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Abstract. The high computational resources and the time-
consuming IO (input/output) are major issues in offline
ensemble-based high-dimensional data assimilation systems.
Bearing these in mind, this study proposes a sophisticated
dynamically running job scheme as well as an innovative
parallel IO algorithm to reduce the time to solution of an of-
fline framework for high-dimensional ensemble Kalman fil-
ters. The dynamically running job scheme runs as many tasks
as possible within a single job to reduce the queuing time and
minimize the overhead of starting and/or ending a job. The
parallel IO algorithm reads or writes non-overlapping seg-
ments of multiple files with an identical structure to reduce
the IO times by minimizing the IO competitions and maxi-
mizing the overlapping of the MPI (Message Passing Inter-
face) communications with the IO operations. Results based
on sensitive experiments show that the proposed parallel IO
algorithm can significantly reduce the IO times and have a
very good scalability, too. Based on these two advanced tech-
niques, the offline and online modes of ensemble Kalman
filters are built based on PDAF (Parallel Data Assimilation
Framework) to comprehensively assess their efficiencies. It
can be seen from the comparisons between the offline and
online modes that the IO time only accounts for a small frac-
tion of the total time with the proposed parallel IO algorithm.
The queuing time might be less than the running time in a
low-loaded supercomputer such as in an operational context,
but the offline mode can be nearly as fast as, if not faster
than, the online mode in terms of time to solution. However,
the queuing time is dominant and several times larger than
the running time in a high-loaded supercomputer. Thus, the
offline mode is substantially faster than the online mode in
terms of time to solution, especially for large-scale assimila-

tion problems. From this point of view, results suggest that an
offline ensemble Kalman filter with an efficient implementa-
tion and a high-performance parallel file system should be
preferred over its online counterpart for intermittent data as-
similation in many situations.

1 Introduction

Both the numerical model of a dynamical system and its ini-
tial condition are imperfect owing to the inaccuracy and in-
completeness to represent the underlying dynamics and to
measure its states. Thus, to improve the forecast of a numer-
ical model, data assimilation (DA) methods combine the ob-
servations and the prior states of a system to estimate the pos-
terior states (usually more accurate) of the system by taking
into account their uncertainties. Two well-known DA meth-
ods are the variational technique and the ensemble-based
technique. The hybrid methods combining the advantages
of the variational technique and the ensemble-based tech-
nique have gained increasing interest in recent years. Ban-
nister (2017) gives a comprehensive review of variational,
ensemble-based, and hybrid DA methods used in operational
contexts.

The ensemble-based methods not only estimate the pos-
terior state using the flow-dependent covariance but also
practically compute the uncertainty of the estimation. The
Kalman filter is an unbiased optimal estimator for a linear
system (Kalman, 1960). The extended Kalman filter (EKF)
is a generalization of the classic Kalman filter to a non-
linear system. It uses the tangent linear models of the non-
linear dynamical model and the non-linear observation op-
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erators to explicitly propagate the probability moments. For
a high-dimensional system, the explicit propagation of the
covariance is almost infeasible. The ensemble Kalman filter
(EnKF) is an attractive alternative to the EKF. It implicitly
propagates the covariance by the integration of an ensem-
ble of the non-linear dynamical model that makes its imple-
mentation simple owing to the elimination of the tangent lin-
ear model. Since the introduction of the EnKF by Evensen
(1994), many variants of the EnKF have been proposed to
improve the analysis quality or the computational efficiency.
For example, the stochastic ensemble Kalman filter perturbs
the observation innovation to correct the premature reduction
in the ensemble spread (Burgers et al., 1998; Houtekamer
and Michell, 1998); the ensemble square room filter (En-
SRF) introduced the square root formulation to avoid the
perturbations of the observation innovation (Whitaker and
Hamill, 2002; Sakov and Oke, 2008); the ensemble trans-
form Kalman filter (ETKF) explicitly transforms the ensem-
ble to obtain the correct spread of the analysis ensemble
(Bishop et al., 2001); the local ensemble transform Kalman
filter (LETKF) is widely adopted owing to its efficient paral-
lelization (Hunt et al., 2007); and the error subspace trans-
form Kalman filter (ESTKF, Nerger et al., 2012a) and its
localized variant (LESTKF) combine the advantages of the
ETKF and the singular evolutive interpolated Kalman filter
(SEIK; Pham et al., 1998). For comprehensive reviews of the
EnKF, we refer the readers to the ones by Vetra-Carvalho
et al. (2018) and Houtekamer and Zhang (2016).

Many schemes have been proposed to reduce the compu-
tational cost of the EnKF, especially to reduce the computa-
tional cost of the large matrix inverse or factorization. Two-
level methods are commonly used to parallelize the EnKF:
one level for parallelizing the model member running and
another level for parallelizing the analysis (Xu et al., 2013;
Khairullah et al., 2013). In applications to weather, oceanol-
ogy, and climatology, more advanced parallelizations are im-
plemented owing to the large-scale nature of the problem.
Keppenne (2000) used a domain decomposition to perform
the analysis on distributed-memory architectures to avoid the
large memory load required by the entire state vectors of all
the ensemble members. The sequential method assimilates
one observation at a time (Cohn and Parrish, 1991; Anderson,
2001) or multiple observations in each batch (Houtekamer
and Mitchell, 2001). The LETKF decomposes the global
analysis domain into local domains where the analysis is
computed independently (Hunt et al., 2007). The LETKF
is one of the best parallel EnKF implementations. A local
implementation based on domain localization of EnKFs is
very efficient and accurate for local observations, but has
difficulties for non-local observations, especially for satel-
lite measurements with long spatial correlations. For obser-
vations with long spatial correlations, the effective size of a
local box would be significantly larger than the size of the
ensemble; therefore, this implication of the ensemble being
too small for the local box could lead to a poor local anal-

ysis. Localization methods are not only crucial to the anal-
ysis accuracy by suppressing spurious correlations but also
have a great impact on the computational efficiency. For ex-
ample, a parallel implementation of EnKF based on modified
Cholesky decomposition (Nino-Ruiz and Sandu, 2015, 2017;
Nino-Ruiz et al., 2018, 2019) demonstrates an improvement
in the analysis accuracy as the influence radius increases,
but the improved accuracy comes at the cost of increasing
computation. On the other hand, the LETKF deteriorates the
analysis accuracy as the influence radius increases. Godinez
and Moulton (2012) derived a matrix-free algorithm for the
EnKF and showed that it is more efficient than the singular
value decomposition (SVD)-based algorithms. Houtekamer
et al. (2014) gave a comprehensive description of the par-
allel implementation of the stochastic EnKF in operation
at the Canadian Meteorological Centre (CMC) and pointed
out the potential computational challenges. Anderson and
Collins (2007) compared the low-latency and high-latency
implementations of the EnKF and found that low-latency
implementation can produce bitwise identical results. When
the sequential technique associates with the localization, the
analysis is suboptimal and dependent on the order of obser-
vations (Nerger, 2015; Bishop et al., 2015). Steward et al.
(2017) assimilated all the observations simultaneously and
directly solved the large eigenvalue problem using the Scal-
able Library for Eigenvalue Problem Computations (SLEPc,
Hernandez et al., 2005).

