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Abstract. LDAS-Monde is a global offline land data as-
similation system (LDAS) that jointly assimilates satellite-
derived observations of surface soil moisture (SSM) and
leaf area index (LAI) into the ISBA (Interaction between
Soil Biosphere and Atmosphere) land surface model (LSM).
This study demonstrates that LDAS-Monde is able to de-
tect, monitor and forecast the impact of extreme weather
on land surface states. Firstly, LDAS-Monde is run glob-
ally at 0.25◦ spatial resolution over 2010–2018. It is forced
by the state-of-the-art ERA5 reanalysis (LDAS_ERA5) from
the European Centre for Medium Range Weather Forecasts
(ECMWF). The behaviour of the assimilation system is eval-
uated by comparing the analysis with the assimilated ob-
servations. Then the land surface variables (LSVs) are val-
idated with independent satellite datasets of evapotranspi-
ration, gross primary production, sun-induced fluorescence
and snow cover. Furthermore, in situ measurements of SSM,
evapotranspiration and river discharge are employed for the
validation. Secondly, the global analysis is used to (i) de-
tect regions exposed to extreme weather such as droughts
and heatwave events and (ii) address specific monitoring
and forecasting requirements of LSVs for those regions.
This is performed by computing anomalies of the land sur-
face states. They display strong negative values for LAI and
SSM in 2018 for two regions: north-western Europe and the
Murray–Darling basin in south-eastern Australia. For those

regions, LDAS-Monde is forced with the ECMWF Inte-
grated Forecasting System (IFS) high-resolution operational
analysis (LDAS_HRES, 0.10◦ spatial resolution) over 2017–
2018. Monitoring capacities are studied by comparing open-
loop and analysis experiments, again against the assimilated
observations. Forecasting abilities are assessed by initializ-
ing 4 and 8 d LDAS_HRES forecasts of the LSVs with the
LDAS_HRES assimilation run compared to the open-loop
experiment. The positive impact of initialization from an
analysis in forecast mode is particularly visible for LAI that
evolves at a slower pace than SSM and is more sensitive to
initial conditions than to atmospheric forcing, even at an 8 d
lead time. This highlights the impact of initial conditions on
LSV forecasts and the value of jointly analysing soil mois-
ture and vegetation states.

1 Introduction

Extreme events are likely to increase in frequency and/or
magnitude as a result of anthropogenic climate change
(IPCC, 2012; Ionita et al., 2017). Amongst all the natu-
ral disasters, droughts are arguably the most detrimental
(Bruce, 1994; Obasi, 1994; Cook et al., 2007; Mishra and
Singh, 2010; WMO, 2017), as about one-fifth of damages
caused by natural hazards can be attributed to droughts (Wil-
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hite, 2000). They cost society billions of dollars every year
(WMO, 2017). It is therefore important for communities to
develop tools that can monitor and predict drought condi-
tions (Svoboda et al., 2002; Luo and Wood, 2007; Blyverket
et al., 2019) as well as their impact on land surface variables
(LSVs) and society (Di Napoli et al., 2019). A major scien-
tific challenge in relation to the adaptation to climate change
is to observe and simulate how land biophysical variables re-
spond to those extreme events (IPCC, 2012).

Droughts are generally caused by a lack of precipitation.
However, different drought types are classified according to
the part of the hydrological cycle that suffers from a wa-
ter deficit (IPCC, 2014; Barella-Ortiz and Quintana-Seguí,
2019). They include meteorological droughts (lack of pre-
cipitation), agricultural droughts (deficit of water in the soil),
hydrological droughts (deficit of streamflow or water level
in rivers) and environmental droughts (a combination of the
previous drought types). Because of the effect of precipita-
tion deficit on the whole hydrological system, all drought
types are related (Wilhite, 2000). Complex interactions be-
tween continental surface and atmospheric processes have to
be combined with human action in order to fully understand
the wide-ranging impacts of droughts on land surface condi-
tions (Van Loon, 2015). As a consequence, land surface mod-
els (LSMs) driven by high-quality gridded atmospheric vari-
ables and coupled to river-routing systems are key tools to
address these challenges (Dirmeyer et al., 2006; Schellekens
et al., 2017). Initially developed to provide boundary con-
ditions to atmospheric models, LSMs can now be used to
monitor and forecast land surface conditions (Balsamo et
al., 2015, 2018; Schellekens et al., 2017). Additionally, the
representation of LSVs by LSMs can be improved by cou-
pling LSMs with other models of the Earth system like atmo-
sphere, oceans and river routing (e.g. de Rosnay et al., 2013,
2014; Kumar et al., 2018; Balsamo et al., 2018; Rodríguez-
Fernández et al., 2019; Muñoz-Sabater et al., 2019).

Earth observations (EOs) provide long-term records,
which can complement LSMs. Satellite products are partic-
ularly relevant for the monitoring of LSVs. Satellite EOs re-
lated to the terrestrial hydrological, vegetation and energy
cycles are now available globally, at kilometric scales and
below (e.g. Lettenmaier et al., 2015; Balsamo et al., 2018).
Combining EOs and LSMs through land data assimilation
systems (LDASs) can lead to enhanced initial land surface
conditions (e.g. Reichle et al., 2007; Lahoz and De Lan-
noy, 2014; Kumar et al., 2018; Albergel et al., 2017, 2018a,
2019; Balsamo et al., 2018). Subsequently, this can bene-
fit weather forecasts, including temperature and precipita-
tion. It can also indirectly benefit agricultural and vegeta-
tion productivity prediction, streamflow prediction, warning
systems for floods and droughts and the representation of
the carbon cycle (Bamzai and Shukla, 1999; Schlosser and
Dirmeyer, 2001; Bierkens and van Beek, 2009; Koster et al.,
2010; Bauer et al., 2015; Massari et al., 2018; Albergel et
al., 2018a, 2019; Rodríguez-Fernández et al., 2019; Muñoz-

Sabater et al., 2019). Amongst the current land-only LDAS
activities, several are led by NASA (National Aeronautics
and Space Administration) projects. Examples of such activi-
ties are the Global Land Data Assimilation System (GLDAS,
Rodell et al., 2004), the North American Land Data Assim-
ilation System (NLDAS, Xia et al., 2012a, b) and the Na-
tional Climate Assessment-Land Data Assimilation System
(NCA-LDAS, Kumar et al., 2016, 2018, 2019). The Famine
Early Warning Systems Network (FEWS NET) Land Data
Assimilation System (FLDAS, McNally et al., 2017) is run
over western, eastern and southern Africa. Additional ex-
amples include the Carbon Cycle Data Assimilation System
(CCDAS, Kaminski et al., 2002), the Coupled Land Vegeta-
tion LDAS (CLVLDAS, Sawada and Koike, 2014; Sawada
et al., 2015), the Data Assimilation System for Land Sur-
face Models using CLM4.5 (Fox et al., 2018) and the SMAP
(Soil Moisture Active Passive) level 4 system (Reichle et al.,
2019). Finally, LDAS-Monde (Albergel et al., 2017, 2018,
2019) was developed by the research department of Météo-
France. Details of these studies are provided by Kumar et
al. (2018) and Albergel et al. (2019), but few applications are
global and include the assimilation of multiple EOs.

LDAS-Monde consists in an offline (i.e. non-coupled with
the atmosphere) joint assimilation of surface soil moisture
(SSM) and leaf area index (LAI) EOs into the ISBA (Inter-
action between Soil Biosphere and Atmosphere) LSM (Noil-
han and Planton, 1989; Noilhan and Mahfouf, 1996). Several
previous studies using LDAS-Monde have been published at
regional and continental scales (Albergel et al., 2017, 2018,
2019; Leroux et al., 2018; Tall et al., 2019; Blyverket et al.,
2019; Bonan et al., 2020). In this study, LDAS-Monde is run
at the global scale and is forced by the latest atmospheric
reanalysis (ERA5) from the European Centre for Medium
Range Weather Forecasts (ECMWF), over 2010–2018. The
resulting 0.25◦ spatial resolution reanalysis of the LSVs is
hereafter referred to as LDAS_ERA5. In this paper, it is
shown that LDAS-Monde can be used to detect, monitor and
forecast the impact of extreme events on LSVs. The follow-
ing items are presented and discussed.

– An evaluation of LDAS-Monde at a global scale is car-
ried out. This assessment involves the assimilated ob-
servations to demonstrate that the system is working
as intended. Importantly, LDAS-Monde is then vali-
dated using diverse, independent and complementary
satellite-derived datasets of evapotranspiration (EVAP)
from the GLEAM project (Miralles et al., 2011; Martens
et al., 2017), gross primary production (GPP) from
the FLUXCOM project (Tramontana et al., 2016, Jung
et al., 2017), solar-induced fluorescence (SIF) from
the GOME-2 (Global Ozone Monitoring Experiment-2)
scanning spectrometer (Munro et al., 2006, Joiner et al.,
2016) and snow-cover data from the Interactive Multi-
sensor Snow and Ice Mapping System (IMS, https://
www.natice.noaa.gov/ims/, last access: June 2019). Ad-
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ditional validations are performed with in situ mea-
surements of evapotranspiration from the FLUXNET
2015 synthesis dataset (http://fluxnet.fluxdata.org/, last
access: June 2019), soil moisture from the Interna-
tional Soil Moisture Network (ISMN, Dorigo et al.,
2011, 2015, https://ismn.geo.tuwien.ac.at/en/, last ac-
cess: June 2019) and river discharge from several net-
works across the world.

