
HAL Id: meteo-03376392
https://meteofrance.hal.science/meteo-03376392v1

Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Half a century of satellite remote sensing of sea-surface
temperature

P J Minnett, A Alvera-Azcárate, T M Chin, G K Corlett, C L Gentemann, I
Karagali, X Li, A Marsouin, S Marullo, E Maturi, et al.

To cite this version:
P J Minnett, A Alvera-Azcárate, T M Chin, G K Corlett, C L Gentemann, et al.. Half a century
of satellite remote sensing of sea-surface temperature. Remote Sensing of Environment, 2019, 233,
�10.1016/j.rse.2019.111366�. �meteo-03376392�

https://meteofrance.hal.science/meteo-03376392v1
https://hal.archives-ouvertes.fr


Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Half a century of satellite remote sensing of sea-surface temperature
P.J. Minnetta,⁎, A. Alvera-Azcárateb, T.M. Chinc, G.K. Corlettd, C.L. Gentemanne, I. Karagalif,
X. Lig, A. Marsouinh, S. Marulloi, E. Maturij, R. Santolerik, S. Saux Picarth, M. Steelel,
J. Vazquez-Cuervoc
a Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
bAGO-GHER-MARE, University of Liège, Allée du Six Août 17, Sart Tilman, Liège, 4000, Belgium
c Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
d EUMETSAT, Eumetsat Allee 1, D-64295 Darmstadt, Germany
e Earth & Space Research, 2101 4th Ave #1310, Seattle, WA 98121, USA
fDTU Wind Energy, Technical University of Denmark, Risø Campus, Frederiksborgvej 399, Roskilde 4000, Denmark
g IMSG at Environmental Modeling Center, National Center for Environmental Prediction, NOAA, 5830 University Research Court, College Park, MD 20740, USA
h CNRM, Université de Toulouse, Météo-France, CNRS, Lannion, France
i Italian National Agency for New Technologies, Energy and Sustainable Economic Development - ENEA - Division Models and Technologies for Risk Reduction - Laboratory
for Climate Modelling - Centro Ricerche Frascati, Frascati, Italy
jNOAA/NESDIS/STAR, NOAA Center for Weather and Climate Prediction (NCWCP), 5830 University Research Court, Rm 3711, College Park, MD 20740, USA
k Consiglio Nazionale Ricerche - CNR - Institute of Marine sciences (ISMAR), Venezia, Italy
l Polar Science Center/Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA

A R T I C L E I N F O

Keywords:
Sea surface temperature
Fifty year review

A B S T R A C T

Sea-surface temperature (SST) was one of the first ocean variables to be studied from earth observation satellites.
Pioneering images from infrared scanning radiometers revealed the complexity of the surface temperature fields,
but these were derived from radiance measurements at orbital heights and included the effects of the intervening
atmosphere. Corrections for the effects of the atmosphere to make quantitative estimates of the SST became
possible when radiometers with multiple infrared channels were deployed in 1979. At the same time, imaging
microwave radiometers with SST capabilities were also flown. Since then, SST has been derived from infrared
and microwave radiometers on polar orbiting satellites and from infrared radiometers on geostationary space-
craft. As the performances of satellite radiometers and SST retrieval algorithms improved, accurate, global, high
resolution, frequently sampled SST fields became fundamental to many research and operational activities. Here
we provide an overview of the physics of the derivation of SST and the history of the development of satellite
instruments over half a century. As demonstrated accuracies increased, they stimulated scientific research into
the oceans, the coupled ocean-atmosphere system and the climate. We provide brief overviews of the devel-
opment of some applications, including the feasibility of generating Climate Data Records. We summarize the
important role of the Group for High Resolution SST (GHRSST) in providing a forum for scientists and opera-
tional practitioners to discuss problems and results, and to help coordinate activities world-wide, including
alignment of data formatting and protocols and research. The challenges of burgeoning data volumes, data
distribution and analysis have benefited from simultaneous progress in computing power, high capacity storage,
and communications over the Internet, so we summarize the development and current capabilities of data ar-
chives. We conclude with an outlook of developments anticipated in the next decade or so.

1. Introduction

Sea-surface temperature (SST) is a very important variable in the
earth's climate system. Being at the interface of the ocean and the at-
mosphere, SST is critical to both, and to the exchanges of heat,

moisture, momentum, and gases between the two (e.g. Bentamy et al.,
2017; Wanninkhof et al., 2009). The patterns of SST reveal subsurface
dynamics, at least those with a surface thermal expression such as
fronts and eddies (e.g. Tandeo et al., 2014), and the modulation of the
surface momentum exchanges across the temperature gradients modify
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the atmospheric boundary layer on the mesoscale (e.g. O'Neill et al.,
2010; Perlin et al., 2014) and larger (e.g. McPhaden et al., 2006;
Minobe et al., 2008). Temporal changes in patterns of SST on the basin
scales can reveal large-scale perturbations to the global circulation
(Dong et al., 2018) and multi-decadal changes in the climate (e.g. Jha
et al., 2014). Since all processes in nature exhibit a temperature de-
pendence, variations in the SST influence many components of the
climate, including the Ocean Primary Production (OPP; Behrenfeld and
Falkowski, 1997; Behrenfeld et al., 2006), which is important to the
flow of carbon through the global environment, and is the base of the
ocean food web. Global sampling of the SST is feasible only from earth-
observation satellites, with sensors on geostationary satellites providing
rapid sampling in the tropics and mid-latitudes, and those on polar
orbiting satellites generating global data but less frequently. Satellites
in geostationary orbits rotate about the earth in the equatorial plane
with a period equal to that of the earth's rotation on its axis, and thus
appear to be at an approximately fixed longitude. The satellites are at
about 35,900 km above the equator. Measurements from geostationary
satellites sample diurnal changes. The term “polar-orbiting satellite” is

often used as short-hand for “near-polar orbiting, sun-synchronous sa-
tellites”. Such satellites orbit the earth at a height of 700–800 km and
have an inclination of ~98°, meaning when they cross the equator, they
travel in the direction of ~98° measured from east. The choice of alti-
tude and inclination is determined by the effects of the earth's equa-
torial bulge on its gravity field, and results in the plane in which the
satellite orbits precessing in space once per year meaning the satellite
passes overhead at a given latitude at about the same times in a day,
once going north (in the ascending arc) and again going south (in the
descending arc), hence the “sun-synchronous” aspect. This has the ad-
vantage that measurements of the same place are taken at about the
same local time, but it means that diurnal changes are poorly resolved
by a single satellite. Details of earth satellite orbits are given by
Montenbruck and Gill (2000).

Since significant progress in knowledge and understanding are often
stimulated by developments of new or improved instruments, we in-
clude a section on the development of satellite instruments and on
improvements in the accuracy of the satellite retrievals of SST. The
remarkable contributions these instruments have made to further our

Fig. 1. An extract of the Franklin-Folger Map of the currents of the North Atlantic showing the position of the strong surface current named here as the Gulf Stream.
From the Library of Congress (https://www.loc.gov/resource/g9112g.ct000753/).
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understanding of the oceans, air-sea interactions, and the climate
system, are dealt with in a wealth of papers in the primary literature
and in many books (e.g. Robinson, 2004; Robinson, 2010; Martin,
2014) and encyclopedias (e.g. Njoku et al., 2014).

In this review, a Historical Background section is followed by a
discussion of the meaning of “SST” and a summary of the techniques of
retrieving SST from measurments of satellite radiometers. The satellite
radiometers used over the last half century are then presented, leading
to a discussion of the instruments and approaches used to assess the
accuracies of the satellite-derived SSTs. There follows a brief explana-
tion of the various processing levels of the derived SSTs in which the
data are delivered to users. Two regions, the Mediterranean Sea and the
Arctic Ocean, are highlighted as examples of where deriving accurate
SST retrievals is challenging but where satellite data have produced
significant results. Three specific applications of satellite-derived SST
with direct societal benefit are then briefly discussed: Numerical
Weather Prediction, Ocean Heat Content and its relationship to severe
storms, and sea-level rise. The relatively new field of Operational
Oceanography, in which satellite-derived SSTs have immediate appli-
cations, is introduced, followed by the contribution of accurate SSTs
from satellites to a longer term application, that of generating Climate
Data Records. Synergistic analyses of satellite-derived SSTs with other
remotely sensed data are then discussed. The role of the Group for High-
Resolution SST (GHRSST) in coordinating research and operational
applications of SST is presented before a discussion of the facilities at
various data centers from where users can access satellite data. The
review concludes with an outlook into anticipated developments in the
foreseeable future.

For more information than is possible in this review, the interested
reader is referred to, for example, Chapters 7 and 8 of Robinson (2004),
Chapters 7 to 9 of Martin (2014), and Robinson (2010).

2. Historical background

It is generally accepted that one of the first depictions of a strong
SST signal is the Franklin-Folger chart of the Gulf Stream published in
1768 (Fig. 1; Franklin et al., 1768). Benjamin Franklin, who was deputy
Postmaster General of the American colonies and was based in London,
had wondered why sailing ships going to America took longer than the
ships coming from the colonies. His cousin, Timothy Folger, a whaling
captain, told Franklin that this was because of the strong current
flowing to the east and was well known to local navigators, but ap-
parently not to captains of ships crossing the Atlantic Ocean. The
temperature gradients at the sides of the “Gulf Stream,” named in re-
cognition of its origin in the Gulf of Florida, were known to be good
areas for fishing and whaling (Lacouture, 1995). Although the Franklin-
Folger chart is the first recognized graphical representation of the Gulf
Stream, it had been remarked upon by the Spanish Explorer, Juan
Ponce de León, in 1513 when he landed and named Florida, near pre-
sent-day St. Augustine (Lacouture, 1995).

The history of knowledge about the analogous current in the Pacific
Ocean, the Kuroshio, is much longer, going back to the seventh century
(Kawai, 1998) with evidence of the current being based on flotsam and
hapless castaways being washed up on islands having come from the
south. The connection with SST was not made until much later, but was
known by the mid-nineteenth century when mention of warm waters of
the Kuroshio was made in ships' log books (Kawai, 1998).

The depiction of the Gulf Stream in the Franklin-Folger map is re-
markably congruent with the mean position of the Gulf Stream, as now
known, but the current is not constant in position or strength.
Measurements taken from ships were indicative of a very spatially and
temporally variable current, which defied simple representation as a
synoptic feature (Fuglister, 1955; Fuglister, 1963); the same is true of
the Kuroshio (Fuglister, 1955).

It was not until the advent of infrared (IR) remote sensing from
satellites that the spatial complexity of the surface signature of the Gulf

Stream was revealed (Legeckis, 1975). Infrared scanning radiometers
on geostationary satellites were capable of making images of the earth's
disk at half hourly intervals, even in the 1970s. These provided frequent
images for compositing cloud-free sections over a day or so to reduce
the obscuration of the sea surface by clouds over the Gulf Stream
(Legeckis, 1975) and to reveal strong features elsewhere, such as Tro-
pical Instability Waves in the eastern equatorial Pacific (Legeckis,
1977). But it was the higher resolution and superior sensitivity of IR
radiometers on polar-orbiting satellites that gave a better depiction of
the SST features, not only of the Gulf Stream (Legeckis, 1979), but of
many other strong SST gradients associated with upper ocean currents
and eddies (Legeckis and Gordon, 1982; Legeckis, 1978).

3. Sea-surface temperature

Although there have been marine observations since the mid-
eighteenth-century (Worley et al., 2005) and there are records of the
near-surface temperature for nearly two centuries using thermometers
in a bucket of sea water hauled onto the deck of ships, it is generally
recognized that the reliable time series of measurements began in the
mid-1850s (Rayner et al., 2006). With time the measurement ap-
proaches improved and at about the same time as quantitative re-
trievals of SST from IR radiometers on satellites began, arrays of
drifting buoys carrying thermometers and using satellite data trans-
mission were being deployed in significant numbers. Subsurface tem-
peratures from these buoys were used to assess the accuracy of the
satellite-derived SSTs, and while differences had a standard deviation of
~0.5 K (McClain et al., 1985), details of the vertical structure of the
near-surface temperature could be ignored. But, as the differences be-
tween satellite-derived SSTs and in situ measurements diminished, the
temperature structure took on a new importance.

Although SST is not a single variable, it is considered by many to be
the temperature within the mixed layer (approximately the upper
10m). Air-sea fluxes of heat, moisture and momentum, as well as ocean
turbulence means the temperature variation through the “mixed layer”
can be complex and variable. This complexity and variability need to be
considered when comparing or combining measurements of SST from
different satellites and in situ sensors. To facilitate such activities, a set
of definitions of SST were developed by the GHRSST Science Team
(Section 13). These definitions achieve the closest possible agreement
between what is defined and what can be measured, taking into account
our current understanding of near surface thermal variability. The de-
finitions are in agreement with the Climate and Forecast (CF) metadata
convention and are now used across GHRSST-format SST products. The
definitions are shown schematically in Fig. 2 and are briefly summar-
ized below. Further details on their derivation are discussed by Minnett
and Kaiser-Weiss (2012).

Five different SST definitions are specified: (1) The interface tem-
perature (SSTint) – the temperature at the air-sea interface on molecular
scales; (2) the skin sea surface temperature (SSTskin) - the temperature
measured by an IR radiometer typically operating at wavelengths
3.7–12 μm (chosen for consistency with the majority of IR satellite
measurements), which represents the temperature within the con-
ductive diffusion-dominated sub-layer at a depth of ~10–20 μm; (3) the
subskin sea surface temperature (SSTsubskin) - the temperature at the
base of the conductive laminar sub-layer of the ocean surface, which for
practical purposes can be well approximated to the measurement of
surface temperature by a microwave radiometer operating in the
6–11 GHz frequency range; (4) the surface temperature at depth (SSTz

or SSTdepth) - all measurements of water temperature beneath SSTsubskin;
and (5) the foundation temperature (SSTfnd) - the temperature free of
diurnal temperature variability, i.e., SSTfnd is defined as the tempera-
ture at the first time of the day when the heat gain from the solar ra-
diation absorption exceeds the heat loss at the sea surface.
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3.1. Thermal skin effect

The ocean surface is nearly everywhere and under nearly all con-
ditions warmer than the atmosphere in contact with it, resulting in a
heat flow from the ocean to atmosphere. The upwards flow of heat in
the water is accomplished in the top hundred micrometers or so of the
water (Wong and Minnett, 2018) by molecular conduction as the air-sea
density difference and near surface viscous layer on the aqueous side of
the interface suppress the turbulent heat transfer (Soloviev and Lukas,
2014). Thus, there is a vertical temperature gradient in the water just
beneath the interface leading to decreasing temperature closer to the
interface; this is referred to as the thermal skin layer. The IR emission
from the sea surface emerges from a thin layer, an electromagnetic skin
layer, that is of comparable thickness in the IR (Bertie and Lan, 1996) to
the thermal skin layer (Wong and Minnett, 2018). The radiance emitted
by the sea surface and measured by an IR radiometer is nearly always
characteristic of a temperature lower than that measured by an in situ
thermometer (Donlon et al., 2002; Minnett et al., 2011). The average
temperature drop across the thermal skin layer is ~0.17 K, with much
larger values seen at very low winds (ibid), so, given the target accuracy
of satellite-derived SSTs for climate change studies of 0.1 K (Ohring
et al., 2005), the variable thermal skin effect should be taken into ac-
count, and retrievals of SST in the IR should be considered as SSTskin.
The electromagnetic skin depths at microwave frequencies used to de-
rive SST are greater (see Fig. 2 of Minnett and Kaiser-Weiss, 2012) so
even though the thermal skin layer is embedded in the microwave
electromagnetic skin layer, the microwave-derived SST is not an SSTskin

and can be considered as an approximation to SSTsubskin.

3.2. Diurnal variability

A significant part of the solar radiation entering the ocean is ab-
sorbed at the top few meters. During day-time and in the absence of
strong enough winds to drive vertical mixing of heat, diurnal warming
causes a relatively shallow warm layer to be formed (Fig. 2).

Driven by solar heating, diurnal variability of SST occurs under
moderately low wind speeds in all ocean basins. While in situ

observations provided the first reported cases of diurnal variability (e.g.
Stommel et al., 1969; Halpern and Reed, 1976; Kaiser, 1978), SST re-
trievals from space resulted in a significant increase of diurnal cycle
characterization and understanding. Diurnal warming has been iden-
tified in the Arctic (Eastwood et al., 2011), the North and Baltic Sea
(Karagali et al., 2012), various regions of the Atlantic Ocean (Fig. 3;
Cornillon and Stramma, 1985; Stramma et al., 1986; Price et al., 1987;
Gentemann and Minnett, 2008; Le Borgne et al., 2012a; Karagali and
Høyer, 2014), the Mediterranean Sea (Deschamps and Frouin, 1984;
Böhm et al., 1991; Buongiorno Nardelli et al., 2005; Merchant et al.,
2008a; Marullo et al., 2014a), the Tropics (Clayson and Weitlich, 2007;
Marullo et al., 2010) and Tropical Warm Pool (Zhang et al., 2016a;
Zhang et al., 2016b), the Gulf of California (Flament et al., 1994; Ward,
2006), the Indian and South Pacific Ocean (Gentemann and Minnett,
2008) and the Arabian Sea (Stuart-Menteth et al., 2005b). Advances in
space-borne SST retrievals allowed basin-scale studies of diurnal
warming spanning several years and extended comparisons with in situ
observations (Stuart-Menteth et al., 2003; Gentemann and Minnett,
2008; Castro et al., 2014; Karagali and Høyer, 2014), with detailed
characterization of number of occurrences, peak warming time and
seasonal patterns. The abundance of SST retrievals from space and
improvements in understanding of the diurnal cycle allowed for nu-
merical simulations to reproduce the diurnal variability of the upper
ocean layer, first developed shortly after the first observational evi-
dence was reported. Based on parameterizations of solar heating of the
upper ocean (Woods et al., 1984), Woods and Barkmann (1986) mod-
eled the response of a layered ocean to daily and seasonal modulation
of solar heating. Price et al. (1986) developed a mixed layer model
using observational evidence from a measurement campaign. A sim-
plified version of this model was developed a decade later by Fairall
et al. (1996) and similar approaches were adopted by Zeng and Beljaars
(2005), Schiller and Godfrey (2005), and Gentemann et al. (2009). A
simpler approach to reproducing the diurnal variability was adopted
through parameterizations derived from wind and surface warming
observations (Webster et al., 1996; Clayson and Curry, 1996; Kawai and
Kawamura, 2002; Gentemann et al., 2003; Stuart-Menteth et al., 2005a;
Filipiak et al., 2010). A selection of these models has been

Fig. 2. Near-surface oceanic temperature gradients. From Minnett and Kaiser-Weiss (2012).
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intercompared in various regions (Karagali and Høyer, 2013; Zhang
et al., 2018). Furthermore, turbulence closure models solving the
equations for the distribution of heat, momentum, and salt across the
water column, have been found to successfully reproduce diurnal SST
signals (Kantha and Clayson, 1994; Hallsworth, 2005; Karagali et al.,
2017). Identification and characterization of diurnal variability in all
ocean basins promoted not only attempts for its numerical simulation
but also impact studies to assess the importance of accounting for the
formation of diurnal warm layers in large scale modelling systems. The
implications associated with the lack of a properly resolved SST daily
cycle in atmospheric, oceanic and climate models have been evaluated
in terms of heat budget errors in the Tropics (Danabasoglu et al., 2006;
Bellenger and Duvel, 2009; Ham et al., 2010; Clayson and Bogdanoff,
2013), the Mediterranean Sea (Marullo et al., 2016), and the North Sea
(Fallmann et al., 2017).

4. Satellite retrieval of sea-surface temperature

The spectral distribution of radiation emitted by the sea surface at
absolute temperature, T, is given by Planck's Function:

=B T hc( ) 2 (e 1)hc kT2 5 /( ) 1 (1)

where h is Planck's constant, c is the speed of light in a vacuum, k is
Boltzmann's constant, and λ is the wavelength. Planck's Function is for a
perfectly emitting surface, a blackbody, whereas all natural surfaces
emit imperfectly with the ratio of emitted radiance to Planck's Function
being the emissivity, ε, which is a function of the wavelength of the
emitted radiation and the angle of emission relative to normal to the
surface, θ. The tilting of the facets of the sea surface by wind generated
waves (Cox and Munk, 1954) introduces an apparent wind speed de-
pendence of ε (Hanafin and Minnett, 2005; Nalli et al., 2008b; Nalli
et al., 2008a). The emissivity of seawater at IR wavelengths where
measurements of SST are made is high (~0.985 at λ=10 μm at an
emission angle of 40° and 0.970 at 55°; Hanafin and Minnett, 2005) and
exhibit small apparent wind speed dependence, at least for emission
angles< 60°. An important property of Planck's Function is that the
emitted radiance at any wavelength increases as the emitting tem-
perature increases. Thus, a measurement of radiance at a known wa-
velength can be used to derive the emitting temperature through Eq.

(1).

4.1. SST retrievals in the infrared

The temperatures derived from the radiance measurements of sa-
tellite radiometers, using Planck's Function (Eq. (1), modulated by the
spectral response of the radiometer), are called brightness tempera-
tures, and because of the effects of the intervening atmosphere these are
not the same as would be measured by a radiometer of comparable
accuracy just above the sea surface. The initial step in deriving SST
from brightness temperatures requires the confident identification of
pixels that include radiance from clouds, or aerosols, before clear-sky
atmospheric correction algorithms can be applied.

4.1.1. Atmospheric transmission
As the IR radiation propagates through the atmosphere to reach the

satellite sensors, the photons may interact with the components of the
atmosphere. As in the visible, IR radiation does not propagate un-
hindered through clouds, and, even in cloud-free conditions, the pho-
tons can be absorbed or scattered by molecules and aerosols, and the
atmospheric components emit photons into the beam that reaches the
satellite radiometer. The transmissivity of the clear-sky atmosphere in
the IR is very variable with wavelength and with the concentrations of
atmospheric gases. The term “atmospheric window” is used to describe
wavelength intervals where the atmosphere is relatively transparent
and it is measurements by satellite radiometers in these intervals that
permit the estimation of SST from top-of-atmosphere measurements.

In the IR, the peak of Planck's Function at temperatures typical of
the SST is close to λ=10 μm, where the atmosphere is relatively
transparent. Fig. 4 shows the spectral dependence of the atmospheric
transmission for three characteristic atmospheres derived from a ra-
diative transfer model with relatively coarse spectral resolution. The
lower panel of Fig. 4 shows the spectral radiance calculated for four
temperatures - 0, 10, 20, and 30 °C with the relative spectral response
functions (RSRs), normalized to a maximum value of 1 for five bands of
the MODerate-resolution Imaging Spectroradiometer (MODIS, see
Section 5.1.4) on the Aqua satellite. The RSRs are defined by trans-
mission filters and the responsivity of the detectors. The spectrum of the
radiance measured at the top of the atmosphere depends on the product

Fig. 3. Left: Spatial extent of hours of diurnal heating of SST≥1K (defined as the difference between a given daytime hourly SST value and the corresponding
foundation temperature of the previous night) from SEVIRI hourly retrievals for 2006–2011. White areas indicate zero occurrences. After Karagali and Høyer (2014).
Right: Location of diurnal events over 5 K (black ‘+’ and ‘o’). Events generally occur in the summer. The background color shows the days in a year (on average) that
wind speed was<1ms−1 at 14:00 LMT. From Gentemann et al. (2008) with permission.
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of the value of the RSR, the intensity of the emitted radiance at the sea
surface, and the atmospheric transmission at each wavelength. The
signal generated is the integral across wavelength of the top-of-atmo-
sphere spectrum. A second atmospheric window used for IR remote
sensing of SST is in the mid-IR between λ=3.5 to 4.1 μm. At these
wavelengths, the signal is much smaller than in the “thermal infrared”
at λ= 9.5–13 μm, but the sensitivity to changes in temperature is much
higher, giving these measurements advantage for accurate and sensitive
SST estimation. However, the low radiance means these measurements
are very susceptible to contamination by reflected and scattered solar
radiation and so SST can only be derived using measurements in the
mid-IR window when conditions limit solar effects, which usually
means only at night.

The transmission of dry, cold polar atmospheres is high in both
transmission windows, but as the water vapor increases, the transmis-
sion decreases so that more of the signal originates in the atmosphere
and less at the surface. Fig. 4 shows in broad terms the regional var-
iations in the clear-sky atmospheric transmission, but there are sig-
nificant seasonal variations at any location. An example of seasonal
variations is given in Fig. 5, which shows the atmospheric transmission
spectra in the 10–12 μm range derived by a high spectral resolution
radiative transfer model (Závody et al., 1995). The atmospheric water
vapor and temperature profiles were those measured by radiosondes
launched from Ocean Weather Ship Mike at 66°N, 2°E in February (left)
and in July (right). The February conditions are very dry and cold, and
the atmospheric transmission is high; the narrow lines to lower trans-
mission are the signatures of quantized molecular absorption of photons

propagating upwards. The July conditions are moister and while the
same line absorption is apparent, the baseline is not at high transmis-
sion as in February and shows a gradient with wavenumber. This
baseline transmission is caused by the anomalous water vapor con-
tinuum absorption (Shine et al., 2012).

