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Abstract

A careful reading of old articles puts Olivier Pauluis’ criticisms concerning the definition of isentropic
processes in terms of a potential temperature closely associated with the entropy of moist air, together with
the third principle of thermodynamics, into perspective.

1 Introduction

The aim of this paper is to respond to the remarks
made in Pauluis (2018, hereafter P18), about the
moist-air entropy defined by s(θs) in Marquet (2011,
M11) and studied in Marquet (2017, M17), where θs
is a moist-air entropy potential temperature derived
from the third law of thermodynamics. In addition to
the Comments of P18, references will be made to the
previous works of Pauluis et al. (2008, P08), Pauluis
et al. (2010, PCK10), Pauluis (2011, P11), Pauluis and
Mrowiec (2013, PM13), Laliberté et al. (2013, LSP13),
Mrowiec et al. (2016, MPZ16), Pauluis (2016, P16) and
Pauluis and Zhang (2017, PZ17).

The paper is organized as follows. It is first recalled
in section 2 that the quantity sm, which is studied in
PCK10, MPZ16, and P18, and which is based on the
equivalent potential temperature θe, cannot represent
the moist-air entropy.

It is shown in section 3 that the term “relative en-
tropy” suggested in P18 cannot be used to denote
any of the quantities sm(θe) or sl(θl) studied in Betts
(1973), Emanuel (1994), P11, PCK10, MPZ16, and
P18, where θl is the liquid-water potential tempera-
ture. While the term “relative entropy” was coined
in information theory and statistical physics, it is not,
in fact, an entropy. Rather, it corresponds to what is
known as “exergy” (a kind of free energy) in thermo-
dynamics.

In section 4 we recall why θe cannot represent the
general isentropic processes, simply because it does not
vary like the moist-air entropy if qt is not a constant.
The history of the principle of “isentropic analyses” is
then reviewed in section 5, where it is explained that
the main objective of M17 was not to exclude the use of
“conservative variables” like θ, θv, θl, θil, θe, θes or θeil,
but rather to restrain the use of the name “isentropic”
to processes which conserve, or not, the moist-air en-
tropy and θs. Several impacts of the vision per unit
mass of dry air are described in section 6, together
with a list of the issues of P11, P16, MPZ16, PZ17
which are not addressed in P18. Finally, a conclusion
is presented in section 7.

2 The definition of “moist-air en-
tropy”?

It is shown in this section that the term “moist en-
tropy” cannot be used for the quantity denoted by
“sm” in PCK10 and P18.

We must first accept the following tautology: the
“moist entropy”, or “moist-air entropy”, is just the
“entropy of moist air,” which was first computed prop-
erly in atmospheric science by Hauf and Höller (1987),
where it is defined as the weighted sum of the entropies
of dry air (mainly made of N2 and O2) and of water
species (vapor, liquid, ice). Above all, Hauf and Höller
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have properly used the third law of thermodynamics
to compute the reference values for the entropies of the
moist-air components, leading in particular to

s0d ≈ 6775 J kg−1 K−1 , (1)

s0l ≈ 3517 J kg−1 K−1 , (2)

for dry air and liquid water, respectively.

An entropy (potential) temperature –denoted here
by θ∗s– is computed by Hauf and Höller by writing

s(θ∗s) = (1− qt) c∗ ln(θ∗s/T0) + (1− qt) s∗0 , (3)

where qt is the specific total water content and where
both c∗ = cpd + rt cl and s∗0 = s0d + rt s

0
l depend on the

total-water mixing ratio rt = qt/(1 − qt). Therefore,
θ∗s cannot represent the same variations as the moist-
air entropy s(θ∗s) if rt (and thus qt) is varying with
space and time. Indeed θ∗s may increase, decrease or
remain unchanged even though the moist air entropy
s(θ∗s) could be a constant, depending on the changes
in qt and rt, and vice versa.

This definition of the entropy potential temperature
θ∗s was improved in M11, where a moist-air value θs is
defined differently, as

s(θs) = cpd ln(θs) +
[
s0d − cpd ln(T0)

]
. (4)

The constant dry-air reference entropy s0d given by
Eq. (1) corresponds to the standard values T0 =
273.15 K and p0 = 1000 hPa. The other constant
liquid-water reference entropy s0l given by Eq. (2) is
used to compute the water-vapor reference entropy s0v
appearing in the factor Λr in the formula for θs (M11,
M17).

Although θ∗s and θs are different, the two moist-
air entropies s(θ∗s) and s(θs) are exactly the same
and both agree with the third law of thermodynam-
ics: they thus represent the same unique moist-air
entropy, or entropy of moist air. Moreover, since
cpd ≈ 1004.7 J kg−1 K−1 and s0d − cpd ln(T0) ≈
1138.6 J kg−1 K−1 are two constants in Eq.(4), θs
becomes truly synonymous with s, even in the com-
mon case where qt is not a constant (in fact almost ev-
erywhere in the real atmosphere). Here lies the main
advantage of θs with respect to all other potential tem-
peratures.

On the other hand, the “moist entropy” is defined
in Eq. (2) of P18 by the quantity

sm = s− (1− qt) s∗ (5)

where (1 − qt) s∗ = (1 − qt) s0d + qt s
0
l = s0d + qt (s0l −

s0d). This quantity sm was already used in PCK10 and
MPZ16 to define an equivalent potential temperature
according to

sm(θe) = (1− qt) c∗ ln(θe/T0) . (6)

Comparisons of Eqs. (5) and (6) with (3) show that
θe and θ∗s must be the same potential temperature.
This result is recalled in P18 and was already derived
in Hauf and Höller (1987) for the case of warm clouds
with no ice, where it is explained on page 2896 and af-
ter Eq. (4.19) that “the entropy temperature (i.e. θ∗s) is
identical to the equivalent potential temperature θe”.
Therefore, both θe and θ∗s possess the same drawback:
they are not synonymous with the moist-air entropy if
qt is not a constant. They cannot be used, in particu-
lar, for plotting moist-air isentropes which are lines of
equal values of s(θ∗s), s(θs) or θs, but not of θ∗s , θe or
sm(θe).

Indeed, if qt is not a constant, the difference s−sm =
(1− qt) s∗ is not a constant and the quantity sm can-
not represent the “moist entropy” as suggested in P18.
This term is clearly missing in all formulations of θe,
and although θe may have other interesting properties,
it cannot be a measurement of the moist-air entropy
in the real atmosphere, where qt is almost never a con-
stant.

