

Supplement of

Data assimilation for continuous global assessment of severe conditions over terrestrial surfaces

Clément Albergel et al.

Correspondence to: Clément Albergel (clement.albergel@meteo.fr)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

This supplementary materials reports on illustrations from the evaluation of LDAS-Monde analysis (assimilation of satellite derived Surface Soil Moisture, SSM, and Leaf Area Index, LAI) and openloop (model-only, no assimilation) against in situ measurements of (i) evapotranspiration from the FLUXNET 2015 synthesis data set (<u>http://fluxnet.fluxdata.org/</u>, last access June 2019), (ii) soil moisture from the International Soil Moisture Network (ISMN, <u>https://ismn.geo.tuwien.ac.at/en/</u>, last access June 2019) as well as river discharge from several networks across the world.

Datasets (N stations used)	Website
AFD (14): Anuario de aforos digital, Spain	http://ceh-flumen64.cedex.es/anuarioaforos/ default.asp
ANA (23): HidroWeb, Brazil	http://hidroweb.ana.gov.br/default.as
FRENCH (37): Banque HYDRO, France	http://www.hydro.eaufrance.fr/
GRDC (360): Global Runoff Data Centre, Globe	https://www.bafg.de/GRDC/EN/02_srvcs/ 21_tmsrs/riverdischarge_node.html
HYBAM (11): ORE-HYBAM, Amazon Basin	http://www.ore-hybam.org/index.php/en
HYDAT (102): National Water Data Archive, Canada	https://www.canada.ca/en/environment-climate- change/services/water-overview/quantity/ monitoring/survey/data-products-services/ national-archive-hydat.html
USGS (435): United States Geological Survey, USA	https://www.usgs.gov/mission-areas/water- resources

Table SI. In situ river discharge datasets used in this study. Websites last access is August 2020.