4.1.2. Cloud screening
Clear sky conditions are required for the derivation of SST from IR

measurements so the identification and exclusion of cloud-con-
taminated pixels is critical for accurate retrievals. Historically, identi-
fication of clouds in IR measurements from satellites has been driven
primarily by binary tests in a decision tree based on brightness tem-
perature (BT) uniformity, BT minima, and comparisons with lower-re-
solution gap-free reference fields (Kilpatrick et al., 2001; Kilpatrick
et al., 2015). The efficacy of these tests often decreases near ocean
thermal fronts, at cloud edges, in the presence of small cirrus clouds,
and low-level, uniform stratus clouds when cloud temperature can be
close to that of the sea surface particularly at high latitudes. This re-
liance on stringent uniformity thresholds often has the unintended
consequence of misidentifying strong SST frontal regions as clouds.
Differences in detecting clouds between day when visible reflectance
can be used and at night, when it cannot, lead to systematic erroneous
irregularities in the cloud masks (Liu and Minnett, 2016; Liu et al.,
2017).

An alternative, probabilistic approach to cloud identification in IR
imagery based on Bayes' Theorem was developed by Merchant et al.
(2005). Joint probability distributions of BTs in two IR channels were

Fig. 4. Spectral dependence of the atmospheric transmission
for wavelengths of electromagnetic radiation from about 1 to
14 μm, for three characteristic atmospheres (above), and
(below) the black-body emission for temperatures of 0, 10, 20
and 30 °C, and the relative spectral response functions of the
bands of MODIS on Aqua used to derive SST. The upper panel
is adapted from Llewellyn-Jones et al. (1984) and the lower
panel is taken from Kilpatrick et al. (2015).

Fig. 5. Simulated spectra of atmospheric transmission in the thermal IR transmission window for dry winter conditions (left) and moister summer conditions (right)
at the same location (66°N, 2°E) in the Norwegian Sea. The atmospheric conditions were given by radiosondes. Note the units on the abscissa are in wavenumber
units; 850 cm−1 corresponds to λ=12 μm and 1000 cm−1 to λ=10 μm.
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derived by radiative transfer simulations in clear sky conditions, and of
cloudy conditions by visual inspection of satellite imagery. Radiative
transfer simulations with weather prediction model output to give the
atmospheric state are used to give an expectation of clear-sky BTs
which are compared with probability distributions of cloudy measure-
ments, the measured BTs are assigned a probability of having been
influenced by clouds. This approach has been widely used for several
satellite missions including for the (A)ATSR ((Advanced) Along-Track
Scanning Radiometer) series (Merchant et al., 2012), the NOAA GOES
(Geostationary Operational Environmental Satellite; Maturi et al.,
2008), and Himawari-8 satellite (Kurihara et al., 2016) of the Japan
Meteorological Agency (JMA).

To address the specific cases where the decision-tree approach to
cloud screening resulted in erroneous classification (Liu and Minnett,
2016; Liu et al., 2017), a new algorithm has been developed, called the
Alternating Decision Tree (ADT) (Freund and Mason, 1999; Kilpatrick
et al., 2019). Unlike in the decision-tree approach where a pixel iden-
tified as being cloud-free has to pass every test, in the ADT the output of
each test is considered in determining the likelihood of a pixel being
identified as being clear or cloudy. The threshold values and the
weighting given to each test were determined by a Machine Learning
algorithm (Hall et al., 2009) applied to a subset of matchup data in four
conditions: night-time, daytime, moderate sun-glitter and strong sun-
glitter. When applied to MODIS and VIIRS (Visible and Infrared Ima-
ging Radiometer Suite; see Section 5.1.6) data, the ADT algorithm
improves on the decision-tree approach for all metrics considered
(Kilpatrick et al., 2019).

4.1.3. Correction of clear-sky atmospheric effects
The differential atmospheric transmission across the “atmospheric

windows” at λ= 3.5–4.1 μm and λ=9.5–12.5 μm were recognized
early on as a potential mechanism for providing a correction for the
effect of the cloud-free atmosphere (McMillin, 1975). By placing two
distinct spectral channels in a window, the BT measured in each would
be different, being lower in the channel with lower atmospheric
transmissivity, and the BT difference would be indicative of the at-
tenuation of the IR signal intensity, caused primarily by water vapor in
the λ=9.5–12.5 μm window but which is much less influential in the
shorter wavelength window. Linearization of Planck's Function and the
radiative transfer equation leads to a simple expression in which the BT
difference is related to the drop in temperature from the SSTskin and one
of the BTs (McMillin and Crosby, 1984; McMillin and Crosby, 1985;
Barton, 1995):

= + +aT T T cSST ( – )i i j (2)

where Ti and Tj are the BTs measured in the two channels, c is an offset,
and γ is the “differential absorption” coefficient of McMillin (1975). Eq.
(2) is called the Multi-Channel SST (MCSST) algorithm. The coefficients
are dependent on the atmospheric state at the time of the measurement,
particularly the profiles of temperature and water vapor, and can be
determined by a simple regression analysis of collocated, coincident
measurements (matchups) of BTs and in situ measurements, or by using
radiative transfer simulations. The statistical approach requires a large
number of matchups in conditions that sample the global atmospheric
and SST variability (McClain et al., 1985). The temporal and spatial
variability of the SST fields are inherent in the matchups. To limit un-
desirable consequences in determining both the coefficients in the
MCSST and the accuracy of the retrieved SSTs, restricted time and
spatial intervals are applied: typically 10 km and less than an hour
(Minnett, 1991). The radiative transfer approach to determine the
coefficients requires an accurate radiative transfer model to predict the
spectra of the emitted IR radiation at the satellite height (Závody et al.,
1995) through a representative set of atmospheric profiles, generally
derived from radiosonde profiles (Minnett, 1986; Minnett et al., 1987),
modulated by the relative spectral response function of the channels of
the IR radiometer in question to produce simulated BTs (Llewellyn-

Jones et al., 1984).
Missing from the MCSST algorithm is provision for the effects of

increasing path lengths. This was subsequently accommodated by
adding a term of the form (sec(θ)− 1), where θ is the satellite zenith
angle measured at the surface, scaled by an additional coefficient. The
characteristic of the errors in the derived SSTs indicated a regional
dependence on the split window brightness temperature differences
suggestive that this difference is not sufficiently accurate in re-
presenting the effects of water vapor. Given that there is a strong cor-
relation between the atmospheric water vapor content and SST, scaling
the differential absorption coefficient with SST produced a very robust
algorithm called the Non-Linear SST algorithm (Walton et al., 1998;
Walton, 2016), which is based on the slightly non-linear combination of
top-of-atmosphere brightness temperatures measured in the 10–12 μm
wavelength interval where the atmosphere is relatively transmissive:

= + + +SST T T T T
T T

a a a ( ) a (sec ( ) 1.0)
( )

0 1 11 2 11 12 sfc 3

11 12 (3)

where Tn are brightness temperatures measured in the channels at n μm
wavelength, and Tsfc is a ‘first guess’ estimate of the SST in the area.

While Eq. (3) can be used both during day and night, more accurate
night-time retrievals are feasible using the measurements in the mid-IR
transmission window. For sensors such as VIIRS, the night-time algo-
rithm takes the form:

= + + +SST T T T Ta a a ( ) a (sec ( ) 1)triple 0 1 11 2 3.7 12 sfc 3

(4)

For MODISs, which have two narrow bands in the mid-IR trans-
mission window, the most accurate night-time algorithm has been
found to be:

= + + +SST T T T4 a a a ( – ) a (sec ( ) 1)0 1 3.95 2 3.95 4.05 3 (5)

where the symbols have the same meaning as in Eq. (3) but coefficients
a0–a3 are of course different (Kilpatrick et al., 2015).

More complex forms of the atmospheric correction algorithm have
been developed using additional channels, such as λ=8.6 μm
(Petrenko et al., 2014).

There are two approaches for deriving the coefficients: numerical
simulations of the BT measurements (Llewellyn-Jones et al., 1984), and
collocated and contemporaneous match-ups with in situ measurements
(Kilpatrick et al., 2001; Kilpatrick et al., 2015). To attempt to accom-
modate the seasonal and regional variations in the atmospheric water
vapor distributions, sets of coefficients that depend on month of the
year and latitude bands can be used (Minnett, 1990; Kilpatrick et al.,
2001; Kilpatrick et al., 2015.). Since the information about the atmo-
spheric water vapor is contained in the BT differences, for radiometers
with large NEΔT (Noise Equivalent Temperature Difference) or large
digitization noise, the difference itself may be very noisy. Smoothing
over a cluster of pixels, such as the clear-sky pixels in a 5×5 pixel
array, improves the accuracy of the SST retrievals even at full resolu-
tion, making use of the fact that atmospheric properties generally
change over longer distances than those of the SST (Barton, 1989; Coll
et al., 1993). Indeed, in conditions of a very dry atmosphere, such as in
the Arctic, the brightness temperature difference may be dominated by
noise, and a single channel correction may be more effective (Vincent
et al., 2008b).

The statistical approach to atmospheric correction generally works
well when the conditions for a particular retrieval are close to the mean
of those that are used to derive the coefficient set, but in conditions that
deviate from these, such as at high latitudes, errors tend to be larger
(Szczodrak et al., 2014). An approach that makes specific use of the
atmospheric conditions was pioneered by Merchant et al. (2008b) using
an Optimal Estimation (OE) approach in which the prior information
about the expected state of a system is represented by a state vector
xa=(SSTskin, TWV) where TWV is total atmospheric column water
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vapor. The a priori values of SSTskin and TWV can be taken from a
number of sources, including weather forecast models, or reanalysis
fields such as from ECMWF. Vector xa constitutes an input to a forward
model F to simulate “prior observations” ya=F(xa). The model F is
generally a radiative transfer model and the prior observations are
calculated radiances in the satellite radiometer channels. These simu-
lated radiances are then adjusted to match the measured channel ra-
diance within uncertainties determined by the radiometer character-
istics, primarily the NEΔT and other residual instrumental artifacts if
present. The adjustment is an inverse problem, as discussed by Rodgers
(2000) and followed by Merchant et al. (2008b) and Merchant et al.
(2009c):

= + +z z x K S K S K S y F x( ) ( ) ( ( ))T T
a a o a

1 1 1 1 (6)

where ẑ is a two-element vector containing the retrieved SSTskin and
TWV. The matrix of partial derivatives (or the Jacobian), K, for the state
vector is defined by:

= =F x
z

y x y x
y x y xK ( ) / /

/ /
a i i

j j

1 2

1 2 (7)

Sε is the combined covariance matrix of the prior and satellite ob-
servations, and Sa is the covariance matrix of the two element prior
reduced state vector. Merchant et al. (2008b) assumed the covariance
matrices to be diagonal. Application of the OE atmospheric correction
to MODIS data, using the Line-by-Line Radiative Transfer Model
(LBLRTM) of Clough et al. (2005) and atmospheric state vectors derived
from the ERA-Interim reanalysis fields of the ECMWF (Dee et al., 2011),
resulted in SST retrieval accuracies that were better than those of the
standard NLSST correction, but not for all retrievals that were not
identified as highest quality, meaning confidently cloud-free, and for
satellite zenith angles< 45° (Szczodrak, 2017; pers. com).

A further development of the physical retrieval method to correct
for the effects of the intervening atmosphere has recently been devel-
oped by Koner et al. (2015). Called the Modified Total Least Squares
(MTLS) method, it builds on earlier work to derive trace gas con-
centrations from satellite measurements (Koner and Drummond, 2008).
The technique has been applied to SST retrievals from the GOES-13
imager (Section 5.4.3) (Koner et al., 2015) and to MODIS on Aqua
(Koner and Harris, 2016), and produces satellite-derived SSTs that

compare better with drifting buoy measurements than those derived
using other approaches.

4.2. SST retrievals in the microwave

Planck's Function (Eq. (1)) gives the spectral distribution of ra-
diance emitted by a blackbody at a given temperature; it is highly non-
linear in wavelength. But, at long wavelengths, where hc ≪ λkT, spec-
tral radiance is a linear function of wavelength and using a Taylor ex-
pansion, Planck's Function reduces to the Rayleigh-Jean Law:

=T B T kc( ) (2 )4 1 (8)

As in the IR, the Bλ(T) measured by passive microwave radiometers
is related to the thermodynamic temperature (T) by the emissivity ε(λ):

=B T T( ) ( ) (9)

As the radiation passes through the atmosphere it is absorbed,
scattered, and re-emitted, so the satellite measurement is:

= +
+ +

+

B T( )
surface emission atmospheric emission

atmospheric emission reflected at the sea surface emission from the surface,
atmosphere and space scattered by the atmosphere surface reflected space emission

A wind-speed dependent effective emissivity can also account for
wave shadowing and surface emission being reflected from another
facet of a roughened surface (Nalli et al., 2008a; Nalli et al., 2008b).
The Bλ(T) signal measured in the range of microwave frequencies used
for earth observation depends on several varying parameters, including
but not restricted to SST (Fig. 6).

Algorithms for deriving SST from passive microwave (PMW) mea-
surements fall into two primary types, radiative transfer model (RTM)
based algorithms and statistical algorithms. RTM simulations require
instrument information (azimuth and earth incidence angles, fre-
quency, polarization) and environmental data (SST, sea surface salinity,
wind speed, wind direction, atmospheric profiles of temperature,
pressure, water vapor density, and liquid cloud water density) to si-
mulate the top of atmosphere (TOA) BTs.

Comparisons of the simulated and measured TOA BTs normally
result in differences that can be attributed to errors in the RTM

Fig. 6. Schematic of relative sensitivity in BT (nor-
malized by the maximum value) for some geophy-
sical parameters for measurements at an incidence
angle of 55° as a function of frequency. Typical pri-
mary and secondary frequency bands for retrieving
each geophysical parameter are shown by black and
gray circles. Note that atmospheric contribution was
neglected for ocean surface parameters, and oxygen
absorption was not included for atmospheric para-
meters. From Imaoka et al. (2010), with permission.
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parameterizations or measurement errors (imperfect calibration,
channel contamination, etc.), which require ‘ad-hoc’ corrections to the
geophysical retrievals (Hilburn, 2009; Meissner and Wentz, 2012). The
statistically based algorithms differ in that some of the calibration is-
sues (up to ~1 K) or instrument issues may be accounted for by the
nature of the statistical algorithm which is developed using satellite
TOA BT measurements collocated with in situ and model observations
(Shibata, 2006; Pearson et al., 2018; Nielsen-Englyst et al., 2018).

Both types of algorithms have their strengths and weaknesses. RTM-
based algorithms clearly tie the physics of the observation to the geo-
physical retrieval allowing for identification of instrument calibration
errors, and have a clear development path forward to improve future
retrievals. Additionally, these algorithms can be used to develop rea-
listic error models, but such error estimates depend on the accuracy of
the model and the data used to derive it. Statistically based algorithms
are simpler to implement and can be more accurate as the coefficient
derivation process can account for errors in calibration or other offsets
in channel temperatures.

Regardless of the algorithm type used to determine SST, removing
erroneous data from the satellite retrievals ensures that the drived SSTs
and the estimated errors are accurate. Cases where the satellite PMW
SST retrievals are contaminated by radio-frequency interference (RFI)
from ground-based sources, geostationary satellites, and communica-
tion satellites, need to be identified and flagged as being untrustworthy
(Gentemann and Hilburn, 2015). Cases where the SST retrievals are
affected by rain, strong winds, sea ice, sunglint, and being near land or
sea ice as these retrievals have contributions from emission that enter
through the antenna sidelobes, must also be identified and flagged.
Precipitation, wind speed, and sea ice are geophysical variables derived
from the same PMW measurements and these are used to flag erroneous
SST values. The extent of sidelobe contamination is determined by
calculating the distance to land or sea ice. Sunglint effects are present
when the specular reflection angle is within 20–25° (depending on wind
speed) of the solar angle at the surface. RFI can be difficult to identify,
and the effects are usually identified using a mix of known ground-
station locations and observation reflection vectors to known geosta-
tionary satellite emitters. Satellite to satellite RFI can be identified
using a double difference method or estimated retrieval errors
(Gentemann et al., 2010; Gentemann and Hilburn, 2015).

PMW SSTs have been retrieved from the Tropical Rainfall
Measuring Mission (TRMM) Microwave Imager (TMI; Section 5.5.2)
from December 1997 to 2015, but the low-inclination orbit limited
retrievals to< 40° latitude. From June 2002–2011, Aqua's Advanced
Microwave Scanning Radiometer - Earth Observing System (AMSR-E;
Section 5.5.3) provided global PMW SST observations. From 2003,
WindSat (Section 5.5.4) also measured PMW SST, and was joined by
AMSR-2 (Section 5.5.7) in 2012, and Global Precipitation Mission
(GPM) Microwave Imager (GMI; Section 5.5.8) in 2014. These last three
radiometers are still in operation, but beyond their expected lifespan.
The radiometers are described in more detail below.

4.3. SST sensitivity

The main focus of the development of SST retrieval algorithms has
been to improve the absolute accuracy of the retrievals, but another
important aspect is how well the derived SST fields represent local or
larger scale spatial variability, or time series of retrieved SSTs represent
time changes, such as diurnal warming and cooling. An ideal retrieval
scheme would have zero sensitivity to water vapor variations, and a
sensitivity to changes in the SST of unity. However, retrieval algorithms
are imperfect and these targets are not achieved.

The sensitivities may be determined by radiative transfer modelling
to simulate the satellite measurements through prescribed atmospheric
conditions and surface temperatures, which can be adjusted in

numerical experiments. As expected, the SST sensitivity to water vapor
is dependent on the vapor distribution, being greater in the tropics and
equatorial regions (Merchant et al., 2009b), and on the water vapor
distribution in the vertical (Minnett, 1986). Using the AVHRR (Section
5.1.2) Pathfinder dataset (Kilpatrick et al., 2001), Merchant et al.
(2009b) demonstrated that in nearly all cases the sensitivity of retrieved
SST to actual SST variation is< 1.0, with the global average being 0.93.
The minimum sensitivity was found to occur where atmospheric water
vapor column content is high, specifically in the equatorial Atlantic and
Pacific Oceans, especially the Tropical Warm Pool where the sensitivity
may be< 0.5.

Similarly, estimates of the amplitude of diurnal heating deduced
from satellite-derived SST may be smaller than the real amplitude if the
temporal sensitivity of the satellite data is< 1.0 (Merchant et al.,
2009b; Merchant et al., 2013). Zhang et al. (2018) compared diurnal
heating signals in the Tropical Warm Pool region in geostationary sa-
tellite measurements from the Multifunctional Transport Satellite-1R
(MTSAT-1R; Puschell et al., 2002) with in situ measurements from
drifting buoys (Section 6) from the In situ SST Quality Monitor (iQuam)
data set (Xu and Ignatov, 2014; https://www.star.nesdis.noaa.gov/sod/
sst/iquam/), which, with measurements at a depth of ~20 cm, were
taken to be a good representation of the real diurnal heating amplitude
(Gentemann et al., 2009). The resulting estimate of the satellite-derived
SST sensitivity was found to be 0.60 (± 0.05), meaning that remotely-
sensed diurnal heating amplitudes in the Tropical Warm Pool are sig-
nificantly underestimated.

5. History of instrument development

Throughout the history of science, major advances in knowledge
and understanding of phenomena have followed new measurements,
often taken using new or improved instruments. The development of
satellite oceanography, including the derivation of SST fields from
spacecraft is no exception.

There are several common characteristics of satellite scanning
radiometers used to derive quantitative measurements of SST: a me-
chanism to generate imagery - a rotating plane mirror in the IR or a
rotating offset-paraboloid reflector in microwave radiometers; effective
detectors; and a process for real-time, in-flight calibration of the mea-
surements. Both rotating mirrors and reflectors direct the IR or micro-
wave radiation into the radiometers. Calibration is based on measure-
ments of two targets at known temperatures, one of which is often cold
space on the anti-solar side of the spacecraft. A two-point, on-orbit
calibration accounts for the linear response of the detectors, and the
smaller, nonlinear response of some IR detectors is based on pre-launch
characterization (Minnett and Smith, 2014), or by periodic “warm-up -
cool-down” on-orbit temperature cycling of the internal black-body
(Xiong et al., 2012; Minnett and Smith, 2014).

Infrared detectors insert noise into their measurements, and the
lower the temperature of the detector, the lower the noise level.
Therefore, IR radiometers require cooled detectors, typically operating
from 53 K (−220 °C) to 183 K (−90 °C) to reduce the NEΔT to<0.1 K
(Xiong et al., 2012; Minnett and Smith, 2014).

Here we provide an overview of satellite instruments that have
brought us to our current capabilities to measure SST from space. The list
cannot be exhaustive, but we include those sensors that have resulted in
major advances, or have introduced significant technological develop-
ments to the field. Included are relevant dates and instrument char-
acteristics, including surface spatial resolution. The references included
for each sensor provide the interested reader with guidance to more de-
tailed descriptions. For further details on past, current and planned sa-
tellites and instruments, the reader is referred to the World
Meteorological Organization (WMO) Observing Systems Capability
Analysis and Review (OSCAR) Tool (https://www.wmo-sat.info/oscar/).
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Where possible, we include assessments of accuracy to illustrate
improvements resulting from instrumental and algorithmic develop-
ments. These estimates are specific to the retrieval algorithms as well as
to the instrument calibration and performance, and also to the methods
used in the assessments, including environmental variability con-
sequent on different spatial and temporal sampling of the satellite SST
fields and the reference measurements.

5.1. Infrared instruments in low earth orbit

The initial motivation for flying earth-viewing IR imaging radio-
meters on satellites was to provide pictures of clouds to assist weather
forecasters. During the sunlit part of each orbit, detectors in the visible
part of the electromagnetic spectrum provided the required informa-
tion, but at night IR radiometers were needed. Even though the sensi-
tivities of the early IR detectors were poor compared to those in modern
instruments, they were sufficient to reveal patterns in the cloud free
parts of the images that were correctly interpreted as being indicative of
spatial variability in the SST.

The spatial resolution at the sea surface of IR imaging radiometers is
generally given at the subsatellite point, but because of beam spreading
caused by longer path lengths the pixel size grows for measurements
taken away from nadir and because of the curvature of the earth's
surface the increase in size is not symmetric with growth in the across-
track (scan) direction becoming greater than in the along-track direc-
tion (Fig. 7).

5.1.1. Early radiometers
Starting in 1964, only seven years after the launch of the first ar-

tificial satellite, Sputnik, NASA began to launch research and devel-
opment satellites called Nimbus. The Nimbus satellites were sun-syn-
chronous and stabilized so that instruments on board could be directed
to the Earth throughout the orbits. The instruments were mostly pro-
totypes, but once demonstrated to be successful successive versions
were flown, often with incremental improvements.

Included in the instrument suite of Nimbus-1 was the High
Resolution Infrared Radiometer (HRIR) which had a single IR channel,
responsive to the 3.4–4.2 μm wavelength range, and having a spatial
resolution of 8.6 km at the sub-satellite point with a swath extending
from horizon to horizon. Because of solar contamination, these data
were restricted to use only at night. The clear-sky parts of the images
were used to describe variations in SST (Allison and Kennedy, 1967).
The Nimbus-1 mission lasted only about one month, but Nimbus-2,
launched in May 1966, functioned for about six months. The data were
transmitted in analogue form and were generally displayed as photo-
facsimiles in gray tones, or printed by a line-printer and contoured by
hand. These were interpreted in terms of a relative SST, and sharp
gradients were identified as boundaries between currents or delineating
fronts and used to describe their responses to changes in atmospheric
forcing, such as winds in the Arabian Sea (LaViolette and Chabot, 1968)
and Persian Gulf (Szekielda et al., 1972), or boundary currents and
coastal upwelling (Warnecke et al., 1971). A third HRIR, which

included a visible channel, was on Nimbus-3 launched in 1969.
A two channel radiometer, the Scanning Radiometer (SR) developed

from the HRIR but with an IR channel in the 10.5–12.5 μm atmospheric
window, first flew on the NOAA TIROS-M (Television Infrared
Observation Satellite-M) launched in January 1970 into a sun-syn-
chronous orbit at an altitude of 1470 km. The spatial resolution was
3.6 km at the subsatellite point. The longer IR wavelength is essentially
unaffected by scattered and reflected solar radiation, so the SR IR
channels were also used during the day. TIROS-M was followed by five
operational satellites, NOAA-1 to -5 launched from December 1970 to
July 1976, each carrying an SR.

A further development of the SR, the Very High Resolution
Radiometer (VHRR) flew on NOAA-2, launched in October 1972,
having channels very similar to the SR but with a spatial resolution at
the subsatellite point of 0.9 km and a much reduced NEΔT of ~0.5 K the
VHRR permitted greatly improved depiction of the SST in cloud-free
areas. On-board data recording also allowed data to be retained out of
sight of ground stations and then subsequently transmitted to a re-
ceiving station as they come into range. These technological improve-
ments supported many investigations into ocean thermal fronts and
associated features (Legeckis, 1978, and references therein).

Fig. 8 shows the thermal structure of the Gulf Stream off Cape Cod,
USA, taken from the HRIR on NOAA-4 in November 1975 (Legeckis,
1978). The complexity of the fronts associated with the Gulf Stream is
apparent, and explains the fact that ship-based surveys of the area de-
fied simple interpretation (Fuglister, 1955), simply as a consequence of
inadequate sampling of mesoscale current structure, and satellite ima-
gery resolved which of multiple possible interpretations of ship-based
measurements was correct.

5.1.2. The Advanced Very High Resolution Radiometer (AVHRR)
The satellite instrument that has contributed the longest to the study

of SST is the AVHRR that first flew on TIROS-N launched in late 1978
(Cracknell, 1997). AVHRRs have flown on successive satellites from
NOAA-6 to NOAA-19. AVHRRs are on satellites in near-polar, sun-
synchronous orbits with an orbital period of about 100min. There have
been two NOAA AVHRRs operational at any given time, with at-launch
local equator-crossing times of about 2.30 a.m. and p.m. and about

Fig. 7. A schematic of a MODIS 1 km pixel growth from nadir to the edge of
swath. The total swath width is 2330 km and comprises 1354 pixels. At the
swath edges, the satellite zenith angle is ~65°.