– The LDAS-Monde global analysis over 2010–2018 is
used to detect droughts and heatwave events in 2018.
This identification is performed by computing anoma-
lies of LSVs over the 9-year period and identifying
where the strongest negative anomalies are located in
2018. For the identified regions, the abilities of LDAS-
Monde to forecast such events in near-real time is inves-
tigated by forcing it with high-resolution forecasts from
the ECMWF.

The paper is organized into five sections: Sect. 2 details the
various components constituting LDAS-Monde (the ISBA
LSM, the data assimilation scheme, the EOs assimilated as
well as the different atmospheric forcing datasets used), fol-
lowed by the experimental and evaluation setups. Section 3
describes and discusses the impact of the analysis on the
representation of the LSVs. Section 4 details the identifica-
tion of two case studies over regions particularly affected by
extreme heatwave events during 2018. Furthermore, the de-
tailed monitoring and land surface forecasts of these events
are presented at higher spatial resolution. Finally, Sect. 5 pro-
vides conclusions and prospects for future work.

2 Material and methods

The following subsections briefly describe the main compo-
nents of LDAS-Monde: the ISBA LSM, its data assimilation
scheme and two other key elements of the setup: atmospheric
forcing and assimilated satellite-derived observations. The
experimental setup and the evaluation datasets used in this
study are also presented.

2.1 LDAS-Monde

LDAS-Monde (Albergel et al., 2017) is embedded within
the SURFEX (SURFace EXternalisée, Masson et al., 2013,
version 8.1) modelling platform developed by the research
department of Météo-France (CNRM, Centre National de
Recherches Météorologiques). It allows the joint integration
of satellite-derived SSM and LAI into the CO2-responsive
(Calvet, et al., 1998, 2004; Gibelin et al., 2006), multilayer
diffusion scheme (Boone et al., 2000; Decharme et al., 2011)
version of the ISBA LSM (Noilhan and Planton, 1989; Noil-
han and Mahfouf, 1996). LDAS-Monde can also be coupled
with the CTRIP (CNRM Total Runoff Integrating Pathways,
Decharme et al., 2019) hydrological model using a simplified
extended Kalman filter (SEKF, Mahfouf et al., 2009).

2.1.1 ISBA land surface model

The ISBA LSM aims to model the evolution of LSVs. In the
chosen configuration for this study, ISBA is able to repre-
sent the transfer of water and heat through the soil based on
a multilayer diffusion scheme as well as plant growth and
leaf-scale physiological processes. ISBA models key vegeta-
tion variables like LAI, above-ground biomass and the di-
urnal cycle of water, carbon and energy fluxes. In ISBA,
the soil–vegetation composite is computed using a single-
source energy budget. In the CO2-responsive version of
ISBA, ISBA-A-gs, the model can simulate the CO2 net as-
similation and GPP by considering the functional relation-
ship between the photosynthesis rate (A) and the stomatal
aperture (gs) based on the biochemical A-gs model proposed
by Jacob et al. (1996). Photosynthesis controls the evolution
of vegetation variables. It makes vegetation growth possi-
ble as a result of an uptake of CO2. Contrastingly, a deficit
of photosynthesis triggers higher mortality rates. Ecosystem
respiration (RECO) represents the CO2 being released by
the soil–plant system and GPP by the carbon uptake via
photosynthesis. Finally, the net ecosystem exchange (NEE)
consists of the difference between GPP and RECO. Each
ISBA grid cell is composed of up to 12 generic land sur-
face types, namely bare soil, rocks, permanent snow and
ice surfaces, as well as 9 plant functional types (needleleaf
trees, evergreen broadleaf trees, deciduous broadleaf trees,
C3 crops, C4 crops, C4 irrigated crops, herbaceous, tropical
herbaceous and wetlands). The ECOCLIMAP-II land cover
database (Faroux et al., 2013) provides these parameters for
each patch and each grid cell of the ISBA model.

The ISBA multilayer diffusion scheme’s default dis-
cretization is 14 layers over 12 m depth. This study follows
Decharme et al. (2011), which is illustrated in Fig. 1 of their
paper. The thickness (depth) of each layer is (from top to bot-
tom) 1 cm (0–1 cm), 3 cm (1–4 cm), 6 cm (4–10 cm), 10 cm
(10–20 cm), 20 cm (20–40 cm), 20 cm (40–60 cm), 20 cm
(60–80 cm), 20 cm (80–100 cm), 50 cm (100–150 cm), 50 cm
(150–200 cm), 100 cm (200–300 cm), 200 cm (300–500 cm),
300 cm (500–800 cm) and 400 cm (800 to 1200 cm). Snow is
represented using the ISBA 12-layer explicit snow scheme
(Boone and Etchevers, 2001; Decharme et al., 2016).

2.1.2 CTRIP river-routing system

The ISBA-CTRIP river-routing system is able to simu-
late continental-scale hydrological variables based on a set
of three prognostic equations. They correspond to (i) the
groundwater, (ii) the surface stream water and (iii) the sea-
sonal floodplains. It converts the runoff simulated by ISBA
into river discharge. The ISBA-CTRIP river-routing network
has a spatial resolution of 0.5◦ globally and is coupled daily
with ISBA through the OASIS3-LCT coupler (Voldoire et
al., 2017). ISBA provides CTRIP with updated fields of
runoff, drainage, groundwater and floodplain recharges. In
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Figure 1. (a) Surface soil moisture (SSM) from the Copernicus Global Land Service (CGLS) for pixels with less than 15 % of urban areas
and with an elevation of less than 1500 m a.s.l. (b) GEOV1 leaf area index (LAI) from CGLS, for pixels covered by more than 90 % of
vegetation, averaged over 2010 to 2018. SSM is obtained after rescaling the ASCAT Soil Wetness Index (SWI) to the model climatology;
grey areas in (a) represent filtered-out data (see Sect. 2.3).

turn, CTRIP provides ISBA with water table depth, flood-
plain fraction as well as flood potential infiltration. Subse-
quently, ISBA can simulate capillary rise, evaporation and
infiltration over flooded areas. A comprehensive overview of
how CTRIP is coupled with ISBA is available in Decharme
et al. (2019).

2.1.3 Data assimilation

The SEKF used in LDAS-Monde is a two-step sequential ap-
proach in which a prior forecast step is followed by an anal-
ysis step. The prior forecast propagates the initial states to
the next time step with the ISBA LSM and the analysis step
then corrects this forecast by assimilating observations. The
flow dependency (dynamic link) between the prognostic vari-
ables and the observations is ensured in the SEKF through
the observation operator and its Jacobians, which propagate
information from the observations to the analysis via finite-
difference computations (de Rosnay et al., 2013). The Ja-
cobian matrix has as many rows as assimilated observation
types (two in our case: SSM and LAI) and as many columns
as model control variables requested (eight in our case, soil
moisture from layers 2 to 8 and LAI). In addition to a control
run (i.e. the forecast step), computing the Jacobian matrix
requires perturbed runs, one for each control variable. The
eight control variables are directly updated using their sen-
sitivity to observed variables (i.e. defined by the Jacobian).
Other variables are indirectly modified through biophysical
processes and feedback from the model. Several studies (e.g.
Draper et al., 2009; Rüdiger et al., 2010) have demonstrated
that small perturbations lead to a good linear approximation
of the model behaviour, provided that computational round-
off error is not significant. Typically, for those runs, the ini-
tial state of the control variable is perturbed by about 0.1 %
(see Albergel et al., 2017; Rüdiger et al., 2010). The length
of the LDAS-Monde assimilation window is 24 h. A mean
volumetric standard deviation error of 0.04 m3 m−3 is pre-

Figure 2. Selection of 19 regions across the globe known for be-
ing potential hotspots for droughts and heatwaves. The regions are
defined in Table 1.

scribed for soil moisture in the second layer of soil (i.e. the
model equivalent of the observations, between 1 and 4 cm):
it is 0.02 m3 m−3 for soil moisture in deeper layers (soil lay-
ers 3 to 8, 4–100 cm). Both are then scaled by the dynamic
range of soil moisture (the difference between the volumet-
ric field capacity and the wilting point, calculated as a func-
tion of the soil type, as given by Noilhan et Mahfouf, 1996).
The observational SSM error follows the same approach and
a value of 0.05 m3 m−3 is used. This is consistent with er-
rors typically expected for remotely sensed SSM (e.g. de Jeu
et al., 2008, Gruber et al., 2016). Based on previous results
from Jarlan et al. (2008), Rüdiger et al. (2010) and Barbu et
al. (2011), observed LAI standard deviation errors are set to
20 % of the LAI value itself. The LAI prior forecast errors
are set equivalent to the observation errors for values higher
than 2 m2 m−2. For values lower than 2 m2 m−2, a fixed stan-
dard deviation error of 0.04 m2 m−2 has been used. More de-
tails about this approach can be found in Barbu et al. (2011)
(Sect. 2.3 and Fig. 2).
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Table 1. Continental hotspots for droughts and heatwaves and number of monthly anomalies SSM and LAI below −1 standard deviation
(SD) and above 1 SD in 2018 with respect to the 2010–2018 period.