FLUXNET-ID	(latitude, longitude)	data-years used	data DOI
AR-Vir	(-33,4648, -66,4598)	2010-2012	10.18140/FLX/1440192
AT-Neu	(47.1167, 11.3175)	2010-2012	10.18140/FLX/1440121
AU-ASM	(-22.2830, 133.2490)	2010-2013	10.18140/FLX/1440194
AU-Cpr	(-34.0021, 140.5891)	2010-2014	10.18140/FLX/1440195
AU-DaP	$(-14\ 0633\ 131\ 3181)$	2010-2013	10.18140/FLX/1440123
AU-DaS	$(-14\ 1593\ 131\ 3881)$	2010-2014	10 18140/FLX/1440122
AU-Dry	(-15,2588,132,3706)	2010-2014	10 18140/FLX/1440197
AU-Emr	(-23 8587 148 4746)	2011-2013	10 18140/FLX/1440198
AU-Gin	(-31, 3764, 115, 7138)	2011-2014	10 18140/FLX/1440199
AU-How	(-12,4943, 131,1523)	2010-2014	10 18140/FLX/1440125
AU-Rig	(-36, 6499, 145, 5759)	2011-2014	10 18140/FLX/1440202
AU-Stn	(-17, 1507, 133, 3502)	2010-2014	10 18140/FLX/1440204
AU-TTE	(-22, 2870, 133, 6400)	2012-2013	10 18140/FLX/1440205
AU-Tum	(-35,6566,148,1517)	2010-2014	10 18140/FLX/1440126
AU-Whr	$(-36\ 6732\ 145\ 0294)$	2011-2014	10 18140/FLX/1440206
AU-Wom	(-374222, 1440944)	2010-2012	10 18140/FLX/1440207
BE-Bra	(51,3076, 4,5198)	2010-2014	10.18140/FLX/1440128
BE-Lon	(50,5516, 4,7461)	2010-2014	10.18140/FLX/1440129
BE-Vie	(50,3050, 5.9981)	2010-2014	10.18140/FLX/1440130
CH-Cha	(47.2102, 8.4104)	2010-2014	10.18140/FLX/1440131
CH-Day	(46 8153 9 8559)	2010-2014	10 18140/FLX/1440132
CH-Fru	(47.1158, 8.5378)	2010-2014	10.18140/FLX/1440133
CH-Lae	(47.4781, 8.3650)	2010-2014	10.18140/FLX/1440134
CH-Oe2	(47.2863, 7.7343)	2010-2014	10.18140/FLX/1440136
CN-Sw2	(41.7902, 111.8971)	2010-2012	10.18140/FLX/1440212
CZ-wet	(49.0247, 14.7704)	2010-2014	10.18140/FLX/1440145
DE-Akm	(53.8662, 13.6834)	2010-2014	10.18140/FLX/1440213
DE-Geb	(51.1001, 10.9143)	2010-2014	10.18140/FLX/1440146
DE-Gri	(50.9500, 13.5126)	2010-2014	10.18140/FLX/1440147
DE-Kli	(50.8931, 13.5224)	2010-2014	10.18140/FLX/1440149
DE-Lkb	(49.0996, 13.3047)	2010-2013	10.18140/FLX/1440214
DE-Obe	(50.7867, 13.7212)	2010-2014	10.18140/FLX/1440151
DE-RuR	(50.6219, 6.3041)	2011-2014	10.18140/FLX/1440215
DE-RuS	(50.8659, 6.4472)	2011-2014	10.18140/FLX/1440216
DE-SfN	(47.8064, 11.3275)	2012-2014	10.18140/FLX/1440219
DE-Spw	(51.8922, 14.0337)	2010-2014	10.18140/FLX/1440220
DE-Tha	(50.9624, 13.5652)	2010-2014	10.18140/FLX/1440152
DK-NuF	(64.1308, -51.3861)	2010-2014	10.18140/FLX/1440222
DK-Sor	(55.4859, 11.6446)	2010-2014	10.18140/FLX/1440155
DK-ZaH	(74.4733, -20.5503)	2010-2011	10.18140/FLX/1440224
FI-Hyy	(61.8474, 24.2948)	2010-2014	10.18140/FLX/1440158
FI-Sod	(67.3624, 26.6386)	2010-2014	10.18140/FLX/1440160
IT-BC1	(40.5237, 14.9574)	2010-2014	10.18140/FLX/1440166
IT-CAI	(42.3804, 12.0266)	2011-2014	10.18140/FLX/1440230
IT-CA2	(42.3772, 12.0260)	2011-2014	10.18140/FLX/1440231
II-CA3	(42.3800, 12.0222)	2011-2014	10.18140/FLX/1440232
	(41.8494, 13.3881) (45.05(2, 11.2812))	2010-2014	10.18140/FLA/144016/
II-Lav	(45.9502, 11.2813)	2010-2014	10.18140/FLA/1440169
II-MIDU	(40.0147, 11.0438) (46.5960, 11.4227)	2010-2013	10.18140/FLA/1440170
II-Kell	(40.3809, 11.4337) (42.2002, 11.0200)	2010-2013	10.18140/FLA/1440175
IT SPO	(42.3903, 11.9209) (43.7270, 10.2844)	2010-2012	10.18140/FLA/1440175
IT-Tor	(45.7277, 10.2044) ($45.8444, 7.5791$)	2013-2014	10.10140/1 LA/14401/0 10.181/0/FI V/1//0227
NI-Loo	(52,1666,5,7/26)	2010-2014	10.18140/FLX/144023/ 10.18140/FLX/144023/
RU-Cok	(32.1000, 5.7450) (70.8201, 147.4043)	2010-2013	10.18140/FLX/14401/0 10.18140/FLX/1440182
RU-Evo	(56 4615 32 9221)	2010-2014	10 18140/FLX/1440183
US-AR1	(36, 4267, -99, 4200)	2010-2017	10 18140/FLX/1440103
US-AR2	(36.6358, -99.5975)	2010-2012	10.18140/FLX/1440104
	(,		