Fig. 8. VHRR IR image 4531 from NOAA 4 was obtained on November 12,
1975. The Gulf Stream north of Cape Hatteras and south of Cape Cod appears as
the warmest (darkest) water. The large amplitude meanders as well as two
warm core eddies are evident south of Cape Cod and Long Island (Legeckis,
1978).
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7.30 a.m. and p.m. The overpass times drift with the time on orbit (e.g.
Fig. 1 of Bhatt et al., 2016). EUMETSAT, the European Organisation for
the Exploitation of Meteorological Satellites, also flies AVHRRs on its
three Metop satellites (Klaes et al., 2007) with a maintained descending
equator crossing time at 9:30 a.m.

The AVHRRs on TIROS-N and NOAA-6 had only four channels and
had limited capability for the derivation of SST because they lacked the
“split-window” channels, numbered 4 and 5 (λ= 10.8 and 12.0 μm)
which were on subsequent five-channel AVHRRs starting with NOAA-7,
launched in June 1981. As with earlier IR imaging radiometers (Barton,
1985), SST retrieval from the AVHRRs without multiple IR bands was
accomplished using a simple linear relationship to the measured BT, but
the variability of the marine atmosphere introduced much scatter into
this relationship. It was recognized early that a promising way forward
was to make simultaneous measurements in two IR channels in which
the atmospheric transmission was different (Anding and Kauth, 1970;
McMillin, 1975; McMillin and Crosby, 1984; McMillin and Crosby,
1985; inter alia), leading to atmospheric correction algorithms given in
Section 4.1.3. However, in very constrained conditions, a tailored single
channel atmospheric correction may produce more accurate SST re-
trievals than a multichannel retrieval, an example being the very dry,
cold Arctic atmosphere over the North Water Polynya (Vincent et al.,
2008b; Vincent et al., 2008a).

The current version, AVHRR/3, has six channels: 1 and 2 at
λ=~0.65 and ~0.85 μm, measuring reflected sunlight are used to
image clouds during the daytime part of each orbit. Channels 4 and 5,
also on all AVHRRs, are in the atmospheric window close to the peak of
the SST thermal emission and are used to derive SSTs. Channel 3 is in
the mid-IR atmospheric window (λ=3.7 μm), also measures surface
emission, modified by its propagation through the atmosphere, and
hence is used to derive SST, but at this wavelength there is a significant
component of reflected and scattered sunlight rendering these mea-
surements suitable for SST determination only at night. The λ=3.7 μm
channel data of the early AVHRRs had noise that introduced a “herring-
bone” effect in brightness temperature images at a level that made the
quantitative use of the data very difficult (Dudhia, 1989; Warren,
1989), but research into reducing the excessive noise has shown success
(Simpson and Yhann, 1994; Karlsson et al., 2017). The sixth channel of
the AVHRR/3, first launched on NOAA-15 in May 1998, at λ~ 1.6 μm
was designated 3a with the earlier λ=3.7 μm channel being renamed
3b, provides superior discrimination of cloud over snow, ice and bright
desert during the day. Given limited telemetry bandwidth, measure-
ments from only one of these two channels are transmitted to ground,
with 3a data being taken during the daytime part of the orbit, and 3b at
night. Infrared channels of the AVHRRs are calibrated using measure-
ments of an onboard blackbody plate, the temperature of which is
monitored by five thermometers, and a measurement of space away
from the sun providing a source of radiance very close to zero. The
AVHRR/3s also incorporated several improvements, including better
thermal stability of the blackbody used in the calibration of the IR
channels (Trishchenko et al., 2002). The improved blackbody shielding
reduced the temperature gradients that were found across the black-
body (Brown et al., 1985), which, since they exhibited orbital varia-
tions, were suggestive of stray light from the sun being incident on the
blackbody. Although the AVHRR/3s on NOAA-15, -18 and -19 are still
in operation, these satellites are not in maintained orbits so the equator
crossing time drifts (see https://www.star.nesdis.noaa.gov/smcd/emb/
vci/VH/vh_avhrr_ect.php) with the result that the on-board thermal
environment may move out of that in which the sensors were designed
to operate, with a consequent degradation in accuracy of their mea-
surements (see https://www.star.nesdis.noaa.gov/sod/sst/3s/).

The images in each channel are constructed by scanning the AVHRR
field of view across the Earth's surface by a rotating plane mirror with
its surface inclined at 45° to its axis which lies in the direction of flight.
The rate of rotation, 6 Hz, is such that successive scan lines are con-
tiguous at the surface directly below the satellite. The width of the

swath (~2700 km) results in overlap of the edges of successive orbits so
the whole Earth is sampled without gaps each day. The spatial resolu-
tion at nadir is 1.1 km and 6.15× 2.27 km2 (across-track× along
track) at the edge of swath.

An important and exhaustive reprocessing of the AVHRR SST data
stream from the AVHRR on NOAA-7, in 1981, to the present including
those on the Metop satellites, has been recently completed by Merchant
et al. (2019). Their objective was to produce a consistent data set for the
entire period that would be suitable for climate applications. For per-
iods with overlap with the ATSR (Section 5.1.3) series of dual view
radiometers, the infrared measurements from the most reliable chan-
nels of these were used as references to which the AVHRR data could be
harmonized using radiative transfer modelling with atmospheric pro-
files given by the ERA-Interim data set (Dee et al., 2011). For AVHRR
data prior to the first ATSR on ERS-1, in 1991, periods of overlap be-
tween successive AVHRRs on NOAA polar-orbiting satellites were used,
but were thus far found insufficient to achieve adequate harmonization;
additional reconciliation of the AVHRR SSTs to in situ sources was
therefore applied prior to 1991. Thus, the resulting SST fields have a
high degree of independence from in situ measurements, such as those
from drifting buoys, from 1991 onwards. In addition to recalibrating
the AVHRR data using improved understanding of the shortcomings of
the AVHRR calibration procedures (Mittaz et al., 2019; Giering et al.,
2019), the harmonization approach takes into account differences in
the spectral response functions of each of the sensors, including those in
the ATSR series, to produce empirical relationships to correct the re-
sidual errors in the individual AVHRR radiance measurements. A con-
sistent Bayesian cloud screening algorithm has been applied to the data
from all sensors (Bulgin et al., 2018). Apart from a few regions and
periods, associated with episodes of sensor instability, stratospheric
aerosols or desert dust, especially prior to ATSR data being available,
the derived SSTs are accurate, having a median evaluated uncertainty
of 0.18 K, at the pixel level. Long term stability, relative to drifting buoy
measurements, is within 0.003 K yr−1 of zero, thus meeting the stability
requirement of an SST CDR (Ohring et al., 2005).

5.1.3. The Along-Track Scanning Radiometer (ATSR) series
Instead of relying on the spectral dependence of atmospheric

transmission to correct for the effects of the cloud- and aerosol-free
atmosphere, measuring BTs at wavelengths in the atmospheric windows
of the sea surface through two different atmospheric path lengths per-
mits a direct measurement of the effect of the atmosphere on the top-of-
atmosphere radiance. The pairs of such measurements must be made in
quick succession, so that the SST and atmospheric conditions do not
change in the time interval, and this is the basis of the Along-Track
Scanning Radiometer (ATSR) series of IR radiometers. Following two
ATSRs on ERS-1 and ERS-2, the Advanced ATSR (AATSR) was flown on
Envisat (Louet and Bruzzi, 1999; Dubock et al., 2001), launched on 1
March 2002 for a decade-long mission. The AATSR had the same IR
channels as the earlier ATSRs, but had additional channels in the visible
part of the spectrum.

The ATSRs had IR channels in the atmospheric windows comparable
to those of AVHRR. The axis of rotation of the scan mirror is inclined
from the vertical by the half-angle of a cone, ~23.5°, so the swath
passes through the subsatellite point sweeping out a curved path on the
sea surface. Half a mirror revolution later, the field of view was about
900 km ahead of the sub-satellite track in the center of the ‘forward
view’ (Prata et al., 1990). The field of view returns to the sub-satellite
point, which has moved 1 km ahead of the starting point. Thus the
pixels forming the successive swaths through the nadir point are con-
tiguous. The nadir point overlays the center of the forward view after
about 2min. The scan geometry from the height of polar-orbiting sa-
tellites carrying the ATSRs, ~785 km, results in a swath width of
~500 km. The nadir measurement is through a single thickness of the
atmosphere, and the slant path to the center of the forward view is
almost double that, resulting in colder measured BTs for the same SST.
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The differences in the BTs between the forward and nadir swaths are
direct measurements of the effect of the atmosphere. The atmospheric
correction algorithm takes the form:

= + +SST c c T c To
i

n i n i
i

f i f i, , , ,
(10)

where the subscripts n and f refer to measurements from the nadir and
forward views, i indicates two or three atmospheric window channels
and the set of c are coefficients (Závody et al., 1995). As with the at-
mospheric correction algorithm for other IR radiometers, an Optimal
Estimation approach has been developed for the dual-view radiometers
(Embury and Merchant, 2012; Embury et al., 2012) which has become
the basis of a 20-yr time series intended to be of climate quality
(Merchant et al., 2012; Berry et al., 2018).

The current generation of dual view radiometers, the Sea and Land
Surface Temperature Radiometer (SLSTR; Donlon et al., 2012a; Smith
et al., 2014) flying on Sentinel 3a launched on 16 February 2016 and
Sentinel 3b launched on April 25, 2018, includes a quasi-linear scan
through nadir to extend the spatial coverage (Fig. 9). In the extended
scan, the atmospheric correction algorithm is based on a multi-channel
formulation.

The coefficients of the atmospheric correction algorithms are de-
rived by radiative transfer simulations, and have an explicit latitudinal
dependence (Závody et al., 1995). Accurate calibration of the measured
radiances is achieved using two onboard blackbody cavities, situated
between the apertures for the nadir and oblique views being scanned
during each rotation of the mirror (Prata et al., 1990). One blackbody is
at the ambient temperature of the instrument, ~262.7 K, while the
other is heated to ~301.6 K (Smith et al., 2012; Minnett and Smith,
2014) resulting in the measured brightness temperatures of the sea
surface being straddled by the calibration temperatures.

5.1.4. The Moderate Resolution Imaging Spectroradiometer (MODIS)
The Moderate Resolution Imaging Spectroradiometer (MODIS) is a

36-band imaging radiometer on the NASA Earth Observing System
(EOS) satellites Terra, launched in December 1999, and Aqua, launched
in May 2002. Included in the innovations in the design of MODIS are (i)
multiple detectors - ten - for each spectral band so that ten lines of

pixels are measured simultaneously across the swath, (ii) a dual-sided
scan mirror, and (iii) several advances to ensure the calibration, both
radiometric and spectral, of the measurements. For calibration of the IR
measurements, a grooved plate blackbody target with twelve embedded
thermometers was developed, and the measurements of this along with
those of cold space provided a two-point radiance calibration. The
swath width of MODIS, at 2330 km, is narrower than that of AVHRR,
with the result that a single day's coverage is not entire, but the gaps
from one day are filled in on the next. The spatial resolution of the IR
bands is 1 km at nadir. Further details of the ocean remote sensing of
MODIS are given by Esaias et al. (1998). MODIS is much more complex
than other radiometers used for deriving SST, but uses the same at-
mospheric transmission windows. The two bands in the 10–12 μm
wavelength interval have bandwidths of ~0.5 μm, which are about half
of those of the AVHRR and ATSR series. MODIS also has three narrow
bands in the 3.7–4.1 μm window, which, although limited by solar ef-
fects during the day, produce more accurate retrievals of SST during the
night. Several of the other MODIS bands contribute to improving the
SSTs by better identification of residual cloud and aerosol contamina-
tion (Kilpatrick et al., 2015; Kilpatrick et al., 2019).

5.1.5. Visible Infrared Imaging Radiometer Suite (VIIRS)
The replacement of the AVHRRs on the NOAA polar-orbiting sa-

tellites is the Visible Infrared Imaging Radiometer Suite (VIIRS), which
built on experience gained from MODIS, including sixteen detectors for
each band and the grooved blackbody for calibration. The paddle-wheel
scan mirror of MODIS was not used, but instead the rotating telescope
fore-optics as on SeaWiFS (Sea-Viewing Wide Field-of-View Sensor) was
adopted, with a “half-angle mirror” to prevent image rotation across the
swath that would otherwise occur as a result of using multiple detec-
tors. The first VIIRS was launched on the Suomi-National Polar-orbiting
Partnership satellite (S-NPP) on October 28, 2011, and the second was
launched on November 18, 2017, on NOAA-20. VIIRS has 22 channels
in the visible and IR parts of the electromagnetic spectrum; the channels
are a subset of those of MODIS. The spatial resolution at the sea-surface
is 0.75 km at nadir, and VIIRS has an innovative approach of ag-
gregating rectangular pixels, each having an aspect ratio of 3:1 in the
along-track direction, to reduce the growth of pixel size across the
swath away from nadir (Schueler et al., 2013; Gladkova et al., 2016).
The IR bands used for SST measurements are the standard two in the
λ=10–12 μm interval, and two in the λ=3.7–4.1 μm atmospheric
transmission window for use at night. VIIRS has a higher resolution IR
band, 375m at nadir, that has a spectral response from
λ=10.6–12.4 μm, essential using the entire atmospheric transmission
window. While the spectral width of this band and the absence of an-
other high-resolution band in this window prevents the use of an at-
mospheric correction algorithm to produce SSTs at the high resolution,
an approach has been developed applying the atmospheric correction
derived using the 750m bands. This approach permits the use of VIIRS
SSTs to investigate submesoscale processes at the ocean surface
(Cornillon et al., 2014). NOAA-20 is the first of four planned satellites
each carrying a VIIRS, providing SSTs into the late 2030s.

5.1.6. Second-generation Global Imager (SGLI)
The Japanese Global Change Observation Mission (GCOM) cur-

rently comprises two satellites: GCOM-W (Water) launched in 2012 into
the A-Train, a series of satellites carrying complementary instruments
in the same orbit facilitating the analysis of measurements from diverse
instruments (L'Ecuyer and Jiang, 2010), and GCOM-C (Climate) laun-
ched in December 2017. GCOM-C is in a sun-synchronous polar orbit
with an ascending node time of 22:30. Both GCOM satellites have in-
struments with SST capability as GCOM-W carries the Advanced Mi-
crowave Scanning Radiometer-2 (AMSR2) described below (Section
5.5.7) and GCOM-C carries the Second-generation Global Imager
(SGLI), which is an imaging radiometer in the visible and IR. SGLI
comprises two sensors: the Visible and Near Infrared Radiometer (VNR)

Fig. 9. Scan geometry of the SLSTR. The dual-view measurements are made by
an inclined conical scan, which covers the same swath through two different
atmospheric path lengths. The oblique swath is limited to 740 km by geome-
trical constraints. Interleaved between successive conical scans, a wider, single
view swath is obtained. (Reprinted with permission from Donlon et al., 2012a).
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and the Infrared Scanning Radiometer (IRS). The IRS includes two split-
window channels at λ=10.78 μm and 11.97 μm with a resolution of
250m at nadir and a swath width of 1400 km. The high resolution SSTs
are expected to be of particular value in studying coastal processes. The
SST fields derived from the split window bands are clean (Fig. 10) and
initial comparisons with in situ temperatures from iQuam (Xu and
Ignatov, 2014) during October 2018 indicate a mean difference for
highest quality SGLI SSTs of −0.063 K during the day and −0.181 K
during the night, with standard deviations of 0.333 K and 0.619 K and
robust standard deviations of 0.284 K and 0.287 K. (Y. Kurihara, 2018,
pers. comm.). The relatively high nighttime standard deviations are
attributed to imperfections in the cloud screening algorithms (ibid.).

5.1.7. Multichannel Visible Infrared Scanning Radiometer (MVISR)
The Chinese Meteorological Administration (CMA) has developed a

series of meteorological satellites called FengYun, meaning “wind and
cloud” and commonly abbreviated to FY, that comprise both sun-syn-
chronous polar-orbiters and geostationary satellites. FY1-A was laun-
ched in 1988 into polar orbit but was very short lived. FY-1B was
launched in September 1990 and functioned for about one year, fol-
lowed by FY1-C in 1999 which completed a five-year mission, with
overlap with FY1-D, launched in 2002, that functioned for nearly a
decade. The FY1-C and -D series carried the Multichannel Visible
Infrared Scanning Radiometer (MVISR), which had 10 channels, most
of which were in the visible and near-IR but included three in IR at-
mospheric windows: λ= 3.75 μm, 10.8 μm and 12.0 μm. These had the
potential to be used in SST retrievals, but the relatively high NEΔTs
(0.4 K at 300 K at λ=3.75 μm; 0.22 K at 300 K at λ= 10.8 and
12.0 μm), as well as the difficulty of accessing the data by non-Chinese
researchers limited the MVISR applications. The spatial resolution was
1.1 km at the subsatellite point.

5.1.8. FY-3 Visible and Infra-Red Radiometer (VIRR)
The current series of FY polar-orbiters, FY-3, carry the Visible and

Infra-Red Radiometer (VIRR) with IR bands similar to those of the
MVISR. FY-3A was launched in 2008 and functioned until 2015; FY-3B,
-3C and -3D are operating at the time of writing. Comparisons with the
global iQuam buoy temperatures from May to July 2014, yielded mean
differences of −0.26 K during the day and 0.06 K at night, with stan-
dard deviations of 0.54 K and 0.56 K (Wang et al., 2014). The VIRR was
replaced on FY-3D by a much more capable instrument, the Medium
Resolution Spectral Imager-2 (MERSI-2) with 25 channels, including
one at λ=3.80 μm with surface resolution of 1 km at nadir, and two at
λ=10.8 μm and λ=12.0 μm with spatial resolution of 250m at the
subsatellite point. A further four FY-3 satellites are planned to extend
the series beyond 2027.

5.1.9. HY-1 China Ocean Colour & Temperature Scanner (COCTS)
The Chinese State Ocean Administration has sponsored the devel-

opment of the polar-orbiting ocean satellites called Hai Yang, meaning
“Ocean” and referred to as the HY series. HY-1A and -1B were small
satellites, launched in 2002 and 2007, and carried two imagers: the
Coastal Zone Imager with four visible channels and the China Ocean
Colour & Temperature Scanner (COCTS), a ten-channel imager with
eight in the visible and near IR, and two in the thermal IR,
λ=10.85 μm and 11.95 μm, with a spatial resolution at nadir of
1.1 km. Comparisons with temperatures measured by buoys in the
North-East Asian Regional Global Ocean Observing System revealed
mean differences of 1.22 K and a standard deviation of 1.78 K with the
HY-1B COCTS SST retrievals using a standard NLSST algorithm (Lei and
Cong, 2013). When new coefficients for the NLSST were calculated
using the matchups between COCTS BTs, and buoy data, the mean
difference was removed and the standard deviation reduced to 1.35 K.
The HY-1C was launched in September 2018, and a further three

Fig. 10. SST in the vicinity of Japan derived from SGLI on 27 February 2018, showing complex structure both inshore and offshore, and the sharp temperature
contrast with the waters of the Kuroshio to the south. From Tanaka et al., 2018, with permission.
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satellites are planned to provide data beyond 2029.

5.2. Hyperspectral IR imagers

For most of the period of satellite retrievals of SST, IR radiometers
have provided measurements in discrete spectral bands defined by fil-
ters. For SST determination, the channels were selected in spectral in-
tervals where the atmosphere is relatively transparent. But, hyper-
spectral IR radiometers that measure the full or significant parts of the
spectrum of IR emission at orbital height have also been flown. In
spectral regions where the atmospheric transmission is low, the mea-
surements are primarily of atmospheric emission, and can be used to
derive atmospheric soundings, cloud properties, and trace gas con-
centrations. In the high-transmission atmospheric window spectral re-
gions, surface temperatures can be derived. There are two types of
imaging hyperspectral IR radiometers: those using diffraction gratings,
and those based on Fourier-Transform interferometry. Both split the
incoming spectrum of IR radiation into numerous spectral intervals,
each very much narrower than those derived by filters in more con-
ventional multispectral radiometers, so to retain a usable signal-to-
noise ratio the field-of-view of the radiometer is increased to typically
~12 km, with an increase in the signal integration time. The decrease in
the spatial resolution is a hindrance to deriving accurate SSTs given the
need to identify confidently clear sky pixels.

5.2.1. Atmospheric Infrared Sounder (AIRS)
The Atmospheric Infrared Sounder (AIRS; Aumann et al., 2003) on

the NASA satellite Aqua, launched in May 2002, is a grating spectro-
meter that samples three intervals of the IR spectrum: λ=3.75 to
4.59 μm, λ= 6.20 to 8.22 μm, and λ=8.80 to 15.37 μm, with a total of
2378 channels. The width of the AIRS scan is 1650 km. In principle, the
high spectral resolution of AIRS should make it a good sensor for SSTskin

derivation as some of the spectral regions with the highest atmospheric
transmission are included in the measurements, such as wavenumber
2616 cm−1 (λ= 3.823 μm), but this does not seem to have been
exploited by the community. One reason might be the relatively poor
spatial resolution (13×13 km2 at nadir) which limits the opportunities
to finding clear-sky pixels.

5.2.2. Infrared Atmospheric Sounding Interferometer (IASI)
An important instrument on the three Metop polar-orbiting sa-

tellites of EUMETSAT (Klaes and Holmlund, 2014) is the Infrared At-
mospheric Sounding Interferometer (IASI). Metop-A was launched in
2006, -B in 2012 and -C in 2018. The IASI (Blumstein et al., 2004;
Simeoni et al., 2004) is a Fourier-Transform IR Interferometer
(Michelson and Morely, 1887; Griffiths and de Haseth, 1986) having a
spectral range of λ= 3.62 to 15.5 μm with 8461 spectral samples. The
IASI calibration, which uses an internal blackbody target and a mea-
surement of cold space, has been determined to be well-specified
(Hewison and König, 2008) and stable (Aumann and Pagano, 2008),
and consequently the IASIs have been selected as reference instruments
by the Global Space-Based Inter-Calibration System (GSICS; Hewison
et al., 2013). A comparison of best quality Metop-A IASI SSTskin re-
trievals with subsurface temperatures from drifting buoys resulted in a
mean difference of −0.16 K with a standard deviation of 0.33 K
(O'Carroll et al., 2012), and a three-way analysis of IASI and AVHRR
(also on Metop-A) and drifters resulted in a standard deviation attri-
butable to IASI of 0.28 K (ibid).

5.3. High resolution imagers

The majority of IR imaging radiometers on polar orbiting satellites
have surface resolution of typically 1 km2 and broad swaths that pro-
vide global, or near global, coverage in a day. For some purposes,
usually associated with land surface applications, a much higher spatial
resolution is required, and radiometers developed for these applications

may also be used to derive SST provided there is a mechanism to correct
for atmospheric effects and the IR measurements are well calibrated. To
achieve high spatial resolution, coverage is sacrificed resulting in a
much reduced swath width.

5.3.1. Landsat
The Landsat series of satellites have been in operation since 1972

carrying instruments designed to support monitoring and studying land
surfaces. As such, these instruments have high spatial resolution. The
imagers in the first satellites were limited to measurements in the
visible, but with the Thematic Mapper (TM) on Landsat-4 and -5,
launched in 1982 and 1984, a thermal IR channel (λ=10.4–12.5 μm)
was added. Landsat-6 had a launch failure. This IR channel is also in-
cluded in the Enhanced TM+ (ETM+) on Landsat-7, launched in 1999,
with a surface resolution of 60m at nadir in the IR and a swath 183 km
wide. The ETM+ is still in operation. Landsat-8 (formerly called the
Landsat Data Continuity Mission, LDCM), was launched on 11 February
2013, with two instruments: the Operational Land Imager (OLI) that
operates in the visible through the short-wave IR; and the Thermal
Infrared Sensor (TIRS), a two-channel radiometer (λ= 10.3–11.3 μm
and λ=11.5–12.5 μm) with a spatial resolution of 100m at nadir and
an 185 km swath.

The TM and ETM+ IR measurements are calibrated on orbit by
scanning a calibration wand in the field of view that serves as a warm
blackbody at a controlled temperature and a cold shutter (Markham
et al., 1997; Barsi et al., 2016). The TIRS on-orbit calibration uses
measurements of cold space and of a blackbody at a known temperature
with a correction for the non-linearity of the detector responses based
on pre-launch calibration (Montanaro et al., 2014). However, evidence
of stray light contamination was found that required a further correc-
tion (Wang et al., 2017). The large aperture of the TIRS renders accu-
rate calibration very challenging, and it was recognized that compar-
isons with measurements of other spacecraft sensors, such as MODIS
(Section 5.1.4) and GOES Imager (Section 5.4.3) would be a valuable
approach (Wang et al., 2017; Wang and Ientilucci, 2018).

The high resolution of the TIRS measurements has been exploited in
coastal waters, for example, to study inshore water quality (Trinh et al.,
2017) and thermal discharge of cooling water from nuclear power
stations (Wang et al., 2016).