Region name Abbreviation LON-W LON-E LAT-S LAT-N Number of monthly Number of monthly
SSM anomalies below LAI anomalies below
−1 (above 1) SD −1 (above 1) SD

Western Europe WEUR −1 15 48 55 5(1) 5(0)
Western Mediterranean WMED −10 15 35 45 0(7) 4(4)
Eastern Europe EEUR 15 30 45 55 2(1) 0(2)
Balkans BALK 15 30 40 45 3(3) 1(4)
Western Russia WRUS 30 60 55 67 0(1) 1(3)
Lower Volga LVOL 30 60 45 55 2(1) 2(1)
India INDI 73 85 12 27 3(0) 2(1)
South-western China SWCH 100 110 20 32 0(2) 0(6)
Northern China NRCH 110 120 30 40 0(3) 0(4)
Murray–Darling MUDA 140 150 −37 −26 6(0) 7(0)
California CALF −125 −115 30 42 2(0) 5(0)
Southern Plains SPLN −110 −90 25 37 0(3) 0(4)
Midwest MIDW −105 −85 37 50 1(2) 1(3)
Eastern north ENRT −85 −70 37 50 0(3) 0(7)
Nordeste NDST −44 −36 −20 −2 0(3) 1(2)
Pampas PAMP −64 −58 −36 −23 2(2) 2(0)
Sahel SAHL −18 25 13 19 2(0) 1(2)
Eastern Africa EAFR 38 51 −4 12 2(3) 1(7)
Southern Africa SAFR 14 26 −35 −26 2(0) 2(1)

2.2 Atmospheric forcing

The lowest level of the atmospheric model (about 10 m a.g.l.)
of air temperature, wind speed, specific humidity and pres-
sure, the downwelling fluxes of shortwave and longwave ra-
diations as well as precipitation (partitioned into solid and
liquid phases) are needed to force LDAS-Monde. In this
study, LDAS-Monde is driven by several near-surface me-
teorological fields from the ECMWF:

– its most recent atmospheric reanalysis (ERA5) to pro-
duce an LDAS-Monde global reanalysis;

– its high-resolution Integrated Forecast System (IFS
HRES) to monitor and predict the evolution of LSVs
for regions under severe droughts and heatwaves.

ERA5 (Hersbach et al., 2018, 2020) is the fifth generation
of global reanalyses produced by the ECWMF. This atmo-
spheric reanalysis is a key element of the Copernicus Climate
Change Service (C3S) and is available from 1979 onward
(data are released about 2 months behind real time). ERA5
produces analyses at an hourly output and at 31 km horizon-
tal resolution and consists of 137 levels in the vertical. Sev-
eral studies have validated the ERA5 dataset. For example,
Urraca et al. (2018) have compared incoming solar radiation
from both ERA5 and the ERA-Interim reanalysis (Dee et al.,
2011) at a global scale and found evidence that ERA5 out-
performs ERA-Interim. In another study, Beck et al. (2019)
have highlighted the good performance of ERA5 precipita-

tion with respect to a set of 26 gridded (sub-daily) precipita-
tion data sources by comparing them to Stage-IV gauge-radar
data over the CONUS domain (CONtinental United States
of America). Tall et al. (2019) have used in situ measure-
ments of precipitation at more than 100 stations spanning all
over Burkina Faso in western Africa as well as incoming so-
lar radiation from four in situ stations. They evaluated the
performance of ERA5 compared to ERA-Interim and found
improved results for ERA5 as well. Furthermore, they eval-
uated both reanalysis datasets for their ability to force the
ISBA LSM, which demonstrates a clear advantage for ERA5
in terms of the performance of LSVs. Albergel et al. (2018a)
made similar comparisons of the ISBA LSM forcing over
North America. They showed enhanced performances in the
representation of evapotranspiration, snow depth, soil mois-
ture and river discharge for ERA5 relative to ERA-Interim.

At the time of writing, the ERA5 model and data
assimilation system (cycle 41r2 of the ECMWF IFS)
are very similar to that of the operational weather
forecast, HRES, which has production cycles rang-
ing from 41r2 to 45r1 during the study period (more
information at https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model, last
access: July 2019). The main difference between ERA5
and HRES over the considered period is the horizontal
resolution, consisting of 9 km in HRES and 31 km in ERA5.
The atmospheric forcing is interpolated from the native
grids of ERA5 and HRES to regular grids at 0.25◦ and 0.1◦

respectively, using a bilinear interpolation from the native
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grid to the regular grid. ERA5 and HRES were used in
Albergel et al. (2019) to force LDAS-Monde in order to
study the impact of the 2018 summer heatwave in Europe.
Authors have highlighted that the HRES configuration
(LDAS_HRES hereafter) exhibits better monitoring skills
than the coarser-resolution ERA5 configuration.

In forecasting mode, the HRES forecast is also available
daily from 00:00 UTC with a 10 d lead time. The HRES fore-
cast step frequency is hourly up to time step 90 (i.e. day 3),
3-hourly from time steps 90 to 144 (i.e. day 6) and 6-hourly
from time steps 144 to 240 (i.e. day 10). In the forecast ex-
periments in this study (see Sect. 2.4 for details on the ex-
perimental setup) HRES forecasts with a 10 d lead time are
used to force the LSM forecasts of the LSVs. By compar-
ing LDAS_HRES open-loop and analysis configurations it
is possible to evaluate the impact of the initialisation on the
forecast of LSVs. The original 3-hourly time steps are used
up to day 6 (time step 144). The 6-hourly time steps from
days 6 to 10 are interpolated to 3-hourly frequency to avoid
discontinuities.

2.3 Assimilated satellite Earth observations

Two types of satellite-derived variables are assimilated in
LDAS-Monde: ASCAT soil water index (SWI) and LAI
GEOV1. They are both freely available through the Coper-
nicus Global Land Service (CGLS, https://land.copernicus.
eu/global/index.html, last access: June 2019).

ASCAT stands for Advanced Scatterometer, which is an
active C-band microwave sensor that is onboard the Euro-
pean MetOp polar orbiting satellites (METOP-A from 2006,
-B from 2012 and also -C from 2019). From ASCAT radar
backscatter coefficients, it is possible to derive information
on SSM following a change detection approach (Wagner et
al., 1999; Bartalis et al., 2007). The recursive form of an ex-
ponential filter (Albergel et al., 2008) is then applied to es-
timate the SWI using a timescale parameter, T (varying be-
tween 1 and 100 d). T is a surrogate parameter for all the
processes potentially affecting the temporal dynamics of soil
moisture, including soil hydraulic properties, soil layer thick-
ness, evaporation, runoff and vertical gradient of soil prop-
erties. The obtained SWI then ranges between 0 (dry) and
100 (wet). In this study, CGLS SWI-001 (produced with a T

value of 1 d) is used as a proxy for SSM (Kidd et al., 2013).
Grid points with an average altitude exceeding 1500 m a.s.l.
as well as those with more than 15 % of urban land cover
are rejected as those conditions are known to inhibit the re-
trieval of SSM from space. Prior to the assimilation, SSM
has to be converted from the observation space to the model
space. This is done through a linear rescaling as proposed by
Scipal et al. (2007), where the mean and variance of observa-
tions are matched to the mean and variance of the modelled
soil moisture from the second layer of soil (1–4 cm depth).
In practice, the rescaling gives similar results to CDF (cu-
mulative distribution function) matching. The linear rescal-

ing is performed on a seasonal basis (with a 3-month moving
window) as suggested by Draper et al. (2011) and Barbu et
al. (2014).

The LAI GEOV1 observations are based on data from both
SPOT-VGT (up to 2014) and PROBA-V (from 2014) satel-
lites. They span from 1999 to present, have 1 km spatial reso-
lution and are produced according to the methodology devel-
oped by Baret et al. (2013). LAI GEOV1 observations have
a temporal frequency of 10 d at best and no observations are
available during cloudy conditions. LAI data are masked in
the presence of modelled snow by the ISBA LSM.

As in previous studies (e.g. Barbu et al., 2014; Albergel
et al., 2019), observations are interpolated by an arithmetic
average to the model grid points (0.25◦ or 0.10◦ in this study)
if at least 50 % of the model grid points are observed (i.e. half
the maximum amount). ASCAT SSM and LAI GEOV1 are
illustrated by Fig. 1.

2.4 Experimental setup

LDAS-Monde is first run globally, at 0.25◦ spatial resolution,
forced by the ERA5 atmospheric reanalysis. It assimilates
both SSM and LAI EOs from 2010 to 2018 (LDAS_ERA5).
LDAS_ERA5 is spun up by running the year 2010 20 times.
The LDAS_ERA5 analysis and its model counterpart (open-
loop, i.e. no data assimilation) are presented and evaluated in
this study.

This 9-year global reanalysis is then used to provide a
monthly climatology for estimating anomalies of the land
surface conditions. For each month (and variable consid-
ered) of 2018 we have removed the monthly mean and scaled
by the monthly standard deviation of the 2010–2018 period.
Significant anomalies are used to trigger more detailed moni-
toring and forecasting activities for a region of interest. A to-
tal of 19 regions across the globe have been selected, which
are known for being potential hotspots for droughts and heat-
waves. They are listed in Table 1 and presented in Fig. 2.
Monthly anomalies of SSM and LAI in the LDAS_ERA5
analysis are calculated for 2018 (with respect to the 2010–
2018 period) over these 19 regions. In turn, regions present-
ing significant levels of negative anomalies are selected and
further investigated. For those regions, a new LDAS-Monde
experiment was driven by the HRES atmospheric analysis,
leading to a 0.1◦ analysis of the LSVs from April 2016 to De-
cember 2018 (LDAS_HRES). Note that HRES is only avail-
able at a 0.1◦ spatial resolution from April 2016. April to De-
cember 2016 is used as a short period for spin-up and results
are presented for the period 2017–2018. Although a 9-month
spin-up period is rather short, evaluating LDAS_HRES over
either 2017–2018 or 2018 (using instead a 21-month spin-
up) leads to similar results on surface soil moisture and LAI
(not shown). While the system is not fully spun up, it is
long enough to capture the system response to data assim-
ilation. LDAS_HRES complements the coarser spatial reso-
lution LDAS_ERA5.
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HRES forecasts with a 10 d lead time are initialized ei-
ther from LDAS_HRES analysis or open-loop experiments
(LDAS_Fc hereafter) in order to assess the impact of the
initialization on the forecast. For simplicity, only forecasts
with a 4 and 8 d lead time are presented (LDAS_fc4 and
LDAS_fc8 respectively). A summary of the experimental
setup is given in Table 2.