Table S2: Fluxnet-2015 sites used in this study

US-ARM	(36.6058, -97.4888)	2010-2012	10.18140/FLX/1440066
US-GLE	(41.3665, -106.2399)	2010-2014	10.18140/FLX/1440069
US-Ha1	(42.5378, -72.1715)	2010-2012	10.18140/FLX/1440071
US-Los	(46.0827, -89.9792)	2010-2014	10.18140/FLX/1440076
US-Me2	(44.4523, -121.557)	2010-2014	10.18140/FLX/1440079
US-Me6	(44.3233, -121.6078)	2010-2014	10.18140/FLX/1440099
US-MMS	(39.3232, -86.4131)	2010-2014	10.18140/FLX/1440083
US-Myb	(38.0499, -121.7650)	2010-2014	10.18140/FLX/1440105
US-Ne1	(41.1651, -96.4766)	2010-2013	10.18140/FLX/1440084
US-Ne2	(41.1649, -96.4701)	2010-2013	10.18140/FLX/1440085
US-Ne3	(41.1797, -96.4397)	2010-2013	10.18140/FLX/1440086
US-NR1	(40.0329, -105.5464)	2010-2014	10.18140/FLX/1440087
US-PFa	(45.9459, -90.2723)	2010-2014	10.18140/FLX/1440089
US-Prr	(65.1237, -147.4876)	2010-2013	10.18140/FLX/1440113
US-SRG	(31.7894, -110.8277)	2010-2014	10.18140/FLX/1440114
US-SRM	(31.8214, -110.8661)	2010-2014	10.18140/FLX/1440090
US-Syv	(46.2420, -89.3477)	2010-2014	10.18140/FLX/1440091
US-Ton	(38.4316, -120.9660)	2010-2014	10.18140/FLX/1440092
US-Tw1	(38.1074, -121.6469)	2012-2014	10.18140/FLX/1440108
US-Twt	(38.1087, -121.6531)	2010-2014	10.18140/FLX/1440106
US-UMB	(45.5598, -84.7138)	2010-2014	10.18140/FLX/1440093
US-UMd	(45.5625, -84.6975)	2010-2014	10.18140/FLX/1440101
US-Var	(38.4133, -120.9507)	2010-2014	10.18140/FLX/1440094
US-WCr	(45.8059, -90.0799)	2010-2014	10.18140/FLX/1440095
US-Whs	(31.7438, -110.0522)	2010-2014	10.18140/FLX/1440097
US-Wkg	(31.7365, -109.9419)	2010-2014	10.18140/FLX/1440096
ZA-Kru	(-25.0197, 31.4969)	2010-2010	10.18140/FLX/1440188

Table S3: Left column: evaluation of LDAS_ERA5 analysis and open-loop soil moisture (third layer of soil, 4 and 10 cm) against in situ measurements of soil moisture at 5cm depth from the International Soil Moisture Network (ISMN, <u>https://ismn.geo.tuwien.ac.at/en/</u>, last access June 2019). Unbiased RMSD, correlation on absolute values (R), anomaly values (R_{anomaly}) along with their 95% Confidence Interval, bias values are reported along with informations specific to each network used (acronyms, sensor depth, localisation, number of sensors used in the study as well as mean sampling for absolute values (anomaly values)), 786 stations are available. Right column: same as left for LDAS_ERA5 soil moisture (fourth layer of soil, 10 and 20 cm depth) and in situ measurements at 20 cm depth when available, 685 stations are available. Websites last access is August 2020.