As mentioned by Houtekamer et al. (2014), an EnKF sys-
tem has to efficiently use the computer resources, such as disc
space, processors, main computer memory, memory caches,
job-queuing system, and archiving system, in both research
and operational contexts to reduce the time to solution. To
obtain a solution, the EnKF system has to perform a se-
ries of tasks including pre-processing observations, queuing
jobs, running ensemble members, analysis, post-processing,
archiving, and so on. Thus, the time to solution is the to-
tal time to obtain a solution; that is, the time from the be-
ginning to the end of an experiment, such as one assimi-
lation cycle in an operational context or 10-year reanalyses
in a research context. Even with the efforts of the afore-
mentioned literature, the time to solution of an EnKF sys-
tem is still demanding. For instance, the global land data
assimilation system LDAS-Monde (Albergel et al., 2017)
uses an SEKF (Simplified Extended Kalman Filter; Mah-
fouf et al., 2009) or an EnKF scheme (Fairbairn et al., 2015)
to assimilate satellite-derived terrestrial variables in the In-
teractions between Soil, Biosphere, and Atmosphere (ISBA)
land surface model within the Surface Externalisée (SUR-
FEX) modelling platform (Masson et al., 2013). By assim-
ilating satellite-derived terrestrial variables, LDAS-Monde
improves high spatio-temporal resolution analyses and sim-
ulations of land surface conditions to extend our capabilities
for climate change adaption. But at a global scale or even at
a regional scale with a high spatial resolution (1km× 1km
or finer), it becomes challenging in terms of time to solution.
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This is the motivation of the comprehensive evaluations of
different implementations of an EnKF system to determine
which technique should be adopted for an efficient and scal-
able framework for LDAS-Monde.

There are two modes to implement an EnKF: offline and
online modes. The offline mode is the most extensively
adopted strategy, especially in the operational context of nu-
merical weather prediction (NWP) where the operational DA
process is intermittent and consists of an alternating sequence
of short-range forecasts and analyses. In offline mode, the
dynamical model and the EnKF are totally independent; that
is, these two components are two separate systems. An en-
semble of the dynamical model runs until the end of the cy-
cle, outputs the restart files, and stops; then the EnKF sys-
tem reads the ensemble restart files and observations to pro-
duce the analysis ensemble which updates the restart files and
also outputs the analysis mean (the optimal estimation of the
states; see Fig. 1). Traditionally, the dynamical model and the
DA system are developed separately. The offline mode keeps
the independence of these two systems, which is highly de-
sirable for each community. Thus, the implementation and
maintenance of an offline mode is simple and flexible. One
big disadvantage of an offline mode is its time-consuming IO
(input/output) operations, especially for a high-dimensional
system and a large number of ensemble members. Recently,
several online modes have been proposed to avoid the expen-
sive IO operations of the offline mode (Nerger and Hiller,
2013; Browne and Wilson, 2015). The online mode forms a
coupled system of the dynamical model and the EnKF, which
exchanges the prior and posterior states by Message Pass-
ing Interface (MPI) communications. When observations are
available, the MPI tasks of dynamical models send their fore-
cast ensemble members (prior states) to those of the EnKF;
then the MPI tasks of the EnKF combine the observations
and the received forecast ensemble members (prior states)
to generate and send back the analysis ensemble members
(posterior states); and then the MPI tasks of dynamical mod-
els resume their running. The development of a coupled sys-
tem demands substantial time and effort. Another disadvan-
tage of the online mode is the large job-queuing time, be-
cause running the ensemble simultaneously requires a large
number of nodes when both the number of ensemble mem-
bers and the number of nodes per member are large. With
the consideration of possible prohibitive IO operations for an
offline EnKF, the online frameworks proposed in the litera-
ture seem promising and were claimed to be efficient (Nerger
and Hiller, 2013; Browne and Wilson, 2015). But, to our best
knowledge, there have been no attempts to assess the time to
solution of an offline EnKF against that of an online EnKF.
In this context, our study tries to answer the following ques-
tions. Is an online EnKF really faster than an offline EnKF?
Can an offline EnKF be as fast as, if not faster than, an online
EnKF with a good framework and algorithms using advanced
techniques of parallel IO?

An offline EnKF system simultaneously submits the jobs
(usually one ensemble member per job) to the supercom-
puter. With high priority as in an operational context, all the
jobs might get run immediately, and this is the most efficient
way. But in a research context, each job usually needs to wait
in the job queue for a period before it gets run. Sometimes,
the job-queuing time is significantly larger than the actual
running time in a high-loaded machine if the job requires a
large number of computer nodes or a long-running time. In
addition, the resource management and scheduling system of
a supercomputer needs time to allocate the required nodes
for a job and to start and stop the job; these overheads are not
negligible. It is then desirable to minimize the impact of the
job queuing and overheads. This is the first objective of this
study: to reduce the time to solution of an offline EnKF.

Massive IO operations pose a great challenge in the imple-
mentation of an offline EnKF system for high-dimensional
assimilation problems. Yashiro et al. (2016) presented a
framework with a novel parallel IO scheme for the NICAM
(Nonhydrostatic ICosahedral Atmospheric Model) LETKF
system. This method uses the local disc of the computer node
and only works for architectures with a local disc of large ca-
pacity in each computer node. Xiao et al. (2019) changed
the workflow of the EnKF by exploiting the modern paral-
lel file systems to overlap the reading and analysis to im-
prove the parallel efficiency. Nowadays, most supercomput-
ers have parallel file systems. With the progress of technol-
ogy in high-performance computing (HPC), a state-of-the-
art parallel file system has an increasingly high scalability,
high performance, and high availability. Several parallel IO
libraries based on PnetCDF (Parallel netCDF project, 2018)
or netCDF (Unidata, 2018) with parallel HDF5 (The HDF
Group, 2018) have been developed for NWP models and cli-
mate models. XIOS (ISPL, 2018) can read and write in par-
allel but cannot update variables in a netCDF file. CDI-PIO
(DKRZ and MPI-M, 2018) and CFIO (Huang et al., 2014)
can only write in parallel. PIO (Edwards et al., 2018) is very
flexible but is not targeted for the offline EnKF system which
synchronously reads then updates multiple files with an iden-
tical structure. Thus, with advanced parallel IO techniques
and innovative algorithms, the second objective of our work
to reduce the time to solution is to answer the following ques-
tion. Can the IO time of an offline EnKF be a negligible frac-
tion of the total time?

To address the aforementioned challenges of an offline
EnKF, we propose a sophisticated dynamically running job
scheme and an innovative parallel IO algorithm to reduce
the time to solution, and we comprehensively compare the
time to solutions of the offline and online EnKF implemen-
tations. This paper is organized as follows. The formulation
of an EnKF, its parallel domain decomposition method, an
offline EnKF, and an online EnKF are described in Sect. 2.
The sophisticated dynamically running job scheme aiming to
minimize the job queuing and overheads and the innovative
parallel IO algorithm are detailed in Sect. 3. The experimen-
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Figure 1. Schematic diagram illustrating the workflow of an offline EnKF system. Assuming the forecast model is a coupled model consisting
of two components A and B, each component outputs its own results, Af

k
and Bf

k
, respectively. But the EnKF system only analyses and

updates the state of component A, and it only outputs the analysis ensemble Aa
1. . .A

a
Ne

and the analysis mean Aa. In this example, there are
Ne = 5 ensemble members which run he hours for each cycle and only output the restart files at the end of the cycle. In addition, there is a
deterministic forecast that started with the optimal initial condition Aa from the EnKF system, and this deterministic forecast may run longer
than the period (he hours) of one cycle and may output more frequently.

tal environments, designs, and the corresponding results are
presented in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Ensemble Kalman filters

In an EnKF, each member is a particular realization of the
possible model trajectories. We assume that there are Ne en-
semble members, x1, · · ·,xNe , where the subscript denotes
the member ID, x ∈RNx is the state vector, and Nx is the di-
mension of state space. Let X=

[
x1, · · ·,xNe

]
∈RNx×Ne be

the ensemble matrix. Thus, the ensemble mean is

x =
1
Ne

Ne∑
k=1

xk, (1)

the ensemble perturbation matrix is

X′ =
[
x1− x, · · ·,xNe − x

]
, (2)

and the ensemble covariance matrix is

P=
X′X′T

Ne− 1
. (3)

Further, let d = y−H(x) be the innovation vector, where y ∈

RNy is the observation vector, H :RNx →RRy is the non-
linear observation operator which maps the state space to the
observation space, and Ny is the dimension of observation
space.