5.3.2. ASTER
The Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) is a Japanese imaging radiometer on the Terra
satellite. ASTER has 14 spectral channels spanning the visible to the
thermal IR, including two split-window channels centered at λ= 10.65
and 11.30 μm with bandwidths of 0.667 and 0.593 μm (Yamaguchi
et al., 1998). The ASTER optical system for the IR channels is a whisk
broom scanner, with the visible and short-wave IR channels being push
broom imagers. The IR channels have a spatial resolution of 90m at
nadir (Yamaguchi et al., 1999). ASTER does not operate continuously,
but “scenes” are gathered with dimensions about 60× 60 km2 ac-
cording to a pre-programmed scheme; about 600 scenes can be gath-
ered on one day (ibid). Unlike the IR measurements from most other
imaging radiometers that are calibrated using two internal blackbody
targets at different temperatures, or one blackbody target and a view of
cold space (Minnett and Smith, 2014), the geometry of the ASTER
optics prevents such an approach and instead the IR measurements are
calibrated with a full-aperture blackbody that can be held at constant
temperatures from 270 to 340 K. The blackbody is viewed before and
after each scene (Tonooka et al., 2005; Hook et al., 2007). Although
ASTER was designed for land surface and cloud measurements, its high
spatial resolution and calibrated IR channels allows it to provide useful
SST retrievals, especially in coastal areas (e.g. Matsuoka et al., 2011).

5.3.3. ECOSTRESS
Developed for land surface applications, the ECOsystem Spaceborne
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Thermal Radiometer Experiment on Space Station (ECOSTRESS) also
has a capability to derive SSTs. ECOSTRESS was launched to the
International Space Station (ISS) on 29 June 2018 and installed on
there on July 2. Following the commissioning phase, ECOSTRESS be-
came operational on August 20, 2018. The ISS orbit has an inclination
of 51.64° and thus high latitudes are not accessible to ECOSTRESS. The
orbit is not sun-synchronous and successive arcs of the orbit drift west
(at the Equator) by about 22.9° of longitude, meaning that over about
two months a full diurnal cycle is sampled. ECOSTRESS is an infrared
imaging radiometer with five spectral bands in atmospheric transmis-
sion windows (λ= 8.29, 8.78, 9.20, 10.49, 12.09 μm) each having a
spatial resolution at nadir of 38m×68m. From the altitude of
~400 km of the ISS the swath is 402 km wide (Hulley and Hook, 2018).
Each infrared band has 256 detectors that sweep out lines of pixels in a
whisk broom fashion, similar to MODIS (Section 5.1.4). Calibration is
accomplished with two on-board blackbody targets at 300 K and 340 K
that are scanned each mirror rotation (ibid).

Fig. 11 shows an example of coastal SST from ECOSTRESS derived
using a land surface temperature retrieval algorithm, revealing high-
resolution variability indicating the potential of ECOSTRESS to make
contributions to coastal research.

As yet there has been no concerted effort to determine the accuracy
of the ECOSTRESS SSTskin retrievals, but work is underway (Hulley
et al., 2019), including using the facilities at Lake Tahoe and the Salton
Sea as has been done for ASTER and MODIS (Hook et al., 2007;
Tonooka et al., 2005). Preliminary analysis of four months of compar-
isons indicate that the RMSE is< 1 K (G. C. Hulley et al., 2019, pers.
comm.).

5.4. Geostationary satellite instruments

The early geostationary earth observation satellites were “spin-sta-
bilized” meaning they spin about an axis parallel to that of the rotation

of the earth. Thus an image of the earth's disk, as visible from geosta-
tionary orbit, is built as the sensor scans the earth's disk longitudinally,
with latitudinal sampling being achieved through a stepped motion of
the sensor's scan mirror. There are several advantages to spin-stabili-
zation, but a major disadvantage is the small part of each revolution
when the earth is in view. Three-axis stabilized spacecraft, as used for
GOES-8 in 1994 and subsequent satellites in the GOES series, rotates on
its axis parallel to the earth's axis at the same rate as the earth. Thus, a
single side of the satellite remains facing the earth, and instruments
mounted on this face of the satellite view the earth all the time. The
current Meteosat series, the European geostationary satellites, are spin-
stabilized but the third generation will be 3-axis stabilized with the first
planned for launch in 2021 and the series expected to reach into the late
2030s.

The potential contributions of imagery from geostationary orbit to
improve weather nowcasting and forecasting were recognized early in
the satellite era, and the first imagers on geostationary earth observa-
tion satellites were sensitive to radiation in the visible part of the
spectrum. The first was the spin-scan cloud camera (SSCC) on the
Applications Technology Satellite-l (ATS-l) launched in 1966 and which
functioned for seven years. In 1974, the three-axis stabilized satellite
ATS-6 was launched carrying the Geosynchronous Very High
Resolution Radiometer (GVHRR) that included the first IR channel that
permitted cloud imaging at night and estimation of cloud-top tem-
perature, and thereby cloud-top height. The spectral width of the IR
channel was 10.5–12.5 μm. The ATS-6 mission ended in 1979, ending
the deployment of the last 3-axis stabilized geosynchronous satellites
until 1994.

Some details of currently operational geostationary satellites are
summarized in Table 1.

5.4.1. VISSR and VAS
In 1974, the first model of the Visible Infrared Spin-Scan

Fig. 11. ECOSTRESS composite of two Level-2 images of SST derived with the Land Surface Temperature (LST) retrieval algorithm, acquired on September 16, 2018
at 13:04 and 13:05 UTC. Colder SSTs are associated with upwelling north of Santa Barbara. The enlargement shows fine-scale SST gradients around the Channel
Islands National Marine Sanctuary – note the color scale has been stretched to cover 14 °C to 22 °C to show the fine-scale detail. The western islands (San Miguel,
Santa Rosa) experience much cooler ocean temperatures than the eastern islands due to differences in upwelling, winds and currents. Image credit: Daniel Otis,
Institute for Marine Remote Sensing (IMaRS), College of Marine Science, University of South Florida. Reproduced from https://ecostress.jpl.nasa.gov/gallery/
viewgalleryimage with permission. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Radiometer (VISSR) was launched on the spin-stabilized Synchronous
Meteorological Satellite-1 (SMS-1; McClain, 1980). VISSR had one IR
channel occupying the 10.5–12.6 μm wavelength interval and was the
first to have on-board IR calibration (Hursen and Ross, 1996). The
spatial resolution of the IR channel at the subsatellite point was 7 km
and produced a full-disk image of the Earth each 30min. Having just a
single IR channel prevented a split-window type atmospheric correction
algorithm to derive SST, but nevertheless, the VISSR brightness tem-
perature images elucidated many upper ocean processes, including
westward propagating tropical instability waves (Legeckis, 1977). The
VISSR was the principal instrument on five US satellites: SMS-1 and -2,
GOES-1, -2 and -3, four Japanese satellites: Himawari-1 to -4 (also
known as Geostationary Meteorological Satellite, GMS-1 to -4).

An important development of the VISSR was the VISSR Atmospheric
Sounder (VAS) that first flew on GOES-4, launched in 1980. VAS in-
cluded a filter wheel in front of the detectors that resulted in there
being 12 channels in the IR that were selected at wavelengths to permit
sounding of the atmospheric temperature and humidity (Menzel et al.,
1981). In addition to the 10.5–12.6 μm wavelength band inherited from
VISSR, VAS had two additional channels, one in the 3.9 μm window and
the other at 12.6 μm where the atmosphere is relatively transparent but
has a marked sensitivity to water vapor variations (Section 4.1.1).
Measurements in these three channels permitted a multi-channel at-
mospheric correction to estimate SST (Bates and Smith, 1985).

5.4.2. SEVIRI
The main payload of the current European Meteosats is the Spinning

Enhanced Visible and Infrared Imager (SEVIRI), having 12 spectral
channels of which 8 are in the IR having an instantaneous field of view
(IFOV) of 4.8 km at the surface at nadir, over-sampled to give a pixel
resolution of 3 km at the subsatellite point (European Space Agency,
1999; Aminou, 2002; Schmid, 2012). With a rotation rate of 100 rpm,
the SEVIRI provides full disk images every 15min. The primary location
of Meteosat is at 0°E above the Equator, which is now occupied by
Meteosat-11. Meteosat-10 is currently at 9.5°E producing rapid scans of
a section of the earth's disk of limited latitudinal range primarily cov-
ering Europe every 5min. Meteosat-9 is now at 3.5°E as a backup for
−10 and −11, and Meteosat-8 is at 41.5°E to provide coverage over the
Indian Ocean. Some of the IR channels of SEVIRI, those at λ=3.92 μm,
10.8 μm and 12.0 μm, are suitable for accurate SST retrievals.

5.4.3. The GOES imager
The GOES Imager (Hursen and Ross, 1996) has flown on the GOES

8–15 satellites (Menzel and Purdom, 1994) from 1994 to the present;
GOES-15 is still operating, but is scheduled to be decommissioned in
July 2019. There are two GOES operational spacecraft - one at nom-
inally 75°W, called GOES-East, and the other at 135°W, GOES-West. The
image of the Earth's disk is constructed by scanning the field of view of
the radiometer along horizontal lines by an oscillating mirror, with
latitudinal increments of the scan line resulting from tilting the axis of
the scan mirror between longitudinal scans. The spatial resolution of
the IR channels is 4 km at the subsatellite point (Maturi et al., 2008). A
full-disk image is produced every 30min, and limited areas where ra-
pidly evolving meteorological features are occurring, can be imaged in
correspondingly shorter time intervals. The GOES Imager is a five-
channel instrument, of which three on earlier satellites (GOES-8 to
GOES-11) were suitable for SST retrieval: λ= 3.9 μm, 10.7 μm and 11.
95 μm. On GOES-12, which became operational in 2003, and sub-
sequent satellites, the channel at λ= 11.95 μm was moved to 13.35 μm,
thereby compromising the feasibility of using split-window atmospheric
corrections to derive SSTs, although an algorithm using the λ=3.9 μm
after a correction for solar contamination was developed (Merchant
et al., 2009a).

5.4.4. Advanced Himawari Imager (AHI) and the Advanced Baseline
Imager (ABI)

The first of a new generation of geostationary meteorology satellites
of the JMA, Himawari-8 (Bessho et al., 2016), began operation on July
7th 2015; it is located at 140.7°E above the equator and replaced the
earlier MTSAT-2 (also known as Himawari-7). MTSAT-2 carried a five-
channel imager with IR channels for SST at λ=3.75 μm, 10.8 μm and
12.0 μm, with a 4 km spatial resolution at nadir. Himawari-8 carries the
first of a new type of visible and IR imager for geostationary satellites,
the Advanced Himawari Imager (AHI). The AHI has 16 spectral chan-
nels of which five are in the IR and can be used for SST retrievals:
λ=8.60 μm, 10.45 μm, 11.20 μm, and 12.35 μm, with one at
λ=3.85 μm available for use at night. The IR bands have a spatial
resolution of 2 km at nadir. The AHI provides full disk images of most of
the Pacific Ocean and eastern Indian Ocean as rapidly as every 10min,
with smaller areas being sampled more frequently as required.

The first of a new series of NOAA geostationary satellites, called
GOES-R while in development and renamed GOES-16 once declared
operational on December 16th 2017, is located above 75.2°W. GOES-
17, operational since February 12th 2019, is located above 137.2°W.
This series of geostationary satellites, each with a planned lifetime of
10 years, is expected to operate into the mid-2030s, carries the

Table 1
Positions of geostationary satellites with an SST retrieval capability.

Name Date launched Longitude Notes

GOES-16 19 November 2016 75.2°W GOES-E. Operational on 18 December 2017.
GOES-17 1 March 2018 137.2°W GOES-W. Operational on 12 February 2019.
Meteosat-8 28 August 2002 41.5°E Moved on 4 July 2016 for Indian Ocean coverage.
Meteosat-9 21 December 2005 3.5°E As backup for Meteosat-10 or Meteosat-11.
Meteosat-10 15 July 2012 9.5°E Moved on 21 January 2013 for rapid scans over Europe.
Meteosat-11 15 July 2015 0° Operational on 20 February 2018.
Himawari-8 7 October 2014 140.7°E Operational on 7 July 2015.
Himawari-9 2 November 2016 140.7°E On standby as operational replacement for Himawari-8.
FengYun-2E 23 December 2008 86.5°E Operational on 1 July 2015
FengYun-2F 13 January 2012 112.0°E On standby as operational replacement; used now for regional scanning
FengYun-2G 31 December 2014 99.5°E Relocated from 105°E on 16 April 2018.
FengYun-2H 5 June 2018 79.0°E Operational on 1 January 2019.
FengYun-4A 10 Dec 2016 105.0°E Operational on 1 May 2018.
INSAT-3D 25 July 2013 82.0 E Operational on 15 January 2014.
INSAT-3DR 8 September 2016 74.0 E Operational on 11 October 2016.
GEO-KOMPSAT-1 27 June 2010 128.25°E Also referred to as Cheollian-1 and COMS-1. Operational on April 1, 2011.
GEO-KOMPSAT-2A 4 December 2018 128.2°E In commissioning. Expected to become operational in July 2019.

The longitude of each satellite may vary throughout its lifetime, being moved according to operational requirements. The information shown here is taken from the
WMO OSCAR tool (https://www.wmo-sat.info/oscar/) or the web-pages of the satellite operators.
The satellites shown are those in operation at the time of writing. For past and planned satellites, please see the text.
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Advanced Baseline Imager (ABI), which has very similar capabilities to
those of the AHI, including IR bands suitable for the derivation of SST,
at λ= 3.90 μm, 8.50 μm, 10.3 μm, 11.2 μm, ad 12.3 μm.

The AHI and ABI represent a significant development in the deri-
vation of SST from geostationary orbit.

5.4.5. FengYun-2 Stretched Visible Infrared Spin Scan Radiometer
The Chinese, spin-stabilized geostationary satellites are the

FengYun-2 (FY-2) series, with FY-2A having been launched in 1997 to a
position above 105°E, where it operated for a little less than one year. It
was succeeded by FY-2B in 2000 which functioned until 2004. These
two satellites carried the S-VISSR (Stretched-VISSR) with a single IR
channel at λ=10.5–12.5 μm. The FY-2C, launched in 2004 to a posi-
tion at 123°E, and subsequent satellites of this series carried an en-
hanced S-VISSR with a channel at λ= 3.75 μm and split-window
channels at λ=10.8 μm and 12.0 μm, permitting multi-channel atmo-
spheric corrections to derive SST. The on-board calibration of the FY-2C
S-VISSR IR bands was checked by comparing their BTs with those of
MODIS on Terra and AIRS by Jiang et al. (2009) who reported that
while the S-VISSR calibration was stable, there were significant tem-
perature dependent offsets between the IR channels of the three in-
struments, which are largely consistent between S-VISSR and the two
reference radiometers. Currently there are four FY-2s in operation: FY-
2E at 86.5°E, FY-2F at 112°E, FY-2G at 105°E, and FY-2H launched in
June 2018, at 79°E.

5.4.6. FengYun-4 Advanced Geostationary Radiation Imager
The first of the next-generation Chinese geostationary satellites, the

FY-4 series (Yang et al., 2017) was launched in December 2017 into a
position at 105°E. The FY-4s are three-axis stabilized satellites and one
of the six instruments making up their payload is the Advanced Geos-
tationary Radiation Imager (AGRI) with 14 channels, including two at
λ=3.75 μm – one with spatial resolution of 4 km and an NEΔT of 0.2 K
at 300 K, and the other with a surface resolution of 2 km with an NEΔT
of 0.7 K at 300 K – and two split window channels at λ=10.7 μm and
12.0 μm with 4 km spatial resolution and NEΔTs of 0.2 K at 300 K. A full
disk scan can be made by AGRI every 5min. Seven FY-4 satellites are
planned which will extend beyond 2040.

5.4.7. Communication Ocean Meteorological Satellite (COMS)
meteorological imager

To provide ocean and meteorological measurements in the vicinity
of the Korean Peninsula, a geostationary satellite was launched in June
2010 to 128.25°E. Called the Communication Ocean Meteorological
Satellite (COMS), it has subsequently been renamed GEO-KOMPSAT 1
(Geostationary Korea Multi-Purpose Satellite) and is also referred to as
Cheollian-1, it is three-axis stabilized and serves three objectives:
monitoring ocean color, providing meteorological imagery, including
IR bands that can be used for SST derivation, and for communications.
The Meteorological Imager (MI) is a development of the imager flown
on MTSAT-2 with five bands including at λ=3.75 μm, 10.8 μm and
12.0 μm (Cho and Youn, 2006). Following adjustment of the calibration
of the MI IR channels after comparison with IASI measurements in the
framework of the Global Space-based Inter-Calibration System (GSICS;
Section 11), the SSTs derived using an NLSST atmospheric correction
algorithm compared much better with in situ measurements from
drifters in the western Pacific Ocean and eastern Indian Ocean with
daytime differences of −0.062 K in the mean and root-mean-square
error of 0.666 K, and night-time values of −0.020 K and 0.809 K (Park
et al., 2015).

The next-generation satellites comprise of two satellites operating
together; GEO-KOMPSAT-2A was launched on December 4th 2018, and
-2B is scheduled for launch in October 2019. GEO-KOMPSAT-2A carries
an Advanced Meteorological Imager (AMI), which is very similar to the
AHI and ABI. GEO-KOMPSAT-2B will be for monitoring ocean color,
atmospheric ozone and other trace gases.

5.4.8. INSAT-3 imager
The Indian Space Research Organisation (ISRO) has been launching

satellites into geostationary orbit since 1982. These Indian National
Satellites (INSATs) include telecommunication satellites as well as those
for earth observation. The early series of satellites carried the Very High
Resolution Radiometer (VHRR), with a single IR channel at
λ=11.6 μm thus not permitting correction for the atmosphere to de-
rive SSTs. INSAT-3D, launched in 2013 above 82°E, included an Imager
with IR channels at λ=3.82 μm, 10.8 μm, 12.0 μm, with a 4 km re-
solution at the subsatellite point. INSAT-3DR (Repeat) with the same
payload was launched to 74°E in 2016, with INSAT-3DS (Second
Repeat) scheduled for launch in 2022. Comparisons with the iQuam
drifter data in the seas around India, revealed mean differences ranging
from −0.16 K to −0.20 K, being worse in the Arabian Sea at −0.27 K
with greater values during the monsoon season (Tyagi et al., 2018).

5.5. Microwave instruments

Imaging microwave radiometers are confined to satellites with or-
bital altitudes typical of those in polar orbits, or at lower altitudes, as
the spatial resolution is limited by the size of an antenna that can be
deployed on a spacecraft, typically 2m or less in diameter. Since the
sensitivity of the emitted radiation from the sea surface in microwave
frequencies to SST variations is at 6 to 10 GHz, λ= 5 cm to 3 cm,
(Fig. 6; Wilheit, 1979) and so the diffraction-limited surface resolution
is tens of km (35×62 km2 at 7 GHz for a 2m diameter parabolic re-
flector at a height of 700 km, and 24× 42 km2 at 10 GHz). Measure-
ments are usually taken at both horizontal and vertical polarizations. A
further consequence of the diffraction limitation of microwave mea-
surements of SST is the presence of significant side-lobes (e.g.
Kawanishi et al., 2003) which, in the vicinity of land, permits the
leakage of terrestrial emission from a high emissivity source into the
signal from the sea surface, with low emissivity, resulting in a de-
gradation in the accuracy of the SST retrievals within ~100 km of
coastlines. A further loss of SST retrievals is caused by the presence of
heavy rain. Since the angular dependence of the apparent surface
emissivity of sea water is large and dependent on the wind speed
(Wilheit, 1979), there would be a strong variation in the BT signal
across the swath of a linearly scanning microwave radiometer, so to
avoid this complicating factor, satellite microwave radiometers use a
conical scan with a constant angle of incidence of the field of view at
the sea-surface, typically 50°–55°. As a consequence, the swath width of
microwave radiometers with SST capabilities is typically< 1600 km
from polar orbit, resulting in large gaps between successive orbits but
these are generally filled in over two to three days.

5.5.1. Scanning Multichannel Microwave Radiometer (SMMR)
Two models of the SMMR (Gloersen and Barath, 1977) were flown,

one on SeaSat in a drifting orbit from June to October 1978, and the
other on Nimbus-7 in a sun-synchronous orbit from 1978 to 1994, with
SMMR operations ending in 1988. Both had channels with SST sensi-
tivity at 6.6 GHz and 10.7 GHz, but with a relatively small antenna at
60 cm diameter, the surface resolution was 95×160 km2 at 6.6 GHz
and 60× 100 km2 at 10.7 GHz. Prabhakara et al. (1983) attempted to
assess the accuracy of the Nimbus-7 SMMR brightness temperatures at
6.6 GHz to represent the SST, as measured from ships, and confirmed
the confusing influence of variations in wind speed and cloud liquid
water. They derived empirical corrections which resulted in useful
maps of SST being derived that indicated oceanographic patterns, such
as the cool tongue of surface water in the equatorial eastern Pacific
Ocean. A comparison with SMMR SSTs derived with corrections for
water vapor, liquid water and wind speed through combinations of
different channels and polarizations, and SSTs derived from drifting
buoys deployed as part of the FGGE (First Global GARP Experiment,
where GARP is the Global Atmospheric Research Program) during 1979
in the southern hemisphere revealed differences of ~0.6 K in the mean
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and a standard deviation of ~1.76 K (Gloersen et al., 1984). Fig. 12
shows the global SST field derived from the SMMR on Nimbus-7 for
June 1979.

5.5.2. TRMM Microwave Imager (TMI)
The Tropical Rainfall Measuring Mission (TRMM) satellite

(Kummerow et al., 1998), a joint mission of NASA and the Japan
Aerospace Exploration Agency (JAXA) launched in 1997, carried the
TRMM Microwave Imager (TMI), which was a nine-channel microwave
radiometer. The channels were centered at five frequencies: 10.65,
19.35, 21.3, 37.0, and 85.5 GHz, with four of them being measured in
both horizontal and vertical polarizations. The 10.65 GHz channels
confer a sensitivity to SST in the higher SST range found in the tropics, a
capability that had been absent since the SMMR. The TMI com-
plemented AVHRR IR SSTS by providing SSTs in the tropics where
persistent clouds can be a problem for IR retrievals. The TMI swath
width was only 759 km due to the low altitude of the orbit, and the low
inclination of the TRMM orbit limited SST measurements to within
38.5° of the equator. The beam width of the 10.65 GHz channels pro-
duced an approximately elliptical footprint of 37× 63 km2, but the
data were over-sampled to produce 104 pixels across the swath. Al-
though originally planned for a three-year mission, TRMM ended in
April 2015, after providing SSTs for 17 years.

5.5.3. Advanced Microwave Scanning Radiometer for EOS (AMSR-E)
The Japanese Advanced Microwave Scanning Radiometer for EOS

(AMSR-E) was part of the payload of the NASA satellite Aqua. It was a
twelve-channel, six-frequency, microwave radiometer that measured
brightness temperatures at 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz
with vertical and horizontal polarization. AMSR-E had a parabolic re-
flector 1.6 m in diameter that rotated at 40 rpm to scan across the
surface in a cone with an incidence angle of 55°, producing a swath
width of 1445 km. As with other microwave radiometers, before and
since, the calibration used the cosmic background radiation and an on-
board warm target. The spatial resolution of the 6.9 GHz measurements
was 74 km×43 km but increased with increasing frequency, reaching
8.2 km×14 km at 36.5 GHz (Kawanishi et al., 2003). The derivation of

SST from microwave radiometer data requires the combination of
measurements at different frequencies and therefore different footprint
sizes (Gentemann et al., 2010) so the effective footprint size of the SST
retrievals is not self-evident. A recent study (Boussidi et al., 2019) using
SSTskin retrievals from MODIS on Aqua within the swath of AMSR-E has
produced a reference footprint for the AMSR-E with 40 km×60 km
being the full-width defined as the point at which the magnitude has
fallen to about e−1 of its central value (P. Cornillon (2019) pers.
comm.). But many microwave-derived SST fields are produced at higher
spatial resolution, indicating these fields are oversampled. The AMSR-E
was decommissioned in October 2011 when the mechanism to rotate
the antenna failed, after providing nearly a decade of valuable mea-
surements.

In three-way comparisons with AMSR-E, AATSR and drifting buoys,
O'Carroll et al. (2008) determined the AMSR-E SST observations have
an uncertainty of ~0.42 K, comparable to the results of a subsequent
analysis by Lean and Saunders (2013) who expressed their results as
standard deviations for the years 2003 to 2009, ranging from 0.462 K to
0.500 K, with higher values in later years. In a three-way analysis in-
cluding MODIS SSTs along with AMSR-E SSTs, Gentemann (2014) re-
ported standard deviations of AMSR-E SSTs of 0.48 K. All of these three-
way analyses were done using AMSR-E L2 (see Section 7 below) SST
product distributed by Remote Sensing Systems (http://www.remss.
com/missions/amsr/), with a 25 km retrieval grid. More recent versions
were used in the later analyses. Comparable analyses using AMSR-E
SSTs derived using different algorithms at different processing centers
would not necessarily produce identical results.

5.5.4. WindSat
The US Navy launched a sun-synchronous polar-orbiting satellite

called Coriolis in January 2003 into a terminator orbit, having equator
crossing times of 6 a.m. and 6 p.m. Coriolis carries the WindSat mi-
crowave radiometer with bands at 6.8, 10.7, 18.7, 23.8, and 37.0 GHz.
The 6.8 and 10.7 GHz channels are sensitive to SST. The conically-
scanning 1.8m reflector produces a swath of ~1000 km width with a
native resolution of 39× 71 km2 of the low frequency channel (Gaiser
et al., 2004). Meissner and Wentz (2007) assessed the accuracies of

Fig. 12. Global SST's from SMMR, June 1979. Plate 1 of Gloersen et al., 1984.
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WindSat SSTs by comparing global fields with those of AMSR-E and
found a mean difference of −0.08 K with a standard deviation of
0.56 K, and in a smaller, regional comparison with M-AERI (Marine-
Atmospheric Emitted Radiance Interferometer; Minnett et al. (2001))
SSTskin an RMS of 0.27 K. Comparisons between SSTs from WindSat and
moored buoys in the Tropical Pacific Ocean resulted in an RMS dif-
ference of 0.36 K (L. Zhang et al., 2016).