	ubRMSD (m³m⁻³)	R, R _{anomaly} [-]	Bias (Analysis or Model - insitu) (m ³ m ⁻³)	ubRMSD (m³m⁻³)	R [-]	Bias (Analysis or Model - insitu) (m ³ m ⁻³)
	AMMA-CATCH (0.05-0.05 cm) Benin, Niger, Mali, 9 sensors, Npt=1661(1647) (Lebel et al., 2009)			AMMA-CATCH (0.20-0.20 cm) Benin, Niger, Mali, 4 sensors, Npt=1355 (Lebel et al., 2009)		
Model	0.032	0.74±0.02 (0.19±0.04)	0.124	0.037	0.87±0.01	0.141
Analysis	0.034	0.72±0.02 (0.19±0.04)	0.123	0.037	0.87±0.01	0.141
	FR France, 3	-Aqui (0.05-0.05 sensors, Npt=12	cm) 200(1200)	FR Franc	-Aqui (0.20-0.20 e, 1 sensors, Npt	cm) =1350
Model	0.044	0.80 ± 0.02 (0.64 ±0.03)	0.068	0.072	0.75±0.02	0.060
Analysis	0.044	$0.80{\pm}0.02$ (0.65 ${\pm}0.03$)	0.071	0.072	0.77±0.02	0.067
	OZNET (0.00-0.05 cm) Australia, 19 sensors, Npt=1891(1878) (Smith et al., 2012)			OZNET (0.00-0.08 cm) Australia, 19 sensors, Npt=949(932) (Smith et al., 2012)		
Model	0.067	$0.74{\pm}0.02$ (0.63 ${\pm}0.03$)	0.079	0.041	0.71 ± 0.03 (0.65 ±0.03)	0.105
Analysis	0.067	0.75 ± 0.02 (0.64 ±0.03)	0.086	0.040	0.73 ± 0.03 (0.65 ±0.03)	0.111
	He Denmark, 4 (H	OBE (0.00-0.05c 44 sensors, Npt= Bircher et al., 201	m) 1088(1083) 1)	HOBE (0.20-0.25cm) Denmark, 33 sensors, Npt=1088 (Bircher et al., 2011)		
Model	0.045	$0.64{\pm}0.03$ (0.66 ${\pm}0.03$)	0.041	0.039	0.66±0.03	0.037
Analysis	0.044	0.65 ± 0.03 (0.67 ±0.03)	0.041	0.039	0.67±0.03	0.036
	HYDROL-NET-PERUGIA (0.05-0.05 cm) Italy, 1 sensors, Npt=998(988) (Morbidelli et al., 2014)					
Model	0.046	0.74±0.03 (0.67±0.03)	0.040			
Analysis	0.046	0.74±0.03 (0.68±0.03)	0.040			
	BIEBI Poland, 2	RZA-S-1 (0.05-0. 38 sensors, Npt=6	.05 cm) 617(690)			

	(<u>htt</u>	p://www.igik.edu.pl	<u>l/en</u>)
Model	0.096	0.58 ± 0.04 (0.60±0.04)	-0.032
Analysis	0.097	0.56 ± 0.04 (0.60±0.04)	-0.042
	MOL-RAO (0.08-0.08 cm) Germany, 1 sensors, Npt=953(944) (Beyrich et al., 2007)		
Model	0.040	0.79±0.02 (0.70±0.03)	0.045
Analysis	0.040	0.80±0.02 (0.70±0.03)	0.047