The Kalman update equation for the state is

xa
= xf
+K

(
y−H(xf)

)
= xf
+Kd, (4)

and the Kalman update equation for the covariance is

Pa
= (I−KH)Pf, (5)

where the Kalman gain is

K= PfHT
(

HPfHT
+R

)−1
. (6)

Geosci. Model Dev., 13, 3607–3625, 2020 https://doi.org/10.5194/gmd-13-3607-2020



Y. Zheng et al.: An offline framework for high-dimensional ensemble Kalman filters 3611

Within the above equations, H is the linear observation op-
erator of H, and R ∈RNy×Ny is the observation error co-
variance matrix. The superscripts f and a denote forecast and
analysis, respectively, and the superscript T denotes a matrix
transposition.

Using the covariance update Eq. (5) and the Kalman gain
(Eq. 6), Eq. (3) can be written as

X′aX′aT
= (Ne− 1)Pa

=

(
I−PfHT

(
HPfHT

+R
)−1

H
)

X′fX′fT

= X′f
(

I−STF−1S
)

X′fT

= X′f
(
WWT)X′fT =

(
X′fW

)(
X′fW

)T
, (7)

where S=HX′f, F= SST
+ (Ne− 1)R, and W is the square

root of I−STF−1S.
Thus, without explicit computation of the covariances Pf

and Pa , the analysis ensemble can be computed as

Xa
=
[
xa, · · ·,xa

]
+X′fW, (8)

where the analysis mean is

xa = xf+Kd

= xf+PfHT
(

HPfHT
+R

)−1
d

= xf+X′fSTF−1d (9)

by combining the state update Eq. (4) with the Kalman gain
(Eq. 6).

For most ensemble-based Kalman filters (Burgers et al.,
1998; Pham et al., 1998; Houtekamer and Mitchell, 2001;
Bishop et al., 2001; Anderson, 2001; Whitaker and Hamill,
2002; Evensen, 2003; Hunt et al., 2007; Livings et al., 2008;
Sakov and Oke, 2008; Nerger et al., 2012a), the analysis up-
date can be written as a linear transformation in Eq. (8). How-
ever, the different variants of ensemble-based Kalman filters
use different ways to calculate the transformation matrix W,
which is not necessary to be the square root as in Eq. (7).
From the above derivation, it can be seen that the most com-
putationally expensive part is the computation of the square
root which involves the inverse of the matrix F. In general,
the square root W can be obtained by a Cholesky decompo-
sition or a singular value decomposition (SVD).

2.1 Domain decomposition for parallel EnKFs

For a high-dimensional system, the size of the state vector
xk is large; therefore it is not practical to perform the EnKF
analysis without parallelizations. The straightforward way to
perform parallelizations is to decompose the state vector xk
into approximately equal parts by Nmpi MPI tasks. Because
all member state vectors have an identical structure, each

member state vector is decomposed in an identical manner,
and each member is one column of the ensemble matrix X.
Thus, each MPI task computes at most d Nx

Nmpi
e consecutive

rows of the ensemble matrix X. Figure 6 illustrates this de-
composition. Each level of a three-dimensional variable is
decomposed in the same way as if a horizontal domain de-
composition was used. For multiple variables, the same de-
composition is applied to each variable. This domain decom-
position has the advantage of a good load balance. Without
loss of generality, the descriptions in this study assume the
state vector xk is a one-dimensional variable as a multidi-
mensional variable can be viewed as linear in the memory.
The domain decomposition is the foundation for the innova-
tive parallel IO algorithm proposed in Sect. 3.2.2.

2.2 An offline EnKF system

An offline EnKF system is a sophisticated system consisting
of many components. Figure 1 illustrates the typical work-
flow of an ensemble-based DA system with its essential com-
ponents. In an operational context of NWP, a notable fea-
ture of an intermittent DA system is the alternating sequence
of short-range forecasts and analyses. Each short-range fore-
cast and analysis forms a cycle. At the beginning of each
cycle, all the forecast members read in their corresponding
analysis members from the last cycle and integrate indepen-
dently for the period of the cycle, and this is called a forecast
phase. Usually, each forecast member uses the same dynam-
ical model but with a differently perturbed initial condition,
a differently perturbed forcing, or a different set of parame-
ters. Meanwhile, a deterministic forecast is usually integrated
for a period longer than the cycle and outputs the history
files more frequently. At the end of the cycle, all the forecast
members output their restart files and stop. Then, the EnKF
combines the observations and the forecast ensemble (xf

k or
its equivalence Af

k in Fig. 1) to produce the analysis ensem-
ble (xa

k or its equivalence Aa
k in Fig. 1) and the analysis mean

(xa or its equivalence Aa in Fig. 1), which updates the restart
files of the ensemble forecasts and the deterministic forecast,
respectively. This is called the analysis phase. This process
is repeated for the next cycle.

There are several advantages to having an extra determin-
istic forecast. First of all, the deterministic forecast with the
optimal initial condition is integrated over a much longer pe-
riod than that of the cycle and outputs the history files more
frequently, which are the user-end deterministic prediction
products; this is essential in an operational NWP context.
Secondly, the ensemble forecasts only output restart files at
the end of the cycle, which significantly reduces the IO time
and the required disc space. Thirdly, it is even possible to use
the deterministic forecast as a member (Schraff et al., 2016).

A distinctive feature of an offline EnKF system is that each
ensemble member run is completely independent of other
runs, and the DA component runs only after all the mem-
bers are run. Each member run has its own queuing time and
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overheads owing to the involvement of a job system. Because
all the member runs have finished when the DA component
begins to run, the practically possible way to exchange infor-
mation between the model component and the DA compo-
nent is via the intermediate restart files. Reading and writing
many restart files, whose size is large, is time consuming and
may counteract the simplicity and flexibility of the favourite
offline EnKF system. It is very common that the DA system
submits one member per job or even a fixed number of multi-
ple members per job. The DA component reads or writes the
ensemble restart files with one IO task or as many IO tasks
as the ensemble members. This is not efficient, and both of
these aspects will be addressed in Sect. 3 accordingly.

2.3 An online EnKF system

As already mentioned, there are several methods to build an
online EnKF system. The method used in this paper is simi-
lar to one possible implementation suggested in the Parallel
Data Assimilation Framework (PDAF, 2018). With the op-
erational NWP in mind, the online EnKF system presented
in this paper is also an intermittent DA system. In this sys-
tem, the model component reads in the ensemble analyses
from the last cycle and integrates simultaneously Ne ensem-
ble members for the period of a cycle. Then it scatters the
ensemble state Xf to the DA component which performs the
analysis and outputs the ensemble analysis Xa and ensemble
analysis mean xa. Finally, the system stops and only restarts
in a proper further time for the next cycle. Thus, the main
difference between this online EnKF and the offline EnKF
described in Sect. 2.2 is that there are no intermediate out-
puts, which eliminate the ensemble-writing operations in the
model component and the ensemble-reading operations in
the DA component, between the forecast and the analysis
phases. This effectively reduces the number of IO operations
to half compared to the offline EnKF. However, being an in-
termittent DA system, for each cycle it still needs to read the
analysis ensemble from the last cycle and write the analysis
ensemble of the current cycle.