5.5.5. OceanSat-1 Multi-frequency Scanning Microwave Radiometer
(MSMR)

A series of sun-synchronous satellites for marine research was begun
by the Indian Space Research Organisation (ISRO) in 1999 with the
launch of OceanSat-1 with a Multi-frequency Scanning Microwave
Radiometer (MSMR), which included channels at 6.6 GHz and
10.65 GHz, conferring an SST capability. The swath width was
1360 km. Comparisons with temperatures measured from five moored
buoys in the Arabian Sea and the Bay of Bengal showed differences of
−0.67 K with a standard deviation of 2.0 K; there were significant
differences between day and night comparisons with the daytime values
being better, and also with season as defined by the monsoon, with
monsoonal values being better (Parekh et al., 2007). A more extensive
comparison using drifting buoys in the Indian Ocean revealed a mean
difference of −0.48 K with a standard deviation of 1.15 K
(Muraleedharan et al., 2004). Although there were subsequent
OceanSat missions, none included microwave radiometers.

5.5.6. HY-2 microwave radiometer (MWI)
A complementary series of satellites to the Chinese HY-1 polar or-

biters, the HY-2 series, has microwave radars (altimeter and scatte-
rometer) and a microwave radiometer (MWI). HY-2A was launched in
2011 and -2B in October 2018. The MWI has dual-polarized, low fre-
quency channels at 6.6 GHz and 10.7 GHz thereby giving an SST cap-
ability. The surface resolution is 80×120 km2 and 50×75 km2, re-
spectively. Comparisons with temperatures measured by drifting and
moored buoys from NDBC (US National Data Buoy Center) gave a mean
difference of −0.49 K with a standard deviation of 1.63 K, and with
near-surface temperatures from Argo profilers (Roemmich et al., 2009)
a mean difference of −0.28 K and 1.68 K (Zhao et al., 2014).

5.5.7. Advanced Microwave Scanning Radiometer 2
The second generation Advanced Microwave Scanning Radiometer

(AMSR2) was launched on May 17, 2012, on the Japanese Global
Change Observation Mission-Water “Shizuku” (GCOM-W1; Heygster
et al., 2017; Kachi et al., 2017). GCOM-W1 is in the A-Train series of
satellites with an ascending node at 13:30 (L'Ecuyer and Jiang, 2010).
The diameter of the AMSR-2 reflector is 2.0 m, and, like AMSR-E, its
rotation traces a conical scan with an angle of incidence of 55° at the
surface. The channels of AMSR2 are the same as for AMSR-E with the
addition of a 7.3 GHz channel to mitigate radiofrequency interference
in the SST retrievals (Gentemann and Hilburn, 2015). An example of
global SST derived from AMSR2 measurements is shown in Fig. 13.

Comparisons with in situ measurements of temperatures from
drifting and moored buoys were found by Gentemann and Hilburn
(2015) to give mean discrepancies of −0.04 K with a standard devia-
tion of 0.55 K, with a small latitudinal dependence, and by Hihara et al.
(2015) to be 0.21 K in the mean with an RMS of 0.49 K through com-
parisons with the TRITON moorings in the Western Tropical Pacific
Ocean. Hihara et al. (2015) acknowledged the high mean difference
could be a consequence of diurnal heating in the daytime comparisons
whereas Gentemann and Hilburn (2015) removed daytime comparisons
for wind speeds< 6ms−1 to avoid the effects of diurnal heating.

5.5.8. The Global Precipitation Measurement Microwave Imager
Even before the end of the successful TRMM mission (Section 5.5.2),

a follow-on satellite was being developed with a similar, but improved,
suite of sensors. As with TRMM, the new satellite, the Global

Precipitation Measurement (GPM; Smith et al., 2007) Core Observatory
was planned to be in a drifting orbit so that over time diurnal variations
would be sampled. The new satellite was launched on February 27th
2014, into an orbit with an altitude of 407 km and an inclination of 65°.
The GPM Core Observatory carries a Microwave Imager (GMI; Draper
et al., 2015), a conical-scanning radiometer covering a swath width of
550miles (885 km) with thirteen channels from 10.65 GHz to
183.31 GHz. The 10.65 GHz channels, with horizontal and vertical po-
larization, have sensitivity to SST variations, but only for warm water,
SST > ~13 °C, as at colder temperatures the sensitivity decreases and
the noise level increases (Gentemann et al., 2010).

6. Validation

As with all measurements, the success of the application of satellite-
derived SSTs to research and to operational endeavors relies on an
accurate and confident assessment of errors and uncertainties. As in-
dicated in the previous section, such estimates of accuracy are generally
derived by comparison with in situ measurements, and this requires the
validating measurement to be of greater accuracy and lower un-
certainty than the satellite data. The first satellite SST validation was
reported by Allison and Kennedy (1967) from the Nimbus 1 High Re-
solution Infrared Radiometer (HRIR). But, it was not until the launch of
the first AVHRR on TIROS-N that SST was routinely produced from
space-based measurements. The initial validation of AVHRR SSTs, using
the split-window MCSST atmospheric correction algorithm produced
standard deviations of ~0.5 K at best (Strong and McClain, 1984), with
mean differences of up to several tenths of a degree depending on the
source of the validating data (McClain et al., 1985) and at these levels
of accuracy, the contribution of the inaccuracy from the validating
sensor and from the method of validation were not considered im-
portant, so the statistics of the comparisons were deemed to be an as-
sessment of the accuracy of the satellite retrievals. As satellite sensors
improved, along with the cloud screening and atmospheric correction
algorithms, the differences between satellite-derived and in situ tem-
peratures became much smaller, these other contributions could no
longer be ignored. It was realized these contributions should be taken
into account to determine a more meaningful estimate of the accuracy
of the satellite retrievals of SST (see, for example, Corlett et al., 2014).

In situ measurements are available from many platforms (e.g.
drifting buoys, moored buoys, ships, Argo floats). Each have different
characteristics and also different performances, as presented by Castro
et al. (2012) and Xu and Ignatov (2010) for drifting and moored buoys,
and by Atkinson et al. (2014), for many other different types. Drifting
buoys are the most commonly used type as they have several ad-
vantages: good geographical coverage, shallow measurement depth -
typically 20 cm - and availability in near-real time through the GTS
(Global Telecommunication Service). Argo floats, whose number has
been increasing in recent years, have been recommended for climate
studies; however, the uppermost measurement depth is about 5m and
relatively few are at the surface close to the time of overpass of a given
satellite. The moorings of the Global Tropical Moored Buoy Array
(GTMBA; McPhaden et al., 2010) provided long-term consistent mea-
surements until the unfortunate degradation of the GTMBA in 2014 and
are so far the best way to estimate the stability of satellite SST records
(Merchant et al., 2012).

Given that the source of the IR radiation reaching the satellite is the
skin of the ocean, the variable size of the thermal skin effect (Donlon
et al., 2002; Minnett et al., 2011; Wong and Minnett, 2018) and vari-
able diurnal heating decouple the SSTskin from the subsurface tem-
peratures measured by in situ thermometers. Using well-calibrated IR
radiometers on ships to measure the SSTskin provides validation mea-
surements that avoid the contributions from variations in the tem-
perature gradients across the thermal skin layer and possible diurnal
heating.

Two types of shipboard radiometers that have been continuously
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deployed for many years for the validation of satellite derived SSTskin

are the M-AERI (Minnett et al., 2001) and the Infrared SST Autonomous
Radiometer (ISAR; Donlon et al., 2008). The M-AERI is a Fourier
Transform Infrared Interferometer (Griffiths and de Haseth, 1986) that
measures the spectra of IR emission from the ocean surface and the
atmosphere from λ=~3 μm to ~18 μm in ~2700 samples, with ac-
curate internal calibration using two SI-traceable blackbody cavities,
one of which is heated and the other is at ambient temperature. A gold-
plated scan mirror directs the field of view of the interferometer to the
ocean and the atmosphere (needed to correct the sky radiance reflected
at the sea surface) and to the two blackbodies. A rain sensor is used to
move the mirror to a “safe” position directed at one of the blackbodies
when rain or sea spray is detected. SSTskin is derived from measure-
ments around λ=7.7 μm (Smith et al., 1996; Minnett et al., 2001)
where the effects of cloud variability in the reflected sky radiance is
much smaller than in the thermal IR atmospheric window at
λ=10–12 μm, but where the emission depth at the ocean surface is
very similar to those at wavelengths of the thermal window (Bertie and
Lan, 1996). Running two M-AERIs side by side on a section from Hawaii
to New Zealand produced SSTskin values from each instrument that
were different by 0.005 K with a standard deviation of 0.077 K for 890
measurement pairs (Minnett et al., 2001). A recently revised error
model of M-AERI SSTskin retrievals gives, for example, a median value
for the total error of 0.041 K for 4600 retrievals during a recent research
cruise in the Mediterranean Sea.

The ISAR operates on the same principle but uses a filter to define
the wavelength passband of λ=9.6–11.5 μm. However, this choice of a
wavelength interval where the atmosphere is very transparent in the IR
increases the sensitivity of the SSTskin retrievals to errors introduced by
cloud variability as, with all ship radiometers, the sky and sea view
measurements are made sequentially. An analysis of at-sea measure-
ments from the Scanning Infrared Sea Surface Temperature Radiometer
(SISTeR; described by Donlon et al. (2014)), which has very similar
measurement and operating principles to the ISAR, Donlon and

Nightingale (2000) found cases where variable cloud fields could lead
to errors in the SSTskin of± 0.25 K and greater were possible. Never-
theless, an analysis of 12 years of SSTskin retrievals from ISAR from
ships crossing the Bay of Biscay shows that 77.6% of the data are ac-
curate within 0.1 K (Wimmer and Robinson, 2016). Donlon et al. (2014)
give a more complete review of shipboard IR radiometry for satellite-
derived SST validation.

Various approaches are used to control the quality of in situ data.
Gross error checks, e.g. a 5 K cut-off relative to climatology, are com-
monly applied. The so-called blacklist approach is an automatic scheme
that detects the platforms having anomalous statistics and blacklists
them: UKMO makes a monthly blacklist by comparing drifting buoy
SSTs and ship SSTs to those of OSTIA (Operational Sea Surface
Temperature and Sea Ice Analysis; Donlon et al., 2012b), OSI SAF
(Ocean and Sea Ice Satellite Application Facility of EUMETSAT) up-
dates its blacklist every 10 days, using night-time SST differences be-
tween satellites and buoys, considering two satellites for a given buoy,
when available (Marsouin et al., 2015). The in situ SST Quality Monitor
(iQuam) developed at NOAA (Xu and Ignatov, 2014) is an elaborate
scheme that routinely processes the in situ data (drifters, ships, tropical
and coastal moorings) available on the GTS. Quality flags are assigned
to each measurement through multiple tests, Bayesian and basic (e.g.
track check, SST spike check). Files with quality controlled SSTs are
available online (https://www.star.nesdis.noaa.gov/sod/sst/iquam2/).

Satellite-derived SST retrievals have been validated using several
approaches: satellite-derived SST compared with in situ SST considered
as a reference (Walton et al., 1998; Kilpatrick et al., 2001; Le Borgne
et al., 2012a; Høyer et al., 2012; Marsouin et al., 2015; Kilpatrick et al.,
2015), three-way analyses using two satellite-derived SSTs and one in
situ SST (O'Carroll et al., 2008; O'Carroll et al., 2012; Gentemann,
2014) and a satellite-derived SST field compared to another satellite-
derived SST field or an SST analysis (Dash et al., 2012; Le Borgne et al.,
2012b). The first two approaches, based on collocated, coincident sa-
tellite and in situ data (matchups), aim to assess the SST accuracy,

Fig. 13. Global SST distribution derived by compositing AMSR2 measurements over three days ending 21 November 2018. Credit: Wentz, F.J., T. Meissner, C.
Gentemann, K.A. Hilburn, J. Scott, 2014: Remote Sensing Systems GCOM-W1 AMSR2 Environmental Suite on 0.25° grid, Version V.8. Remote Sensing Systems, Santa
Rosa, CA. Available online at www.remss.com/missions/amsr. Accessed 24 November 2018.
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while the third approach may reveal defects or artifacts, undetected or
hardly detected with matchups.

The assessment of satellite-derived SST accuracy is usually per-
formed through the analysis of statistics computed on a set of collocated
matchups between satellite-derived retrievals and in situ measure-
ments. Statistics are computed globally or regionally and on time in-
tervals ranging from daily to multi-annual depending on the data
availability and the goal pursued (e.g. Marsouin et al., 2015). Mean and
standard deviation are broadly used. In more recent years, robust sta-
tistics (Merchant and Harris, 1999) have been implemented more sys-
tematically because they provide an estimate of the accuracy that is less
sensitive to outliers (cloud contamination or erroneous in situ value, for
instance) and is therefore more representative of the accuracy of the
retrieval algorithm (Fig. 14).

Statistics are often computed using daytime and night-time data
separately because the cloud-screening and atmospheric correction al-
gorithms usually differ and also because daytime comparisons to in situ
measurements may be complicated by potential diurnal warming of the
surface of the ocean (Section 3.2), of which the geographical extent and
depth are very difficult to predict accurately. Also, the spatial resolution
of the satellite-derived SST (pixel size) and the depth of the in situ
measurement may significantly impact the accuracy assessment. This is
particularly true in the presence of horizontal thermal fronts and other
regions of high spatial variability, such as close to the coast or in the
vicinity of sea ice.

The constraining time and space intervals applied to matchups
should be as small as possible. These intervals are determined by the
geographical zone, the coverage by in situ data, satellite SST temporal
and spatial resolution and the need to obtain enough matchups. The
time interval is mostly 2 or 3 h, with values varying from 30min in
AVHRR Pathfinder, MODIS and VIIRs matchups (Kilpatrick et al., 2001;
Kilpatrick et al., 2015) based on ship measurements of temperature
variability (Minnett, 1991), to 4 h (Walton et al., 1998). The spatial

intervals vary from the satellite radiometer resolution (typically 1 km at
subsatellite, to 2×5 km2 at the swath edges) to 25 km (Walton et al.,
1998). Research is continuing to define an optimal set of space and time
intervals. Sub-pixel variability within 1-km MODIS SSTs was estimated
to have a mean value of order 0.1 K by Castro et al. (2017). The spatial
variability within a satellite SST pixel was further examined by Castro
et al. (2018).

While it is convenient to state the accuracy of SSTs derived from a
particular satellite radiometer and associated algorithms in terms of a
mean error, often referred to as a bias, or a median error and a standard
deviation (or robust standard deviation), there are multiple factors that
contribute to inaccuracies in the satellite-derived SSTs. Some are rea-
sonably well defined, such as the atmospheric path length that increases
in a simple fashion across the swath leading to less accurate retrievals
as the satellite zenith angle increases (Kilpatrick et al., 2015), while
others less so, such as anomalous atmospheres (Minnett, 1986;
Szczodrak et al., 2014). Thus, the error for the retrieval for each pixel
should be constructed on a statistical expectation based on the condi-
tions at the time of the satellite measurements. This is formulated in the
GHRSST Sensor Specific Error Statistics (SSESs; Donlon et al., 2007).

Recently a new type of validation specifically aimed at assessing
Climate Data Records has emerged, where both the SST and its un-
certainty are validated (Fig. 15). For this the uncertainty in the SST is
not estimated from the comparison to the in situ data but is instead
estimated from a theoretical basis through an uncertainty model (e.g.,
Bulgin et al., 2016). Using the approach defined in Corlett et al. (2014),
the distribution of satellite-in situ SST differences offers a way to assess
the magnitude of the uncertainty derived from the theoretical model
(Lean and Saunders, 2013; Bulgin et al., 2016; Nielsen-Englyst et al.,
2018).

This new approach to SST retrieval uncertainty estimation and va-
lidation is resilient to the significant variations in both type and cov-
erage of in situ SST across the years. It also offers a way to check the

Fig. 14. Maps of the differences between Metop-B AVHRR and drifting buoys temperatures at night for October 2018. Top left: Mean differences (mean=−0.16 K,
standard deviation=0.53 K); top right: Median differences (median=−0.05 K, robust standard deviation= 0.39 K); bottom: number of matchups in 5° lati-
tude× longitude bins – bins with< 5 matchups are excluded from the analysis. There are 14,560 cases. (Data produced by the OSI SAF; quality index data from 3 to
5 have been used.)
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stability in time of the uncertainty of the retrieved SST, which is of
prime importance for climate studies. The GHRSST Climate Data
Assessment Framework (CDAF; Merchant et al., 2014) gives guidelines
on how to assess the stability and also on the criteria of selection of in
situ data. The CDAF was developed from the methods given in
Merchant et al. (2012) using the GTMBA; the method has recently been
applied to drifter and Argo match-ups in addition to the GTMBA (Berry
et al., 2018).

SST data producers usually assess their products in near real time or
in a slightly delayed mode and often share results of their assessment
with users through websites. More comprehensive online tools, such as
the Summary Quality Monitor (SQUAM; Dash et al., 2010; https://
www.star.nesdis.noaa.gov/sod/sst/squam/) and the Monitoring &
Evaluation of Thematic Information from Space (METIS; http://metis.
eumetsat.int/) enable interactive comparisons between various SST
products (in situ, satellite and analysis). New open source software
developments such as Felyx (Taberner et al., 2013) offer community
tools for diagnostics and match-up generation.

7. Data processing progression: L2–L3–L4

After the SST values are retrieved from the satellite measurements,
they are usually presented in three different data levels, called Level 2
(L2), Level 3 (L3), and Level 4 (L4) analyses (Parkinson et al., 2006).
These levels are the most common forms in which the satellite-based
SST data are archived and delivered to their “consumers”, from fish-
ermen needing the most recent SST imagery to scientists studying long-
term temperature trends as well as to the computers downloading the
daily inputs for weather forecasting models. The three analysis formats
differ in the way that the SST samples are averaged, interpolated, and
combined with other SST data. The NASA definitions of the different
data levels are summarized in Table 2, although others exist varying in
details and often refined for the characteristics of particular sensors.
The extent of averaging, interpolation, and combination increases from
L2 to L3 to L4. The L3 and L4 data sets are “gridded”, meaning that the
SST values are presented on a grid of prescribed geolocations (latitude
and longitude coordinates, usually at a regular interval) to facilitate
data use (such as visual displays). On the other hand, in general, the L2
data sets are not gridded, maintaining the original geolocation of each

SST retrieval. An exception is the re-gridding of SST pixels derived from
instruments on several geostationary satellites, for example the ABI
fixed-grid SST fields (Harris Corporation, 2018). L2 fields are the most
authentic representation of the satellite SST retrievals. Among the
ocean surface parameters monitored from satellites, SST is unique in the
large number of concurrent observations (both in spatial coverage and
number of sensors and platforms), and the L3 and L4 analyses of SST are
the device with which these heterogeneous data are coalesced. The
higher-level analyses, in particular, could attempt to achieve more
complete spatial coverage through multi-modality (IR, microwave, in
situ) and higher accuracy through averaging of multiple coincident
samples. Different versions of Level 3 fields are given in Table 3. The
typical L3 and L4 data sets are also significantly more compact than
their L2 counterparts in terms of data volume (i.e., total file size).

The L2 form is the standard format for the individual sensor data
set, comprising the retrieved SST value, geolocation, and sample time
for each SST retrieval. Most L2P data sets contain a wealth of additional
information for each sample, including an estimate for uncertainty in
the retrieval (typically, a standard deviation), and an array of quality
flags that, for example, reflect the atmospheric conditions such as cloud
cover affecting the retrieval procedure, and the atmospheric parameter
values used in the retrieval and quality control procedures. An estimate
of the difference between the derived SST and the foundation tem-
perature is also typically given with every sample to facilitate ocea-
nographic application of SST. Unlike most in situ SST data, the satellite
retrieval should not be considered to be a point measurement of ocean
surface temperature. The satellite measurement is already an average
over the sensor “footprint” which is a surface area several km2 in the IR
and many hundred km2 in the microwave. The geocenter reported in an
L2 data set is hence an estimate of the center of the footprint. Moreover,
sensor-level averaging is also applied mostly for reduction of instru-
mental noise. For example, the data from AVHRR, with a native spatial
resolution of ~1 km2, are acquired in three formats: High Resolution
Picture Transmission (HRPT), Local Area Coverage (LAC), and Global
Area Coverage (GAC). The HRPT data are full-resolution data trans-
mitted to a ground station as they are collected. The LAC data are also
full-resolution data, but the acquisition is recorded by an on-board tape
recorder for subsequent transmission during a ground station overpass.
The GAC data are derived from an on-board sample averaging, where

Fig. 15. Example of validation of an uncertainty model for ESA SST_CCI V1.1 NOAA-18 AVHRR SST products for (left) day time and (right) nighttime. Match-ups to
drifting buoys are binned in terms of the product uncertainty; vertical blue lines indicate the measured dispersion for each uncertainty level and red dots indicate the
standard error for each uncertainty level and also provide an indication of the number of match-ups. The dashed green lines indicated the theoretical dispersion of
uncertainties (assuming an average drifting buoy measurement uncertainty of 0.2 K) if the product uncertainty estimates (and uncertainty models) are accurate. The
agreement at night time is very good but the day time results show the product uncertainties were overestimated. (Corlett, G., 2018.
Uncertainty_validation_example.jpg. doi:https://doi.org/10.6084/m9.figshare.7286168.v2.) (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

P.J. Minnett, et al. Remote Sensing of Environment 233 (2019) 111366

22

https://www.star.nesdis.noaa.gov/sod/sst/squam/
https://www.star.nesdis.noaa.gov/sod/sst/squam/
http://metis.eumetsat.int/
http://metis.eumetsat.int/
https://doi.org/10.6084/m9.figshare.7286168.v2


four out of every five samples along the scan line are used to compute
an average value, and the data from only every third scan line are
processed, yielding an approximate 4 km resolution at nadir. Further
binning and averaging of these pixels by some agencies (e.g. the US
Naval Oceanographic Office) result in the final GAC data resolution of
these products of approximately 9 km.

Unlike the general L2 form, both the L3 and L4 analyses are gridded
and are so designed to provide measurement-based SST values at a
regular interval in space and time. Many L3 and L4 data sets today are
given at a daily frequency, typically at noon UTC. A popular spatial
interval is 1/4° in latitude and longitude, although finer grid spacings
are also in use today while coarser grids can be found in long-term data
sets that extend coverage back into the pre-satellite era. Typical con-
tents of L3 and L4 data sets include the latitude and longitude co-
ordinates of the grid, interpolated SST values over the grid-points, and
an accompanying estimate of uncertainty for the SST values. Almost all
of the L3 and most L4 SST analyses are derived from L2 data sets, with
some L4 analyses ingesting L3 data as their inputs. The L2 samples are
heavily quality controlled using the accompanying quality flags and
other auxiliary data with typically much less than half of the available
samples being selected. The traditional method for gridding is to sort
the selected L2 samples based on their geolocation and time into space-
time bins defined by the given spatial grid and time interval. The SST
value of a bin is then computed as a weighted average of the values of
all samples in the bin (with the weights typically defined by the inverse
of the uncertainty variances). Gridding methods more sophisticated
than this “bin-average” method are also in use today, as described
below.

The main difference between the L3 and L4 forms is the data void:
some L3 grid locations can be absent of data (marked as voids), while
all L4 grid locations are filled with data. The data void in L3 data sets is
typically inherited from the input L2 data. The grid bins without L2
samples simply become a void in L3. In satellite-based SST, the most
significant data void in terms of the area affected is the cloud masking
of IR SSTs. An L3 analysis can be derived from a single L2 data set or a
combination of several data sets (Table 3). An example of the latter is
the AVHRR Pathfinder SST data set which combines the AVHRR GAC
data from NOAA-7, 9, 11, 14, 16, 17, and 18 satellites in order to
produce a long-term data set with cross-satellite consistency (Kilpatrick
et al., 2001; Casey et al., 2010).

Most of the L4 SST analyses are a combination of multiple lower
level SST data sets, which are often used in a complementary manner.

In particular, large and persistent IR data voids can be filled with data
from microwave sensors which are less prone to cloud and water vapor
contamination than IR sensors which nevertheless tend to provide
higher horizontal resolutions. Data voids typically remain after binning
of the combined data sets. There are two common ways to fill such
voids: spatial interpolation and temporal extension. In the latter, the
temporal extent of each bin is increased to more than a day (for a daily
analysis), resulting in temporally overlapping bins that could collect
from more samples to fill the bin. The assumption behind this technique
is that the SST does not vary much during the binning duration, and for
a 1/4-degree grid such an assumption is practically acceptable for a
temporal bin length of a week or so (Reynolds and Smith, 1994). A
common method for spatial interpolation, on the other hand, is the
Bayesian statistical estimation based on a given prior distribution for
the global SST field derived from some climatological mean field and/
or empirical correlations over the ocean surface (Reynolds and Smith,
1994; Thiébaux et al., 2003; Donlon et al., 2012b). Bin-averaging
mentioned previously is performed as part of this spatial interpolation
procedure. Approaches based on principal component analysis or em-
pirical orthogonal functions (Fig. 16) can be also used to obtain a
spatio-temporal interpolation of the data (e.g. Kaplan et al., 1997;
Alvera-Azcárate et al., 2005; Alvera-Azcárate et al., 2009). In order to
combine SST retrievals and measurements from multiple types of sen-
sors (IR, microwave, in situ) in a coherent fashion, inter-sensor bias
fields are often computed empirically in advance to reduce the persis-
tent discrepancy among certain data sets (Donlon et al., 2012b).