	ubRMSD (m ³ m ⁻³)	R(R _{anomaly}) [-]	Bias (Analysis or Model - insitu) (m ³ m ⁻³)	ubRMSD (m³m⁻³)	R [-]	Bias (Analysis or Model - insitu) (m ³ m ⁻³)
	DAHRA (0.05-0.05 cm) Sénégal, 1 sensors, Npt=1821(1821) (Tagesson et al., 2015)					
Model	0.024	0.69 ± 0.02 (0.23 ±0.04)	0.076			
Analysis	0.024	0.69±0.02 (0.23±0.04)	0.075			
	REM Spain, 20 (<u>http://</u>	EDHUS (0.00-0.) sensors, Npt=22 campus.usal.es/~	05 cm) 309(2295) <u>hidrus/</u>)			
Model	0.046	0.73±0.02 (0.50±0.03)	0.134			
Analysis	0.046	0.73±0.02 (0.50±0.03)	0.133			
	FMI (0.05-0.05 cm) Finland, 10 sensors, Npt=792(790) (http://fmiarc.fmi.fi/)			FMI (0.20-0.20 cm) Finland, 3 sensors, Npt=786 (http://fmiarc.fmi.fi/)		
Model	0.035	0.68 ± 0.03 (0.74 ±0.03)	0.254	0.037	0.48 ± 0.04	0.284
Analysis	0.036	$0.67{\pm}0.03$ (0.75 ${\pm}0.03$)	0.248	0.037	0.49±0.04	0.279
	RSMN (0.00-0.05 cm) Romania, 19 sensors, Npt=1032(1023) (http://assimo.meteoromania.ro)					
Model	0.049	0.56±0.04 (0.57±0.04)	0.141			
Analysis	0.049	0.56±0.04 (0.57±0.04)	0.143			
	ARM (0.05-0.05 cm) USA, 10 sensors, Npt=932(918) (http://www.arm.gov/)					
Model	0.092	0.30±0.05 (0.47±0.04)	-0.023			

Analysis	0.091	0.29±0.05 (0.47±0.04)	-0.018			
	SCAN (0.05-0.05 cm) USA, 160 sensors, Npt=1841(1829) (http://www.wcc.nrcs.usda.gov/)			SCAN (0.20-0.20 cm) USA, 158 sensors, Npt=1998 (http://www.wcc.nrcs.usda.gov/)		
Model	0.059	0.63 ± 0.03 (0.55 ±0.03)	0.078	0.050	0.56±0.03	0.027
Analysis	0.058	$0.64{\pm}0.03$ (0.55 ${\pm}0.03$)	0.080	0.049	0.57±0.03	0.029
	SMOSMANIA (0.05-0.05 cm) France, 23 sensors, Npt=1985(1980) (Albergel et al., 2008)			SMOSMANIA (0.20-0.20 cm) France, 23 sensors, Npt=1985 (Albergel et al., 2008)		
Model	0.047	0.80±0.01 (0,70±0.02)	0.076	0.042 0.78±0.03 0.09		
Analysis	0.047	0.80±0.01 (0.70±0.02)	0.077	0.042	0.77±0.03	0.094
	UMBRIA (0.05-0.05 cm) Italy, 16 sensors, Npt=2184(2181) (Brocca et al., 2011)					
Model	0.065	0.73±0.02 (0.58±0.03)	0.057			
Analysis	0.064	0.73±0.02 (0.58±0.03)	0.057			

	ubRMSD (m ³ m ⁻³)	R(R _{anomaly}) [-]	Bias (Analysis or Model - insitu) (m ³ m ⁻³)	ubRMSD (m³m⁻³)	R [-]	Bias (Analysis or Model - insitu) (m ³ m ⁻³)
	SNOTEL (0.05-0.05 cm) USA, 269 sensors, Npt=1160 (1150) (http://www.wcc.nrcs.usda.gov//)			SNOTEL (0.20-0.20 cm) USA, 310 sensors, Npt=1187 (http://www.wcc.nrcs.usda.gov//)		
Model	0.073	0.65 ± 0.03 (0.44 ±0.04)	0.075	0.066	0.64±0.03	0.055
Analysis	0.073	0.65 ± 0.03 (0.44 ±0.04)	0.075	0.065	0.65±0.03	0.056
	TERENO (0.05-0.05cm) Germany, 14 sensors, Npt=1449(1447) (Zacharias et al., 2011)			TERENO (0.20-0.20cm) Germany, 14 sensors, Npt=1489 (Zacharias et al., 2011)		
Model	0.055	0.76 ± 0.02 (0.65 ±0.03)	0.025	0.045	0.69±0.03	0.029
Analysis	0.054	0.76 ± 0.02 (0.65 ±0.03)	0.024	0.045	0.69±0.03	0.028
	USCRN (0.05 0.05 cm) USA, 114 sensors, Npt=2090(2082) (Bell et al., 2013)			US USA	CRN (0.20 0.20 , 91 sensors, Npt- (Bell et al., 2013	cm) =2107)
Model	0.050	0.73 ± 0.02	0.083	0.048	0.64 ± 0.02	0.045