Figure 2 illustrates our implementation of the online EnKF
system used in this study. In this example, the online EnKF
system uses 18 MPI tasks to integrate simultaneously 6 en-
semble members with 3 MPI tasks per member. The grid
cells with the same background colour belong to one ensem-
ble member. The numbers to the left of the model column
(the tallest column) are the ranks of the MPI tasks in the
global MPI communicator. The numbers with a yellow circle
inside the model column are the ranks of the MPI tasks in its
model MPI communicator of the corresponding member. As
shown in the data assimilation column, the first three global
MPI tasks also form a filter MPI communicator. This filter
MPI communicator is used to perform the EnKF analysis.
All the MPI tasks with the same rank (number with a yellow
circle) in the model MPI communicators form a coupled MPI
communicator to exchange data between ensemble members

and the EnKF component. Thus, every model member has
an identical domain decomposition and so does the DA com-
ponent. This facilitates the data exchange between ensemble
members and the EnKF component. As in Fig. 2, each mem-
ber uses its own three MPI tasks to read in the corresponding
initial condition and integrate the model to the end of the
cycle; then the first MPI task of each member sends its corre-
sponding segment of its states to the corresponding row and
column of the ensemble matrix X in the first MPI task of the
DA component which, in fact, is the first MPI task of the first
member and so do the second and third MPI tasks. Finally,
the DA component has all the data in the ensemble matrix X
to perform the assimilation analysis and writes out the analy-
sis ensemble as well as the analysis mean. This online EnKF
has the disadvantage of wasting computational resources, be-
cause the MPI tasks starting from the second member are idle
when the DA component is running. But it complicates the
data exchange between the model members and the DA com-
ponent if all the MPI tasks are used for the DA component.
Also, it might not always help to have more MPI tasks for
accelerating the assimilation analysis, because the scale of
the problem determines the number of MPI tasks; sometimes
more MPI tasks might undermine the efficiency of a problem
owing to the expensive MPI communications.

3 Methods

This section lengthily presents the following two methods in
this study to reduce the time to solution of an offline EnKF.

3.1 Dynamically running job scheme for minimizing
the job queuing and overheads

Using the embarrassingly parallel strategy, the jobs of all
the members are submitted simultaneously. On a high-loaded
machine, each job needs to wait for a long time before run-
ning, especially when the job requires a large number of
nodes. To reduce the job queuing and overheads, we pro-
pose a sophisticated running job scheme to dynamically run
the ensemble members over multiple jobs, as illustrated by
Fig. 3. First of all, the scheme generates a to-do list file with
all the IDs (identities) of the ensemble members followed by
the ID (=Ne+ 1) of the DA component; then it simultane-
ously submits Nj jobs where Nj ∈ [1,Ne] can be fewer than
the number of members. Because the ID of the DA compo-
nent is at the end of the to-do list, the proposed scheme au-
tomatically guarantees that the successful completion of all
the members is checked and confirmed before executing the
DA component. When a job (e.g. job1 in Fig. 3) is dispatched
to start its running, the job locks the to-do list file to obtain
a member ID (e.g. member 1© in Fig. 3), removes the mem-
ber ID from the to-do list file, unlocks the to-do list file, and
then starts the execution of that member. While the job is
running (e.g. job1 in Fig. 3), another job (e.g. job2 in Fig. 3)
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Figure 2. Schematic diagram illustrating the implementation of an online EnKF system. In this example, 18 MPI tasks are used to integrate
6 ensemble members with 3 MPI tasks per member; then the first three MPI tasks are used to perform the assimilation analysis. The numbers
on the left of the model panel (a) are the ranks of the MPI tasks in the global MPI communicator. The grid cells with the same background
colour in the model panel belong to one ensemble member xk . The numbers with a yellow circle, which demonstrate the parallel domain
decomposition of the corresponding member, are the ranks of the MPI tasks in the model MPI communicator of the corresponding member.
The data assimilation panel (b) demonstrates how the member state xk is assembled into the ensemble matrix X while keeping the same
domain decomposition as the model members do.

gets the required nodes to start its run, obtains a member ID
(e.g. member 2© in Fig. 3), and then starts the execution of
that member in the same manner. When a job (e.g. job1 in
Fig. 3) finishes the execution of a member (e.g. member 1©

in Fig. 3), instead of being terminated the job continues to
obtain another member ID (e.g. member 4© in Fig. 3) from
the to-do list file and then starts the execution of that mem-
ber. The process is repeated until the to-do list file is empty.
The mechanism to lock and unlock the to-do list file is es-
sential to prevent the same member from being executed by
multiple jobs.

In most settings of resource management and scheduling
systems, the shorter the run time requested by a job is, the

shorter the queuing time is. The proposed scheme can spec-
ify a time limit of jobs to balance the queuing and the over-
heads. With a short time limit, which is not shorter than the
execution of a member or the DA component, a job reaches
its time limit and the executing member is interrupted. In
this case, the ID of the interrupted member is inserted into
the front of the to-do list so that the remaining running jobs
can restart the execution of the interrupted member. By care-
fully tuning the time limit of jobs, interruptions can be min-
imized. With this sophisticated scheme which dynamically
runs the members, sometimes the first few jobs have finished
the executions of all the members and the DA component;
the remaining jobs are still waiting in the queue and need to
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Figure 3. Schematic diagram illustrates one possible scenario of the
running processes of Ne ensemble members and DA with Nj jobs
(Ne = 8 and Nj = 5 in this example). The number (DA, also) with
a yellow circle is the ID of a member (data assimilation); its sur-
rounding colourful grid cell denotes the run duration of this mem-
ber (data assimilation). The blanks before the first colourful grid
cell, between the colourful grid cells, and after the last colourful
grid cell in each job are the queuing time, the overhead time be-
tween two consecutive running processes in a job, and the idle time,
respectively.

be cancelled (e.g. job5 in Fig. 3 will be automatically can-
celled after the finish of the DA component in job3). Thus,
this scheme substantially reduces the job queuing and over-
heads.

3.2 Parallel IO algorithm for improving the IO
performance

3.2.1 Lustre parallel file system

The parallel file system is a crucial component in a current
supercomputer. There are several parallel file systems. Lustre
parallel file system (http://lustre.org, last access: 18 Decem-
ber 2018) is best known for powering many of the largest
HPC clusters worldwide owing to its scalability and per-
formance. The Lustre parallel file system consists of five
key components (see Fig. 4). The metadata servers (MDSs)
make metadata (such as filenames, directories, permission,
and file layout) available to Lustre clients. The metadata tar-
gets (MDTs) store metadata and usually use solid-state discs
(SSDs) to accelerate the metadata requests. The object stor-
age servers (OSSs) provide file IO services and network re-
quests. The object storage targets (OSTs) are the actual stor-

age media where user file data are stored. The file data are
divided into multiple objects which are stored on a separate
OST. Lustre clients are computational, visualization, or desk-
top nodes that are running Lustre client software and mount
the Lustre file system. The interactive users or MPI tasks
make requests to open, close, read, or write files and the re-
quests are forwarded via a HPC interconnect to the MDS or
OSS which performs the actual operations.

The high performance of the Lustre file system is mainly
attributed to its ability to stripe data across multiple OSTs
in a round-robin fashion. Figure 5 illustrates how a file is
striped across multiple OSTs. A file is divided into multiple
segments of the same size (usually the last segment is in-
complete). The size of each segment can be specified by the
stripe size (denoted as “size” in Fig. 5) parameter when the
file is created. Similarly, the stripe count (denoted as “count”
in Fig. 5) parameter is the number of OSTs where the file is
stored and can be specified when the file is created. The pa-
rameters have default values unless specified explicitly and
cannot be changed after the creation of a file. In Fig. 5, the
file is divided into 13 segments and the stripe count param-
eter is equal to 5. The first segment goes to the first OST
and so on until the fifth segment goes to the fifth OST, which
is the last OST of this file; then, the sixth segment goes to
the first OST and so on. This pattern is repeated until the
last segment. The optimal stripe parameters usually depend
on the file size, the access pattern, and the underlying archi-
tecture of the Lustre file system. The stripe size parameter
must be a multiple of the page size, and using a large stripe
size can improve performance when accessing a very large
file. Because of the maximum size that can be stored on the
MDT, a file can only be striped over a finite number of OSTs.
With a large stripe count, a file can be read from or written
to multiple OSTs in parallel to achieve a high bandwidth and
significantly improve the parallel IO performance.