Currently, at least ten near real-time L4 analysis data sets of the
daily global SST are in existence (Dash et al., 2010) reflecting their
demand in operations such as weather forecasting. The ensemble var-
iance in the analyzed SST values among the existing L4 data sets has
turned out to be a better predictor for the difference between the in-situ
SST observations and analyzed SST represented by the ensemble
median value (Martin et al., 2012) than the formal uncertainty esti-
mated for many of the individual analyses. The ensemble median itself
has also shown consistently to be one of the most accurate SST analyses
(at 1/4-degree resolution) in terms of comparison to the in situ ob-
servations (Dash et al., 2012; Fiedler et al., 2019), and comparisons of
individual L4 fields with the median to which they contribute reveal the
spatial and temporal characteristics of the deviations from the median
(ibid). These results indicate great practical potential for L4 ensemble
statistics, and that scientific investigations into their accuracy and
mechanism behind it are appropriate. At present, satellite remotely

Table 2
NASA definitions of data levels.

Level 0 Reconstructed, unprocessed instrument/payload data at full resolution; any and all communications artifacts, e.g., synchronization frames, communications headers,
duplicate data removed.

Level 1A Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, including radiometric and geometric
calibration coefficients and georeferencing parameters, e.g., satellite ephemeris, computed and appended but not applied to the Level 0 data.

Level 1B Level 1A data that have been processed to sensor units (not all instruments have Level 1B data products).
Level 2 Derived geophysical variables at the same resolution and location as the Level 1 source data.
Level 3 Variables mapped on uniform space-time grids, usually with some completeness and consistency.
Level 4 Model output or results from analyses of lower level data, e.g., variables derived from multiple measurements.

After Parkinson et al., 2006.
See also https://science.nasa.gov/earth-science/earth-science-data/data-processing-levels-for-eosdis-data-products.

Table 3
GHRSST refinement of definitions of data levels.

Level 2P (L2P) As L2 with uncertainty information as Sensor Specific Error Statistics derived from coincident satellite and reference measurements taken at the
surface. Includes auxiliary fields for each pixel to help interpreting the SST data – sometimes referred to as Dynamic Flags.

Level-3 uncollated (L3U) L2 data granules remapped to a space grid without combining any observations from overlapping orbits.
Level-3 collated (L3C) SST measurements combined from a single instrument into a space-time grid. Multiple passes/scenes of data can be combined. Adjustments may be

made to input SST data.
Level-3 super-collated (L3S) SST measurements combined from multiple instruments into a space-time grid. Multiple passes/scenes of data are combined. Adjustments may be

made to input SST data.

After https://www.ghrsst.org/ghrsst-data-services/products/.
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sensed SST data sets are uniquely positioned to allow such statistical
study due to the existence of multiple independent analyses.

There are other topics of investigation to improve SST analyses. One
is the common practice of ignoring the correlations among the L2
samples during interpolation, a practice which tends to yield in-
adequate estimation of analysis uncertainty that reflects mostly the area
density of the samples (Kaplan et al., 2003). Treating neighboring L2
samples as independent observations during Bayesian interpolation can
also lead to numerical conditioning issues (due to discrepancy in bin
weights between densely observed areas of the ocean surface and those
without data) leading to visible artifacts in the analyzed SST fields,
which turn out to be preventable simply by using a constant positive
correlation value among all samples in every bin (Chin et al., 2014).
This implies potential for improvements in the Bayesian interpolation
procedure used for L4 (and L3) analyses. In particular, the prior dis-
tribution may need to be adaptable to the density of the L2 samples to
be ingested. Another common practice to be improved may be the bin-
average method itself. In standard bin-averaging, every L2 sample in a
bin assumes the geolocation of the bin, effectively being “moved” to the
center of the bin and truncating the geolocation values associated with
the L2 sample. Truncation of sub-grid geolocation can smear ocean
features such as SST fronts in an L4 analysis (Fig. 17), but smearing can
be mitigated significantly by the use of non-constant (e.g., cubic)
polynomials as the kernel function for interpolation (Chin et al., 2014).
The bin-averaging procedure is equivalent to using a piecewise constant
function as the kernel, which is the only “polynomial” that cannot en-
code sub-grid geolocation information. Finally, the daily frequency
commonly used is likely not frequent enough to capture the sub-10 km
scale SST features observable in the 1-km resolution L2 data sets. A sub-
daily time window is found more appropriate to form an analysis at
such a high horizontal resolution (Chin et al., 2017). A sub-daily ana-
lysis would be affected more directly by the diurnal SST variability than
the current daily analyses, which tend to simply avoid the samples from
areas of strong daytime warming (Donlon et al., 2012b; Chin et al.,
2017). In summary, the technical issues noted here are especially re-
levant to analysis of high-resolution SST data and represent future to-
pics of SST analysis: lopsided data density, fast-evolving sub-grid

features, and diurnal variability. Handling of inter-sensor biases and
inter-sample correlations, which have already been addressed as men-
tioned above, can also be considered as among the open issues in
general SST analyses.

Finally, advances in computer power have ushered in a new ap-
proach to analysis of SST data, namely data assimilation. As noted
above, the majority of the L4 SST data products available today are
daily analyses reporting Tfnd (Fig. 2). Applications in weather fore-
casting require instead SSTskin at the interface of ocean and atmosphere
sampled multiple times a day (e.g., every 3 or 6 h). Current operational
practices often involve separate procedures interpolating the existing
daily L4 SST data in time and estimating the skin temperature from the
foundation temperature based on models of diurnal solar heating of
ocean surface and associated measurements of insolation parameters
and ocean surface winds. Recent increases in computational speed and
storage, however, have enabled integration of these procedures into the
forecast model itself, allowing direct assimilation of the L2 SST samples
instead of their analyzed versions. An SST analysis would also be made
a by-product of such a data-assimilative integrated forecast system, and
such L4 analyses are packaged as emerging SST data products (e.g.
Miyazawa et al., 2017; Li et al., 2019). Some of these systems have also
integrated the traditional SST retrieval procedures (e.g., in a Radiative
Transfer Model), so that the brightness temperature measurements from
satellite sensors instead of the L2 retrievals could directly be ingested
into a model of ocean surface to provide a L4 SST analysis (Li et al.,
2019). An advantage of using ocean circulation dynamics to interpolate
L2 data into L4 analyses via data assimilation is its potential to estimate
the finer scale structures in a dynamically consistent way. In contrast,
traditional interpolation schemes, such as Bayesian optimal interpola-
tion, tend to smooth out the finer scale features. An integrated dyna-
mical model, however, must also manage the variety of types and scales
of data they ingest in order to balance the consistency and re-
presentativeness of their dynamical parameters. For example, while
ocean circulation models are still refining their dynamics to resolve the
location where the Gulf Stream separates from the American coastline
into the North Atlantic Ocean (Ezer, 2016; Chassignet and Xu, 2017),
the existing traditional SST analyses can usually pinpoint the separation

Fig. 16. An example of L3 to L4 SST interpolation using DINEOF (Data Interpolating Empirical Orthogonal Functions); (left): original VIIRS SSTskin data on 8 October
2018 and (right): DINEOF L4 SSTskin reconstruction.

Fig. 17. Demonstration of a “gridless” interpolation and im-
portance of avoiding truncation of geolocation data. Left:
observations (open circles) are typically averaged at a nearest
grid-point (closed circles) effectively truncating the subgrid
portion of the location parameters. Center: such bin-averaging
(colors inside big circles) can distort spatial information like
the orientation of the front (background), due to the nearest-
neighbor approximation of geolocation data. Right: a gridless
interpolation method tends to ingest the observations at their
original locations, reducing the distortion in front orientation,
even at a low resolution shown. (For interpretation of the
references to color in this figure legend, the reader is referred
to the web version of this article.)
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point in general, and it remains to be seen if assimilation of SST (or
associated brightness temperature) data would have enough numerical
and dynamical influence to sufficiently correct the modeled three-di-
mensional circulation pattern, i.e., the course of the modeled Gulf
Stream. As such issues are resolved, we should see more and more
components of traditional SST analysis as well as retrieval procedures
incorporated into dynamical forecast/nowcast systems, which could in
turn become important sources of SST analysis data products.

The progression of satellite data through the processing levels
makes the SST fields more accessible for many users but comes at a cost
as each step leads to the accumulation of errors and uncertainties from
many sources, as illustrated in Fig. 18 (Wu et al., 2017). L2 is where
uncertainties in SST retrievals are derived by comparison with in-
dependent measurements in cloud-free conditions, but L4 fields are
used to initialize climate models and in other climate studies. The ac-
curacy assessed for SST fields from the same satellite radiometer, but at
different Levels, is likely to be different; the uncertainties may be re-
duced at higher Levels by averaging multiple measurements in a grid
cell, but may be increased due to additional processing steps and as-
sumptions, and where L2 data are missing. Thus, the L2 SSESs may not
be appropriate for L4 fields (Liu and Minnett, 2016; Liu et al., 2017).

8. Examples of regional studies

Clearly a great strength of satellite remote sensing of SST is the
global sampling at high temporal and spatial resolution and thus the
contributions of satellite-derived SSTs to studies of processes and par-
ticular regions have been very significant. Here we focus on two regions
each presenting particular challenges but clearly benefiting from

satellite data: the Mediterranean Sea and the Arctic Ocean. The
Mediterranean Sea is a nearly landlocked sea with the atmosphere
above it frequently influenced by continental air masses, including very
dry, aerosol laden air from north Africa, which pose particular chal-
lenges to the derivation of SST in the IR. Nevertheless, the
Mediterranean Sea is an important component of the global thermo-
haline circulation and given that it is less cloudy than many other re-
gions, it continues to be a focus of research that incorporates analysis of
satellite-derived SSTs. The Arctic Ocean, on the other hand, is a cloudy
region which thus presents problems for the accurate retrievals of IR
SSTs, as does the fact that the Arctic is an extreme case in the dis-
tributions of global atmospheric properties. Furthermore, because of
difficulties in access and the harshness of the conditions for both re-
searchers and instruments, the area is poorly sampled by in situ sensors
placing a greater reliance on satellite remote sensing. The key role of
the Arctic in the climate system also warrants a significant research
effort.

8.1. Mediterranean Sea

The Mediterranean Sea is the most famous among the
“Mediterranean seas”. It is a mid-latitude semi-enclosed marginal sea
that exchanges water and heat with the Atlantic Ocean through the
shallow Strait of Gibraltar. The Mediterranean Sea is a concentration
basin with an inflow of fresher (S ~36.2) and warmer (T ~15.0 °C)
Atlantic water in the upper layer and outflow of saltier (S ~38.4) and
colder (T ~13.5 °C) Mediterranean water in the lower layer through the
Strait of Gibraltar. On an annual mean basis, the Mediterranean Sea
loses buoyancy to the atmosphere through both an excess of

Fig. 18. Error budget framework with sources of errors and uncertainties (left column) and how they accumulate in the progression to L4 gap-filled SST fields (right
column). From Wu et al. (2017), reproduced through CC BY 4.0.
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evaporation over precipitation and a negative heat budget (Lacombe
et al., 1981). The combination of all these air-sea exchanges as well as
deep and intermediate water formation contributes to sustaining a
basin-wide thermohaline circulation cell that can be viewed as a re-
duced version of the large-scale oceanic conveyor (Broecker, 1991). In
this sense, as suggested by Robinson and Golnaraghi (1993), the Med-
iterranean Sea can be considered as a “small-scale ocean” where “many
processes which are fundamental to the general circulation of the world
ocean also occur within the Mediterranean, either identically or ana-
logously”. The direct consequence is that the Mediterranean Sea can be
considered as a natural laboratory where field and numerical experi-
ments can be conducted in more favorable dimensional and environ-
mental conditions than for the global ocean. Satellite oceanography
researchers also benefited from these favorable conditions; in particular
sea surface temperature remote sensing has produced the longest record
of valuable scientific results and practical applications.

The first satellite Mediterranean Sea application, recoverable from
the web, was published in Oceanologica Acta in 1979 (Albuisson et al.,
1979) and reported a first comparison between NOAA-4 VHRR and
Aries airborne radiometer in the Gulf of Lions on August 3 and 6, 1976.
They concluded that thermographic maps derived from VHRR data
could enable users to determine the relative SST and study horizontal
thermal gradients and their spatial distribution. Determining spatial
thermal gradients and then detecting thermal fronts was the first most
important result of the IR satellite remote sensing of the Mediterranean
Sea during the 1980s, when a whole generation of Mediterranean
oceanographers was fascinated by the possibility to observe, week after
week, the evolution of the Mediterranean thermal fronts in the SATMER
bulletin (SATMER, Bulletin Mensuel de Renseignements Oceano-
graphiques Obtenus a Partir de Mesures Satellitaires Metéorologiques
sur la Mediterrannée et l'Atlantique Nord-Est, Direction de la Metéor-
ologie Nationale, Paris, France, 1984–1987).

Mollo-Christensen et al. (1981) reported one of the first applications
of IR imagery of fronts, in their case off Cape Hatteras, to infer upper
ocean dynamics. In the following year Crépon et al. (1982) demon-
strated that a time series of thermal IR images obtained by the VHRR on
NOAA-5 to detect thermal fronts in the Ligurian Sea can be used to
determine the mean wavelength and phase velocity of the low-fre-
quency waves associated with the evolution of the fronts. These waves
were interpreted as large-amplitude baroclinic waves, finding a fairly
good agreement with simulations using a two-layer ocean model. Ad-
ditional studies of the Ligurian Sea based on IR images from the VHRR
on NOAA-5 were reported by Millot and Wald (1980) and Wald and
Nihous (1980).

A few years later, TIROS-N AVHRR thermal images from November
1979, were used to detect thermal fronts and measure wavelengths of
the meanders of the Ligurian Current, relating them to the occurrence
of baroclinic instabilities and small scale eddies detected during a field

experiment (see Fig. 6 of Marullo et al. (1985)).
One of the first attempts to derive absolute values of SST from

AVHRR data, considering the particular environmental conditions of
the Mediterranean Sea, was proposed by Dalu et al. (1985). Their al-
gorithm was based on radiative transfer model simulations and con-
sidered the specific Mediterranean conditions for water vapor absorp-
tion in the thermal IR. Validation was performed for a limited number
of samples acquired in a field campaign in the Adriatic Sea. Since that
time things have improved, moving from the laborious and expensive
analysis of a relatively small set of images ingested from magnetic tapes
to the time series analysis of years of daily or even hourly acquisitions
downloaded from web-based servers. This was possible thanks to the
initiatives of national and international institutions and agencies that
undertook to archive, preserve and freely distribute petabytes of high
level processed SST maps worldwide (Section 14). In the specific case of
the Mediterranean Sea a crucial role has been played by European
operational oceanography efforts which, in the 1990s, selected the
Mediterranean Sea to develop a first prototype of observation and
forecasting system. In this framework, MFSPP (Mediterranean Fore-
casting System Pilot Project) the MFSTEP (Mediterranean Forecasting
System Towards Environmental Predictions) project and the first SST L4
operational products specific to the Mediterranean Sea were developed
(Buongiorno Nardelli et al., 2003) and assimilated in near-real time in
the Mediterranean Forecasting System (Pinardi et al., 2003). Of course,
the Mediterranean Sea had been included in global L4 analyses since
the 1990s (Reynolds and Marsico, 1993; Reynolds and Smith, 1994).
The outcome of the European effort is now the CMEMS (Copernicus
Marine Environment Monitoring Service) which has made the last
36 years of SST L4 data available to a wider community of scientific
users. Fig. 19 shows the mean Mediterranean SST field derived from the
average of all the CMEMS reprocessed daily SSTs maps from 1982 to
2017.

Before that time several attempts had been made that used a rela-
tively long series of acquisitions to increase the knowledge of the de-
scription and the understanding of the Mediterranean circulation fol-
lowing the thermal signatures of eddies and currents. Today, such
things can appear trivial but then, for the first time, baroclinic in-
stabilities evolving along the Algerian Current in small-scale eddies
traveling northward to meet the Balearic Front, it became apparent that
a new era for the exploration of the sea had started.

This kind of approach, either based on time series of several full
resolution AVHRR images or on the NASA PO.DAAC (Section 14.1)
AVHRR Pathfinder SST Archive (18 km resolution at that time), pro-
duced interesting results and new understanding of the Mediterranean
circulation as a result of combining previous information based on in
situ observations and satellite thermal IR images (e.g. Marullo et al.,
1999a; Marullo et al., 1999b; Hamad et al., 2005; Millot and Taupier-
Letage, 2005). Such research has definitively proved that the key ele-
ment that made possible the great progress in the knowledge and un-
derstanding of the Mediterranean Sea dynamics was the jump from the
use of a few thermal images, produced by individual researchers, like
the “icing on the cake” of analyses based on other data or models, to the
analysis of long time series of maps, centrally and uniformly produced
in dedicated facilities.

This pioneering work has opened the way to the more recent studies
that made use of space-based IR remote sensing observations for ad-
vanced Mediterranean Sea investigations. In fact, starting from the
beginning of this millennium, a consistent number of publications ap-
peared dealing with basin-scale investigations and focusing on time
scales ranging from hourly to interannual. A first re-analysis of the
AVHRR SST maps of the Mediterranean Sea, starting from 1985, was
published in 2007 (Marullo et al., 2007). This analysis also presented a
validation of the product including the optimal interpolation scheme
applied to produce the series of L4 SSTs and the evaluation of the sta-
bility of biases with respect to in situ data. With the lengthening of the
series, remote sensing scientists began to glimpse the possibility of

Fig. 19. Mean Sea Surface Temperature field in the Mediterranean Sea from
1982 to 2017 derived from CMEMS reprocessing.
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addressing the field of climatology. Since SST forms the longest, quality
controlled and continuous series of satellite-derived ocean data, the
possibility to estimate linear (at least) trends over large areas of the
basin was considered a golden opportunity to promote, with modest
effort, satellite oceanography (Nykjaer, 2009; Shaltout and Omstedt,
2014; Pastor et al., 2018). At the time of writing, one more year of L4
Mediterranean SST maps is about to be released by CMEMS (Section
14.3), extending the time series started in 1982 to the end of 2018:
37 years of quality controlled consistent SST data. This implies that not
only significant linear and nonlinear trends (covering the positive phase
of Atlantic Multidecadal Oscillation, AMO) can be evaluated but also
that interesting oscillatory modes in the range of periods from quasi-
biennial to ENSO can and have been detected (Skliris et al., 2012).

On shorter time scales, investigations to study the SST diurnal cycle
have also benefited from satellite-derived SSTs. This has been feasible
also thanks to the contribution of geostationary satellites making it
possible to observe the Mediterranean Sea surface with frequencies
compatible with the resolution of the diurnal cycle (> 4 times per day
as suggested by Sykes et al. (2011)). Particular attention has been paid
to the Mediterranean Sea, as it is one of the world ocean regions where
extreme diurnal warming events are more frequent (Fig. 3; Gentemann
et al., 2008; Karagali and Høyer, 2014). This particular interest pro-
duced a series of publications that highlighted the contribution of high
frequency satellite observation to reconstruct the variability of the
diurnal SST cycle in the Mediterranean Sea to understand the physical
mechanisms that modulate the intensity of diurnal warming events
(among several: Merchant et al., 2008a; Le Borgne et al., 2012a:
Marullo et al., 2014b; Marullo et al., 2016).

8.2. The Arctic Ocean

A defining feature of the Arctic Seas is the seasonal or perennial
presence of a floating sea ice pack, formed locally during winter or
advected by winds or currents. Where sea ice exists, the underlying
ocean mixed layer is generally at or very close to the freezing point,
except in leads and polynyas on calm, sunny days when the ocean may
become warm within a surface melt layer (Richter-Menge et al., 2001;
Vincent et al., 2008b). The lateral extent of Arctic sea ice has always
been greater in winter than in summer, but in the past few decades
dramatic summer melt-back (e.g., Cavalieri and Parkinson, 2012) has
led to a large increase in the area of seasonally ice-free Arctic waters
(Steele and Ermold, 2015; Haine and Martin, 2017). Thus, until re-
cently, the topic of SST in much of the Arctic Seas was relatively un-
interesting: the ocean remained at or near the freezing point all year
round. This is not the case now, as ocean surface warming has become
evident in many areas of the Arctic (Steele et al., 2008; Eastwood et al.,
2011).

When the ice retreats, what exactly causes the ocean to warm? In
the western Arctic Ocean, Steele et al. (2010) analyzed model output to
determine that the largest forcing by far was net surface heating, largely
from solar radiation; areas within ~100 km of Alaska were also influ-
enced by lateral heat flux convergence, i.e. warm currents moving
northward from the North Pacific Ocean via Bering Strait. Heat flux
from below the mixed layer in summer is essentially nil, owing to strong
stratification in the estuarine-like Arctic Ocean. The partition is likely
different in the highly advective eastern Arctic Ocean near the Atlantic
Water inflow, which is where the bulk of the Arctic Ocean's subsurface
heat content enters (e.g., Smedsrud et al., 2013). In the Northeast Water
Polynya in western Fram Strait, Minnett (1995) found the summertime
surface heat budget of the open water to be dominated by the radiative
terms, as was also the case in the North Water Polynya (Hanafin and
Minnett, 2001). Given that clouds modulate the incoming solar radia-
tion and the net IR flux at the ocean surface, Arctic clouds play a crucial
role in determining the evolution of the SST (Minnett, 1999; Hanafin
and Minnett, 2001).

Warming in the Arctic Seasonal Ice Zone (SIZ) has some unique

properties. The western Arctic is very strongly stratified by freshwater
inputs from rivers, net precipitation less evaporation, relatively fresh
inflows from the North Pacific Ocean via the Bering Strait, and (sea-
sonally) from sea ice melt (Aagaard and Carmack, 1989). The result is
mixed layers in the summer SIZ that are 20m thick or shallower
(Peralta-Ferriz and Woodgate, 2015). In fact, winds in early-mid-
summer are generally quite weak, so that stratification can extend right
to the surface (Randelhoff et al., 2017). These conditions lead also to
diurnal warming in summer even at high latitudes (Eastwood et al.,
2011). Later in the summer, surface winds accelerate and mix warm
SSTs downward, even while the net air-sea heat flux is still weakly
downward (Steele and Dickinson, 2016).

Warming of seasonally ice-free Arctic waters has a number of im-
pacts, e.g., on the marine ecosystem (e.g., Feng et al., 2018), on coastal
terrestrial ecosystems (Uma et al., 2017), and on the atmospheric
boundary layer (especially in fall when this heat is fluxed upward;
Screen et al., 2013). This seasonal ocean surface warming in turn affects
both the details of ice retreat (Steele and Ermold, 2015) and ice ad-
vance (Stroeve et al., 2016; Smith et al., 2018).

In situ measurement of SST and upper ocean conditions in the
Seasonal Ice Zone (SIZ) is not easy, given the short period in which field
work is generally possible (i.e., late summer open water for ship-based
work, and late winter pre-melt ice cover for aircraft-based work).
Traditional Arctic autonomous drifting buoys have been deployed on
thick ice floes to maximize survival, which explicitly avoids the SIZ. A
unique program focused on the SIZ is the University of Washington's
UpTempO (Upper Temperature of the polar Oceans) buoy program,
which deploys surface drifters with a thermistor string in the SIZ
(http://psc.apl.washington.edu/UpTempO/). These buoys have been
successful in measuring the vertical extent of seasonal warming, the
presence of diurnal warming, and the process of fall cooling that
sometimes allows a portion of summer heat to survive through winter
under the mixed layer. Buoy data from two years in the Beaufort Sea
have also been used to evaluate the performance of a large suite of
global gridded SST products (Fig. 20; Castro et al., 2016). More work is
needed on this subject, i.e. in different areas and different seasons.
Other autonomous SST-measuring platforms are also being used in the
SIZ, such as wave- and sea-gliders, saildrones, and even profiling floats.

Remote sensing of SST in the Arctic Seas is challenging, owing to the
frequent and extensive summer cloud cover which hides the surface
from IR satellite sensors. A further problem in the IR is the varying
length of the sunlit part of the day round the year. In sunlit conditions,
measurements in the mid-infrared window cannot be used because of
scattering and reflection of sunlight, with the consequence that in
summer, there is a limited opportunity for matchups with in situ data
from the drifting buoys at high latitudes at night to generate coefficients
for the atmospheric correction algorithms, and for assessing the accu-
racy of the derived SSTs. These issues in the IR enhance the role that
microwave SST products should play in this region, although their
lower resolution is limiting, especially early in the ice retreat season
when open water areas are small. A positive note is that polar-orbiting
satellites take many images per day at high Arctic latitudes, a capability
that could allow for more detailed examination of diurnal warming and
other processes, but one that has not been fully exploited to date.

What should global, gridded SST products provide in ice-covered
waters? One option is to provide a foundation or mixed layer tem-
perature, which (since it is in contact with ice) will be the freezing point
of seawater. This is the traditional approach, where most products as-
sume a value of −1.8 °C, appropriate for salinities of ~34. That is, a
satellite sea ice extent mask is used to determine where to create
“synthetic observations” of SST at this value, which are then blended in
various ways with the true observed values in the open water to the
south. A few products recognize the estuarine nature of the Arctic Seas,
which results in large spatial variability of sea surface salinity. This
means that the freezing point varies by up to perhaps 0.5 K over the
region. There is also temporal variability, owing to recent Arctic Ocean
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freshening and large changes in salinity (Rabe et al., 2011). Further-
more, the algorithms for blending of synthetic freezing SSTs and open
water observed values across the Marginal Ice Zone (MIZ) likely re-
quires some updating in most products, as the MIZ has changed dra-
matically in recent years (Strong and Rigor, 2013).