The other possibility accepted in Emanuel (1994),
PCK10, MPZ16 and P18 is to arbitrarily set s0l = s0d =
0. This would lead to s − sm = 0, with the implied
assumption that sm(θe) might represent the moist-air
entropy in all conditions. But this contradicts the third
law of thermodynamics, and such a degree of freedom
for changing the values of s0l and s0d at will does not
exist. Otherwise, it would also be possible to modify
the constant of equilibrium of chemical reactions like
2 N2+O2 = 2 N2O at will, and in such a way that
the diatomic oxygen gas could have disappeared from
the atmosphere! This is also why the absolute (third-
law) values for entropies are given in chemical tables in
order to compute the changes in the Gibbs functions of
any reaction (∆G)r = (∆H)r−T (∆S)r, namely for all
the components of this reaction, whereas only standard
enthalpies of reaction are given in these tables (see the
Appendix A in M17).

The same “moist air” entropy was already defined
in PCK10 by sm(θe) given by Eq. (6) and was accom-
panied by a “dry air” entropy companion, which was
similarly defined by sl(θl) = s − [ s0d + qt (s0v − s0d) ],
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where θl is the liquid-water potential temperature al-
ready derived in Emanuel (1994), with both θl and
θe generalizing the formulations of Betts (1973). The
corresponding hypotheses were s0d = s0l = 0 for θe, and
s0d = s0v = 0 for θl. However, the names “dry” and
“moist” isentropes are defined in P08 and LSP13 as
equal values of θ and θe, with θ 6= θl in clouds. This
shows that these names are unsuitable, since they do
not always correspond to the same quantities, depend-
ing on the paper, and none of them correspond to the
true moist-air entropy.

It is explained in PCK10, and recalled in P18, that
it is “a common practice” to define various moist-air
entropies like sm(θe) or sl(θl) that could disagree with
the third law. It is time to cease this “usage in our
field,” and to rely on the third law of thermodynam-
ics, which leads to a unique definition of the entropy of
moist air. In particular, the atmospheric gas is made
of moist air, with varying amounts of water vapor and
condensed water species, but always with some water
content. It is therefore meaningless to call Sl(θl) the
“dry air” entropy (except for real dry air in the strato-
sphere and in the upper troposphere outside clouds), in
the same way that it is meaningless to call sm(θe) the
“moist air” entropy, since it is different from the en-
tropy of moist air computed from the third law of ther-
modynamics, which is equal to either s(θ∗s) or s(θs).

It is finally suggested in P18 that θl, θe and θ∗s could
merely be “adiabatic invariants” like θs. This is true
if qt is a constant. However, for varying values of qt,
the quantities θl, θe and θ∗s cannot be used, as in all of
Pauluis’ papers, for studying the changes in moist-air
entropy in the real atmosphere, plotting the true isen-
tropes, or studying the general isentropic processes,
which may occur in regions where qt varies along the
isentropes. These are the reasons why sm(θe) cannot
be called the “moist entropy.”

3 The “absolute” versus “relative”
entropies?

It is explained in the Appendix C of PCK10 that “any
choices for the integration constants (...) yield a valid
definition of the entropy of moist air” and that “the
entropy used in atmospheric sciences corresponds to
the thermodynamic entropy in classical physics” but
“does not, however, correspond to the absolute entropy
based on Nernsts theorem.”

On the other hand, it is explained in P18 that “the
mathematical expression of the second law of thermo-
dynamics and the Gibbs relationship can be written
either in terms of the absolute entropy or in terms of
the relative entropy.”

The term “absolute entropy” corresponds in P18 to
the value s(θs) calculated by Eq. (4) by using the
hypotheses formulated by Nernst (1906) and Planck
(1917), namely the third law of thermodynamics. The
previous criticisms made in PCK10 against the third
law were based on invalid arguments, and P18 now ac-
cepts the validity of θs, with however a new status of
“absolute entropy.”

Conversely, the concept of “relative entropy” is in-
troduced in P18 to denote the formulation sm(θe) given
by Eq. (6) and called “moist entropy.” This concept
of “relative entropy” would likely apply to the linear
combination (1−a) sm(θe) +a sl(θl) defined in PCK10
for any arbitrary value of a.

However, it is not possible to use this name and
such an “alternative” concept of “relative entropy” in
the way suggested in P18, simply because this concept
of “relative entropy” already possesses a precise def-
inition in statistical physics and information theory,
and because it corresponds to the concept of exergy
in general thermodynamics. Similarly, it is useless to
employ the term “absolute entropy” to refer to what is
just the entropy of moist air, which is computed, as it
must be, with either s(θ∗s) or s(θs) and from the third
law of thermodynamics.

The concept of “relative entropy” is actually quite
old. The term was coined in the famous pa-
pers of Shannon (1948) and Shannon and Weaver
(1949), where the information entropy of a system
with a set of probability (p1, ..., pn) is computed by
−
∑n

j=1 pj log(pj). This result was linked to the re-
sults of statistical mechanics and the famous Boltz-
mann’s “H theorem.” The “relative entropy” of a
source was then defined as “the ratio of the actual
to the maximum entropy of the source”, and the
“conditional entropy” was defined by an equivalent of
−
∑n

j=1 pj log(pj/qj), where (q1, ..., qn) is the set of
probability for a special configuration of the system.

This concept of “relative entropy” was further ex-
plored in Kullback and Leibler (1951) and Kullback
(1959), leading to the names “Kullback information,”
“Kullback-Leibler distance,” “relative information,”
“mean information” and “Contrast” functions, all de-
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fined by K =
∑n

j=1 pj log(pj/qj) where the pj ’s rep-
resent a real state and the qj ’s a reference state of the
system.

Applications of this “relative entropy” or “Kullback-
Leibler distance” to dynamical systems, quantum the-
ory, statistical mechanics, general relativity, black
hole and cosmology can be found in Hiai and Petz
(1991), Qian (2001), Vedral (2002), Shell (2008),
Casini (2008), Akerblom and Cornelissen (2012), Vil-
lani (2012), Czinner and Mena (2016), and Longo and
Xu (2017).

As for the interpretation suggested in P18, it is
possible to find explicit applications of the “relative
entropy” function or “Kullback-Leibler distance” to
atmospheric studies: Kleeman (2002), Majda et al.
(2002), Tippett et al. (2004), Haven et al. (2005),
Abramov et al. (2005), Shukla et al. (2006), Xu (2007),
Ivanov and Chu (2007), DelSole and Tippett (2007),
Majda and Gershgorin (2010), Bocquet et al. (2010),
Weijs et al. (2010), Krakauer et al. (2013), Arnold
et al. (2013), Zupanski (2013), Dirmeyer et al. (2014),
Nelson et al. (2016), among others. These papers
and books deal with studies of dynamical prediction,
the Lorenz attractor, data assimilation, seasonal fore-
casts, climate and oceanic models, weather predictions
models, climate change, stochastic parameterizations,
evaporative sources in the moist atmosphere, forecast
skill scores and predictability.