Analysis	0.050	(0.64 ± 0.04) 0.73 ± 0.02 (0.65 ± 0.04)	0.085	0.047	0.63±0.02	0.048
	SOI USA, (M	LSCAPE (0.04-0.04 , 7 sensors, Npt=785 loghaddam et al., 20	4 cm) 5(784) 16)	SOII US (M	LSCAPE (0.20-0.2 A, 49 sensors, Npt= oghaddam et al., 20	0 cm) 988 116)
Model	0.061	0.55 ± 0.05 (0.44 ± 0.05)	0.014	0.051	0.82±0.02	0.058
Analysis	0.060	0.56 ± 0.05 (0.44 ±0.05)	0.018	0.051	0.82±0.02	0.059
	SOI USA, (M	LSCAPE (0.05-0.03 49 sensors, Npt=99 loghaddam et al., 20	5 cm) 9(999) 16)			
Model	0.054	0.88 ± 0.01 (0.60 \pm 0.04)	0.064			
Analysis	0.054	0.88 ± 0.01 (0.58 ± 0.04)	0.064			

Figure S1: Mean northern hemisphere snow cover fraction over 2010-2018 for the Interactive Multi-sensor Snow and Ice Mapping System data (ims, in red), LDAS-Monde open-loop (ol, in black) and analysis (an, in blue) forced by ERA-5 atmospheric reanalysis.

Figure S2: a), b) and c) Maps of snow cover fraction from the Interactive Multi-sensor Snow and Ice Mapping System data (ims) for September-October-November (SON), December-January-February (DJF) and March-April-May (MAM), respectively for the period 2010-2018. d), e) and f) same as a), b) and c) for LDAS-Monde open-loop (ol) forced by ERA-5. g), h) and i) maps of snow cover differences, ims-ol for SON, DJF and MAM, respectively, for the 2010-2018 period. j), k) and l), same as g), h) and I) between LDAS-Monde analysis and open-loop (an-ol).

Figure S3: a) Boxplots representing the distribution of the correlation values on absolute timeseries and anomaly time-series ("Ano") between the stations with in situ measurements of soil moisture either 5cm depth or 20 cm depth and soil moisture from LDAS_ERA5 openloop and analysis over 2010-2018 (third and forth layer of soil, respectively). Correlation values rae presented for surface soil moisture (5 cm depth measurements against third layer of soil), only. Distribution are centred on the median values. b) Distribution of the Bias values between the stations with in situ measurements of soil moisture either 5cm depth or 20 cm depth and soil moisture from LDAS_ERA5 openloop and analysis over 2010-2018 (third and forth layer of soil, respectively).c) Same as b) for ubRMSD.

References

Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on insitu observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, 2008.

Bell, J. E., M. A. Palecki, C. B. Baker, W. G. Collins, J. H. Lawrimore, R. D. Leeper, M. E. Hall, J. Kochendorfer, T. P. Meyers, T. Wilson, and H. J. Diamond. 2013: U.S. Climate Reference Network soil moisture and temperature observations. J. Hydrometeorol., 14, 977-988. doi: 10.1175/JHM-D-12-0146.1

Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martínez-Fernández, J., Llorens, P., Latron, J., Martin, C., Bittelli, M. (2011). Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe. Remote Sensing of Environment, 115, 3390-3408, doi:10.1016/j.rse.2011.08.003.