Another option for a global gridded product might be to produce a
blend of open water SST and ice/snow surface temperature in icy
conditions. Some products are in fact available that provide this blend,
which is most appropriate for, e.g., providing a lower boundary con-
dition for atmospheric models. This can be difficult, however, in areas
with mixed ice and open water. Further, ice/snow surface temperature
is much more highly variable (spatially and temporally) relative to SST,
owing to their lower thermal inertia.

In summary, deriving SST in seasonally ice-free Arctic waters is a
new, relevant and exciting field, one that will only grow as the ice cover
continues to shrink. These waters still suffer from a severe lack of in situ
data for satellite validation, although new observational strategies are
on the horizon. Ocean surface warming in the Arctic Seas is both a

response to, and an active participant in, the large changes in sea ice
cover we have seen and will likely continue to see in coming years.

9. Examples of applications

There are many global and regional applications of satellite-derived
SSTs, such as forecasting and monitoring El-Niño-Southern Oscillation
events (McPhaden, 2012), better understanding of atmospheric
boundary layer response to SST variability (Perlin et al., 2014), as-
sisting with efficient fisheries and monitoring ecosystem changes
(Stuart et al., 2011), monitoring thermal stress threats to coral reefs
(Mumby et al., 2004; Hedley et al., 2016), seeking signals that indicate
changes in large-scale ocean phenomena (Liu and Minnett, 2015) and a
warming climate (Casey and Cornillon, 2001; Good et al., 2007), better
understanding air-sea fluxes of heat and moisture (Bentamy et al.,
2011) and of CO2 (Olsen et al., 2004; Wickramaratna et al., 2008;
Wanninkhof et al., 2013), but here we focus on three applications that
have very specific societal benefits: weather forecasting, development

Fig. 20. Comparison of selected L4 SST analyses in the Beaufort Sea on 13 August 2012 (DOY 226). The color scale has been fixed to facilitate comparisons between
products, and the trajectory of one of the drifting buoys (Louis 2012-03) has been plotted over the images with the circle showing the position of the buoy for that
particular day and the color indicating the corresponding buoy temperature. The gray areas indicate that the respective ice mask has been applied, if available. Note
that no ice mask is shown in the OISST since the ice and water masks were mistakenly inverted during this period and the buoy location was inaccurately flagged as
ice covered. The anomalously low OISST temperature at the buoy location is a result of the improper masking. From Castro et al. (2016), with permission. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of severe storms, and sea level rise.

9.1. Numerical weather prediction

Accurate sea surface temperature data is vital for Numerical
Weather Prediction (NWP) from a few days, to seasonal forecasts cov-
ering several weeks, to longer term climate variability. Most NWP
systems use single (daily) spatially complete L4 SST analysis fields (e.g.
OSTIA, Donlon et al., 2012b) as a boundary condition for constraining
the atmospheric model (Thiébaux et al., 2003). Here we begin the
discussion of contributions of SST fields to NWP with a focus on the use
of daily fields, and then present results of the recent development at the
US National Centers for Environmental Prediction (NCEP) to generate
and use global SST fields at 6-hourly intervals.

9.1.1. Daily SST fields
Most L4 SST analyses used for NWP applications are smoothed to

avoid shocks in the NWP model. Invariably L4 SST fields are of a
temperature at an unknown depth – many aim to be a foundation
temperature – and so near surface temperature gradients not considered
in the forecast result in larger errors. Consequently, the error char-
acteristics of L4 SST analyses are often not well understood and are not
represented in subsequent applications. A more detailed review of the
use of SST analyses in operational systems is given in Beggs (2010). SST
patterns are dynamic and strong gradients in SST can impact the evo-
lution of many atmospheric phenomena through its influence on sur-
face winds (Song et al., 2006; Small et al., 2008; Perlin et al., 2014). For
example, the benefits of OSTIA were shown in Donlon et al. (2012b),
where the higher resolution of OSTIA reduced NWP forecast errors
compared to a legacy SST product, by resolving, for example, small
scale changes in the Arctic SSTs due to above average sea-ice loss in the
summer of 2007 (Fig. 21). Seasonal patterns of SST change more slowly
but strong signals associated with the El Niño, for example, can impact
global weather patterns. Here, SST anomalies – the difference from a
climatological mean – in the Niño 3.4 region are more useful in pre-
dicting changes (see, for example, Arribas et al., 2011).

A key requirement for NWP application is timeliness. For example,
an SST analysis may be up to 48 h old when used in an NWP system at
00z if the timeliness of the SST analysis is not optimized for the NWP
production time. Further, for reanalysis applications the recent satellite
based SST analyses need to be aligned with the historical SST record
from in situ measurements. Also, NWP requires global SST data to be

stable over time and robust to changes in the satellite constellation.

9.1.2. Six-hourly SST fields
One SST analysis, referred to as the NSST (Near-Surface Sea

Temperature) analysis, has been developed within the NCEP Global
Forecast System (GFS), an integrated operational NWP system, to im-
prove the resolution of diurnal heating and cooling by producing 6-
hourly fields. In the history of the NCEP GFS since 1980, the thermal
lower boundary condition has been provided by weekly OI SST
(Reynolds, 1988; Reynolds and Marsico, 1993; Reynolds and Smith,
1994) initially, then daily RTG SST (Thiébaux et al., 2003) since 2015,
and then 6-hourly NSST since 2017 (Li et al., 2019). Increasing the
temporal resolution to capture diurnal variability in the SST is intended
to improve the satellite radiance measurement assimilation over water
surfaces.

One of the fundamental issues in SST analysis is the definition of the
analysis variable. The foundation temperature, SSTfnd (Fig. 2), is widely
used in analyses such as OSTIA (Donlon et al., 2012b), the Canadian
Meteorological Centre (CMC) analysis (Brasnett, 1997; Brasnett, 2008)
and the Multi-Scale Ultra-High Resolution (MUR) fields (Chin et al.,
2017). In the NCEP NSST, the analysis variable, Tf, is defined as the sea
temperature at the base (z= zw) of the diurnal warming layer. Thus, Tf
is slightly different from SSTfnd and evolves with time. The NSST pro-
file, T(z), incorporating diurnal warming and skin-layer cooling physics
is simulated or parameterized in the atmospheric model to provide a
prognostic lower thermal boundary condition for both atmospheric and
radiative transfer models. Therefore, at a specific time,
T(z)= Tf(zw)+ Tw′(z)− Tc′(z), where, Tw′(z) and Tc′(z) are the simu-
lated diurnal warming profile and skin-layer cooling profile respec-
tively (Li et al., 2019).

The SST for air-sea fluxes calculation and skin-depth (or wave-
length) dependent thermal lower boundary condition for the
Community Radiative Transfer Model (CRTM; Han et al., 2006; Zou
et al., 2016) over water surface can be provided when the NSST profile
is available. For example, SST= T(0)= Tf(zw)+ Tw′(0)− Tc′(0).

The Tf, an oceanic variable, as one of the analysis variables is in-
corporated into the atmospheric data assimilation system of GFS. All
observations, including satellite radiances and in situ sea water tem-
perature, are assimilated directly (without retrieval for satellite ob-
servations) with observation operators and their Jacobians provided by
a Radiative Transfer Model and NSST model.

The major difference between NSST and the other SST analyses is in
the way of handling the challenge that all the observations are indirect.
In NSST, all observations are assimilated directly, including satellite
radiances and in situ sea temperatures. In the other SST analyses, the
radiances are converted to sea water temperature retrieval first, and the
observations with diurnal warming signals are discarded according to
some criterion. Additionally, NSST is able to take advantage of the well-
established quality control and bias correction of the satellite radiances
in the frequently-updated atmospheric data assimilation system. It is
also a step towards the future coupled data assimilation.

The validation of NSST can be roughly divided into two stages: the
first is to compare to RTG SST fields, the previous one used in opera-
tional GFS; and the second to compare to other SST analyses with the
major goal being to understand the causes of differences and then find
possible ways to improve the analysis. The Analysis (A) and
Background (B) are the Tf analysis or background plus the diurnal
warming amount at the observed depth. The observed depth, zob, is
assumed to be 20 cm for drifting buoys, Tw′bg(zob), in NSST and used in
the validation here. The Observation – Background (O – B) statistics for
both in situ and satellite data have indicated improvement, with posi-
tive impacts on weather prediction being seen especially in the tropics.
Here, verification against drifting buoy observations is reported. The
statistics are calculated using 6-hour samples for a 10-day period. NSST
is analyzed 6-hourly and the other three, OSTIA, CMC and MUR fields,
are analyzed daily. The horizontal resolution of the NSST product is

Fig. 21. An example of the improvement in the NWP forecasting skill when a
more realistic SST field is used as the bottom marine boundary. The mean error
in temperature at 850 hPa in the Northern Hemisphere when using old AVHRR
and in situ low resolution SST data as a bottom boundary condition (gray line)
and high resolution SST data from the OSTIA system (black line). The trial
period was from 1st August 2007 until 31st August 2007. (From Donlon et al.
(2012b), with permission).
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about 25 km, but the analysis increment is generated at about 50 km
grid spacing. For the comparison, the other three products are inter-
polated to NSST resolution with identical 4 consecutive 6-hourly ana-
lyses. For every 6-hour interval, the analyses at the NSST resolution are
interpolated to the observed location to generate the O – A fields; O – B
is available for NSST only. The drifting buoy observations are from the
diagnostic files of the NCEP NSST analysis, the same quality control as
NSST is applied to the other three analyses.

It is illustrative to see how well the OSTIA, CMC and MUR SSTfnd

analyses compare to the drifting buoy observations which of course
include diurnal warming and cooling signals. Fig. 22 shows the ver-
ification of four SST analyses, NSST, OSTIA, CMC and MUR, against
global drifting buoy measurements. The (O – A) RMS difference is
0.123 K, 0.223 K, 0.225 K and 0.302 K for this 10-day period. The bias is
nearly zero for NSST, OSTIA and CMC; MUR is slightly too warm. There
is no significant difference in the observation counts. As expected, the
NSST (O – B) is generally worse than (O – A). The basic features are
stable with time, based on comparisons over much longer periods (not
shown; Li et al., 2019).

In Fig. 23 the calculated diurnal warming at the observation depth,
Tw′bg(zob), is not applied to the analysis or background. As is reason-
able, this leads to larger RMS differences and smaller numbers of data
counts. The bias increases from nearly zero to 0.070 K, 0.046 K and
0.061 K for NSST, OSTIA and CMC respectively. However, for MUR the
negative bias is reduced from −0.08 K to −0.02 K. For small areas (not
shown), the conclusions are basically the same, and the difference due
the inclusion of Tw′bg(zob) is larger over more active diurnal warming
area, such as tropics.

The validation has been repeated using other in situ observation
platforms, including fixed buoys and ships. In comparison to tempera-
tures measured from ships, NSST is significantly worse than OSTIA and
CMC, and this is due to too large an observation error attributed to ship
data. A smaller ship observation error will be used in the NSST in the
future. From the inter-comparison with the other SST analyses, it has
been found the NSST has issues in certain circumstances, particularly
where observation coverage is poor. Improvements to the NSST pro-
duction are underway, including the use of more observations espe-
cially microwave satellite radiances, using a more advanced back-
ground error correlation length and the better use of the SST
climatology.

It should be pointed out, drifting buoy temperature measurements

are ingested in all four analyses discussed here, and the fitness of the
analyses to this observation depends on the weights given to these and
to the background temperatures. Therefore, the (O – A) statistics are not
the only metrics of the quality evaluation, and (O – B) is a better metric.
A metric to evaluate the fit to satellite observations needs to be estab-
lished even though it is acknowledged that it is not likely to be
straightforward.

As NWP systems become more complex and move towards coupled
ocean-atmosphere models (Miller et al., 2017) then the requirements
for SST products increase. In a coupled system the SST is first assimi-
lated into an ocean model, which then exchanges fluxes with the at-
mospheric model. Also, diurnally varying SST analysis systems are
being developed (While et al., 2017) to reduce errors due to timeliness
and for validation of coupled models. In the future, operational forecast
centers will move to direct radiance assimilation to allow a more con-
sistent atmospheric and oceanic processing across all sky conditions
(Geer et al., 2018). However, SST will remain an essential diagnostic as
it can be independently validated (see Section 6).

9.2. Ocean heat content and severe storms

The connection between high SST and Atlantic hurricanes has been
long recognized as the ocean was seen as a source of heat to sustain a
hurricane (Malkus and Riehl, 1960). In 1948, Palmen, used arguments
based on atmospheric stability to conclude that SSTs> 27–28 °C are
needed for hurricane formation, and Miller (1958) found a relationship
between SST and storm intensity, also noting that hurricanes in the
Atlantic Ocean were unlikely to form over SSTs below 26–27 °C. Merrill
(1988) reported that SST> 30 °C were needed for the development of a
severe hurricane. Before quantitative retrievals of SST from satellites, a
climatological SST field or sparse data from ship-based meteorological
reports had to be used. Making use of cloud images from early me-
teorological satellites, Ramage (1974) described the life-cycles of three
typhoons in the South China Sea in 1970, and although he noted that
SST>30 °C was found in the area, the resolution and sampling of the
SSTs caused him to conclude the SST “bore no apparent direct re-
lationship to the typhoon intensity changes” but he did note that the
SST was cooler after the passage of a storm.

Of course, it is not just the SST itself that is critical to the devel-
opment of severe storms, but the ocean heat content (OHC) that is
available to the storms though air-sea exchanges at the surface.

Fig. 22. 3-hourly verification against drifting buoys of four SST
analyses. Global data for March 2, 2019 to March 11, 2019. The
solid curves are for O – A=Tzobob−[Tfan+Tw′bg(zob)], black:
NCEP NSST (NST); red: OSTIA (OST); blue: CMC; green: MUR.
The upper, middle and lower panel is for bias, root mean square
and used counts respectively. The black dashed curve is
(O−B)=Tzobob−[Tfbg+Tw′bg(zob)] for NSST. (For interpreta-
tion of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Variations in the upper ocean heat content, derived by integrating the
vertical temperature profile from the surface to some depth, usually
taken to be the depth of the 26 °C isotherm, was shown by Shay et al.
(2000) to be critical in understanding the development of Hurricane
Opal in the Gulf of Mexico in 1995, highlighting the influence of the
Loop Current and warm core eddies (Hong et al., 2000). The OHC can
be estimated using SSH fields and sea-surface height anomalies (SSHA)
derived from satellite altimetry (Shay et al., 2000).

Fig. 24 shows OHC in the Intra-American Seas (IAS), with high OHC
in the Loop Current and the warm anticyclonic eddy field having pro-
vided additional thermal energy to major hurricanes over the past
decade such as Hurricane Katrina in 2005, Hurricane Harvey in 2017,
and Hurricane Michael in 2018. Some of the strongest North Atlantic
Ocean basin hurricanes have occurred over the warm pool regime in the
IAS (Fig. 25). This variability points to the importance of the OHC on
hurricane intensity in the IAS. Examination of these hurricanes relative

to OHC (Meyers et al., 2014) shows that they often reach maximum
intensity over the high-OHC Subtropical Water of the Caribbean Sea,
Florida Current, Gulf of Mexico Loop Current, or Gulf Stream, often
weakening just before landfall (Rappaport et al., 2010). Approximately
70% of hurricanes with maximum winds>120 knots (62ms−1) ex-
perience eyewall replacement cycles (ERCs) after reaching maximum
intensity levels. Hurricanes subsequently weaken due to the combina-
tion of ERCs increasing shear, and movement over lower-OHC water.
Hurricanes striking the US Atlantic Eastern Seaboard encounter similar
oceanic environments passing over the Gulf Stream and then cooler
shelf waters. Such behavior in hurricanes has become much clearer now
that there is an evaluated OHC product available for forecasting.

A novel application of OHC maps and their daily progression is in
predicting the behavior and migration of large predatory fish. While it
has been understood for many years that ocean thermal fronts are a
preferred environment for large marine predators, using tagged tunas

Fig. 23. As Fig. 22 but excluding the diurnal warming at the observed depth in the analysis and background fields.

Fig. 24. OHC estimate (relative to 26 °C: color bar) and geostrophic velocity vectors from space-based measurements of satellite altimetry and SST on 1 August 2015
in the Intra-American Seas. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Luo et al. (2015) were able to demonstrate that the large horizontal
variations in OHC are a potent predictor of fish behavior, even when the
surface manifestation of fronts is weak.

9.3. Sea level

As the global population continues to grow, the largest rate of
growth is found in coastal areas where there is an influx of people from
the hinterland as well as continuing urbanization, which are expected
to continue (Neumann et al., 2015). Many of the world's largest cities
are in the coastal areas, often located in large deltas with low-lying
surroundings, with ~10% of the global population living on land within
10m of sea level (McGranahan et al., 2007). The greatest increase in
coastal populations is in Asia, especially southeast Asia (Neumann
et al., 2015). In addition to the loss of habitat by permanent sub-
mergence of low-lying coastal areas by the inexorably rising sea, coastal
populations are vulnerable to other events exacerbated by rising sea-
levels, including storm surges, tidal flooding, more persistent river
flooding following extreme rain events, and flooding by tsunamis. Some
events may be rare, but when they occur they can be devastating to
both human populations and ecosystems (see the references in
Neumann et al., 2015).

Measurements from tide gauges and satellite altimeters leave no
doubt that sea-levels are rising, and that this increase in sea level is
expected to accelerate (Nerem et al., 2018). There are two contributing
factors to sea-level rise: increases in mass resulting from run-off from
melting land ice, especially from Greenland and Antarctica (Rignot
et al., 2011), and increases in volume as the ocean temperature in-
creases and expands (Nicholls and Cazenave, 2010). Although there are
significant regional variations in the rate of sea-level rise (Cazenave and
Nerem, 2004) and some are caused by large scale phenomena such as
ENSO (Cheng et al., 2008), the thermosteric expansion can be mon-
itored using global satellite-derived SST fields with ocean and climate
models (e.g. Han et al., 2010).

10. Operational oceanography

The high variability of ocean properties and the need for the as-
sessment of the state of the marine environment require a continuous
monitoring of the ocean environment at unprecedented resolution and
quality. To respond to these requirements, Operational Oceanography
(OO) became a branch of ocean science that routinely makes available
high quality observational and model data for both fundamental studies
and practical applications. Operational oceanography depends critically

on the near real time availability of high quality satellite and in-situ
data with a sufficiently dense space and time sampling. Observations
are required to constrain ocean models through data assimilation and
also to validate them. As a consequence, the evolution of OO that oc-
curred in the last two decades strongly intersected with the evolution of
the satellite observing systems, computer technology and improvement
of models. Satellite retrievals of SST were the first high space and time
resolution data available in real time. SST data were used to constrain
ocean models through data assimilation and/or to serve downstream
applications (Le Traon et al., 2015). The first prototype of the OO
system was developed in Europe, in the late 90s when the im-
plementation of operational oceanography in the world ocean was still
at its infancy (Pinardi and Woods, 2002; Pinardi et al., 2003). The
prototype was the Mediterranean observing and modelling system for
operational oceanography developed by Mediterranean Forecasting
System Pilot Project (MFSPP) that, starting from October 1998, was
able to provide Near Real Time (NRT) observational data and 5-day
forecasts of currents for the entire Mediterranean basin. During the
MFSPP, a system for the acquisition and processing in NRT of satellite
data (AVHRR at that time) was developed and became operational,
providing NRT data and products to users (Buongiorno Nardelli et al.,
2003). The SST processing system at that time included all the steps
required to transform AVHRR L0 data into L4 SST analyses: the re-
ception of the L0 raw telemetry AVHRR data stream via HRPT stations,
L2 SST retrieval from IR measurements, automatic cloud screening,
data quality control, L3 merging data of SSTs (5 to 6 satellite passes
were available over the areas of interest) to produce daily L3 SSTs, a
production of the daily-weekly L4 analysis using optimal interpolation
techniques (Santoleri et al., 1991; Marullo et al., 1999a; Marullo et al.,
1999b; Buongiorno Nardelli et al., 2003). During the MFSPP for the first
time NRT SST were assimilated in MFS general circulation modelling
every week and used to correct the atmospheric forcing to improve
ocean forecasts. This prototype observing and modelling system was
operational from October 1998 to the end of 2001, demonstrating the
importance of an OO system at basin scale. Successive upgrades of the
various components of the oceanographic system, including an SST
component, were developed in the following years (Pinardi et al., 2003;
Pinardi and Coppini, 2010).

At the same time, the Global Ocean Data Assimilation Experiment
(GODAE) concept was developed with the aim to conduct a 10-year
international demonstration of the feasibility and utility of real-time,
global ocean forecasting (Bell et al., 2009). Thanks to the MSF success
and GODAE effort, other OO projects started in Europe and worldwide.
To respond to operational SST requirements of the modelling

Fig. 25. Tracks and positions of maximum intensity for fourteen of the strongest hurricanes 1998–2011, plotted over OHC relative to the 26 °C isotherm for
September 2005.
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community, several international projects were launched: such as
Medspiration by ESA, OSI SAF by EUMETSAT and the international
GODAE High Resolution Sea Surface Temperature Pilot Project was
established (GHRSST-PP, subsequently renamed the Group for High
Resolution Sea Surface Temperature (GHRSST) (Section 13)) in 2001
(Donlon et al., 2009). The GODAE OceanView (GOV) has maintained
strong links with satellite oceanography communities and major pro-
gress has been made over the past 10 years to develop and optimize the
use of satellite observations for operational oceanography. The GHRSST
partners offered, and continue to offer, a suite of tailored global high-
resolution SST products, in near-real-time, on a daily basis, to support
operational forecast systems and the broader scientific community.

The establishment of a political framework for the Global Earth
Observation System of Systems (GEOSS; Lautenbacher, 2006) and the
accompanying Earth Observation Summits have been the backdrop to
the formation of a significant European contribution to GEOSS. The
Global Monitoring for Environment and Security (GMES) initiative,
subsequently renamed the Copernicus program, has been established in
the course of the last decade to fulfill the growing need expressed by
European policy-makers to access accurate and timely information to
better manage the environment, understand and mitigate the effects of
climate change and ensure civil security. MyOcean Projects im-
plemented the European GMES Marine Core Service for the 2009–2015
period, and developed and tested in pre-operational mode the first
concerted and integrated pan-European capacity for ocean monitoring
and forecasting. The main results and recommendations of the GHRSST
have been reflected in the design of the MyOcean sub-systems devoted
to the development and production of satellite SST data (SST-TAC,
Thematic Assembly Centre). The SST-TAC was developed, implemented
and is now part of CMEMS. The SST-TAC is maintaining the operational
chains for the production, validation and dissemination of the multi-
sensor SST Level 3 data (more precisely L3S data) and L4 products for a
total of 18 products covering the global ocean and the European Seas
(North Atlantic, Baltic, Arctic, Mediterranean and Black Sea). Cur-
rently, the L3S and L4 data are built from all available GHRSST L2P IR
measurements, and correspond to daily (night-time) gridded super-
collated (multi-sensor) and optimally interpolated satellite SST esti-
mates at High spatial Resolution (10 to 5 km) and Ultra-High spatial
Resolution (1 km, as in the Mediterranean Sea, Buongiorno Nardelli
et al., 2015) and hourly L4 SST products.

The other important impact of OO has been its role in defining the
requirements for the space component. In fact, climate, science and OO
applications share the same backbone system. Operational oceano-
graphy has, however, specific requirements for near real time and for
spatial resolution. Operational oceanography requirements have been
detailed in several papers and used by space agencies to define space
segment and the characteristics of the latency and accuracy of opera-
tional data. For example, the needs of an ocean observing system was
used to define the Sentinel-3 mission, dedicated to global ocean ob-
servations (Drinkwater et al., 2005; Donlon et al., 2012a). This role is
still crucial and recently CMEMS has revised the space component re-
quirements to take into account the evolving user requests. In parti-
cular, continuity of the present capability of the Copernicus Sentinel
missions (Desnos et al., 2014) should be ensured and the request of a
European passive microwave mission for high spatial resolution ocean
surface temperature should be considered (CMEMS, 2017; Le Traon
et al., 2019).

11. Climate data record

The concept of a Climate Data Record (CDR) was formally in-
troduced in a National Academy of Sciences report (NRC, 2000) as
being “a data set designed to enable study and assessment of long-term
climate change, with ‘long-term’ meaning year-to-year and decade-to-decade
change. Climate research often involves the detection of small changes
against a background of intense, short-term variations... The production of

CDRs requires repeated analysis and refinement of long-term data sets,
usually from multiple data sources.” The report emphasized the need for
“Data Stability,” reasoning that “because natural signals are often small, it
is difficult to ascribe particular events or processes to climate change… [so
that] long-term, high-quality measurements are needed to discern subtle
shifts in Earth's climate. Such measurements require an observing strategy
emphasizing a strong commitment to maintaining data quality and mini-
mizing gaps in coverage.” The Report states that “long-term studies such as
those needed for documenting and understanding global climate change re-
quire not only that a remote sensing instrument be accurately characterized
and calibrated but also that its characteristics and calibration be stable over
the life of the mission”. Data Continuity “includes the continuous and ac-
curate characterization of the properties that affect the construction of the
time series. The most useful data for climate research purposes are time
series that are continuous and for which the characterization of error, in
terms of precision and bias, is known. Such errors should be minimized as
much as possible in order to detect the often small, climate-related signal.”