2.5 Evaluation datasets and metrics

Both satellite-derived estimates of EOs and in situ mea-
surements are used as reference datasets in this study. The
LDAS_ERA5 analysis performance is assessed with respect
to the open-loop model run (i.e. no assimilation). The two
assimilated datasets, CGLS SSM and LAI, are firstly used
to verify that the data assimilation is behaving as expected.
Then several independent datasets are used for the validation,
namely evapotranspiration from the GLEAM project (Mi-
ralles et al., 2011; Martens et al., 2017, version 3b, entirely
satellite driven), GPP from the FLUXCOM project (Tramon-
tana et al., 2016; Jung et al., 2017), SIF from the GOME-
2 (Global Ozone Monitoring Experiment-2) scanning spec-
trometer (Munro et al., 2006; Joiner et al., 2016) and snow-
cover data from the Interactive Multi-sensor Snow and Ice
Mapping System (IMS, https://www.natice.noaa.gov/ims/,
last access: August 2020). The IMS snow-cover product
combines ground observations and satellite data from mi-
crowave and visible sensors (using geostationary and polar-
orbiting satellites) to provide snow-cover information in all
weather conditions. The IMS product is available daily for
the Northern Hemisphere.

Soil moisture is validated using in situ measurements of
soil moisture from the ISMN, a pool of stations which con-
sists of 19 networks across 14 countries (see Table S3 in the
Supplement). In total, 782 stations are represented with at
least 2 years of daily data over 2010–2018. In situ measure-
ments at 5 cm depth (SSM) are compared with soil mois-
ture from the third layer of soil (4–10 cm) in LDAS_ERA5.
In situ measurements at 20 cm depth are compared with
LDAS_ERA5 soil moisture from the fourth layer of soil (10–
20 cm, 685 stations from 10 networks). Besides 11 stations
located in four countries of western Africa (Benin, Mali,
Sénégal and Niger) and 21 stations in Australia, most of the
stations are located in North America and Europe (see Ta-
ble S3).

Evaluation datasets are listed in Table 3 along with the
metrics used for the evaluation. For satellite datasets of
SWI, LAI, evapotranspiration and GPP, the metrics consist
of the correlation coefficient (R), root mean square differ-
ence (RMSD) and normalized RMSD (NRMSD, Eq. 1).

NRMSD=
RMSD(Analysis)−RMSD(Model)

RMSD(Model)
×100 (1)

Regarding the SIF satellite dataset, fluorescence is not sim-
ulated directly in the ISBA LSM. However, photosynthe-

sis activity is simulated through the calculation of the
GPP, which is driven by plant growth and mortality in the
model. Modelled GPP values are expressed in g(C) m−2 d−1,
while SIF is an energy flux emitted by the vegetation
(mW m−2 sr−1 nm−1). Hence, GPP and SIF cannot be di-
rectly compared as they do not represent the same physical
quantities. However, several studies (e.g. Zhang et al., 2016;
Sun et al., 2017; Leroux et al., 2018) have found a high cor-
respondence in both time and space between those two vari-
ables, highlighting the potential of SIF products to support
the validation of modelled GPP. Therefore, the correlation
between modelled GPP and observed SIF is used as an evalu-
ation metric. Concerning the snow-cover dataset, differences
between observed and modelled snow cover are considered
for the evaluation.

For in situ datasets of soil moisture and evapotranspiration,
the standard metrics are considered, namely the correlation
coefficient, RMSD, unbiased RMSD and bias. Moreover, a
normalized information contribution (NIC, Eq. 2) measure is
applied to the correlation values to quantify the improvement
or degradation due to the specific configuration.

NICR=
R(Analysis)−R(Model)

1−R(Model)
×100 (2)

NIC scores are classified according to three categories: (i)
negative impact from the analysis with respect to the open-
loop with values smaller than−3 %, (ii) positive impact from
the analysis with respect to the open-loop with values greater
than +3 % and (iii) neutral impact from the analysis with
respect to the open-loop with values between −3 % and 3 %.

In addition, for surface soil moisture, the correlation is cal-
culated for both absolute (R) and anomaly (Ranomaly) time
series in order to remove the strong impact from the SSM
seasonal cycle (see e.g. Albergel et al., 2018a, b).

The Nash–Sutcliffe efficiency score (NSE, Nash and Sut-
cliffe, 1970, Eq. 3) is used to evaluate LDAS_ERA5 experi-
ments’ ability to represent the monthly discharge dynamics.

NSE=1−

T∑
mt=1

(
Qmt

s −Qmt
o
)2

t∑
mt=1

(
Qmt

s −Qmt
s

)2
, (3)

where Qmt
s is the monthly river discharge from LDAS_ERA5

(analysis or open-loop) at month mt, and Qmt
o is the observed

river discharge at month mt. NSE can vary between −∞
and 1. An exact match between model predictions and ob-
served data is defined as a value of 1, whereas a value of
0 means that the model predictions have the same accuracy
as the mean of the observed data. Finally, negative values
represent situations where the observed mean is a better pre-
dictor than the model simulation. NIC presented in Eq. (1)
has also been applied to NSE scores to assess the added
value of LDAS_ERA5 analysis over its open-loop counter-
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Table 2. Setup of the experiments performed in this study. LDAS_ERA5 and LDAS_HRES have an analysis (assimilation of surface soil
moisture, SSM, and leaf area index, LAI) and a model equivalent (open-loop, no assimilation); LDAS_fc4 and LDAS_fc8 are model runs
initialized by either LDAS_HRES open-loop or analysis. n/a stands for not applicable.

Experiments Model version Atmospheric Domain and DA Assimilated Model Control
(time period) forcing spatial resolution method observations equivalents variables

LDAS_ERA5 ISBA multi- ERA5 Global, ∼0.25◦ SEKF SSM Second layer Layers of soil 2
(2010 to 2018) layer soil ×0.25◦ (ASCAT) of soil (1–4 cm) to 8 (1–100 cm)

LDAS_HRES model CO2- IFS-HRES North-western LAI LAI LAI
(April 2016 to responsive Europe (WEUR) (GEOV1)
December 2018) version and Murray–Darling

LDAS_fc4 (interactive River basin (MUDA) n/a n/a n/a n/a
(2017 to 2018) vegetation) (see spatial extent in

LDAS_fc8 Table 1) ∼0.10◦×
(2017 to 2018) 0.10◦

part. Stations with NSE values less that −2 have been dis-
carded. A similar threshold has already been used in pre-
vious studies evaluating LDAS-Monde (e.g. Albergel et al.,
2017, 2018a). Many anthropogenic processes are not yet rep-
resented in ISBA, including water management from dams
and reservoirs, irrigation, and water uptake in urban areas.
This could lead to a poor representation of river discharges in
those regions. As with previous studies it has been decided to
exclude these areas by focusing on stations with reasonable
NSE values.

3 Global assessment of LDAS_ERA5

3.1 Gridded datasets

In this section, the LDAS-Monde open-loop and analysis are
firstly compared against the assimilated observations (SSM
and LAI) to demonstrate that the assimilation system is
working as intended. Both experiments are also compared
with independent sources of information to evaluate the anal-
ysis impact (GPP, EVAP and SIF).

Figure 3 presents mean LAI RMSD values between the
observations and LDAS_ERA5 for the open-loop (Fig. 3a)
and for the analysis (Fig. 3b) over 2010–2018. Because LAI
observations are ingested into the model, the assimilation re-
duces the LAI RMSD values almost everywhere. It should
be noted that rather large LAI RMSD values (>1.5 m2 m−2)
can remain in some areas after the assimilation, especially in
densely forested areas.

Figure 4 illustrates latitudinal plots of LAI, SSM, GPP and
EVAP for LDAS_ERA5 before assimilation (the open-loop)
and after assimilation (the analysis) along with observations.
The number of points considered per 0.25◦ stripe is also rep-
resented. From Fig. 4a it is possible to see the positive im-
pact the analysis has on LAI compared to the open-loop, with
the former being closer to the observations. Improvements in
the analysis fit are visible between nearly 80◦ N and about

55◦ S, and areas around the Equator are impacted the most
from the assimilation. This demonstrates that the data assim-
ilation system is working as intended. A smaller impact is
obtained for SSM, GPP and EVAP relative to LAI, which is
hardly visible at this scale. The mean latitudinal results show
a consistent difference in terms of GPP and EVAP between
LDAS_ERA5 and the observational products. These differ-
ences are systematic with higher values in tropical regions.

Figure 5 presents latitudinal plots of score differences
(correlations and NRMSD) for LAI, SSM, GPP, EVAP and
SIF. For SIF, it only makes sense to show the correlation dif-
ferences, since this metric is used to evaluate GPP variability
as in Leroux et al. (2018). Score differences are computed by
subtracting the open-loop from the analysis. Monthly aver-
ages are calculated over 2010–2018 for LAI and SSM, 2010–
2013 for GPP, 2010–2016 for EVAP and 2010–2015 for SIF.
For each panel of Fig. 5, the vertical dashed line represents
the 0 value. For plots of correlation differences, positive val-
ues indicate an improvement in the analysis with respect
to the open-loop simulation. Similarly, for plots of RMSD
differences, negative values indicate an improvement in the
analysis with respect to the open-loop simulation. Given that
LAI and SSM are assimilated variables, the analysis leads to
a clear improvement in both correlation and RMSD. Such an
improvement is expected and reflects the healthy behaviour
of the assimilation system. Both variables are improved at
almost all latitudes, with the exception around 45◦ S for LAI
correlation values (very few land points). For SSM a notice-
able improvement in both correlation and RMSD is found
around 20◦ N, which corresponds mainly to an improvement
in the Sahara (not shown). Being linked to LAI, GPP is also
improved across almost all latitudes (to a lesser extent than
LAI), with a particularly positive impact below 20◦ N. As
seen in Fig. 5d and i, there is a negligible impact of the as-
similation on EVAP. It highlights the difficulty of land sur-
face data assimilation in impacting model fluxes by modify-
ing model states.
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Table 3. Evaluation datasets and associated metrics used in this study. All URLs in this table were last accessed in August 2020.