3.2.2 Parallel IO algorithm for multiple files

A restart file of the numerical model of a dynamical system
contains the instantaneous states of the system and other aux-
iliary variables. In general, a DA system assimilates the avail-
able observations which only update some state variables but
not all the variables in a restart file. Hence, it is desirable
to update old restart files rather than to create new restart
files from scratch. This way avoids copying the untouched
variables from old restart files to new restart files and will
further reduce the IO operations. As mentioned in Sect. 1,
several high-level libraries for parallel reading or writing a
netCDF file are available currently, but only the flexible PIO
(Edwards et al., 2018) supports update operations. One dis-
tinctive feature of the offline EnKF is that it needs to read
Ne restart files before computations and update these restart
files after computations. These restart files have an identical
structure. With this feature in mind, we propose an innova-
tive algorithm to read and update multiple files with an iden-
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Figure 4. Schematic diagram of a Lustre parallel file system; see Sect. 3.2.1 for the definitions of the abbreviations of MDS, OSS, MDT,
OST, and SSD.

Figure 5. Schematic diagram of the striping of a file across multiple OSTs in a Lustre parallel file system. The “size” and “count” are the
abbreviations of “stripe size” and “stripe count”, respectively. In this example, the stripe count is five and the file is divided into 12 segments
of a size equal to the stripe size. The number is the ID of a segment.

tical structure. Figure 6 illustrates the parallel reading of the
state variables xk from multiple restart files with an identical
structure; the writing or updating is in the same manner ex-
cept that scatter operations are changed to gather operations.

The algorithm for readingNe forecast ensemble files to the
matrix X is such that each member file is read into its corre-
sponding column of the matrix X. The rows of the matrix X
are partitioned by Nmpi MPI tasks. The information of this
partition is passed from the DA module to the IO module as
arguments so that the IO module and DA module have the
same domain decomposition of the state vectors. The Nmpi
MPI tasks are partitioned by Nio IO tasks in the IO module.

For writing the matrix X to Ne analysis ensemble files, the
scatter operations are changed to gather operations.

There are two modes (the independent and collective
mode) for all IO tasks to access a single shared file. With the
independent mode, each IO task accesses the data directly
from the file system without communicating or coordinating
with the other IO tasks. This usually works best if the appli-
cation is reading or writing large contiguous non-overlapping
blocks of data in the file with one IO request, because the
parallel file systems do very well with an access pattern like
that. In our proposed algorithm, an IO task reads or writes
only one non-overlapping block of data in a file each time,
so the independent IO mode is adopted.
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Figure 6. Schematic diagram illustrates the algorithm for reading
Ne (Ne = 6 for this example) forecast member files to a matrix
X=

[
x1, · · ·,x6

]
; that is, each member file is read into its corre-

sponding column of the matrix X. The numbers to the left of the
first column are the ranks of the MPI tasks that are in charge of the
corresponding row of the matrix X, and those with a yellow circle
are the IO tasks. The cells with the same colour are read simulta-
neously by the corresponding IO task, and then the IO tasks scatter
the read-in data to the MPI tasks that they are in charge of. In the
first stage, the IO tasks of 1©, 4©, 7©, 9©, 11©, 13©, 15©, and 17© read
the cells with the purple colour and then, for example, the IO task
of 1© scatters the read-in data to itself and the MPI tasks of 2 and
3. In subsequent stages, each IO task performs a right circular shift
by one column and then reads and scatters. This pattern is repeated
until all the files are read.

Another advantage of this algorithm is that the MPI com-
munication can be overlapped with the IO operation. For ex-
ample in Fig. 6, the IO task 1© in a nonblocking way scatters
the data read from file 1 to the MPI tasks 1, 2, and 3; it then
shifts to read file 2 without waiting for the previous scatter
operation to finish. When IO task 1© finishes its reading of
file 2, it checks (in most cases it does not need to wait) the
finish of the previous scatter operation since the MPI commu-

nication time is usually significantly shorter than the IO time;
it then in a nonblocking way scatters the data read from file 2
to the MPI tasks 1, 2, and 3; it then shifts to read the next file
in the same manner until all the files are read. Other IO tasks
are in the same manner. And a similar method is applied for
the writing or updating operation. This almost eliminates the
MPI communication time, which significantly improves the
performance of these parallel IO operations.

4 Experimental environments, designs, and results

All the experiments are performed on the research supercom-
puter Beaufix in Météo-France, which is a Linux cluster built
by BULL company. The SLURM system is used for the clus-
ter management and the job scheduling. And this machine is
equipped with a highly scalable Lustre file system of 156
OSTs. The parallel IO algorithm developed by ourselves can
use both PnetCDF and netCDF with parallel HDF5 as the
back end. PnetCDF 1.10.0 is adopted for all the experiments
in this study.

PDAF is an open-source parallel data assimilation frame-
work that provides fully implemented data assimilation al-
gorithms, in particular ensemble-based Kalman filters like
LETKF and LESTKF. PDAF is optimized for large-scale ap-
plications run on big supercomputers in both research and
operational contexts. We chose PDAF as the basis to imple-
ment the proposed offline and online EnKFs using the effi-
cient methods described in Sect. 3, because it has interfaces
for both offline and online modes. With this unified basis,
the study comprehensively assesses the efficiency of the of-
fline and online EnKFs in terms of the time to solution, job
queuing time, and IO time. We refer the readers to the PDAF
website (PDAF, 2018) for more detailed information.

4.1 Assessing the proposed parallel IO algorithm

4.1.1 Experiments for assessing the proposed parallel
IO algorithm

The key advantage of the Lustre file system is that it has
many parameters that can be tuned by the user to maximize
the IO performance according to the characteristics of the
files and the configuration of the file system. The most rele-
vant parameters are the stripe size and the stripe count. The
Lustre manual provides some guidelines on how to tune these
parameters. It is interesting to see how the different combina-
tions of the stripe size and the stripe count affect the perfor-
mance of the proposed parallel IO algorithm with different
numbers of IO tasks. Moreover, it is practical to determine
the reasonable combination of these parameters by trial and
error. Thus, a simple program using the proposed IO algo-
rithm, which reads 40 files in parallel (each file is about 5 GB
in size) into a matrix X as illustrated in Fig. 6 and then writes
in parallel the matrix X back to the 40 files, is developed
to record the IO times and the MPI communication times
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for each run. Each experiment is run with 1024 MPI tasks
and takes a different combination of the stripe size, the stripe
count, and the number of IO tasks. The stripe size can be 1,
2, 4, 8, 16, 32, and 64 MB; the stripe count can be 1, 2, 4, 8,
16, 32, 64, and 128; and the number of IO tasks can be 1, 2,
4, 8, 16, 32, 64, 128, 256, 512, and 1024. Thus, there are 616
experiments in total.

4.1.2 Performance of the proposed parallel IO
algorithm

Figure 7 shows how the combination of the stripe count and
size has an influence on the IO performance. An obvious fea-
ture in Fig. 7 is that the IO times are always large when the
stripe count is small regardless of the stripe size (e.g. when
the stripe count is 1 or 2). This is reasonable because the
small stripe count means a small number of OSTs are used
for storing the file; that is, it prevents high concurrent IO op-
erations. But if the number of IO tasks for the file is signif-
icantly larger than the number of OSTs, the heavy competi-
tion of IO tasks for the same OST actually increase the IO
times substantially. On the other hand, the IO time with a
small stripe size but a large stripe count gradually decreases
as the number of IO tasks increases (see the cases with the
stripe size of 1 or 2 MB but with stripe count of 64 or 128 in
Fig. 7). A small stripe size but a large stripe count means that
there are many small blocks of the large file (about 5 GB in
this case) distributed over many OSTs; that is, each IO task
needs to perform IO operations over a large number of OSTs
when the number of IO tasks is small; increasing the number
of IO tasks reduces the number of OSTs on which each IO
task operates, thus reduces the IO times. For the same reason,
a large stripe count allows for high concurrent IO operations
and less competition; a large stripe size further reduces the
number of OSTs on which one IO task operates when the file
is large; therefore, the combination of a large stripe count and
a large stripe size with a large number of IO tasks generally
reduces the IO time for a large file, as is evident in the four
panels of Fig. 7 since all the IO times converge to the least
with a stripe count of 128 and a stripe size of 64 MB. These
imply that the combination of the large stripe count with the
large stripe size usually produces a small IO time for a large
file. These results suggest that it is important to have a con-
sistent combination of the stripe count and the stripe size in
line with the size of the file and the number of IO tasks for a
better IO performance.

