-vapor gas constant (461.52 J K -1 kg -1 ) R gas constant for moist air (= The specific moist available enthalpy a m is an exergy function defined in M93 (see Eq. ( 17), page 574) as a sum of four partial moist available enthalpies for dry air (a m ) d , water vapor (a m ) v , liquid water (a m ) l and ice (a m ) i , leading to

q d R d + q v R v ) s the
a m = q d (a m ) d + q v (a m ) v + q l (a m ) l + q i (a m ) i , (B-1) (a m ) d = [ h d -(h d ) r ] -T r [ s d -(s d ) r ] , (B-2) (a m ) v = [ h v -(h v ) r ] -T r [ s v -(s v ) r ] , (B-3) (a m ) l = [ h l -(h l ) r ] -T r [ s l -(s l ) r ] , (B-4) (a m ) i = [ h i -(h i ) r ] -T r [ s i -(s i ) r ] , (B-5)
where T r is a constant reference pressure.

Differences in enthalpy and in entropy can be computed for dry air, water vapor and condensed species by assuming that the specific heat at constant pressure (c pd , c pv , c l , c i ) and gas constants (R d , R v ) are all constant for the atmospheric range of temperature (from 180 to 320 K), leading to 

h d -(h d ) r = c pd (T -T r ), h v -(h v ) r = c pv (T -T r ), (B-6) h l -(h l ) r = c l (T -T r ), h i -(h i ) r = c i (T -T r ), ( 
a m = c p T -T r -T r ln T T r + T r q d R d ln p d (p d ) r + q v R v ln e e r
. (B-11)

Here q l and q i are not neglected, but appear in the moist values of c p and q d = 1 -q v -q l -q i , anywhere else.

App. C. The temperature component of a m .

The first term on the R.H.S. of (B-11) is the Motivity defined by Lord Kelvin [START_REF] Thomson | On the restoration of mechanical energy from an unequally heated space[END_REF]. It corresponds to the moist temperature component a T of the available enthalpy defined in Marquet (1991, hereafter M91) and M93 in terms of the function F (X) according to

a T (T ) = c p T r F (X T ) , X T = T / T r -1 > -1 , (C-1) F (X) = X -ln(1 + X) . (C-2)
The difference from the dry case studied in M91 is that c p is equal to q d c pd + q v c pv + q l c l + q i c i and is not a constant, since it depends on varying specific contents of dry air and water species. "quadratic-like" corresponds to functions with Taylor series of the form: X 2 /2 + a X 3 + b X 4 + ..., where the quadratic term X 2 /2 is the first order approximation and where the other higher-order terms can be discarded. This approximation is typically valid for 210 K < T < 390 K if T r = 300 K. F (X) = 0 only for X = 0, namely for T = T r .

Appendix D. The pressure components of a m .

Terms in the second line of (B-11) can be rearranged in order to compute the separate quadratic contributions due to total pressure p = p d + e on the one hand, and to water species contents (q v , q l or q i ) on the other hand.

The three state functions for moist air, dry air and water vapor can be written as p = ρR T , p d = q d ρR d T and e = q v ρ R v T , respectively, leading to

T r q d R d = p d T r /(ρ T ) = R T r p d /p , (D-1) T r q v R v = e T r /(ρ T ) = R T r e/p , (D-2)
where the moist gas constant R = q d R d + q v R v is not a constant since it varies with q d and q v .

The terms q d R d and q v R v given by (D-1) and (D-2) can be inserted into (B-11), yielding where the remaining terms grouped in (D-5) form the water components a v .

a m = a T + R T
It is not possible to define directly a squared norm starting from the term ln(p/p r ), since it is negative for p < p r . This apparent drawback was already mentioned in M91 and M93. However, it is possible to integrate by parts a p in (D-4) with respect to p, leading to

a p = R T r p r ∂ ∂p p p r ln p p r - p p r -C . (D-6)
A new quadratic-like function H(X) can be introduced by choosing the constant of integration C = 1, yielding

a p = R T r ∂ ∂p [ p r H(X p ) ] , X p = p p r -1 , (D-7) H(X) = (1 + X) ln(1 + X) -X , (D-8)
where X p is the dimensionless pressure control variable. The constant reference pressure p r can enter the derivative in (D-7) and the term p r H(X p ) is equal to the function p r -p + p ln(p /p r ) ≈ (p -p r ) 2 /(2 p r ) called "store of work for any layer under isothermal conditions" in [START_REF] Margules | The mechanical equivalent of any given distribution of atmospheric pressure, and the maintenance of a given difference in pressure (Translation by C. Abbe of[END_REF] and studied in Eq. (Ia)' page 505, the bottom of page 506 and the top of page 507 of this old paper. the gas constant R, which depends on q v and q d = 1-q v -q l -q i . Conversely, the bracketed terms in (E-4), which generates the quadratic-like part of a v , do not depend on q l or q i . These results could not be expected and are just imposed by the exact computations.