Datasets used for the evaluation Source Metrics associated Independent
source
of evaluation

In situ measurements of soil moisture
(ISMN, Dorigo et al., 2011, 2015)

https://ismn.geo.tuwien.ac.at/en/ R for both absolute and anomaly
time series, unbiased RMSD and
bias, NIC on R values

Yes

In situ measurements of river discharge See Table S1 Nash–Sutcliffe efficiency (NSE),
normalized information contribu-
tion (NIC) based on NSE

Yes

In situ measurements of evapotranspi-
ration (FLUXNET-2015)

http://fluxnet.fluxdata.org/data/
fluxnet2015-dataset/

R, unbiased RMSD, bias, NIC on
R values

Yes

Satellite-derived surface soil wetness
index (ASCAT, Wagner et al., 1999;
Bartalis et al., 2007)

http://land.copernicus.eu/global/ R, RMSD and NRMSD No
(assimilated
dataset)

Satellite-derived leaf area index
(GEOV1, Baret et al., 2013)

http://land.copernicus.eu/global/ R, RMSD and NRMSD No
(assimilated
dataset)

Satellite-driven model estimates of
land evapotranspiration (GLEAM,
Martens et al., 2017)

http://www.gleam.eu R, RMSD and NRMSD Yes

Upscaled estimates of gross primary
production (GPP, Jung et al., 2017)

https://www.bgc-jena.mpg.de/
geodb/projects/Home.php

R, RMSD and NRMSD Yes

Solar-induced fluorescence (SIF) from
GOME-2 (Munro et al., 2006; Joiner et
al., 2016)

See references R Yes

Interactive Multi-sensor Snow and Ice
Mapping System (or IMS) snow cover

https://www.natice.noaa.gov/
ims/

Differences Yes

Figure 3. RMSD values between observed leaf area index (LAI) and LDAS_ERA5 (a) before assimilation and (b) after assimilation of
surface soil moisture (SSM) and LAI.

The panels of Fig. 6 illustrate histograms of score dif-
ferences (correlation and RMSD, analysis minus open-loop)
for LAI, SSM, GPP, EVAP and SIF. The number of avail-
able data and the percentage of positive and negative val-
ues are reported. For correlations (RMSD) differences, posi-

tive (negative) values indicate an improvement in the anal-
ysis relative to the open-loop. Regarding LAI, the analy-
sis improves 96.9 % of the grid points for correlations and
99.9 % for NRMSD. As for SSM, correlation values are im-
proved for 92.8 % of the grid points (92.4 % for RMSD).
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Figure 4. Latitudinal plots of (a) leaf area index (LAI), (b) surface soil moisture (SSM), (c) gross primary production (GPP) and (d) evapo-
transpiration (EVAP) for LDAS_ERA5 before assimilation (model, blue solid line) and after assimilation (analysis, red solid line) as well as
observations (black solid line). Cyan dashed line represents the number of points considered per latitudinal stripe of 0.25◦.

The independent GPP and SIF datasets also demonstrate im-
provements in the analysis relative to the open-loop. Indeed,
the GPP correlation (RMSD) is better for 81.1 % (74.1 %)
of the grid points and the SIF correlation is enhanced for
79.7 %. Results using the GLEAM dataset for evapotran-
spiration are more contrasting with 63.6 % (48.9 %) of the
grid points showing an improvement from the analysis. It
is worth mentioning that 24.9 % (39.6 %) of the grid point
shows a decrease in skill. However, GLEAM is an evapora-
tion model designed to be driven by remote sensing observa-
tions only. GLEAM only estimates (root-zone) soil moisture
and terrestrial evaporation, while the CO2-responsive version
of ISBA in LDAS_ERA5 is a physically based land surface
model, accounting for more processes linked to vegetation
(see Sect. 2.1.1). It should be noted that the auxiliary datasets
used to represent the different land cover types also differ.
Within GLEAM, the land cover types are sourced from the
Global Vegetation Continuous Fields product (MOD44B),
based on observations from the Moderate Resolution Image
Spectroradiometer (MODIS). Four land cover types are con-
sidered, namely bare soil, low vegetation (e.g. grass), tall
vegetation (e.g. trees), and open water (e.g. lakes). In ISBA,
the fraction of the 12 land cover types over some areas de-
parts from prevalent land cover products such as CLC2000
(Corine Land Cover) and GLC2000 (Global Land Cover).
It could potentially impact the distribution of the terres-
trial evaporation between GLEAM and ISBA. Further work

at CNRM will focus on understanding the differences be-
tween ISBA and GLEAM, in particular investigating the sub-
components of terrestrial evaporation.

Finally, Figs. S1 and S2 illustrate snow-cover evaluation.
LDAS_ERA5 snow cover is evaluated against the IMS snow
cover. Fig. S1 shows the averaged Northern Hemisphere
snow-cover fraction for the 2010–2018 period. It is comple-
mented by Fig. S2, which shows (i) maps of IMS snow cover
(top row) for three seasons, (ii) equivalent maps of snow
cover from LDAS_ERA5 open-loop (second row), (iii) maps
of snow-cover differences between the open-loop and IMS
data and (iv) maps of snow-cover differences between the
analysis and the open-loop. LDAS_ERA5 open-loop com-
pares very well with the IMS snow-cover data in the accumu-
lation season from September to February (Figs. S2 and S1d
to i), except for an overestimation over the Tibetan Plateau.
The issue over Tibet from ERA5 is not new and is consistent
with Orsolini et al. (2019). An early melt in spring is visi-
ble in LDAS_ERA5 compared to observations and could be
related to the snow-cover parametrization in ISBA. As ex-
pected, the analysis has an almost neutral impact on snow
as both SSM and LAI observations are filtered out during
frozen/snow-covered conditions, and there is no snow data
assimilation yet in LDAS_ERA5 (Figs. S2 and S1j, k and l).
Clearly an area of potential improvement in LDAS-Monde
is to incorporate snow data assimilation using satellite data
such as IMS (as in e.g. de Rosnay et al., 2014).
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Figure 5. Latitudinal plots of score differences (analysis minus open-loop) for correlations (a–e) and normalized RMSD (f–i) for LAI (a,
f), SSM (b, g), GPP (c, h), EVAP (d, i) and SIF (e, correlations only). Scores are computed based on the monthly average over 2010–2018
for LAI and SSM, 2010–2013 for GPP, 2010–2016 for EVAP and 2010–2015 for SIF. Dashed lines represent the zero lines (equal scores for
open-loop and analysis).

3.2 Ground-based datasets

LDAS_ERA5 analysis and open-loop are also evaluated us-
ing independent in situ measurements of evapotranspiration,
river discharge and surface soil moisture across the world.
Daily in situ measurements of evapotranspiration from the
FLUXNET-2015 synthesis dataset (http://fluxnet.fluxdata.
org/, last access: June 2019) are first used in this study.
The LDAS_ERA5 evapotranspiration performance is evalu-
ated using the correlation coefficient (R), RMSD, ubRMSD
and the bias (LDAS_ERA5 minus observations) using the 85
selected FLUXNET-2015 stations. The median R, RMSD,
ubRMSD and bias for LDAS_ERA5 analysis (open-loop) are
0.73 (0.72), 28.74 (29.60) W m−2, 27.37 (26.92) W m−2 and
4.64 (4.40) W m−2 respectively. Although these values de-
pict a small advantage of the analysis over the open-loop, it
is worth mentioning that these differences are rather small
and likely to fall within the uncertainty of the in situ mea-
surements.

Figure 7a represents the added value of the analysis based
on NICR (Eq. 2), the large blue circles represent a positive
impact from the analysis (20 stations) with a NICR greater
than +3 (i.e. R values are better when the analysis is used

than when the model is used), while large red circles repre-
sent a degradation from the analysis (5 stations) with a NICR

smaller than−3. Stations with a rather neutral impact (60 sta-
tions) have a NICR between [−3;+3] and are reported using
small dots. Note that at the scale of Fig. 7a, some stations
are overlapping. Figure 7a is complemented by panels b, c, d
and e which show scatter plots of R, ubRMSD, absolute bias
and RMSD between LDAS_ERA5 analysis (x axis) and the
open-loop (y axis) for the 85 stations from the Fluxnet2015.
Out of the 85 stations considered, 56 have better R values
in the analysis compared to the open-loop. The respective
numbers of improved stations for ubRMSD, RMSD and the
absolute bias equate to 41, 47 and 44 respectively. The set
of 20 stations from Fig. 7a where the analysis has a positive
impact on the NICR (greater than +3) are reported in green
in Fig. 7b.