It is explained in Cover and Thomas (1991) that
the “relative entropy” K of Kullback and Leibler is
a measure of the “distance” between the two sets of
probability (p1, ..., pn) and (q1, ..., qn), and that K is
a non-symmetric measure of how much the pj devi-
ates from the qj . As for the thermodynamic vision,
the “relative entropy” must be interpreted as the “free
energy” associated with a minimum value and fluctua-
tion density at equilibrium (Qian, 2001; Casini, 2008).
The free energy corresponds to F = E−T S, where E
is the internal energy, T the equilibrium temperature
and S the entropy. Therefore, the “relative entropy”
does not correspond to an entropy S, which is only one
part of E − T S.

This statement can be clearly understood by con-
sidering the applications to atmospheric processes of
the “Kullback information,” “relative information,”
“cross entropy” or “Contrast” functions by Jaynes
(1957, 1968, 1978), Procaccia and D. Levine (1976),
Eriksson and Lindgren (1987), Eriksson et al. (1987),
Rosenkrantz (1989), Karlsson (1990), Marquet (1991,

1993, 1994), Honerkamp (1998). The aim was to com-
pute the same “relative entropy” or “directed diver-
gence” defined by K =

∑n
j=1 pj log(pj/qj), where the

pj ’s represent the real state and the qj ’s a reference
state of the atmosphere.

It has been shown that K corresponds to the exergy
functions written in terms of local basic atmospheric
variables, leading to the “available energy” function

ae = kB T0 K (7)

ae = (e− e0) + p0(α− α0)− T0 (s− s0)

−
∑
j

µ0j (qj − qj0) (8)

and the corresponding “available enthalpy” function

ah = (h− h0)− T0 (s− s0)−
∑
j

µ0j (qj − qj0) , (9)

where the subscripts 0 denote a reference state and kB
is the Boltzmann-Planck constant. The differences in
specific, extensive values for the internal energy e, en-
thalpy h, volume α = 1/ρ, entropy s and contents of
matter qj are multiplicative factors of the intensive ref-
erence values (pressure p0, temperature T0 and Gibbs
functions µ0j = h0j − T0 s0j).

This review proves that sm(θe) cannot be called the
“relative entropy.” Indeed, from Eqs. (5) and (6),
it is a quantity equal to the moist-air entropy minus
(1− qt) s∗, and this entropy-like quantity sm(θe) does
not correspond to a measure of the exergy functions of
moist air, namely to either ae or ah defined by Eqs.(8)-
(9).

4 The “equivalent” potential tem-
peratures?

It is assumed in PCK08, PCK10, MPZ16, P16, PZ17,
P18 that any of the dry-air (θ), liquid-water (θl) or
equivalent (θe) potential temperatures can be used to
label and plot in a relevant way what is called “dry,”
“liquid” or “moist” entropy, and thus to realize “isen-
tropic analyses.” According to P18, the principle of
these “isentropic analyses” is based on the papers of
Rossby (1937b).

The following historical review of the origin of what
is called “equivalent potential temperature” and writ-
ten θe in atmospheric science shows that the link be-
tween θe and the moist-air entropy is still unclear, and
was defined long before Rossby (1937b).
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According to Montgomery (1948), a review of old
papers and books confirms that the name “äquivalente
Temperatur” (equivalent temperature) was introduced
in German in the Doctoral Thesis by Knoche (1906),
under the supervision of von Bezold. The same tem-
perature was previously computed in Schubert (1904),
still following the suggestion of von Bezold, and with
the names “ergänzte” (supplemented) or “äquivalente”
(equivalent) “Temperatur.”

Schubert (1904, p.18) already addressed the ques-
tion of “the role the water vapor (and the annual
change of it) plays in the energy balance of the at-
mosphere.” In modern notation, Schubert added the
“amount of energy (heat) stored in the steam” cpdT

′ =
Lvqv to the quantity cpdT , leading to the supplemented
(modified) temperature T + Lv qv/cpd, or similarly by
putting T in factor:

T + T ′ = T

(
1 +

Lv qv
cpd T

)
. (10)

This quantity was called the “temperature correspond-
ing to the specific moisture content qv”. It was also
simply written as the sum T+T ′ = T+2.5qv, where the
specific moisture content qv was expressed in g kg−1,
Lv ≈ 2500 kJ kg−1 and cpd ≈ 1000 J kg−1 K−1. The
choice of the name of this sum T + 2.5 qv is clearly
attributed in Knoche (1906, p.1): “According to von
Bezold, we want to call this higher temperature the
equivalent temperature.”

Schubert also called T +T ′ the “temperature equiv-
alent to the total energy content (Energiegehalt) of an
air quantity,” where the concept of “thermal content”
or “total amount of heat contained in a body” was
previously called “Wärmegehalt” by von Helmholtz
(1888) and von Bezold (1888b). And according to
Montgomery (1948) the supplemented temperature
T + T ′ is thus “equivalent” to the moist-air enthalpy,
if this enthalpy is measured by cpd T + Lv qv. The
first meaning of the term “equivalent” therefore cor-
responds to the enthalpy of moist air, and not to its
entropy.

The modern notation of θ = T (p0/p)
κ was first in-

troduced by von Helmholtz (1888, p.83) for dry air,
with the name “potential temperature” then coined
by von Bezold (1888b, p.243) following discussions
with Helmholtz. Both the concept and name of
pseudo-adiabatic processes were coined in von Be-
zold (1888a, p.227), where the derived adiabatic and
pseudo-adiabatic differential equations are precisely

those recalled and used in Saunders (1957). Finally,
the link between θ and the dry air entropy sd =
cpd ln(θ) + s0d, up to the constant reference value s0d,
was first described in Bauer (1910). However, the link
between the entropy and the moist-air potential tem-
peratures such as θe has been much more difficult to
establish.

Normand (1921, p.12) explained that “the presence
of water renders Bauers’s results inapplicable to atmo-
spheric (moist) air” (...) and “their general application
in meteorology leads to such anomalous results as that
some adiabatic processes increase, some decrease and
some leave unchanged the potential temperature and
therefore the entropy”

The equivalent temperature (here noted Te) is de-
fined in Normand (1921, Eq.(3), p.5) by Eq. (10), but
with qv replaced by the saturation mixing ratio rsw. It
is the “temperature of absolutely dry air which has the
wet bulb temperature” (here noted T ′w), and the link
with the wet-bulb and equivalent temperatures can be
written as

Te = T ′w

(
1 +

L0
v rsw
cpd T

)
. (11)

Normand based its derivations on the study of the
properties of the entropy of moist air. In this way, his
approach was different from those of Knoche, Schu-
bert and von Bezold. However, Normand considered
reference values for entropies which disagreed with the
third law (“the entropy zero being considered to be
that of 1 kg of air plus 14.7 g of liquid water, each at
0 ◦ C”).