Let us introduce the water variables

Z v = e p = r v r v + r 0 , Z r = e r p r = r r r r + r 0 . (E-5)
which are computed with (E-3). The water component a v given by (E-4) can be transformed into the sum of the two terms depending on the function H, leading to

a v = R T r Z r H(X v ) + R T r (1 -Z r ) H(Y v ) , (E-6)
where

X v = Z v Z r -1 = r 0 r r r v -r r r v + r 0 , (E-7) Y v = (1 -Z v ) (1 -Z r ) -1 = - r v -r r r v + r 0 . (E-8)
The equality of (E-6) with (E-4) can be checked by using basic algebra. This result has been obtained via a lengthy trial and error process, with the aim of introducing any of the quadratic-like functions F or H of the variable (r v -r r )/r r .

The ratio |X v /Y v | = r 0 /r r = [ p r -e r (T r ) ]/e r (T r ) shown in Table E-1 is computed for the set of reference values T r and p r used in Tables 1 and2. The ratio is larger than 20 for T r ≤ 300 K and p r = 800 or 1000 hPa. This result justifies the name "large" and "small" given to X v and Y v , respectively.

The higher temperature T r = 350 K leads to small values of |X v /Y v | which are close to unity, with an undefined (negative) ratio for 367.8 hPa. Values of T r > 300 K are thus beyond the scope of the next definition for the water component of the exergy norm, where both r v and r r are much lower than r 0 ≈ 622 g kg -1 only for T r ≤ 300 K, leading to X v ≈ (r v -r r )/r r and Y v ≈ -(r v -r r )/r 0 . The best candidate for a water dimensionless variable similar to X T = (T -T r )/T r is thus the large component X v .

App. F. Separating properties of F and H.

Previous results cannot be used as such by replacing the terms (T -T r ) 2 , (p s -p r ) 2 and (r v -r r ) 2 by the departure terms (T ) 2 , (p s ) 2 and (r v ) 2 , respectively. This issue is motivated by the usual applications where the perturbation terms T , p s and r v may need to get zero average values, whereas T -T r , p s -p r and r v -r r cannot cancel for all vertical levels and for constant values of T r , p r and r r .

It is thus important to introduce the mean values T , p s and r v which denote averages of T , p s and r v computed for a given circle of latitudes, or for a given pressure level, or for any other kind of average like those considered in Fig. F1. The eddy departure terms will then be defined in the usual way by T = T -T , p s = p s -p s and r v = r v -r v . Therefore, the aim is to express the availableenthalpy functions a T , a p and a v depending on T -T r , p s -p r and r v -r r in terms of the "energies of the mean state" which depend on (T -T r ) 2 /2, (p s -p r ) 2 /2 and (r v -r r ) 2 /2 plus the "energies of the eddies" which depend on (T ) 2 /2, (p s ) 2 /2 and (r v ) 2 /2.

For pure quadratic quantities, such as the kinetic energy, the basic separating property is given by the binomial law

(X 1 + X 2 ) 2 = (X 1 ) 2 + (X 2 ) 2 + 2 X 1 X 2 . (F-1)
If the flow X is separated into a mean part X 1 for which X 1 ≡ X 1 , plus an eddy part X 2 for which X 2 ≡ 0, the separating property writes (X 1 + X 2 ) 2 = (X 1 ) 2 + (X 2 ) 2 .

(F-2)

A similar exact separating property is derived for F (X) in [START_REF] Marquet | On the concept of exergy and available enthalpy: Application to atmospheric energetics[END_REF][START_REF] Marquet | The available-enthalpy cycle. I: Introduction and basic equations[END_REF], and the one valid for H(X) is shown in this Appendix. For any variable written as X = X 1 + X 2 + X 1 X 2 the two properties

F (X) = F (X 1 ) + F (X 2 ) + X 1 X 2 ,
(F-3) (F-4) are valid for X 1 > -1 and X 2 > -1, which means

H(X) = (1 + X 2 ) H(X 1 ) + (1 + X 1 ) H(X 2 ) + X 1 X 2 ,
X 1 + X 2 + X 1 X 2 = (1 + X 1 )(1 + X 2 ) -1 > -1.
The flow X is then separated into the same mean and eddy parts used to derived (F-2) and with X 1 ≡ X 1 and X 2 ≡ 0, leading to F (X) = F (X 1 ) + F (X 2 ) , (F-5) H(X) = H(X 1 ) + (1 + X 1 ) H(X 2 ) .