Results on river discharge are illustrated by Fig. 8 (panels a
and b). Figure 8a represents NSE scores for the subset of 982
stations selected. Most of them are located in North America
and Europe, while a few are available in South America and
Africa. Figure 8a is complemented by Fig. 8b, which shows
the NIC score applied to the NSE score. It emphasizes the
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Figure 6. Histograms of score differences (correlation and RMSD, analysis minus open-loop) for (a, b) LAI, (c, d) SSM, (e, f) GPP, (g, h)
EVAP and (i) SIF. For SIF only differences in correlation are represented. Number of available data (in blue) as well as the percentage of
positive and negative values (in red) are reported. Note that for the sake of clarity, the y axis is logarithmic.

added value of the LDAS_ERA5 analysis over the open-loop.
From this subset of stations, 74 % present a rather neutral im-
pact from the analysis (with a NIC ranging between −3 %
and +3 %), while 26 % (254 stations) present a significant
impact (with a NIC above +3 % or below −3 %). When the
analysis significantly impacts the representation of river dis-
charge, this impact tends to be positive. Indeed, 74 % of this
subset of stations (189 stations) have a NIC score greater than
3 % while only 26 % (65 stations) show NIC scores smaller
than −3 %.

The statistical scores for soil moisture from LDAS_ERA5
open-loop and analysis are presented for the third and fourth
layers of soil, corresponding to 4–10 cm depth and 10–20 cm
depth respectively. The soil moisture at layers 3 and 4 is
compared with ground measurements over 2010–2018 from
the ISMN at depths of 5 and 20 cm respectively. The results
are displayed in Table S3 for each individual network. Av-
eraged statistical scores (ubRMSD, R, Ranomaly and bias)

are similar for both LDAS_ERA5 analysis and open-loop
even if local differences exist. For the analysis, averaged R

(Ranomaly) values for the third layer, along with their 95 %
Confidence intervals (CIs) (782 stations from 19 networks)
are 0.68±0.03(0.53±0.04). For the open-loop, the averaged
R (Ranomaly) values are 0.67±0.03(0.53±0.04). Averaged-
network values are highest for the SOILSCAPE network
with values of 0.88±0.01(0.58±0.04) for the analysis (49
stations in the USA). For all networks, the average R val-
ues are higher than 0.55, with the exception of ARM (10
stations in the USA), which presents an averaged R value
of 0.29±0.05. Averaged ubRMSD and bias (LDAS_ERA5
minus in situ) are 0.060 and 0.077 m3 m−3 for the analy-
sis respectively. The open-loop has a similar performance,
with an ubRMSD and bias of 0.060 and 0.076 m3 m−3 re-
spectively. NIC (Eq. 2) has also been applied to R values. In
total, 65 % of stations present a neutral impact of the analy-
sis compared to the open-loop (511 stations at NIC ranging
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Figure 7. (a) Map of the normalized information contribution (NIC, Eq. 2) applied to correlation values between evapotranspiration from
LDAS_ERA5 analysis (open-loop) and observations from the FLUXNET 2015 synthesis dataset. NIC scores are classified into two cate-
gories: (i) negative impact from the analysis with respect to the model with values smaller than−3 % (red circles, 5 stations) and (ii) positive
impact from the analysis with respect to the model with values greater than +3 % (blue circles, 20 stations). Stations presenting a neutral
impact with values between−3 % and+3 % (60 stations) are reported as small dots. Note that at this scale some stations are overlapping. (b,
c, d and e) Scatter plots of R, ubRMSD, absolute bias and RMSD between LDAS_ERA5 open-loop and the 85 stations from the FLUXNET
2015 (y axis) and LDAS_ERA5 analysis and the same pool of stations (x axis). The set of 20 stations for which the analysis has a positive
impact on R values at NICR greater than +3 is reported in (a) in green.

between−3 and+3), 12 % present a negative impact (91 sta-
tions at NIC <−3) and 23 % present a positive impact (180
stations at NIC >+3).

The number of stations where R differences between the
analysis and the open-loop are significant (i.e. their 95 %
CIs are not overlapping) is 186 out of 782 (about 26 %).
There is an improvement from the analysis with respect to
the open-loop for 128 stations (about 69 %) and a degrada-
tion for 58 stations (about 31 %). Figure 9 illustrates R dif-
ferences between the analysis and the open-loop runs over
CONUS where most of the stations are located (552 out of
782). When differences (analysis minus open-loop) are not
significant, stations are represented by a small dot (425 sta-
tions out of 552). When they are significant (127 stations out
of 552), large circles have been used, with blue correspond-
ing to positive differences (99 stations out of 127) and red to
negative differences (28 stations out of 127). For most of the
stations where a significant difference is obtained, it repre-
sents an improvement from the analysis.

Averaged analysis R (95 %CI), bias and ubRMSD for the
fourth layer of soil (685 stations from 10 networks) are
0.65±0.03, 0.049 and 0.055 m3 m−3 respectively. For the
open-loop, they are 0.64±0.03, 0.048 and 0.056 m3 m−3 re-
spectively. In terms of the NIC, about 60 % of the stations
demonstrate a neutral impact of the analysis compared with
the open-loop, while 28 % show a positive impact and 12 %
a negative impact. Although differences between the open-
loop run and the analysis are rather small, these results un-
derline the added value of the analysis with respect to the
model run. Figure S3 represents the distribution of the scores
values for LDAS_ERA5 open-loop and analysis using box
plots centred on the median value. It is difficult to see any
important differences between them.

For evapotranspiration, river discharge and surface soil
moisture there is a slight advantage for the LDAS_ERA5
analysis with respect to its open-loop counterpart. Even if the
averaged statistical metrics are rather similar for both, there
are significant differences at the regional scale.
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Figure 8. (a) Global map of Nash–Sutcliffe efficiency scores (NSE) between river discharge from LDAS_ERA5 open-loop and in situ
measurements from the networks presented in Table S1 over 2010–2016. (b) Normalized information contribution scores (NIC, Eq. 2)
based on NSE scores on river discharge. Small dots represent stations for which NICs are between [−3 %, +3 %] (i.e. neutral impact
from LDAS_ERA5 analysis), NIC values greater than +3 % (blue large circles) suggest an improvement from LDAS_ERA5 analysis over
LDAS_ERA5 open-loop, while values smaller than −3 % (large red circles) suggest a degradation. Only stations where more than 4 years of
data are available and with a drainage area greater than 10 000 km2 are considered. Stations with NSE values smaller than −2 are discarded,
also leading to a subset of 982 stations available.

4 Monitoring and forecasts for areas under
severe/extreme conditions

4.1 Selection of two regional case studies

For each individual region presented in Table 1 and Fig. 2,
monthly anomalies (scaled by the standard deviation) of
analysed SSM (second layer of soil, 1–4 cm) and LAI for
2018 are assessed with respect to the 2010–2018 aver-
age. The anomalies (see Fig. 10) highlight three regions,
two of which present strong negative anomalies for both
SSM and LAI for almost all of 2018. These are north-
western Europe (WEUR) and the Murray–Darling basin
(MUDA) in south-eastern Australia. Contrastingly, eastern
Africa (EAFR) presents strong positive anomalies of SSM
and LAI. WEUR and MUDA regions were affected by a
severe heatwave and a drought in 2018, which impacted
the LSVs analysed by LDAS_ERA5. According to Fig. 10,
monthly anomalies of SSM and LAI for MUDA are nega-

tive through 2018, with 7 (6) months presenting LAI (SSM)
anomalies below −1 standard deviation (SD) respectively.
WEUR has negative SSM anomalies from May to December
2018, with values dipping below −2 SD. LAI was severely
impacted as well, with July to October 2018 presenting neg-
ative anomalies below −2 SD. For WEUR, 5 months show
LAI and SSM anomalies below −1 SD. On the other hand,
EAFR experienced 3 (7) months with positive anomalies for
SSM and LAI in 2018 above 1 SD.

According to the National Oceanic and Atmospheric Ad-
ministration (NOAA), Europe experienced its warmest sum-
mer since continental records began in 1910 with a pos-
itive anomaly at +2.16 ◦C above mean (Global Climate
Report, https://www.ncdc.noaa.gov/sotc/global/, last access:
April 2019). In Europe, temperatures over all the summer
months in 2018 were above the climatological mean. The
summer 2018 heatwave in Europe has already been reported
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Figure 9. Map of correlation (R) differences (analysis minus open-
loop) for stations measuring soil moisture at 5 cm depth and being
available over North America. Small dots represent stations where
R differences are not significant (i.e. 95 % confidence intervals are
overlapping), large circles where differences are significant.

Figure 10. 2018 monthly anomalies scaled by standard deviation of
analysed (a) SSM and (b) LAI, with respect to 2010–2018, for the
19 regions presented in Table 1 and Fig. 2. Solid red line, dashed
red line and solid green line represent regions MUDA, WEUR and
EAFR. Solid cyan line represents all other boxes (see Table 1 and
Fig. 2).

in the scientific literature (e.g. Magnusson et al., 2018; Al-
bergel et al., 2019; Blyverket et al., 2019).

In its 70th Special Climate Statement, the Australian
Bureau of Meteorology (BoM) reported a very hot and dry
summer 2018 in eastern Australia (BoM, 2019). Like much
of Australia, the Murray–Darling basin also experienced
remarkably dry and hot weather during 2018. The annual
maximum temperature for the Murray–Darling basin as a
whole was more than 2◦ above average during 2018. The
northern Murray–Darling basin in particular was severely af-
fected, with inflows to all river catchments persistently well
below normal (http://www.bom.gov.au/state-of-the-climate/,
last access: April 2019). Finally, the East African Sea-
sonal Monitor based on the Famine Early Warning
System Network (FEWS) confirms above-average rainfall
amounts and significantly greener-than-normal vegeta-

tion conditions (e.g. https://reliefweb.int/report/somalia/
east-africa-seasonal-monitor-july-27-2018, last access:
April 2019). As this study focuses on monitoring and fore-
casting the impact of severe drought conditions on LSVs,
the WEUR and MUDA regions are selected for further
investigation.