For Normand, “the wet-bulb temperature and the
equivalent temperature are each measures of the heat-
content and of the entropy of air at constant pressure,”
they “provide us with a measure of the entropy of at-
mospheric air,” and they are both adiabatic invari-
ants in adiabatic and pseudo-adiabatic processes that
“differ from each other only very slightly.” This re-
sult is not exact, because entropy must increase during
pseudo-adiabatic transformations that are irreversible.
Using modern notation, the equivalent potential tem-
perature defined in Normand (1921, Eqs.(10) and (12),
p.11) can be written as

θe ≈ θ

(
1 +

Lv rv
cpd T

)
, (12)

and the moist-air entropy is s ≈ (cpd + rv cl) ln(θe) +
Cste.
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Prior to the paper Rossby (1937b) cited in P18, and
as in Normand (1921), the equivalent potential tem-
perature is defined in Rossby (1932, Eq.(26), p.10) as a
“measure of the specific entropy of moist air.” It is de-
fined as “the temperature which a parcel of air would
assume if it were lifted pseudo-adiabatically until all
its moisture had been removed and then were brought
back dry-adiabatically to its original dry-air pressure”
(with “original” likely to be replaced by “standard”).
This corresponds to the pure emagram and aerologi-
cal definition that is still taught in many textbooks of
meteorology. This definition is thus based on pseudo-
adiabatic differential equations which are integrated by
Rossby, with several approximations, to give

θE ≈ T

(
p0
p

)Rd/cpd

exp

(
Lv rsw
cpd T

)
, (13)

where Lv(T ) depends on the absolute temperature.
The formulation of Normand in Eq. (12) is thus the
first order approximation of θE due to exp(x) ≈ 1 + x
for small x.

In order to achieve the integration leading to θE ,
the exact pseudo-adiabatic differential equations of von
Bezold (1888a) were simplified by Rossby by using
cpd + rsw cl ≈ cpd in factor of dT/T , in a way already
described by Humphreys (1920). The associated un-
saturated version of θE is also arbitrarily defined in
Rossby (1932, Eq.(27), p.10) by replacing T in Eq. (13)
by the temperature T0 at the condensation level, and
by replacing rsw by the water vapor mixing ratio rv.

Since Rossby’s motivation while at MIT was to
study the stability of air masses and the differences
in stability expressed in terms of the variation with
elevation of specific entropy, the “total entropy of a
moist air column” is defined in Rossby (1932, Eq.(31),
p.31) by

s ≈ cpd exp (θE) + Cste . (14)

This is however only an approximate equation and this
solution is said to be “not rigid” by Rossby (the to-
tal energy computations is achieved by replacing the
actual temperature T by the equivalent version of it
TE ≈ T + Lv rsw/cpd, the entropy of liquid water is
neglected, etc).

The liquid-water and equivalent potential tempera-
tures are defined differently by Betts (1973) for shallow
convection and by integrating the moist-entropy adi-
abatic equations of von Bezold (1888a) and Saunders

(1957), with however the approximations qt = 1−qd =
Cste, R ≈ Rd, cp ≈ cpd and Lv(T )/T ≈ Cste, leading
to

θl ≈ θ exp

(
− Lv ql
cpd T

)
≈ θ

(
1− Lv ql

cpd T

)
, (15)

θe ≈ θ exp

(
Lv qv
cpd T

)
≈ θ

(
1 +

Lv qv
cpd T

)
. (16)

The last formulations (without exponential) are ob-
tained from linear approximations of exp(x) ≈ 1 + x
for small x, leading to Normand’s Eq. (12) for θe and
for qv ≈ rv.

The formulation of Rossby given by Eq. (13) is sim-
ilar to the one defined by Emanuel (1994, Eq. (4.5.11),
p.120) and studied in Pauluis’s papers

θe = T

(
p0
pd

)Rd/c
∗

exp

(
Lv rv
c∗ T

)
(H)−Rv rv/c∗ , (17)

except with c∗ = cpd+rsw cl replaced by cpd in Eq. (13)
and without the factor which depends on the relative
humidity in Eq. (17). The dry-air partial pressure pd is
sometimes replaced by the total pressure p in Eq. (17),
with a small impact but with the advantage of forming
the dry-air potential temperature θ = T (p0/pd)

Rd/cpd

in factor of the exponential (MPZ16).

The link with moist-air entropy is given by Eqs. (5)
and (6), leading to

s(θe, qt) = (1− qt) c∗ ln

(
θe
T0

)
+ qt (s0l − s0d) + s0d ,

(18)

where c∗ = cpd + rt cl.

To summarize the link between θe and the moist-
air entropy, Eqs. (17) and (18) are indeed accurate,
but the choice of the moist factors (1 − qt) c∗ and
qt (s0l − s0d) located outside the logarithm is crucially
relevant to the way θe is formulated. These moist vari-
ables have been selected so that Eq. (17) looks like the
previous definitions of the equivalent potential temper-
ature, with however the drawback that it is equivalent
to the moist-air entropy s(θe, qt) only if qt is a constant.

Therefore, the warning in Normand (1921, p.12)
must apply to the definition of all equivalent poten-
tial temperatures: they do not measure the moist-air
entropy, as some increases or decreases in θe may corre-
spond to larger, smaller or equal values of the entropy,
and vice versa, due to the complex definition s(θe, qt)
given by Eq. (18), where the entropy is not a simple
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logarithmic function of θe alone, since it also depends
on the total moisture content qt (Emanuel, Pauluis),
or due to some approximations which arbitrarily can-
cel out these terms depending on qt (Normand, Rossby,
Betts).

5 The “Isentropic” analyses?

Bjerknes (1904, p.664) appears to be the first to have
imagined the use of (moist) entropy as one of the seven
parameters needed to represent the motion of the at-
mosphere. However, the “isentropic” processes con-
sidered in P18 correspond to another diagnostic tool
imagined in the 30’s.

The genesis and motivations of these “isentropic”
analysis methods are presented in Bleck (1973), Roads
(1986, with contributions from Namias, Smagorinsky,
Eliassen) and Moore (1989). In the 30’s “ (...) there
was quite a debate over which vertical coordinate sys-
tem would be most useful for weather analysis and
forecasting”. “German meteorologists and several Eu-
ropean colleagues favored a constant pressure coor-
dinate system while the British Commonwealth and
the United States favored using a constant height sys-
tem.” “But several vociferous meteorologists (e.g., C.
G. Rossby and J. Namias) urged the adoption of isen-
tropic coordinates.” This “crusade for the adoption
of the isentropic concept came from extensive research
in upper air weather analysis conducted under C. G.
Rossby’s guidance.” It was assumed that “over a pe-
riod of a few days, isentropic surfaces in the free atmo-
sphere act like material surfaces,” meaning that the
“frontal discontinuities are virtually nonexistent, be-
cause fronts tend to run parallel to the isentropic sur-
faces.”