(F-6)

The physical consequence of (F-2), (F-5) and (F-6) is the appearance of exact self-similarity properties verified by the total, mean and eddy parts of the flow: quadratic F or H functions generate quadratic F or H functions for the mean and the eddy parts of the flow. More precisely, the quadratic approximation of (F-5) will allow computations of (T -T r ) 2 /2 in terms of (T -T r ) 2 /2 and (T ) 2 /2, with similar results derived from (F-6) and valid for surface pressure and watervapor mixing ratio.

App. G. Mean and eddy components of a T , a p , a v .

Mean and eddy components of a T given by (C-1) can be computed by replacing X T = T / T r -1 in (C-2) by

X T = T T + T T r -1 + T T T T r -1 , (G-1)
where T /T r -1 and T / T -1 = T / T correspond to X 1 and X 2 in (F-5), respectively. It is then assumed that c p ≈ c pd and F (X) ≈ X 2 /2, leading to

a T ≈ c pd T r F T T r -1 + c pd T r F T T , (G-2) a T ≈ c pd (T -T r ) 2 2 T r + c pd T r T 2 (T ) 2 2 T r . (G-3)
The three dimensional integral of the first quadratic term in the r.h.s. of (G-3) represents the "unavailable enthalpy" of the mean state T with respect to the isothermal reference state T r . The integral of the second quadratic term represents the "available enthalpy" of the perturbations T of the actual state T with respect to the mean state T , and it forms the temperature contribution of the squared norm which can be written as

N T ≡ c pd T r ( T ) 2 (T ) 2 2 dm Σ . (G-4)
This squared norm is studied in Sections 2.3 and 4.2.

The integral of a p given by (D-7) is computed by assuming that R ≈ R d , leading to

A p ≈ R d T r p r ps 0 ∂ H(X p ) ∂p dp g dΣ Σ , (G-5) A p ≈ R d T r [ H(X ps ) -1 ] p r g dΣ Σ , (G-6)
where X ps = p s /p r -1. The term -1 is due to X p = -1 for p = 0 and H(-1) = 1, leading to a constant value R d T r p r /g which will not enter the definition of the squared norm component for pressure. The aim is thus to compute mean and eddy components of where it is assumed that H(X) ≈ X 2 /2.

B p = A p + R d T r p r g ≈ R d T
The first quadratic term of B p in the r.h.s. of (G-10) represents the unavailable enthalpy of the mean state p s with respect to the constant reference pressure p r . The second quadratic term represents the available enthalpy of the perturbations p s of the actual state p s with respect to the mean state p s . This pressure contribution of the squared norm can be transformed back into a three dimensional integral, leading to r v and r 0 r r , leading to Z v ≈ r v /r 0 , Z r ≈ r r /r 0 and X v ≈ r v /r r -1, to approximate the (isobaric, horizontal or uneven) surface mean value of a v by (G-14) where R v = R d /r 0 has been used.

N p ≡ R d T
a v ≈ R v T r r r H r v r r - 1 , 
The separating property (F-6) can then be applied to (G-14) and with the exact property , (G-15) where r v = r v -r v . The terms r v /r r -1 and r v / r v -1 = r v / r v correspond to X 1 and X 2 in (F-6), respectively, with the property r v = 0 leading to

r v r r -1 = r v r v + r v r r -1 + r v r v r v r r - 1 
a v ≈ R v T r r r H r v r r -1 + r v r r H r v r v . (G-16)
It is finally assumed that H(X) ≈ X 2 /2, leading to

a v ≈ R v T r r r (r v -r r ) 2 2 + R v T r r v (r v ) 2 2 . (G-17)
The integral of the first quadratic term in the r.h.s. of (G-17) represents the unavailable enthalpy of the mean state r v with respect to the constant reference pressure r r . The integral of the second quadratic term represents the available enthalpy of the perturbations r v of the actual state r v with respect to the mean state r v , and it forms the water contribution of the squared norm, which can be written as

N v ≡ R v T r r v (r v ) 2 2 dm Σ . (G-18)
This squared norm is studied in Sections 2.3,4.1,4.3 and 4.5.