4.2 Case studies: LDAS-Monde medium-resolution
(0.25◦) experiments

Figure 11 illustrates seasonal cycles of observed LAI
(Fig. 11a) and SWI (Fig. 11e), LDAS_ERA5 analysis and
open-loop LAI (Fig. 11b) and SSM (Fig. 11f) for the WEUR
domain. The 2018 period is compared to the 2010–2017 av-
erage. Figure 11a shows the heatwave impact with a sharp
drop in observed LAI values from June to November 2018
(solid green line). Such low LAI values have never been ob-
served over the 8 previous years (it is below the minimum
value in shaded green). A similar behaviour is also visible in
the ASCAT SWI dataset in Fig. 11e, with the lowest values
recorded in 2018 for the 2010–2018 period. Over WEUR,
LDAS_ERA5 open-loop overestimates LAI in the second
part of the year, as already highlighted by several studies
(e.g. Albergel et al., 2017, 2019). The LDAS_ERA5 anal-
ysis has a positive impact and reduces LAI values, as seen
in Fig. 11b. Figure 11c, d, g and h depict a similar situation
for the MUDA area: almost every month of 2018 presents the
lowest values for both SSM and LAI. For both MUDA and
WEUR, the smaller differences for LAI and SSM between
LDAS_ERA5 analysis and open-loop in 2018 indicates that
both extreme events were well captured in the atmospheric
forcing used to drive LDAS_ERA5.

4.3 Case studies: LDAS-Monde high-resolution (0.1◦)
analysis and forecast experiments

For the two selected areas (WEUR and MUDA), LDAS-
Monde is also run over April 2016 to December 2018 with
the atmospheric forcing from HRES (LDAS_HRES) at 0.1◦

spatial resolution. Additionally, daily forecast experiments
are performed and the results presented for LAI and SSM
for lead times of 4 and 8 d. These forecasts are initialized
by either LDAS_HRES analysis or open-loop over 2017–
2018 in order to assess the impact of the initial conditions.
In this subsection, this new set of six experiments is veri-
fied against the assimilated observations. Verification of the
forecasts with these observations can be viewed as an inde-
pendent validation as those observations are not assimilated
yet. It is worth mentioning that there is a difference between
the use of SSM and LAI observations to evaluate the fore-
cast. For SSM, the assimilation is done after a rescaling of
the observations to the model climatology (see Sect. 2.3),
which removes bias. However, for LAI this is not the case,
and the assimilation process removes the bias in the mod-
elled LAI with respect to the observations. This difference,
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Figure 11. Upper panels represent seasonal cycles of (a) observed GEOV1 LAI from CGLS and (b) LAI from the open-loop (in blue) and
the analysis (in red) for the WEUR area (see Table 1 for geographical extent). Panels (c) and (d) are similar to (a) and (b) for the MUDA
area. Lower panels represent seasonal cycles of (e) ASCAT SWI from CGLS and (f) SSM from the open-loop (in blue) and the analysis (in
red) for the WEUR area. Panels (g) and (h) are similar to (e) and (f) for the MUDA area. For each panel dashed line represents the average
over 2010–2017 along with the minimum and maximum values; the solid lines are for the year 2018.

together with the longer memory of LAI (compared to SSM),
contributes to the results presented in this sub-section. Sta-
tistical scores for LDAS_HRES open-loop and analysis are
also presented, which serve as a benchmark for the forecast
experiments.

Figure 12 (for WEUR) and Fig. 13 (for MUDA) up-
per panels illustrate the seasonal RMSD (Figs. 12a, 13a)
and correlation (Figs. 12b, 13b) between LDAS_HRES
SSM from the second layer of soil (1–4 cm) and ASCAT
SSM estimates over 2017–2018. Scores are also reported
for the LDAS_HRES 4 d (LDAS_fc4) and 8 d forecasts
(LDAS_fc8). From the upper panels of those figures one
may notice a small improvement from the analysis (solid
red line) over the open-loop simulation (solid blue line),
with slightly reduced RMSD values and increased corre-
lation values. However, no improvement (or degradation)
is visible from the 4 and 8 d forecast experiments initial-
ized by LDAS_HRES analysis over those initialized by
LDAS_HRES open-loop. As expected, LDAS_HRES SSM
is closer to the observations compared with LDAS_fc4 and
LDAS_fc8. It is worth pointing out that for the MUDA area
there is a small positive impact of the initialization on the 4
and 8 d forecasts of surface soil moisture (Fig. 13a, b). These
results suggest that the fast-evolving SSM model variable is
more sensitive to the atmospheric forcing than to the initial
conditions (at least within the forecast range presented in this
study). Results for LAI are different from SSM (Figs. 12c, d

and 13c, d). Firstly, there is a large improvement from the
analysis (solid red line) over the open-loop (solid blue line),
particularly during the LAI decaying phase (boreal and aus-
tral autumns mainly). Secondly, the LDAS_HRES open-loop
(solid blue line) and the forecasts initialized by the open-
loop (LDAS_fc4 and LDAS_fc8) perform similarly. Further-
more, the LDAS_fc4 and LDAS_fc8 forecasts are quite con-
sistent when initialized by the LDAS_HRES analysis. Impor-
tantly, the LDAS_HRES analysis and forecasts outperform
the LDAS_HRES open-loop initial conditions and forecasts.
This suggests that LAI forecasts are more sensitive to initial
conditions than to the atmospheric forcing within the 4–8 d
range for both WEUR and MUDA regions.

These results are corroborated by Figs. 14 (for WEUR)
and 15 (for MUDA) for both SSM (top) and LAI (bot-
tom). Figures 14a and 15a show RMSD values between
LDAS_HRES open-loop SSM (1–4 cm) and ASCAT SSM
over 2017–2018 for the WEUR and MUDA domains respec-
tively. Due to the seasonal linear rescaling applied to ASCAT
estimates, the RMSD values are rather small. For the WEUR
(MUDA) domain they range from 0 to 0.048 m3 m−3 (0 to
0.040 m3m−3). Figures 14b and 15b present maps of RMSD
differences between LDAS_HRES analysis (open-loop) and
ASCAT SSM estimates over 2017–2018 for the WEUR and
MUDA domains. Both maps are dominated by negative val-
ues (in blue) indicating that RMSD values are consistently
smaller when using LDAS_HRES analysis than when us-
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Figure 12. Seasonal (a) RMSD and (b) correlation values between soil moisture from the second layer of soil (1–4 cm) from the model
forced by HRES (LDAS_HRES, open-loop in blue solid line, analysis in red solid line) and ASCAT SSM estimates over 2017–2018 over
the WEUR area. Scores between SSM from the second layer of soil of LDAS_HRES, 4 d (dashed/dotted blue – when initialized by the
open-loop – and red – when initialized by the analysis – lines) and 8 d (dashed blue and red lines) forecasts and ASCAT SSM estimates are
also reported. Panels (c) and (d): same as (a) and (b) between modelled/analysed LAI and GEOV1 LAI estimates.

Figure 13. Same as Fig. 12 for the Murray–Darling River (MUDA) area in south-eastern Australia.
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Figure 14. (a) RMSD values between LDAS_HRES open-loop and ASCAT SSM estimates over 2017–2018 for the WEUR domain; (b)
RMSD differences between LDAS_HRES analysis (open-loop) and ASCAT SSM. (c), (d) and (e): same as (b) between LDAS_fc4 initialized
by the analysis (open-loop) and LDAS_fc8. Bottom row: same as the top row for LAI from the different experiments and LAI GEOV1.

ing LDAS_HRES open-loop. For the MUDA domain, the
RMSD values are reduced by about 15 %. Figures 14c, d and
15c, d show maps of RMSD differences for forecast experi-
ments (LDAS_fc4, LDAS_fc8). It appears that over both do-
mains, the impact from the initialization is rather small. This
supports previous results indicating that the forcing quality
is more important than the initial conditions for the SSM
forecast. However, the results for LAI support the opposite
conclusion. The RMSD values for LDAS_HRES open-loop
range from 0 to 1.6 m2 m−2 over WEUR and 0 to 1 m2 m−2

over MUDA (Figs. 14e and 15e). The RMSD values are re-
duced by up to 37 % over WEUR and up to 60 % over MUDA
by the analysis (Figs. 14f and 15f). The enhancement from
the data assimilation is consistent throughout the WEUR do-
main, while the improvement over the MUDA domain is con-
centrated in the south-eastern part (the north-western part is
largely unchanged).

Similarly to Fig. 14a, b, c, d, Fig. 16 illustrates the impact
of the analysis on SSM in terms of the correlation coefficient.
But this time, ASCAT SWI (i.e. no rescaling) has been used
for the validation. Figure 16 (top panels) shows maps of R

values based on the absolute values, while Fig. 16 (bottom
panels) shows R values based on the anomaly time series
(capturing short-term variability) as defined in Albergel et
al. (2018a). Figure 16a and e represent R values and anomaly
R values for LDAS_HRES respectively. As expected, R val-
ues are higher than anomaly R values. Maps of differences
(panels b and f) of Fig. 16 suggest that after assimilation,
both scores are improved almost equally. The 4 and 8 d fore-
casts still show improvements from using initial conditions
from the analysis over the open-loop on R values (Fig. 16c,
d). Looking at Ranomaly values (Fig. 16g, h), no negative or
positive impact from the initial conditions can be seen.