In Fig. 7, the best IO performance is obtained with a stripe
count of 128 and a stripe size of 64 MB for the cases of
32, 64, 128, and 256 IO tasks. For other cases of different
numbers of IO tasks, a similar pattern is obtained (figures
not shown). Owing to the smaller size of files, the stripe
count of 128 and the stripe size of 1 MB are chosen as the
combination of these two parameters with 40 (160) IO tasks
for the medium-scale (large-scale) experiments described in
Sect. 4.2.1 to compare the offline and online EnKFs.

The IO throughput is the amount of data read or written per
second. Fig. 8a shows that the IO time and the IO throughput
vary as a function of the number of IO tasks. The IO time
and the IO throughput are the averages of all the 616 exper-
iments described in Sect. 4.1.1, and they are grouped by the
number of IO tasks. The IO times (blue line in Fig. 8a) de-
crease quickly from about 1500 s to about 60 s as the increase
in the number of IO tasks and then maintain nearly constant
with a large number of IO tasks. The best IO performance
is achieved with 1024 IO tasks; it takes about 60 s to read
and write 40 restart files (each file has a size of about 5 GB).
For the same reason (the smaller size of files), the number of
IO tasks is set to 40 (160) for the medium-scale (large-scale)
experiments described in Sect. 4.2.1 to compare the offline
and online EnKFs. And the variance of the IO times is large
with a large number of IO tasks. The IO throughput increases
gradually as the number of IO tasks increases. The maxi-
mum IO throughput is more than 1500 MB s−1. Because the
IO throughput is the average of different combinations of the
stripe count and the stripe size, it can be beyond 2000 MB s−1

with the optimal combinations of these two stripe parameters
(not shown). The variance of the IO throughput is propor-
tional to the IO throughput. It is interesting to find that the
proposed IO algorithm scales well since we do not see an
apparently saturated IO time up to 1024 IO tasks.

In Fig. 8b, the IO time in Fig. 8a is decomposed into the
time for opening and closing, the time for reading and writ-
ing, and the MPI communication time. The reading and writ-
ing time is dominant, and its pattern is similar to that of the
IO time in Fig. 8a. It is at least 2 orders of magnitude larger
than the other two terms. The opening and closing time is
slightly oscillating around 3 s. This opening and closing time
is somewhat larger than that in a local filesystem, because
the Lustre clients need to communicate with the metadata
servers. The MPI communication time decreases as the num-
ber of IO tasks increases, and it is larger (smaller) than the
opening and closing time with a small (large) number of IO
tasks. Even though the MPI communication is overlapped
with the IO operations, there is a waiting time for the finish
of the last reading or the first writing in our proposed algo-
rithm. Thus, we believe that the major MPI communication
time is dominated by this waiting time. Otherwise, the MPI
communication time should be negligible if it is completely
hidden behind the IO operations.

The impact of the stripe parameters on the IO performance
depends on many factors such as the configuration and hard-
ware of a Lustre system, the number and size of files to be
read or written, and so on. So the exact value of the IO per-
formance might vary with the situation of applications, but
the statistics should give some meaningful insights into how
these parameters affect the IO performance and what is the
optimal combination for a situation.
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Figure 7. IO times of different combinations of the stripe count and stripe size with 32 (a), 64 (b), 128 (c), and 256 (d) IO tasks of 1024 MPI
tasks for reading and writing 40 restart files using the proposed IO algorithm illustrated in Fig. 6. The size of each restart file is about 5 GB.

Figure 8. In the upper panel, the IO time (blue line) and throughput (black line) vary as a function of the number of IO tasks for reading
and writing 40 restart files with 1024 MPI tasks using the proposed IO algorithm illustrated in Fig. 6. The shadings indicate the ranges
between plus and minus 1 standard deviation. The size of each restart file is about 5 GB. In the lower panel, the IO time in the upper panel
is decomposed into the time for opening and closing (black line), the time for reading and writing (blue line), and the MPI communication
time (red line).
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4.2 Comparing the offline and online EnKFs

4.2.1 Experiments for comparing the offline and online
EnKFs

The ultimate goal of this study is to develop an offline frame-
work for high-dimensional ensemble Kalman filters which is
at least as efficient as, if not faster than, its online counterpart
in terms of the time to solution. Table 1 summarizes the ex-
periments for comparing the offline and online EnKFs. The
number of ensemble members is 40 for all experiments in Ta-
ble 1. All the experiments use the same number of MPI tasks
for each ensemble member regardless of the mode (offline
or online) of the EnKF so that the model time and the anal-
ysis time are comparable. For the example in Table 1, the
medium- and large-scale problems use one node per mem-
ber and four nodes per member, respectively. Since each
node of our supercomputer has 40 cores, the online EnKF
requires 1600 (6400) MPI tasks for the medium-scale (large-
scale) problem. But the number of MPI tasks for the offline
EnKF dynamically ranges from 40 (160) to 800 (3200) for
the medium-scale (large-scale) problem depending on the
available nodes during its running processes. The large-scale
problem requires a large number of computer nodes, which
may imply a long queuing time for the simultaneous avail-
ability of such a large number of nodes, but it has a lower
IO cost for the online mode. In contrast, our proposed offline
framework does not require all the computer nodes for all
the members to be available simultaneously, but the IO cost
may be high because of the intermediate outputs between the
forecast phase and the analysis phase. Thus, a medium-scale
problem and a large-scale problem are designed to address
the dependence of time to solution on the scale of the prob-
lem. The medium- and large-scale problems are land grid
points of a global field with resolutions of 0.1 and 0.05◦,
respectively. The size of the state vector for the medium-
and large-scale problems are 2 127 104 and 8 498 681, re-
spectively. Each of the experiments in Table 1 is repeated
15 times, which is equivalent to 15 assimilation cycles, to
obtain robust statistics of measured times. As in real scenar-
ios, other auxiliary variables besides the state variables, such
as the location and patch fraction, are needed to be read for
the full functionality of the model and DA. The correspond-
ing restart files including the auxiliary variables are about
0.3 and 1.0 GB for the medium- and large-scale problems,
respectively. Thus, both the offline and online EnKFs read
and update all the variables in the restart files to assess their
performances to a limit.

Both the background members and the observations are
synthetic data in these experiments for both the offline and
online EnKFs. These synthetic data are formed by the land
grid points of the idealized global fields described in the
following. The horizontal resolution of the global field is
1x =

2π
nx

and 1y = π
ny

, where nx and ny are the numbers of
grid points in longitude and latitude, respectively. The value

Table 1. Experiments for comparing the offline and online EnKFs.