If the exact moist value R = (1 -q t ) R d + q v R v was not approximated by R d in (E-6), leading to R d /r 0 = R v in (G-14)-(G-17), then a factor (1 + 2 δ r v ) would exist (computations not shown) in the factor of R v in (G-18), but leading to small terms in comparison with the definition (G-18) for N v .
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  r ↓ \ p r → 367.8 hPa 800 hPa 1000 hPa e r (T r ) 251 K r r = 1.42 r r = 0.653 r r = 0.522 (0.838) 270 K r r = 8.11 r r = 3.69 r r = 2.94 (4.7) 273.15 K r r = 10.6 r r = 4.81 r r = 3.84 (6.11) 280 K r r = 17.5 r r = 7.86 r r = 6.26 (9.9) 300 K r r = 70.6 r r = 29.5 r r = 23.3 (35.3) 325 K r r = 558 r r = 144 r r = 107 (134) 350 K --r r = 1928 r r = 769 (411) greater than 10 inTable E-1, regardless of the pressure p r .

Figure 2 :

 2 Figure 2: The same as Figs. 1 (b) and (d), but for the DJF and JJA seasonal average of the MB07 water termV q2 given by (9).

Figure 3 :

 3 Figure 3: Vertical profiles of horizontal mean of seasonal averages computed from ARPEGE outputs every 6 hours and for three latitude domains: (a) and (d) southern extra-tropical mid-latitudes from -60 to -30 degrees; (b) and (e) tropical latitudes from -30 to +30 degrees; (c) and (f ) northern extra-tropical mid-latitudes from +30 to +60 degrees. The vertical profiles of the DJF means are plotted in (a, b, c); those for the JJA means in (d, e, f). The E99 water terms V q1 (purple dotted lines) are given by (8) with w q = 1.0 and w q = 0.3. The exergy water term V q (red dashed lines) is given by (18). The MB07 water term V q2 (black dashed lines) is given by (10). The RMS of analysis increments in water vapor is S q (blue solid lines).

Figure 4 :

 4 Figure 4: The same as Figs. 1a and 1b, but for temperature (K).

Figure 5 :

 5 Figure 5: The same ARPEGE seasonal mean (DJF) as in Figs. 3a but for temperature (K) and for the RMS of analysis increments S T (solid blue), the E99 term √ V T 1 ≈ 0.77 (dotted purple) and the exergy term √ V T (red dashed).

Figure 6 :

 6 Figure 6: Latitude-pressure sections and vertical profiles of horizontal averages for the water term for the 26th of December 2002: in the left panels (a, c, e) for the GEM-CMC; in the right panels (b, d, f ) for GEOS-MERRA-2. At the top (a, b): sections of the RMS of analysis increments S q (g kg -1). On the center (c, d): sections of exergy norms V q (g kg-1 ). At the bottom (e, f ): vertical profiles of horizontal averages of E99 (dotted purple), MB07 (dashed black) and Exergy (dashed red) norms and the analysis increments S q (solid blue).

  B-7) and s d -(s d ) r = c pd ln(T /T r ) -R d ln[ p d /(p d ) r ] , (B-8) s v -(s v ) r = c pv ln(T /T r ) -R v ln[ e/e r ] , (B-9) s l -(s l ) r = c l ln(T /T r ) , s i -(s i ) r = c i ln(T /T r ) . (B-10) The reference partial pressure e r is equal to the icevapor value e si (T r ) for T r < 0 • C or to the liquidvapor value e sw (T r ) for T r > 0 • C. The moist available enthalpy (B-1) is computed by including (B-6)-(B-10) in (B-2)-(B-5), yielding

F

  Figure C-1:The two functions F (X) = X -ln(1 + X) and X 2 /2 plotted for -1 < X < +2.5.

Figure D- 1 :

 1 Figure D-1: The two functions H(X) = (1+X) ln(1+X)-X and X 2 /2 plotted for -1 < X < +2.5.

Figure F- 1 :

 1 Figure F-1: The separation of the flow into an uneven basic state (x, solid lines) plus the eddies (dashed lines), defined by x ≡ x -x. The x term stands for the meteorological variables T , p, Z v or r v , also u and v.

  

  

  

  

Table 2 :

 2 .