Finally, the top panels of Fig. 17 illustrate the im-
pact of the analysis on drainage monitoring and fore-
casts over WEUR. Figure 17a represents drainage from the

LDAS_HRES open-loop, with values ranging between 0 and
1 kg m−2 d−1. Figure 17b shows the drainage difference be-
tween LDAS_HRES analysis and open-loop. The analysis
impact on drainage is rather small (within ±3 %) and more
pronounced in areas where the analysis has largely affected
LAI (see Fig. 14f, g and h). As seen in Fig. 17c and d, the
forecasts are also sensitive to the initialisation in areas where
the analysis effectively corrected LAI. The bottom panels of
Fig. 17 illustrate a similar impact on runoff. Although we did
not validate drainage and runoff in this study, previous find-
ings suggest a neutral to positive impact of the analysis on
river discharge through modifications to drainage and runoff
(Albergel et al., 2017, 2018a).

5 Discussion and conclusions

This study has demonstrated the potential of LDAS-Monde
to assimilate Earth observations (EOs) into a land sur-
face model (LSM) to predict the impact of heatwaves and
droughts on land surface conditions. LDAS-Monde is now
ready for various applications, including (i) land surface re-
analyses of essential climate variables (ECVs), (ii) moni-
toring of water resources, such as the impact of droughts
on vegetation, (iii) the detection of extreme land surface
conditions; and (iv) the effective initialization of LSVs for
land surface forecasting. LDAS-Monde has been applied
in this study to past events of 2018 with respect to a rel-
atively short climatology (2010–2018). It is planned that
it will be applied to much longer periods for future re-
analysis applications. The operational application of LDAS-
Monde near-real time could potentially improve emergency
monitoring systems for LSVs. Using high-quality atmo-
spheric reanalyses like ERA5 to force LDAS-Monde guar-
antees a high level of consistency since the configuration
is frozen in time (no changes in spatial and vertical reso-
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Figure 15. Same as Fig. 14 for the Murray–Darling River (MUDA) area in south-eastern Australia.

Figure 16. (a) R values between LDAS_HRES open-loop and ASCAT SWI estimates over 2017–2018 for the WEUR domain; (b) R

differences between LDAS_HRES analysis (open-loop) and ASCAT SWI. (c) and (d): same as (b) between LDAS_fc4 initialized by the
analysis (open-loop) and LDAS_fc8. Bottom row: same as top row for R values based on anomaly time series.

lutions, data assimilation or parameterizations). The coarse
spatial resolution of ERA5 makes it affordable to run long
time periods and large-scale LDAS-Monde experiments.
With ERA5 available from 1979 and now covering near-
real-time needs with its ERA5T version (https://climate.
copernicus.eu/climate-reanalysis, last access: August 2020),

an LDAS_ERA5 configuration would be able to provide a
long-term climatology as well as near-real-time anomaly de-
tections of the land surface conditions at coarse resolution
(0.25◦). Significant anomalies could then be used to trigger
more focused “on-demand” simulations for regions experi-
encing extreme conditions. For these simulations, LDAS-
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Figure 17. (a) Drainage values for LDAS_HRES open-loop over 2017–2018 for the WEUR domain; (b) drainage differences between
LDAS_HRES analysis and open-loop. (c) and (d): same as (b) between LDAS_fc4 initialized by the analysis and LDAS_fc4 initialized by
the open-loop and between LDAS_fc8 initialized by the analysis and LDAS_fc8 initialized by the open-loop. Bottom row: same as the top
row for runoff. Units are kg m−2 d−1.

Monde could be run at higher resolution by forcing the LSM
with an enhanced resolution forecast in order to provide
more information, such as the ECMWF operational high-
resolution product (0.10◦). The capability of such an ap-
proach was illustrated in our study for two regions in north-
western Europe and south-eastern Australia. In terms of the
RMSD, our results showed a very small impact of initial con-
ditions on the forecasts of SSM. This was expected due to the
short-term memory of the surface soil layer, which is dom-
inated by the antecedent meteorological forcing. However,
the LAI initialization had significant impact on the LAI fore-
cast skill. This was also expected due to the long-term mem-
ory of vegetation evolution. For SSM, the assimilation is per-
formed after a rescaling of the observations to the model cli-
matology (see Sect. 2.3), which ensures that the model and
observations are unbiased with respect to each other. How-
ever, LAI is not bias-corrected, which allows the assimilation
process to remove bias in the modelled LAI (with respect to
the observation). This technical difference between SSM and
LAI assimilation, combined with the longer memory of LAI
compared to SSM, contributes to the results presented in this
study. Despite the expected behaviour of these two LSVs in
forecasting, our results show that the LDAS-Monde system
is capable of propagating the initial LAI conditions, which is
relevant for LSV medium-range forecasting and potentially
for longer lead times, such as seasonal forecasts. The strong
impact of LAI initialization on the forecast does not seem to
propagate to the surface soil moisture, and further studies are
necessary to test the impact of initial conditions on other vari-
ables from LDAS-Monde (including soil moisture in deeper
layers and evapotranspiration). Another possibility would be
to force LDAS-Monde using the 51-member ECMWF en-
semble forecasts. Although the ensemble system has coarser
spatial resolution (∼0.20◦) than the deterministic forecast, it
accounts for forcing uncertainty in the LSVs through the en-

semble spread and extends to a 15 d lead time. The maximum
range of the soil and vegetation forecasts could even be ex-
tended to 6 months if seasonal atmospheric forecasts were
used as forcing.

LDAS-Monde has some limitations, where future devel-
opments are needed to improve the representation of LSVs.
For instance, it does not consider snow data assimilation yet.
It has been shown in this study that if the snow accumulation
seems to be represented correctly in the system, the onset of
snowmelt is too early in the spring. To overcome this issue,
two possibilities will be explored. Firstly, a recently devel-
oped ISBA parametrization, MEB (Multiple Energy Budget),
is known to lead to a better representation of the snowpack
(Boone et al., 2017). This could be particularly useful in the
densely forested areas of the Northern Hemisphere, where
large differences between LDAS-Monde and the IMS snow
cover were found in spring (Fig. S2i, Aaron Boone CNRM,
personal communication, June 2019). Another enhancement
of LDAS-Monde will be to adapt the current data assimila-
tion scheme to permit the assimilation the IMS snow-cover
data, which is implemented at NWP centres such as the
ECMWF (de Rosnay et al., 2014). The current SEKF data as-
similation scheme is also being revisited. Even though it has
provided good results, one of its limitations is the computa-
tional cost of the Jacobian matrix, which needs one model
run for each control variable. As the number of control vari-
ables is expected to increase, this approach would require
significant computational resources. Therefore, more flexible
ensemble-based data assimilation approaches have recently
been implemented in LDAS-Monde, such as the ensemble
square root filter (EnSRF, Fairbain et al., 2015; Bonan et al.,
2020). Bonan et al. (2020) have evaluated performances from
the EnSRF and the SEKF over the Euro-Mediterranean area.
Both data assimilation schemes have a similar behaviour for
LAI while for SSM, the EnSRF estimates tend to be closer
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to observations than those from the SEKF. They have also
conducted an independent evaluation of both assimilation ap-
proaches using satellite estimates of evapotranspiration and
GPP together with river discharge observations from gauging
stations. They have found that the EnSRF gives a systematic
(moderate) improvement for evapotranspiration and GPP and
a highly positive impact on river discharges, while the SEKF
leads to more contrasting performance. As for applications
in hydrology, the 0.5◦ spatial resolution TRIP river network
is currently being improved to 1/12◦ globally.

CNRM is also investigating the direct assimilation of AS-
CAT radar backscatter (Shamambo et al., 2019). This has the
potential to improve the way vegetation is accounted for in
the change detection approach used to retrieve SSM with an
improved representation of its effect. Assimilating ASCAT
radar backscatter also raises the question of how to properly
specify SSM observation, background, and model error co-
variance matrices, which are currently based on soil proper-
ties (see Sect. 2.1.3 on data assimilation). The last decade has
seen the development of techniques to estimate those matri-
ces. Approaches based on Desroziers diagnostics (Desroziers
et al., 2005) are computationally affordable for land data as-
similation systems and could provide insightful information
on the various sources of the data assimilation system.

Furthermore, a comparison of LDAS-Monde with exist-
ing datasets from other centres needs to be considered. Cur-
rent work at Météo-France has began to compare its qual-
ity against state-of-the-art reanalyses such as those from
NASA at both the global scale (GLDAS, Rodell et al., 2004,
MERRA-2, Reichle et al., 2017; Draper et al., 2018) and re-
gional scale (NCALDAS over the continental USA, FLDAS
over Africa). Finally, first work has begun to run LDAS-
Monde at kilometric- and sub-kilometric-scale spatial resolu-
tions. Promising results have been obtained by assimilating
SSM and LAI over the AROME domain (Applications de
la Recherche à l’Opérationnel à Méso-Echelle, https://www.
umr-cnrm.fr/spip.php?article120, last access: July 2019) of
Météo-France.

Code availability. LDAS-Monde is a part of the ISBA land surface
model and is available as open source via the surface modelling
platform called SURFEX. SURFEX can be downloaded freely at
http://www.umr-cnrm.fr/surfex/ (CNRM, 2016) using a CECILL-
C Licence (a French equivalent to the L-GPL licence; http://
cecill.info/licences/Licence_CeCILL_V1.1-US.html, CEA-CNRS-
Inria, 2013). It is updated at a relatively low frequency (ev-
ery 3 to 6 months). If more frequent updates are needed or if
what is required is not in Open-SURFEX (DrHOOK, FA/LFI
formats, GAUSSIAN grid), you are invited to follow the pro-
cedure to get a SVN account and to access real-time mod-
ifications of the code (see the instructions at the first link).
The developments presented in this study stemmed from SUR-
FEX version 8.1. LDAS-Monde technical documentation and con-
tact points are freely available at https://opensource.umr-cnrm.fr/
projects/openldasmonde/files (CNRM, 2019).
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