Beyrich, F. and W.K. Adam, Site and Data Report for the Lindenberg Reference Site in CEOP -Phase 1, Berichte des Deutschen Wetterdienstes, 230, Offenbach am Main, 2007

Bircher, S., Skou, N., Jensen, K.H., Walker, J.P., and Rasmussen, L.: A soil moisture and temperature network for SMOS validation in Western Denmark. Hydrology and Earth System Sciences Discussions, 8, 9961-10006, doi:10.5194/hessd-8-9961, 2011

Larson, M., K., Eric E. Small, Ethan D. Gutmann, Andria L. Bilich, John J. Braun, Valery U. Zavorotny: Use of GPS receivers as a soil moisture network for water cycle studies. GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L24405, doi:10.1029/2008GL036013, 2008.

Lebel, Thierry, Cappelaere, Bernard, Galle, Sylvie, Hanan, Niall, Kergoat, Laurent, Levis, Samuel, Vieux, Baxter, Descroix, Luc, Gosset, Marielle, Mougin, Eric, Peugeot, Christophe and Seguis, Luc: AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. JOURNAL OF HYDROLOGY, 375, 3-13, 2009.

Moghaddam, M., A.R. Silva, D. Clewley, R. Akbar, S.A. Hussaini, J. Whitcomb, R. Devarakonda, R. Shrestha, R.B. Cook, G. Prakash, S.K. Santhana Vannan, and A.G. Boyer. 2016. Soil Moisture Profiles and Temperature Data from SoilSCAPE Sites, USA. ORNL DAAC, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1339

Morbidelli, R., Saltalippi, C., Flammini, A., Rossi, E. & Corradini, C., Soil water content vertical profiles under natural conditions: Matching of experiments and simulations by a conceptual model. Hydrological Processes. 28(17), 4732-4742, doi: 10.1002/hyp.9973, 2014.

Osenga, E. C., Arnott, J. C., Endsley, K. A., & Katzenberger, J. W.: Bioclimatic and soil moisture monitoring across elevation in a mountain watershed: Opportunities for research and resource management. Water Resources Research, 55. <u>https://doi.org/10.1029/2018WR023653</u>, 2019.

Smith, A. B., J. P.Walker, A. W.Western, R. I.Young, K. M.Ellett, R. C.Pipunic, R. B.Grayson, L.Siriwardena, F. H. S.Chiew, and H.Richter, The Murrumbidgee soil moisture monitoring network data set, Water Resour. Res., 48, W07701, doi:10.1029/2012WR011976, 2012.

Schlenz, F., Dall'Amico, J., Loew, A., Mauser, W. (2012): Uncertainty Assessment of the SMOS Validation in the Upper Danube Catchment. IEEE Transactions on Geoscience and Remote Sensing, 50(5), pp.1517–1529. doi: 10.1109/TGRS.2011.2171694.;

Tagesson T, Fensholt R, Guiro I et al. ,Ecosystem properties of semi-arid savanna grassland in West Africa and its relationship to environmental variability. Global Change Biology, 2015 Jan;21(1):250-64. doi: 10.1111/gcb.12734. Epub 2014 Oct 18.

Yang, K., J. Qin, L. Zhao, Y. Y. Chen, W. J. Tang, M. L. Han, Lazhu, Z. Q. Chen, N. Lv, B. H. Ding, H. Wu, C. G. Lin, 2013. A Multi-Scale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole, Bulletin of the American Meteorological Society, doi: 10.1175/BAMS-D-12-00203.1

Zacharias, S., H.R. Bogena, L. Samaniego, M. Mauder, R. Fuß, T. Pütz, M. Frenzel, M. Schwank, C. Baessler, K. Butterbach-Bahl, O. Bens, E. Borg, A. Brauer, P. Dietrich, I. Hajnsek, G. Helle, R. Kiese, H. Kunstmann, S. Klotz, J.C. Munch, H. Papen, E. Priesack, H. P. Schmid, R. Steinbrecher, U. Rosenbaum, G. Teutsch, H. Vereecken. 2011. A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone J. 10. 955–973. doi:10.2136/vzj2010.0139