		P78/M93 B96/MB96 E99/H14 E04/MB07 JC17
	T r	251	300	270	300	350
	p r	367.8	800	1000	1000	1000

  specific entropy σ the vertical coordinate of the model grid box Σ, dΣ global and element of horizontal surface of Earth

	T	the absolute temperature
	T r	the reference zero Celsius temperature (273.15 K)
	U U	the horizontal wind and its components (u, v) the horizontal wind speed √ u 2 + v 2
	µ	the specific Gibbs' function (h -T s)
	φ	the gravitational potential energy (g z + Cste )
	V	the variances of analysis errors
	V 0	a special variance of 2 J kg -1
	w q	a relative weight in water components of norms
	Z	a dimensionless water vapor variable
	GCM General Circulation Model
	NWP Numerical Weather Prediction
	Lower indices (for h, s, p, µ, ρ, q, r, V , X, Y , Z):
	r	reference value (entropy, available enthalpy)
	d, v	dry-air and water vapor gases phases
	l, i	liquid water and ice condensed phases
	sw, si saturating value (over liquid or ice)
	t	total water value (vapor plus liquid plus ice)
	T , p, v temperature, pressure and water components
	T 1 , p1 notations for pressure components (V )
	q, q2 notations for water components (V )
	1, 2	notations in separating laws
	i, j, k indices for longitude, latitude and altitude
	Upper indices/operator:
	(. . .) departure terms from average values
	(. . .) average values
	App. B. The specific moist-air available enthalpy.

  The next step is to isolate the pressure component a p defined by (D-4), leading to the separation of a m into a m = a T + a p + a v , a p = R T r ln

									p p r	, (D-4)
	a v = R T r	p d p	ln	p d p	p r (p d ) r	+	e p	ln	e p	p r e r	, (D-5)
											r	p d p	ln	p d (p d ) r	+	e e r	ln	e e r	. (D-3)

Table E - 1 :

 E1 The ratio |X v /Y v | = [ p r -e r (T r ) ]/e r (T r ) computed for several reference temperatures T r and pressures p r . See the Table2for values of e r (T r ).

	|X v /Y v | 367.8 hPa 800 hPa 1000 hPa
	250 K	438	953	1193
	270 K	77	169	212
	273.15 K	59	130	163
	280 K	36	80	100
	300 K	9.4	22	27
	350 K	-	0.94	1.4

  /p r -1 and p s / p s -1 = p s / p s correspond to X 1 and X 2 in (F-6), respectively. The separating property (F-6) can then be applied to (G-7), leading to

										r	p r g	H(X ps ) , (G-7)
	by replacing X ps by			
	X ps =	p s p s		+	p s p r	-1 +	p s p s	p s p r	-1 , (G-8)
	where p s B p ≈ R d T r	p r g	H	p s p r	-1 +	p s p r	H	p s p s	, (G-9)
	B p ≈	R d T r g p r	(p s -p r ) 2 2	+	R d T r g p s	(p s ) 2 2	,	(G-10)

  This squared norm is studied in Section 2.3.It is shown in Appendix E that the first term in the r.h.s. of (E-6) is much larger than the second term, due to|X v | |Y v |.This result is used together with the assumptions R ≈ R d , r 0

		r g p s	(p s ) 2 2	=		R d T r (p s ) 2	p s g	(p s ) 2 2	dΣ Σ	, (G-11)
	N p =	R d T r (p s ) 2	0	ps	dp g	(p s ) 2 2	dΣ Σ	,	(G-12)
		N p =	R d T r (p s ) 2	(p s ) 2 2	dm Σ	.	(G-13)

The original notations of Shannon and Kullback using p(pj) and q(qj) are replaced here to avoid confusion with the pressure p and the specific water content quantities qt, qv, q l , qi.

The definitions of the squared norm components N T , N p and N v were obtained during the Pan-GCSS meeting in Athens in May 2005. The results presented in this paper are thanks to Philippe Courtier's initial encouragements, with numerous preliminary tests carried out between 2005 and 2018. The authors wish to thank the editor and the three reviewers for their comments, which helped to improve the manuscript.
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Appendix E. The water components of a m .

The aim of this section is to show that a v given by (D-5), which depends on the six pressures p, p r , p d ,(p d ) r , e and e r , can be expressed in terms of the sole water mixing ratios r v = q v /q d and r r . In this way, a v will be interpreted as the water-vapor component of a m . The component a v given by (D-5) can then be written as

This formulation of a v has already been derived in the exergetic analysis of moist-air processes described (in German) in Szargut and Styrylska (1969, Eq. (10)) and recalled in Bejan (2016, Eq. (5.48), p.207), though with different notations.

The bracketed terms in (E-4) only depend on r v and on the two known reference values T r and p r , since the reference mixing ratio is r r = r 0 e r (T r )/[ p r -e r (T r ) ]. Therefore, a v will be called the water-vapor component of a m .

The impacts of q l and q i are not neglected up to this point, because the condensed water contents impact