However, the question remains: what are these isen-
tropic surfaces in Rossby papers?

Rossby (1932, p.3-4) explains that “invariant
curves” or “characteristic curves” are used to char-
acterize the properties of the air masses in terms of
the (dry-air) potential temperature (θ) and the spe-
cific humidities (qv). The invariants are thus θ and
qv. The differences in stability of these air masses are
then evaluated by studying the “variation with ele-
vation of specific entropy,” with the inclusion of the
“equivalent-potential temperature, which in an eas-
ily comprehensive form, measures the specific entropy
of moist air.” The “use of characteristic curves and

equivalent-potential temperature diagrams” is illus-
trated with examples, and θE is expressed in terms
of its two arguments: the potential temperature (θ)
and the specific humidity (qv) or mixing ratio (rv).
However, the moist-air entropy is clearly computed
(p.31-32) with “the equivalent-potential temperature
in place of the ordinary potential temperature” and
the isentropic processes are then defined by constant-
θE lines, where “the temperature distribution is as-
sumed to be given by TE instead of by T .”

Accordingly, Rossby (1937a, and collaborators,
p.131) studied the same “surfaces of constant
potential-temperature” (θ), though they are replaced
“in case of saturated air” by the “surfaces of con-
stant equivalent potential temperature” (θE). There-
fore, the name “isentropic” seems to apply to either θ
or θE , logically depending on the dry or moist condi-
tions. However, the 6 maps in Rossby (1937a, p.132-
133) are shown in terms of the two arguments of θE :
the constant qv lines plotted on the surfaces of 315 K
and 310 K values of θ. And the names “isentropic
charts,” “isentropic surface” and “isentropic weather-
map” (p.135) seems to correspond to constant-θ fea-
tures. Nonetheless, his fifth conclusion on p.135, is
clear: “isentropic mixing must imply that true air-
mass boundaries must be parallel to the surface of con-
stant potential temperature” (θ) “or, in case of satura-
tion, to the surface of constant potential-temperature”
(θE).

In the Rossby (1937b) paper cited in P18, the term
“isentropic” still refers to constant- θ and qv sur-
faces, although the “equivalent-potential-temperature
diagram” introduced in Rossby (1932) is still consid-
ered (p.201, 205). The hypothesis which justifies the
use of the two arguments of θE , namely θ and qv, and
not θE itself, is given on page 201: it “depends upon
the assumption that in active air currents, under cer-
tain easily specified conditions, each element preserves
its potential temperature.” These conditions are re-
tained in P18: adiabatic motions of closed parcel of
moist-air, namely with constant total water qt and of
either θl or θe.

Accordingly, the pure “adiabatic method” was only
partly retained in Elliott and Hovind (1965, p.200-
201), where it is replaced by “assuming that the
streamlines follow surfaces of constant θE” (...) “be-
cause of its conservative property when dealing with
a wet atmosphere.” This corresponds to the sugges-
tion of Shaw and Austin (1930, p.321) and Brunt
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(1934, p.77) to clearly differentiate the moist-air en-
tropy based on θe at that time, and on θs at present,
from the “realized” (dry-air) entropy based on θ and
plotted on the diagrams or “isentropic charts.”

It is indeed explained in Brunt (1934, p.77) that
the temperature-entropy diagram or “tephigram” (for
T − φ diagram, where φ was an old notation for the
entropy) was adapted from the Hertz and Neuhoff di-
agrams by Shaw and Austin (1930, Fig.93, p.244).
The moist-air entropy is computed by Brunt (1934,
Eq.(31), p.80) with a formula equivalent to Eq. (6)
above, with the same c∗ = cpd+rtcl and with θe almost
corresponding to Eq. (13) derived by Rossby (1932),
but with rsw possibly replaced by rv and valid for both
saturated and unsaturated conditions. This is almost
the same definition of moist-air entropy, and thus of
the associated equivalent potential temperature, as in
Emanuel (1994) and PCK10, except without the factor
(H)−Rv rsw/c∗ , which depends on the relative humidity.

An important point explained by Brunt (1934, p.77)
is the use of the simplified dry-air version of the moist-
air entropy for building the tephigram, where the im-
pact of the water vapor is disregarded. Due to this ap-
proximation, “the use of the word entropy in this con-
nection may mislead the uninitiated.” It is explained
that “the entropy of dry air alone, which Shaw calls re-
alized entropy,” is just “the entropy measured by the
tephigram.”

Brunt warns that, in the atmosphere and for mo-
tions for which qt and qv are almost never constant, it
is necessary to restrict the name “isentropic” to those
processes which exclusively conserve the moist-air en-
tropy, and thus s(θ∗s), s(θs) or θs.

Conversely, the “isentropic analysis” is defined by
Namias (1939) by studying the “isentropic surfaces”
which are assumed to be identical to “surfaces of con-
stant potential temperature.” References are made to
the work of Rossby (1937b), but with no mention of
the equivalent potential temperature θE nor to its ap-
proximate links with the moist-air entropy derived in
Rossby (1932). This use of θ to represent the moist-air
entropy is not valid for the clouds, frontal structures
and cyclones studied in Namias (1939). This is explic-
itly assumed in Namias (1940, p.7-8), where it is ex-
plained that “the most conservative thermal quantity
is the equivalent-potential temperature” (aerological
definition), and on p.12, that “the equivalent poten-
tial temperature is the most conservative, combining
the conservative qualities of both the potential tem-

perature and the specific humidity.”

This review confirms that θ cannot be used to la-
bel the true moist isentropic processes, and θE can
only serve as an approximate quantity for this purpose.
Only θs can serve to plot the true moist-air isentropic
surfaces.