Medium-scale problem Large-scale problem

state vector size= 2127104 state vector size= 8498681
job time limit= 20 min job time limit= 80 min
one restart file size= 0.3 GB one restart file size= 1.0 GB

Offline 20 jobs and 1 node per job 20 jobs and 4 nodes per job
Online 1 job and 40 nodes per job 1 job and 160 nodes per job

of nx (ny) is 3600 (1800) and 7200 (3600) for the medium-
and large-scale problems, respectively. The ensemble mem-
bers and observations are generated from the following hy-
pothetical true state (see Fig. 9a):

stateti,j = sin
(
−3+

4 · i ·1x
2π −1x

)2

cos
(
−2+

4 · j ·1y
π −1y

)3

. (10)

The members (figures not shown) are generated by randomly
shifting the true state in longitude:

stateki,j =sin
(
−3+

4 · i ·1x
2π −1x

+1s

)2

cos
(
−2+

4 · j ·1y
π −1y

)3

, (11)

where the superscript k ∈ [1,Ne] denotes the ID of a mem-
ber, i ∈ [0,nx − 1] and j ∈ [0,ny − 1] are the longitude and
latitude index of the grid point, respectively, and1s is a shift
drawn from a uniform distribution on [−0.5,0.5]. The obser-
vations (see Fig. 9d) are the true state values plus the obser-
vation errors at the grid points randomly picked from the to-
tal grid points. The number of observations is equal to 10 %
of the number of the total grid points, and the observation
errors are drawn from a normal distribution with a mean of
zero and a variance of 0.252. Thus, the observation operator
simply becomes H(x)≡ x. All these fields are written to the
corresponding NetCDF files in advance so that the offline or
online EnKFs can read them at the beginning of each cycle.

All the assimilation experiments use the LESTKF scheme
with a localization radius of 50◦, and the localization scheme
by Nerger et al. (2012b) which calculates the localization
weights using a fifth-order polynomial (Gaspari and Cohn,
1999). Because localization weights decrease smoothly to
zero as the influence radius increases to the specified thresh-
old, this fact guarantees the continuity of the global analy-
sis at boundaries of subdomains after the local analyses are
mapped back onto the global domain. We refer readers to the
paper by Nerger et al. (2012a) for a full description of the ES-
TKF and the paper by Nerger et al. (2006) for the domain and
observation localizations using LESTKF. The multiplicative
coefficient of covariance inflation is set to one to keep its
computation, but it has no effect on the covariance matrix so
that the total computational time includes a similar compu-
tational time of covariance inflation whether it takes effect
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Figure 9. The synthetic fields of the true state (a), the posterior state (b) after the assimilation, the prior state (c) before the assimilation, and
the observations (d) for the medium-scale problem. Please refer to the second paragraph of Sect. 4.2.1 for the generations of these synthetic
fields.

or not. For the sake of experiments, the model simply reads
its initial condition, sleeps one second, and writes its restart
file for the offline mode or sends its states to the DA com-
ponent for the online mode. In the offline mode, each model
member reads its corresponding initial condition and writes
the corresponding restart file. Then the DA component reads
the restart files, performs the analysis, and writes the analysis
ensemble files. In the online mode, each model member only
reads its corresponding initial condition, and the DA compo-
nent writes the analysis ensemble files. All these IO opera-
tions are done by the proposed parallel IO algorithm, which
certainly can read or write one file or multiple files in paral-
lel. This makes it possible to fairly compare their IO times.
The jobs of the first assimilation cycle of the offline and on-
line EnKFs for the medium-scale problem are submitted at
the same time, and the jobs of the next cycle are submitted
without any delays after the completion of the previous cy-
cle; this repeats until the last cycle and so does the large-scale
problem. This manner guarantees the fair comparison of the
queuing times since the offline and online EnKFs are in the
same loaded condition of the supercomputer.

4.2.2 Results of comparing the offline and online
EnKFs

Figure 9b is the analysis mean xa obtained by the offline or
online EnKF. Compared to the initial state (Fig. 9c), which is
the ensemble mean xf before the assimilation, it can be seen
that the analysis mean xa (Fig. 9b) is significantly close to
the true state (Fig. 9a), especially over the northern Canada,

Greenland, and north-western Africa. The only difference be-
tween the offline and online EnKFs is the coupling mode,
which only affects the time to solution, so they produce iden-
tical analysis results. Therefore, the following evaluations fo-
cus on the differences in the times between the offline and on-
line EnKFs. In a research context, the queuing time is largely
dependent on the loaded condition of the supercomputer, so
the time to solutions of all the experiments in Table 1 are
assessed at times, such as at the weekend, when the super-
computer has a low load and at times, such as during the
weekday, when the supercomputer has a high load.

In the offline mode for the assimilation cycle j , each
model member whose ID is k records its running time (the
actual executing time) tmjk , which includes its IO time tmjk, IO,
and the DA component records its running time taj , which in-
cludes its IO time tak, IO. Thus, the running time and the IO
time of the assimilation cycle j are

tj, running =

∑k=Ne
k=1 tmjk

Ne
+ taj (12)

and

tj, IO =

∑k=Ne
k=1 tmjk, IO

Ne
+ taj, IO, (13)

respectively. In the online mode, tj, running and tj, IO are ex-
plicitly recorded by the online EnKF owing to the online cou-
pling of the model and the DA component.
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Thus, the average running time and the average IO time of
an assimilation cycle are calculated as

t running =

∑j=15
j=1 tj, running

15
(14)

and

t IO =

∑j=15
j=1 tj,IO

15
, (15)

respectively. Similarly, the average queuing time of an assim-
ilation cycle is

tqueuing =

∑j=15
j=1 tj, queuing

15
, (16)

where tj, queuing is the queuing time of the first running job in
the assimilation cycle j . Since this study is interested in the
time to solution, the EnKF system records the elapsed time
from the beginning to the end of 15 assimilation cycles as the
time to solution, tsolution. Thus, the average of the total time
of an assimilation cycle is t total =

tsolution
15 . Except for the total

time, the standard deviation can be calculated as

σx =

√∑j=15
j=1 (tj,x − tx)

2

14
, (17)

where x can be “queuing”, “running”, or “IO”. Thus, t total,
tqueuing, t running, and t IO correspond to the columns of “to-
tal”, “queuing”, “running”, and “IO” in Table 2, respectively.
Table 2 summarizes these average times of the offline and
online EnKFs for both medium- and large-scale problems in
both low- and high-loaded situations. Figure 10 shows the
statistics of the total time, the queuing time, and the running
time of 15 assimilation cycles for both medium- and large-
scale problems in both low-loaded and high-loaded condi-
tions. It can be seen from Fig. 10 that the running time of the
offline EnKF is the same as that of the online EnKF for both
medium- and large-scale problems regardless of the loading
conditions of the supercomputer.

In the low-loaded condition (Fig. 10a, b), it is surprising
that the IO time of the offline EnKF is about 29 % (37 %)
longer than that of the online EnKF for the medium-scale
(large-scale) problem. In principle, the former should be
twice as large as the later. The possible explanation is that
this IO time might be affected by the jitter of the super-
computer including the underlying networks and the Lustre
file system. From Table 2, it can be shown that the IO time
of the offline (online) EnKF only accounts for a fraction of
about 6.6 % (2.8 %) and 2.4 % (1.3 %) of the total time for the
medium- and large-scale problems, respectively. It is obvious
that with the proposed IO algorithm, the IO time becomes
a less severe problem as the scale of the problem increases
since the analysis time becomes dominant. The queuing time
is slightly less than the running time for the offline EnKF,

but the queuing time is 2 to 4 times larger than the running
time for the online EnKF. Even in such a low-loaded condi-
tion, it is evident that the offline mode has a shorter queuing
time than the online mode, because the online mode simul-
taneously requires significantly more nodes than the offline
mode. Thus, the offline EnKF is faster than the online EnKF
in terms of the time to solution. In the limit of zero queuing
time, the former is at least as fast as the later. Therefore, the
dynamically running job scheme described in Sect. 3.1 does
reduce the queuing time. In other words, it can be shown
from Table 2 that the offline mode is nearly 45 % (26 %)
faster than the online mode in terms of time to solution for
the medium-scale (large-scale) problem.