To summarize, we can make the following list of con-
servative properties and the associated invariants:

• the impact of pressure on temperature is reduced
with the use of the conservative quantity T (p0/p)

κ

computed from the first law by Poisson (1833,
Chapter VI, Prop. 638, Eqs. (6), p.647) and Thom-
son (1862, Eq. (1), p.125), a quantity that was then
called potential temperature and denoted by θ by
von Helmholtz (1888) and von Bezold (1888b), a
quantity which exists independently of the “real-
ized” (dry-air) entropy variable sd = cpd ln(θ) +
Cste derived by Bauer (1910) ;

• the impact of reversible changes of phase (Betts,
1973), namely for closed systems and with constant
qt = qv+ql+qi, is almost zero for variables like θl ≈
θ exp(−D ql) or θe ≈ θ exp(D qv) ≈ θl exp(D qt),
with D = Lv/(cpd T ) ≈ 9;

• the impact of changes of qt (open system) on moist-
air entropy can be fully taken into account by com-
puting either θ′w (constant for pseudo-adiabatic pro-
cesses) or θs (constant for isentropic processes, and
equal to the moist-air entropy in all cases);

• the moist-air entropy variable θs can be approx-
imately expressed in terms of θl and qt by θs ≈
θl exp(B qt) with B ≈ 6 (M11), or thus in terms of
θe and qt by θs ≈ θe exp(− 3 qt), where B − D ≈
6− 9 ≈ −3.

According to the last point, it is indeed possible to
study the properties of air masses by using the pair
of “conserved” variables (θ, qv) if unsaturated, and
(θl, qt) or (θe, qt) if saturated. However, neither θl
nor θe can represent the true entropy of moist air or
any other basic thermodynamical quantity if qt is not
a constant, and the impact of open-system isentropic
processes cannot be captured by these quantities θl or
θe.

It is thus possible to paraphrase Namias (1940, p.12)
by stating that: the entropy potential temperature (θs)
is the most conservative variable, by combining the
conservative qualities of all equivalent potential tem-
peratures (θ or θl or θe) and the water content (qt).
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A first example of this result is given by the bound-
ary layer and the entrainment regions of marine stra-
tocumulus. In these regions, the observed moist-air
entropy and θs are nearly constant, whereas qt, θl
and θe are jointly varying with height in such a way
that θs remains constant (M11). This means that the
“constant-entropy surfaces,” which were the motiva-
tions of Rossby, are completely different if evaluated
by either θe or θs. Therefore, θs is more than a “con-
servative variable”: it is conserved as an “isentropic
variable” in the whole boundary layer of marine stra-
tocumulus.

A second example is given by almost constant values
of θs, which are simulated in the lower part of the
streamfunction in Fig.9 of M17, and in the right panel
of Figs.1 and 3 in P18 too, where the isopleths of Ψ(θs)
are almost vertical from 2 to 4.5 km, with and without
the condensed water.

Herein lies the main advantage of computing the real
moist entropy with s(θs) and from the third law: it re-
veals new properties for the entropy of the atmosphere
which cannot be observed, nor simulated, nor under-
stood, by plotting θe and qt independently.

Both sm(θe) and the impact of the difference s(θs)−
sm(θe) = qt(s

0
l−s0d)+s0d are studied in MPZ16 and P18,

and interpreted as sources and sinks of θe and changes
in Ψ(θe). However, this quantity qt (s0l − s0d) + s0d cre-
ates changes in θe and Ψ(θe) which are often opposite
to changes in the moist entropy. For this reason, the
study of θe and Ψ(θe) cannot lead to isentropic anal-
yses, because they do not represent the whole impact
of the moist-air entropy.

The general patterns of Ψ(θe) and Ψ(θs) are com-
pared in P18, together with the impact of precipita-
tions on these streamfunctions. In order to respond to
the criticisms of P18 on the “dipole structure” shown
for Ψ(θs), a study of the large eddy simulation of Hec-
tor the Convector is achieved in this paper, using the
Meso-NH model described in Dauhut et al. (2017).
The advantage of this tropical multicellular convective
system is the very deep convection phase, where a large
amount of condensed water reaches the upper tropo-
sphere and the lower stratosphere. This severe phase
must produce large impacts and may enhance the dif-
ferences between Ψ(θe) and Ψ(θs).

The streamfunctions for θe and θs are shown in
Figs.1-2 for this very deep convection phase, with the
precipitations included in the computation of the po-

Figure 1: The streamfunction Ψ(θe) for the period be-
tween 1331 and 1345 LT, during the very deep convec-
tive phase of Dauhut et al. (2017). The environmen-
tal equivalent potential temperature profile is repre-
sented by the thick black line and the 0 ◦ C and −38 ◦ C
isotherms by the thin black lines.

tential temperatures. The arrows indicate the circula-
tions around the minimum (blue) and maximum (red)
of the streamfunctions.

The “8” pattern followed by the arrows and the
crossing of the upward and downward circulations
clearly exists for both Ψ(θe) and Ψ(θs). The crossing
occurs at the top of the troposphere, at about 13 km
height in Fig.1, whereas it occurs just above the freez-
ing level at 6 km for Ψ(θs) in Fig.2. This important
difference between Ψ(θe) and Ψ(θs) is described and
critiqued in P18, although a similar crossing exists for
Ψ(θe) in Fig.3 (left) of P18, with clearly a positive re-
gion located above 12 km.

Therefore, the criticisms in P18 of the crossing of
the circulations deduced from Ψ(θs) should also apply
to those deduced from Ψ(θe) not only in Fig.3 (left)
of P18, but also in Fig.1B of PM13 and in Fig.2b of
P16, where the same positive maximum region exists
at high altitudes. Moreover, the choice of the color
white for positive values of Ψ(θe) in Fig.7a in MPZ16
may prevent the plotting of a likely similar positive
maximum at heights above 14 km. And the choice of
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Figure 2: Same as Fig.1 but for Ψ(θs).

a uniform and dark color in the Fig.3 (right) of P18 for
positive values of Ψ(θs) does not facilitate interpreta-
tion. Lighter shading would likely reveal the location
of a maximum which could explain the continuation
of the ascending branch and the crossing with the de-
scending circulation at about 8 km.

The first interesting result is the aforementioned al-
most vertical isopleths of Ψ(θs) which are simulated in
Figs.1 and 3 in P18 from 2 to 4.5 km height, with and
without the condensed water and precipitations and
for both ascending and descending branches. This is
an interesting result which can be revealed only with
θs, and is thus only valid for the moist-air entropy
based on the third law. Far from being an issue, this
means that the lower-level circulations are organized
via the moist-air turbulence so that they follow almost
constant-θs lines: this is an example of a real and ac-
curate isentropic analysis. P18 suggests that there is
“no obvious reason as to why this should be the case
under different conditions.” However, this pattern is
observed in most of the boundary layers on Earth, in-
cluding in the core of Hurricane Dumile, described in
M17.

A second interesting and unexpected feature is the
smooth transition simulated at freezing level for Hector
and for Ψ(θs) in Fig.2 (see the inside of the ellipse),
whereas a more angular appearance is simulated at

Figure 3: Same as Fig.2 but with no impact of the
precipitations.

this level for Ψ(θe) in Fig.1. This is likely due to the
relevance of θs, which always represents the moist-air
entropy in these regions where qt is rapidly varying
(mainly due to graupel and rain). On the other hand,
θe ceases to represent the moist-air entropy, probably
due to the incorrect impact of irreversible processes
on θe (in particular supercooled cloud water and rain
above the freezing level).

Finally, comparison of Figs. 2 and 3 shows that the
impact of precipitations on Ψ(θs) is large for the very
deep phase of Hector, where the vertical velocity is
large and can maintain a large amount of graupel and
snow. The crossing of the circulations occurs at much
higher levels in Fig.3 (at about 11.5 km) than in Fig. 2,
still with a positive maximum of Ψ(θs) above this level
in Fig.3, as for Ψ(θe) in Fig.1.

6 The budgets per unit mass of
“dry or moist” air?

The first law (internal energy and enthalpy equations)
and second law (Gibbs equation) must be applied to
specific values, namely by unit mass of moist air. This
is merely a consequence of the local thermodynamic
equilibrium hypothesis assumed to define the thermo-
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dynamic properties (temperature, pressure, density)
and specific state functions (internal energy, enthalpy,
entropy).

It is indeed possible to rewrite the enthalpy or en-
tropy equations originally defined with the specific
contents 1 − qd = qt = qv + ql + qi in terms of the
mixing ratio rt = rv+rl+ri. However, is it reasonable
to interpret the associated physical processes in terms
of variables computed “per unit mass of dry-air”?

It is shown in M17 that the work function and the
efficiency factor computed in MPZ16 depend on the
reference values for entropies and enthalpy, with a dif-
ference of about 50 % compared to the same quan-
tity computed with the third-law and per unit mass of
moist air.

The issue regarding the efficiency factor η = Q/Qin
in P11, P16, PZ17 is not discussed in P18, and the
water loading effect cannot explain this difference and
the dependence of Qin on the reference values, which
are arbitrarily set to zero at the freezing point in
Emanuel’s and Pauluis’s papers.

Moreover, this effect will become more and more
pronounced as climate change increases. Let us
imagine that mankind is unreasonable, and that the
Earth will continue to warm until it begins to re-
semble to Venus, with saturating mixing ratios reach-
ing higher and higher values of (20, 30, 40, 50) % for
T > (64.3, 70.9, 75.2, 78.4) ◦C, respectively. Already,
for rsw larger than 20 %, and above all if larger than
50 %, it will not longer be conceivable to assume that
a “water loading” effect could exist, since the reverse
effect could then be considered: would we have to con-
ceive that the minority dry-air gas could limit the work
done by the water vapor?

The difference Wp = Wd −Wm =
∮
rt g dz, of the

work functions computed with the two frameworks
(per unit of dry versus moist air) is considered in
P18, but it was not computed in P11, where only
Wd = −

∮
dp/ρd was considered (however noted W ).

And if Wp is indeed computed in P16 (Eqs.11-12) as a
component of the “dry-air” work Wd (however noted
W ), values of Wd might be 50 % larger than the true
work function W = Wm. This is an important issue
reported in M17.

Moreover, if the true work function WKE = Wm =
−
∮
dp/ρ is computed in a relevant way in PZ17 (Eq.5),

by removing Wp to Wd, values of Qin and Qout are not
properly defined. This can be understood by writ-

ing Eq.(3) in PZ17 as δq = d(h/qd) − dp/ρd. The
issue is the integral of positive or negative values
of δq, and thus of d(h/qd) − dp/ρd, where h/qd de-
pends on the reference values of enthalpies for the
separate positive and negative portions of the cycle.
Therefore, Qin and Qout, defined in Eqs.(14)-(15) of
PZ17, and the (effective) efficiency of the steam cy-
cle η = WKE/Qin, depend on the reference enthalpy
of liquid water, which is arbitrarily set to zero at the
freezing point in PZ17. Possible errors of more than
+50 % are evaluated in M17 if η is evaluated with
h0l = 0 versus h0l = 632 kJ kg−1 at 273.15 K in the
computation of d(h/qd) or dh in Qin.

In summary, the explanation of the use of moist-
air entropy and enthalpy expressed “per unit mass of
dry-air” is likely motivated by a desire to eliminate
the reference values for dry air and liquid water, but
the way Qin and the efficiency factor η are defined
eliminates any hope of being independent of the third
law. The most reasonable solution is to express all the
thermodynamic functions per unit mass of moist air–
in other words, to use specific values.

7 Conclusion

The purpose of M17 was not to limit the use of “con-
servative variables” to the moist-air entropy potential
temperature θs alone. It is of course possible to use
other potential temperatures, such as θv, θl, θil, θ

′
w, θe

or θeil, for labeling the air masses and for plotting the
isopleths of these quantities.

However, we recall here that the study of the prop-
erties of θs leads to new results which cannot be un-
derstood with θl or θe: i) constancy in the boundary
layer of marine stratocumulus (M11) and, in fact, a
turbulent well-mixed state for θs in all boundary lay-
ers (Richardson, 1919); ii) possible use of the poten-
tial vorticity PV (θs), with slightly negative values in
the lower troposphere and for diagnosing symmetric
instabilities (Marquet, 2014); iii) easier air-mass la-
belling, clear isentropic analyses, accurate computa-
tion of work functions and efficiency factors (M17), ...

It is thus important to always be aware of the un-
derlying assumptions associated with each of these
“adiabatic invariants” (buoyancy force for θv, pseudo-
adiabatic processes for θ′w) and, for these reasons, the
term “isentropic” should be used to only denote those
processes where the entropy is a constant, and thus for
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the study of s(θ∗s) of Hauf and Höller (1987) and s(θs)
or θs of M11, which are all defined by using the third
law. No other variables can be used to compute the
moist air entropy, except for the very special cases of
regions with constant qt. In these special regions, both
θl and θe can be used as proxies of θs, but these cases
are uncommon. This was the primary recommenda-
tion of M17.

It is explained in P08 that “both θ and θe define
two distinct sets of isentropic surfaces, and correspond
to a correct definition of the thermodynamic entropy.”
This cannot be true, since the entropy is a thermo-
dynamic state variable and cannot lead to multiples
changes and plots between two parcels of moist air.
Further proof lies in the example of the concept of
“isentropic filament,” which is introduced in PCK10
and defined as lines of constant value of θl and θe. But
since the difference Sm(θe) − Sl(θl) only depends on
qt according to Eq.(A5) of PCK10, these “filaments”
are no more than lines (or surfaces? or regions?) of
constant qt. This illustrates that it is not relevant to
define first the “conservative variables” θl and θe from
the moist-air entropy, and with the hypothesis of con-
stant values of qt, and then to derive more elaborate
concepts with variable values of qt.