In the high-loaded condition (Fig. 10c, d), the IO times
increase a bit owing to the loaded condition of the underly-
ing Lustre file system. Even the IO time for the medium-
scale problem is larger than that for the large-scale prob-
lem; this implies that loading conditions also affect IO per-
formances. But it can be shown from Table 2 that the IO
time of the offline (online) EnKF is still as small as a frac-
tion of about 8.8 % (2.8 %) and 1.4 % (0.4 %) of the total
time for the medium- and large-scale problems, respectively.
Except for the offline mode for the medium-scale problem,
the queuing times (especially for the online mode) are sub-
stantially larger than the running time. For the medium-scale
problem (Fig. 10c), the queuing time of the offline mode is
even less than the running time, because it is common that
there are some dispersed nodes available in a high-loaded
supercomputer. The offline mode which requires few nodes
can quickly obtain the available nodes to start its running.
For the large-scale problem (Fig. 10d), the queuing time of
the offline mode is a factor of around 1.7 (estimated from
Table 2) larger than the running time. On the contrary, the
queuing times of the online mode are a factor of around 6.0
and 10.1 (estimated from Table 2) larger than the running
time for the medium- and large-scale problems, respectively.
In such an occasion, the queuing time dominates the time to
solution; thus, the offline mode is significantly faster than the
online mode. Thus estimated from Table 2, the offline mode
is about 55 % and 67 % faster than the online mode in the
high-loaded condition.

Comparing the queuing times for the large-scale problem
in Table 2, it can be seen that in a high-loaded condition they
are several times larger than those in a low-loaded condi-
tion. The queuing time becomes dominant for a large-scale
problem in a high-loaded supercomputer. The offline EnKF
is significantly faster than the online EnKF in terms of time
to solution. As the numerical model is of a higher and higher
resolution, the offline EnKF might be a better option than the
online EnKF for a high-dimensional system in terms of time
to solution, at least in a research context.

From Fig. 10, it can be seen that the variances of both the
running time and the IO time are negligible, but the variance
of the queuing time is even larger than its average value ex-
cept for the large-scale problem in the high-loaded condition.
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Table 2. The average times in seconds of the offline and online EnKFs in low- and high-loaded situations for medium- and large-scale
problems. The number in parentheses is the percent to the corresponding total time.

Medium-scale problem Large-scale problem

Total Queuing Running IO Total Queuing Running IO

Low-loaded
offline 1286 377 (29 %) 455 (35 %) 85 (6.6 %) 5381 2132 (40 %) 2314 (43 %) 130 (2.4 %)
online 2352 1786 (76 %) 438 (19 %) 66 (2.8 %) 7301 4500 (62 %) 2271 (31 %) 95 (1.3 %)

High-loaded
offline 1920 442 (23 %) 540 (28 %) 169 (8.8 %) 9303 6150 (66 %) 2306 (25 %) 128 (1.4 %)
online 4266 3447 (81 %) 495 (12 %) 120 (2.8 %) 28110 25337 (90 %) 2282 (8 %) 104 (0.4 %)

Figure 10. The average total time, queuing time, running time, and IO time of the offline (red bars) and online (blue bars) EnKFs for the low-
loaded (a, b) and high-loaded (c, d) conditions. The left panels (a, c) and right panels (b, d) are for the medium- and large-scale problems,
respectively. The green line indicates the corresponding standard deviation.

This means the instantaneously loaded condition of the su-
percomputer varies greatly even in the low-loaded condition.
A careful examination of the recorded times highlights that
the large variance comes from the extremely large queuing
time of one or two cycles. Because of this varied high-loaded
condition, the dynamically running job scheme has its place
to play its strength.

To summarize, the offline mode is faster than the online
mode in terms of time to solution for an intermittent data as-
similation system, because the queuing time is dominant and
the IO time only accounts for a small fraction of the total
time with the proposed IO algorithm. Even in the situation
where the queuing time is negligible, the offline mode can be
at least as fast as the online mode with the proposed IO algo-
rithm and the dynamically running job scheme. The queuing
times as well as the total times vary with the loading condi-

tions of a supercomputer, but these statistics shed some light
on how the queuing time influences the time to solution of an
EnKF system.

5 Conclusion and discussion

With the sophisticated dynamically running job scheme and
the innovative parallel IO algorithm proposed in the study,
a comprehensive assessment of the total time, the queuing
time, the running time, and the IO time between the offline
and online EnKFs for medium- and large-scale assimilation
problems is presented for the first time. This study not only
provides the detailed technical aspects for an efficient im-
plementation of an offline EnKF but also presents the thor-
ough comparisons between the offline and online EnKFs in
terms of time to solution, which opens new possibilities to
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re-examine the applicable conditions of the offline and on-
line EnKFs.

In summary, the proposed parallel IO algorithm can drasti-
cally reduce the IO time for reading or writing multiple files
with an identical structure. The tuning parameters of a stripe
count and a stripe size should be consistent, and high values
of these two parameters usually allow for high concurrent
IO operations and low competitions which significantly re-
duce the IO time. Using the proposed parallel IO algorithm,
the running times of both offline and online EnKFs for high-
dimensional problems are almost the same since the IO time
only accounts for a small fraction, which further decreases as
the scale of the problem increases. This implies that the pro-
posed parallel IO algorithm is very scalable. On the contrary,
in a low-loaded supercomputer, the queuing time might be
equal to or less than the running time; thus, the offline EnKF
is at least as fast as, if not faster than, the online EnKF in
terms of the time to solution, because the offline mode re-
quires less simultaneously available nodes and more easily
and quickly obtains the requested nodes to reduce the queu-
ing time than the online mode. But in a high-loaded super-
computer, the queuing time is usually several times larger
than the running time, thus the offline EnKF is substantially
faster than the online EnKF in terms of time to solution be-
cause the queuing time is dominant in such a circumstance.
Therefore, the loaded condition of a supercomputer varies
greatly, which justifies the dynamically running job scheme
of an offline EnKF.

It is evident that the offline EnKF can be as fast as, if not
faster than, the online EnKF. On average, the offline mode is
significantly faster than the online mode in the research con-
text. Even in the operational context where the queuing time
can be negligible, the offline mode still has an advantage over
the online mode. This is because the online mode never has
a chance to run when the total nodes required are larger than
the total nodes of a supercomputer if the number of members
is so large. In general, the observations are only available at
a regular time interval; that is, not every time step of the nu-
merical model has observations for the assimilation. Thus,
most DA systems are an intermittent system. Therefore, with
a good implementation and a high-performance parallel file
system, an offline mode is still preferred with the perspec-
tive of the techniques proposed in this study because of their
easy implementations and promising efficiencies. In the cli-
mate modelling context, even the assimilation is intermittent
and an online mode might be appropriate, because the model
can run a very long time once it has started. The running time
substantially outweighs the queuing time.

In terms of job management, other job scheduling systems
are similar to the one (SLURM) used in this paper, so the dy-
namically running job scheme also works for these systems
and can be adapted with minor changes. Other parallel file
systems may be different from the Lustre parallel file system
in many aspects. But, in principle, they all have a feature to
distribute a file over multiple storage devices for supporting

concurrent IO operations. And the proposed parallel IO algo-
rithm does not rely on any specific characteristics of the Lus-
tre parallel file system; that is, similar conclusions could be
obtained for other parallel IO file systems. Thus, we believe
that the techniques proposed in this paper can be generalized
to other supercomputers and even to future supercomputer
architectures.

For a high-dimensional system with a large number of en-
semble members, the total size of the output files is extremely
large. This poses a great burden to archive these files. Even
though the archiving is not a critical component of an EnKF
system, the time to solution can be further reduced if the
archiving is implemented properly. We also implemented a
very practical method to asynchronously archive the output
files to a massive backup server with compressing and trans-
ferring on the fly. This method further reduces the time to
solution of an EnKF system. The details of this method are
beyond the scope of this paper. The techniques proposed in
this paper are being incorporated into the offline framework
of LDAS-Monde at Météo-France.

Code availability. PDAF is publicly available at http://pdaf.awi.de
(last access: 14 August 2020). The offline and online EnKFs built on
top of PDAF for all experiments presented in this paper are available
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