Moreover, one of the conclusions of P18, that “when
condensate is not taken into account the two stream-
functions are equivalent,” cannot be true if qt is not a
constant, because the first order approximations of the
potential temperatures to be compared can be written
as θe ≈ θl exp(9 qt) and θs ≈ θl exp(6 qt). For no
condensate, θl = θ and qt = qv in both formulations.
However, since the factors 6 and 9 are different, the
stream functions Ψ(θe) and Ψ(θs) are different and
cannot lead to similar results. Indeed, the left and
right panels of Figs.1 and 3 in P18 are different.

It is shown that the terms “relative” (versus “abso-
lute”) entropy cannot be used to denote sm(θe), be-
cause the concept of relative entropy already corre-
sponds to what is called “Contrast” or “Kullback func-
tion” in information theory, and to the exergy func-
tions in thermodynamics (Marquet, 1993). Moreover,
the exergy functions are not entropies (S), since they
are a type of free energy or enthalpy (E − T0 S or
H − T0 S).

A method of “reconstruction” of Ψ(θs) is suggested
in P18 via Eq. (7) and starting from Ψ(θe). How-
ever, such a reconstruction would not have been possi-
ble before θs was known; and, indeed, it has not been

achieved in the previous papers PM13 or MPZ16. This
relativizes the interest of this method, since only θs and
qt rely on clear thermodynamic principles: the second
and third laws for θs, the conservation of matter for qt.
On the other hand, θe cannot be related to the moist-
air entropy unless qt is a constant, a property which is
almost never observed in the atmosphere.

The remark in P18 that “the name isentropic anal-
ysis itself is somewhat of a misnomer. Indeed, while
potential temperature is an adiabatic invariant, it is
not a good measure of entropy” is thus relevant. Ac-
cordingly, it is suggested that more appropriate names
be used: “adiabatic invariants,” “adiabatic surfaces”
and “adiabatic analysis” to denote the studies of θ for
the dry-air, and θl or θe for the moist air.

To conclude on a more positive note, let us recall
examples of properties that could only be derived with
the third-law value θs, and not with θ, θl nor θe.

The (dry) isentrope can be accurately labeled by θ in
the upper troposphere and in the stratosphere, where
the water content is usually very small (at least outside
frontal regions of deep convection clouds). Conversely,
the isentropes and the potential vorticity must (and
can) be computed and plotted with the moist-air val-
ues θs and PV (θs) in the middle and lower parts of the
troposhere.

More generally, the study of the principle of mini-
mum or maximum entropy production, and of the state
of maximum or minimum entropy, must be evaluated
using the moist-air entropy state variables s(θ∗s), s(θs)
or θs. It is thus possible to use θs to reveal new types
of phenomena: namely the true isentropic processes
for open systems where θs is a constant but qt is not,
whereas evaluations with θe or the “saturation value”
θes would lead to erroneous conclusions, since they do
not represent the moist-air entropy.
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E. Volken and S. Brönnimann, Meteorol. Z. 18
(6) 2009, p.663-667). Meteorol. Z., 21, 1–7, doi:
10.1127/0941-2948/2009/416, URL https://www.
schweizerbart.de/papers/metz/detail/18/74383/
The problem of weather prediction considered
from the viewpoints of mechanics and physics.

Bleck, R., 1973: Numerical forecasting experi-
ments based on the conservation of potential
vorticity on isentropic surfaces. J. Appl. Me-
teor., 12 (5), 737–752, doi:10.1175/1520-0450(1973)
012〈0737:NFEBOT〉2.0.CO;2.

Bocquet, M., C. A. Pires, and L. Wu, 2010: Beyond
gaussian statistical modeling in geophysical data as-
similation. Mon. Wea. Rev., 138 (8), 2997–3023,
doi:10.1175/2010MWR3164.1.

Brunt, D., 1934: Physical & dynamical meteorology.
Cambridge University Press, 411 pp., URL https:
//archive.org/details/in.ernet.dli.2015.215092.

Casini, H., 2008: Relative entropy and the Bekenstein
bound. Class. Quantum Grav., 25 (20), 205 021,
doi:10.1088/0264-9381/25/20/205021.

Cover, T. M., and J. A. Thomas, 1991: Elements of
Information Theory, 563 pp. John Wiley & Sons,
Inc.

Czinner, V. G., and F. C. Mena, 2016: Relative in-
formation entropy in cosmology: The problem of
information entanglement. Physics Letters B, 758,
9 – 13, doi:https://doi.org/10.1016/j.physletb.2016.
04.043.

Dauhut, T., J.-P. Chaboureau, P. Mascart, and O. M.
Pauluis, 2017: The atmospheric overturning induced
by Hector the Convector. J. Atmos. Sci., 74 (10),
3271–3284, doi:10.1175/JAS-D-17-0035.1.

DelSole, T., and M. K. Tippett, 2007: Predictabil-
ity: Recent insights from information theory. Rev.
Geophys., 45 (4), 1–22, RG4002, doi:10.1029/
2006RG000202.

Dirmeyer, P. A., J. Wei, M. G. Bosilovich, and D. M.
Mocko, 2014: Comparing evaporative sources of ter-
restrial precipitation and their extremes in merra us-
ing relative entropy. J. Hydrometeor., 15 (1), 102–
116, doi:10.1175/JHM-D-13-053.1.

Elliott, R. D., and E. L. Hovind, 1965: Heat, water,
and vorticity balance in frontal zones. J. Appl. Me-
teor., 4 (2), 196–211, doi:10.1175/1520-0450(1965)
004〈0196:HWAVBI〉2.0.CO;2.

Emanuel, K. A., 1994: Atmospheric convection, 580
pp. Oxford University Press, Incorporated.

Eriksson, K.-E., and K. Lindgren, 1987: Struc-
tural information in self-organizing systems. Physica
Scripta, 35 (3), 388, doi:10.1088/0031-8949/35/3/
026, URL http://stacks.iop.org/1402-4896/35/i=3/
a=026.

Eriksson, K.-E., K. Lindgren, and B. Å. Månsson,
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Luftschicht [on the spatial and temporal distribu-
tion of the heat content of the lower air layer ].

PhD-thesis, Friedrich-Wilhelms-Universität, Berlin,
46 Pp.

Krakauer, N. Y., M. D. Grossberg, I. Gladkova, and
H. Aizenman, 2013: Information content of seasonal
forecasts in a changing climate. Advances in Meteo-
rology, 2013 (480210), doi:10.1155/2013/480210.

Kullback, S., 1959: Information theory and statistics
(1978, Dover Pub.), 409 pp. John Wiley & Sons,
Inc.

Kullback, S., and R. A. Leibler, 1951: On information
and sufficiency. Ann. Math. Statist., 22, 79–86, doi:
10.1214/aoms/1177729694.
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