The Committee on Earth Observation Satellites (CEOS) has declared
SST to be an Essential Climate Variable (ECVs; Bojinski et al., 2014)
that has a high impact on the requirements of the UNFCCC (United
Nation Framework Convention on Climate Change) and the IPCC (In-
tergovernmental Panel on Climate Change). SST derived from satellite
measurements offers the best source of global, repeated fields, along
with accompanying uncertainty characteristics. Compared to some
other ECVs, satellite-derived SST can more readily produce a CDR as
temperature is a base variable of the SI system (International System of
Units; Taylor and Thompson, 2008) and as such, traceability to SI
temperature standards is much more straightforward to achieve than
other CDRs. An unbroken chain of calibration to an SI temperature
reference for each source of satellite-derived SSTs is an important factor
in generating SST CDRs with data from multiple satellite missions
(Minnett and Corlett, 2012). The required accuracy for satellite remote
sensing of SST for climate research and applications is very stringent,
but it is a good target as in striving to achieve it we will generate data
sets that can contribute to many research activities. The target accu-
racy,± 0.1 K with a decadal stability of 0.04 K (Ohring et al., 2005), is
very challenging not only to achieve but also to demonstrate convin-
cingly whether these targets have been attained. Determining the ac-
curacies of satellite-derived SSTskin by comparing them with in-
dependent measurements from using ship-board radiometers (Donlon
et al., 2014), by being a comparison of “like-with-like,” removes much
of the error and uncertainty attendant when using subsurface tem-
perature measurements taken from drifting or moored buoys (Minnett,
2003; Minnett and Smith, 2014). However, the number of ship-board
radiometers is small, whereas the number of drifting and moored buoys
is large, so that an optimal way forward to assess the accuracies of
satellite-derived SSTs is to use both (Minnett and Corlett, 2012).

In recognition of the need to improve the consistency and the ca-
libration of different satellite instruments providing measurements used
to derive climate-relevant variables, including SST, the Global Space-
based Inter-Calibration System (GSICS) was set up in 2005 by the WMO
and the Coordination Group for Meteorological Satellites (CGMS) with
membership of a number of national space agencies and meteorological
agencies (https://gsics.wmo.int/en). The objectives of GSICS include
ensuring the satellite radiometers are tested and calibrated pre-launch
to SI-standards, the radiometers be intercalibrated on orbit with specific
radiometers that have been identified to be stable and well calibrated,
and that archives of satellite data can be reprocessed to produce stable
and improved long-term data sets (Goldberg et al., 2011). Currently,
the on-orbit reference radiometers are the IASIs (Section 5.2.2) on the
Metop polar-orbiters (Hewison et al., 2013). A further aspect of GSICS is
the monitoring of the satellite radiance measurements using NWP fields
(Saunders et al., 2013).

The assessment of accuracies of satellite-derived SSTs using ship-
board radiometers also contributes to establishing an unbroken chain of
calibration to SI Standards (Minnett and Corlett, 2012). The internal
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calibration accuracies of the ship radiometers have been checked per-
iodically through a series of international workshops involving re-
ference instruments provided by national metrology laboratories, the
National Institute of Standards and Technology (NIST) in the USA, and
the National Physical Laboratory (NPL) in the UK. The format of the
workshops comprises assessment of calibrations of ship-board radio-
meters using metrology standard blackbody calibration targets, and an
assessment of the accuracies of blackbody calibration facilities used by
individual researchers in their laboratories through measurements of
national standard radiometers. (Kannenberg and Palluconi, 1998; Rice
et al., 2004; Barton et al., 2004; Theocharous et al., 2019).

12. Synergy with other remotely-sensed variables

The relation between SST and other oceanic variables has long been
exploited to obtain a better understanding of the processes controlling
the ocean, to assess the spatial and temporal scales of variability of
these processes, and to study the ocean dynamics at these scales.
Physical and biogeochemical processes are closely coupled in the ocean,
with SST being a key variable that allows a link to be made between
these different disciplines. Fig. 26 shows SST and chlorophyll-a con-
centration in the western Mediterranean Sea on 3 and 4 December 2018
respectively. The fields of eddies and fronts are clearly visible in the
images, showing the link between ocean dynamics, SST and primary
production. Multivariate studies of the state of the ocean have been
performed ever since such satellite-based retrievals have been avail-
able, often in combination with in situ data in order to understand the
vertical expression of the processes observed at the surface. Santoleri
et al. (2002), for example, studied the circulation patterns in the
Mediterranean Sea using a combination of altimeter, SST and chlor-
ophyll-a data. The results were compared with in situ data in the Al-
gerian basin and Adriatic Sea, and contributed to explaining mesoscale
dynamics in these basins. Smyth et al. (2001) linked SST and chlor-
ophyll-a imagery with Lagrangian measurements to study the biological
response to upwelling at wind-induced offshore filaments. Access to
real-time satellite imagery allowed the optimization of field sampling
stations.

It is well known that upwelling-favorable winds bring deep, cold,
nutrient-laden waters to the surface, which favor the development of
phytoplankton blooms visible from space through their chlorophyll-a
content. The joint study of SST and chlorophyll-a using satellite data
supported, for example, the study of the evolution of biological patterns
in time and their link to SST structures during an El Niño event in 1997
off the Chile coast (Thomas et al., 2001). Using satellite winds in ad-
dition to SST and chlorophyll-a, Murtugudde et al. (2004) also showed
the influence of atmospheric patterns on ecosystem response for the El
Niño event of 1997. As the satellite time series becomes longer, studies
showing interannual variability in the relation between SST and
chlorophyll-a concentration in the Pacific Ocean, related to changes in
El Niño events, have become feasible (e.g. Thomas et al., 2012). On a
smaller scale, Mauri and Poulain (2001) used SST and chlorophyll-a
satellite data to study circulation patterns in the northern Adriatic Sea,
identifying a link between river plume dynamics and wind events. More
recently, Brando et al. (2015) used satellite-derived turbidity and SST
data to track river plume water in the northern Adriatic after a major
flood event. The use of multiple satellite variables might also lead to
improved SST analyses, as the correlation between variables can be
used to infer missing information about, for example, length scales of
variability. Alvera-Azcárate et al. (2007) performed a multivariate
analysis using SST, chlorophyll-a and winds to study an upwelling/
downwelling event in the West Florida Shelf, and demonstrated that
using jointly these three variables led to improved SST analyses. Li and
He (2014) performed a similar analysis to study the multi-year re-
lationship between chlorophyll-a and SST and the dynamics at the Gulf
of Maine.

Ocean dynamics, expressed at the surface in the form of currents,
fronts and eddies, have also very often a clear SST signature. The re-
lation between sea surface height and SST can be therefore also used in
studies aimed at describing the ocean circulation. Earlier studies (e.g.
Carnes et al., 1994; Knudsen et al., 1996; Vazquez-Cuervo et al., 1996;
Santoleri et al., 2002) had already pointed out the potential of ex-
ploiting the synergy between these variables. The joint use of SST and
sea surface height, used to derive OHC (Section 9.2), can also help in
deriving information about the ocean dynamics, such as improved

Fig. 26. SST on 3 December 2018 (top) and Chlorophyll-a concentration (units log(mgm−3)) on 4 December 2018 (bottom), western Mediterranean Sea, derived
from measurements of MODIS on Aqua.
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representations of ocean currents (González-Haro and Isern-Fontanet,
2014; Rio et al., 2016). Recently, Rio and Santoleri (2018) demon-
strated that the use of the information contained in high resolution SST
maps leads to improved determination of surface velocities at spatial
scales not resolved by the altimeter systems (i.e., below 150 km) but
also at larger scales, where the geostrophic equilibrium might not be
the unique or dominant process of the ocean circulation.

The data of SMOS (Soil Moisture Ocean Salinity; Drinkwater et al.,
2009), Aquarius (Lagerloef et al., 2008) and SMAP (Soil Moisture Ac-
tive Passive; Entekhabi et al., 2010; Piepmeier et al., 2017) have re-
cently produced global measurements of sea-surface salinity (SSS). The
relation between SST and SSS provides information about water mass
formation and circulation patterns (e.g. Reul et al., 2014; Buongiorno
Nardelli et al., 2016). The close relationship between SSS and SST is
also used to improve the spatial resolution and to reduce noise in the
satellite-derived SSS fields (Olmedo et al., 2018).

The evolution of satellite sensors, with more accurate data and
higher spatial resolutions being resolved over the last decade, have led
to works linking the meso- and submesoscale variability in different
ocean variables. For example, Cotroneo et al. (2016) studied the evo-
lution of a mesoscale eddy detaching from the Algerian current (Med-
iterranean Sea) using a combination of satellite SST and chlorophyll-a
data with in situ high-resolution glider data, allowing them to study the
dynamics of this structure and its impact on biochemistry. Pascual et al.
(2017) performed a multiplatform experiment in the western Medi-
terranean Sea using satellite and in situ data to study meso- and sub-
mesoscale processes at an intense front. Satellite SST data were used to
determine the strategy to sample an eddy at the Alboran Sea, and also
to describe the physical and biogeochemical variability of this region, in
combination with in situ data from gliders, drifters and Argo profilers.

13. The Group for High-Resolution Sea-Surface Temperature
(GHRSST)

Since 2002, research into many aspects of SST, primarily satellite
remote sensing of SST, and the transition of research results into op-
erations has benefited from the actions of the GHRSST which plays a
key role in coordinating international SST-related activities. The
GHRSST is made up of scientists and operational practitioners from
universities, research institutes, space agencies and operational forecast
centers from many countries. GHRSST works closely with the
Committee on Earth Observation (CEOS) SST Virtual Constellation
(SST-VC). The group started out as the Global Ocean Data Assimilation
Experiment (GODAE; Bell et al., 2009) High Resolution SST Pilot Pro-
ject (GHRSST-PP; Donlon et al., 2007) and transitioned to GHRSST
following the completion of GODAE. GODAE had set the GHRSST-PP
the challenge of providing global near-real time (within 6 h) < 10 km
and 6–12 h resolution products with an accuracy better than 0.4 K
(Smith and Koblinsky, 2001). In response, GHRSST established several
practical steps to meet the GODAE requirements.

To provide data with sufficient sampling, a merging of all available
data sources (satellite and in situ) was required. For this, GHRSST es-
tablished a series of three key standards: first, GHRSST recognized the
need to standardize the definition of SST itself, as data labelled “SST”
would be coming from measurements made at different depths and
times (Section 3) using different measuring techniques; second, to ease
comparison, joint analysis, and merging SST data from different
sources, a common data format (the GHRSST Data Specification, or
GDS; https://www.ghrsst.org/governance-documents/ghrsst-data-
processing-specification-2-0-revision-5/) was required; and third, an
international framework (the Regional/Global Task Sharing, or RGT/S)
was needed to coordinate SST data production from diverse sources and
distribution to users. These standards have allowed GHRSST to ensure
that data products meeting the requirements of GODAE are now
available from its contributing entities.

As well as providing uniformity of file structure, the GDS also

identified the process of transforming data across different levels
(Section 7). In addition, it also specifies both a quality level and an
uncertainty (in the form of Single Sensor Error Statistics, SSES), in-
formation that is now becoming more common across all Earth ob-
servation domains through initiatives such as the Quality Assurance
Framework for Earth Observation (QA4EO; Fox, 2010). Indeed, this
information is vital for producing higher level products as it offers a
way to quantitatively merge data from multiple sources.

As SST datasets become more diverse and satellite data volumes
grow (with the new generation of geostationary satellites for example),
the role of GHRSST is arguably more important now than when the
group was initiated. To address these new challenges, the Group is
currently evolving the RGT/S framework to ensure seamless data pro-
vision to users well into the future.

Information on the GHRSST project may be accessed through the
main home page at http://www.ghrsst.org.

14. Data handling, data sources and archives

In the half century of satellite remote sensing of SST, the methods
available to distribute data to operational centers and researchers has
undergone a revolution. Initially, data were mailed from receiving
stations to researchers on computer-readable 9-track magnetic tapes
and the processing of the data was a challenge, not least how to display
imagery in a cost-effective but scientifically useful fashion, often as
photographic prints. The growth in data volume that began with the
ERS series in the early 1990s and more so with the NASA Earth
Observing System in the early 2000s led to the formation of large data
processing and archive centers, which coincided with the development
of the Internet and the ability to deliver large datasets on a computer-
to-computer basis using unified protocols. Currently, data access and
remote processing and analysis of satellite-derived SSTs is no longer the
daunting challenge it used to be, and many tools are available to re-
searchers that facilitate the exploitation of large data sets in a wide
range of applications.

Considerable progress has been made in providing users with a
single point of entry for all SST data sets. The GHRSST page: https://
www.ghrsst.org/ghrsst-data-services/services/ provides an overview of
how to access the near real time (PO.DAAC; http://podaac.jpl.nasa.gov)
and the historical L2 to L4 data (NODC; https://data.nodc. noaa.gov/
ghrsst/ or ftp://ftp.nodc.noaa.gov/pub/data.nodc/ghrsst/). Yet, the
numerous GHRSST data sets, while providing users with many sources,
also creates the need to integrate information and tools that allow users
to make informed decisions about which data set to use. This will be a
major challenge for the future.

14.1. Physical Oceanography Distributed Active Archive Center
(PO.DAAC)

The Physical Oceanography Distributed Active Archive Center
(PO.DAAC) located at the Jet Propulsion Laboratory/California
Institute of Technology, and NOAA's National Centers for
Environmental Information (NCEI, and its forerunners) have been the
lead centers for the distribution and management of SST products. The
original NOAA/NASA Pathfinder AVHRR data set (Kilpatrick et al.,
2001) was archived and distributed through the PO.DAAC. Processing
of the data set was done at the University of Miami with the PO.DAAC
undertaking post-processing from L2 to L3 for distribution and ar-
chiving. This was a major breakthrough in setting a standard for data
providers and data managers working together to provide efficient
distribution and tools and services for data extraction.

The AVHRR Pathfinder project led to a breakthrough in how to
distribute high volume data. At a 4 km global spatial resolution, it re-
quired the implementation of new technologies for subsetting and ex-
tracting data on regional scales. The 4 km spatial global resolution
made it prohibitive for users to download and easily work with the
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global data. This led to a breakthrough in implementing data format
standards which included all the data processed and formatted in the
Hierarchical Data Format (HDF). The PO.DAAC developed an interface
and distribution tool known as PO.DAAC OceanESIP Tool (POET). This
tool facilitated the subsetting of the Pathfinder data set. Additionally, it
gave the user the flexibility to choose several output formats, including
ASCII and ArcGIS (a tradename of a Geographical Information System).
The POET tool was a major step forward in data distribution in several
ways: 1) allowing data subsetting; 2) implementing data interoper-
ability standards through a common format (HDF); 3) flexibility in al-
lowing users different output formats for implementation in their own
tools and software programs. The model used for the NOAA/NASA
Pathfinder project was instrumental in moving forward with the
GHRSST (Section 13).

Following on the success of the NOAA/NASA Pathfinder project the
GHRSST project was one of the first to implement the common data
format Network Common Data Form (NetCDF). The goal of satellite-
derived SST data sets to be implemented in a common data format with
compliant standards allowed for interoperability among all the satellite-
derived SST data sets. This also allowed for a unique cooperation be-
tween NASA and NOAA to allow users access to both near real time and
historical data. The GHRSST Data Specification Document (GDS) pro-
vided the framework for all data providers to process data into common
formats, including specifications for data levels (Table 3). Im-
plementation of tools such as the Thematic Real-Time Environmental
Distributed Data Services (THREDDS), OPeNDAP, and the Live Access
Server (LAS) allowed users to easily extract and subset data in both
space and time. All the tools allow for subsetting of data and use the
OPeNDAP protocol. Additionally, LAS allows the user to visualize the
data, along with the extraction of time series at particular locations, as
well as generate Hovmöller diagrams for both longitude and latitude.
Other functionality with LAS, allows the user to save the data in
netCDF, CSV, ASCII, or ArcGrid. The THREDDS server allows the user to
aggregate the extracted data into one file. This is very useful when a
user is extracting several years of data that consist of daily files. Issues
with extracting large amounts of data were not due to the tool, but
primarily the data format. These issues included tools timing out and/or
having to submit multiple jobs to access the desired data over a certain
period of time. A major breakthrough that occurred was the transition
from NetCDF version 3 to NetCDF version 4, which allowed for internal
compression, thus eliminating the need to decompress data before
reading. Users could then extract and access larger amounts of data.
Both LAS and THREDDS would have timeout issues with data sets such
as the MUR SST data set, which is formed of files of daily, global
gridded data at 1 km resolution. Conversion to NetCDF4 allowed users
to easily access the entire time series of these data sets. This was critical
for MUR, with data available since 2002, and the AVHRR_OI, with data
availability since 1981. Overall, each tool provides advantages, de-
pending on the user need, with OPeNDAP being a primary protocol
used in both THREDDS and LAS. The THREDDS server primarily uses
the NetCDF JAVA libraries, thus the conversion to NetCDF4 improved
accessibility of the GHRSST data.

Effective June 3, 2019, NASA has retired their standard FTP pro-
tocol for data and information access. For more information on using
the replacement service, PO.DAAC Drive, to access data please see:
https://podaac.jpl.nasa.gov/announcements/2019-02-13_REMINDER_
PO.DAAC_FTP_RETIREMENT.

As the GHRSST data sets span increasingly longer time periods and
with the availability of high resolution (< 10 km) SSTs, challenges re-
main in distribution. These include implementing new methodologies
for allowing users to extract large amounts of data in their particular
areas of interest. Some examples of the challenges include extracting
the NOAA/NCEI AVHRR_OI SST fields dating back to 1981 (Banzon
et al., 2014). Another example is the daily MUR SST (Chin et al., 2017).
Data from the Visible Infrared Imaging Radiometer Suite (VIIRS;
Section 5.1.5) has sub-kilometer resolution. As these data sets are

applied to coastal regions, for example, allowing users flexibility in
applying quality flags and filtering is critical, interfaces that give users
flexibility in filtering and gridding data will be a major challenge for the
future.

Future directions for the GHRSST project and data management
include a restructuring of the GHRSST Regional/Global Task Sharing
Network (R/GTS) to a more federated approach. Data will be accessible
through a centralized catalog. Data providers will have primary re-
sponsibility for maintaining data distribution and access. This would
include implementation of THREDDS and OPeNDAP servers. Even with
restructuring, many challenges remain. Many of these have to do with
the access of higher resolution and longer time periods of data. A major
challenge will not only be managing data, but also of information. The
management of information needs to include documentation of error
sources and uncertainties. This will be critical as an increasing number
of satellite-derived SST products become available to the user com-
munity.

Part of the challenges will be in transitioning to cloud based tech-
nology that would allow for accessing and manipulating large amounts
of data. This will be critical as high resolution data sets such as VIIRS
become available over longer periods of time. Cloud-based technologies
will allow for users to implement their own algorithms for gridding and
optimal interpolation. A major hurdle to the user community will be
implementing software on the cloud that allows for functionality be-
yond the traditional downloading of data and processing on a laptop.
Cloud based solutions are currently being developed by both NOAA and
NASA to prepare for these future challenges.

Additional challenges include the visualization of multiple data sets
and accessing such data sets in near real time. The example in Fig. 27
shows an image of the SST anomaly derived from the MUR SST data set
(Chin et al., 2017). The image was generated using NASA's State of the
Ocean Tool (SOTO) (http://podaac.jpl.nasa.gov/soto). The SST
anomaly is overlaid on a true color image from MODIS on Aqua. Blue
colors indicate the surface cooling from the passage of Hurricane Mi-
chael which made landfall on October 10th 2018. Adding functionality
to future tools that allow for not only data extraction, but also data
manipulation and derivation of statistics will be a large focus of future
development. This work will build on the groundbreaking web inter-
faces of the SST Quality Monitor (SQUAM; Dash et al., 2010) and the in-
Situ Quality Monitor (iQuam; Xu and Ignatov, 2014).

14.2. Ocean and Sea Ice Satellite Application Facility (OSI SAF)

The Ocean and Sea Ice Satellite Application Facility (OSI SAF) is
part of the EUMETSAT ground segment. Its primary aim is to provide
users with sea surface parameters in near real time derived mostly from
European meteorological satellites, and among these parameters is SST
computed from IR radiometers on board polar orbiting and geosta-
tionary satellites.

Currently OSI SAF is distributing hourly L3C SST products derived
from three geostationary satellites: Meteosat-8 above the Indian Ocean
(41.5°E), Meteosat-11 in the 0°E position and GOES-16 (75.2°W); and
L2P and L3C from instruments on two polar orbiting satellites: AVHRR
on Metop-B (global and regional) and VIIRS on S-NPP (North Atlantic
region). All products are delivered in NetCDF-4 format compliant with
the GHRSST GDS v2. Near real-time and historical OSI SAF data can be
accessed by several means including EUMETCast or FTP servers. Some
products are also archived and available at the EUMETSAT Data Center
(EDC) and at the PO.DAAC. Details on how to access OSI SAF products
can be found on the “Access to data” page at https://www.osi-saf.org.

OSI SAF is also performing reprocessing activities. For instance, it
has recently released an MSG SST data record (2004–2012) which was
created using state-of-the-art methodologies.

Future OSI SAF activities are strongly tied to the future EUMETSAT
meteorological satellite programs and as such will aim at providing the
best possible SST products for the new generation sensors expected in
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the next few years: Metop-Second Generation and Meteosat Third
Generation.

14.3. Copernicus Marine Environment Monitoring Service (CMEMS)

The Copernicus Marine Environment Monitoring Service (CMEMS)
is one of the six pillar services of the EU Copernicus program. CMEMS
provides regular and systematic reference information on the ocean and
sea ice state for the global ocean and the European regional seas (www.
cmems.org). CMEMS today provides about 160 different products de-
rived from observations and models which include 18 different SST
products (see CMEMS catalog at www.marine.copernicus.eu) and
serves a wide range of users and applications with>15,000 users now
registered for the service. SST observations are a fundamental pillar of
the CMEMS added value chain that goes from observation to informa-
tion and users (Le Traon et al., 2019). SST is the most downloaded
observational product of CMEMS. Users require both global and re-
gional products designed for specific European regions. These data are
produced by CMEMS-SST-TAC (Thematic Assembling Centre) both for
dissemination to external users and for use internally within CMEMS.
CMEMS SST products are available in near real time and operationally
assimilated by CMEMS global and regional modelling forecasting sys-
tems to produce ocean reanalysis and forecasts (Bell et al., 2000;
Lellouche et al., 2018; Oddo et al., 2009). The CMEMS SST products are
global and regional L3 multi-sensor SST and L4 analysis products, and
are produced ingesting all L2 data provided by Space Agencies, using an
ad hoc processing chain developed by the CMEMS SST-TAC. The pro-
cessing chain includes additional quality checks of upstream data, bias
adjustment among sensors, and interpolation techniques (e.g. Donlon
et al., 2012b; Buongiorno Nardelli et al., 2013). SST L4 products at
regional scales are characterized by improved spatial resolution with
respect to global products reaching 1 km resolution, as for L4 Medi-
terranean SST (Buongiorno Nardelli et al., 2015). Multi-year re-
processed Products (MYP) are also produced and distributed by
CMEMS, which are consistent time series covering the period 1982 to
the present (Pisano et al., 2016). MYP SSTs are required to provide
consistent descriptions of the ocean state over the past decades and are

used by CMEMS to produce ocean monitoring indicators available on
the web and to contribute to the Ocean State Report published every
year (von Schuckmann et al., 2018). MYP SSTs are also assimilated by
global and regional CMEMS MFCs (Monitoring and Forecasting Cen-
ters) to produce ocean reanalysis of the two decades. The SST TAC is
responsible for ensuring the quality of their products by planning and
implementing validation of their products, instigating quality control
checks of incoming data streams and then monitoring the quality of the
data produced. The SST TAC makes a continuous effort to include any
new sources of data that are proven to improve the quality of the
CMEMS output products, such as newly available satellite sensors.
These new data sets, for example the SLSTR data from both Sentinel 3A
and Sentinel 3B missions, are included in all regional and global pro-
ducts. Interaction with users is another important component of the
CMEMS, for example via provision of quality information documents
and user manuals and by responding to queries received through the
CMEMS service desk.

15. Outlook

The outlook for the next decade and longer is very good, with
continuation of current SST-capable satellite missions and the first
launches of new radiometers. Data processing and distribution cap-
abilities will no doubt continue to expand and provide increasingly
effective support for research and operations, and the combination of
improved sensors and algorithms will result in more accurate SST fields.
A detailed discussion of requirements and recommendations to ensure
continuing our SST capability through the next decade is given by
O'Carroll et al. (2019).

15.1. Satellite instruments

We can confidently expect the continuation of VIIRS on the NOAA
polar orbiters, SLSTR on Sentinel 3 series and several other IR radio-
meters described in Section 5 through the next decade and beyond.
Similarly, the new generation of instruments on the current GOES and
Himawari and on the new GEO-KOMPSAT-2 geostationary satellites

Fig. 27. The SST anomaly derived from the Multi-Scale Ultra-High Resolution (MUR) SST overlaid on a true color image from MODIS on Aqua. Clearly visible (blue
colors) is the cooling of the Gulf of Mexico as Hurricane Michael made landfall on October 10th 2018. Image provided by JPL/Caltech/PO.DAAC. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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will continue to provide valuable data.
In addition, new satellite series carrying radiometers with SST

capabilities are planned to be launched in the next decade into both
sun-synchronous polar and geostationary orbits. The first of the EUM-
ETSAT Polar System - Second Generation (EPS-SG) polar-orbiters is
planned for launch in 2022 and will carry a new class of visible and IR
imager, METimage (Wallner et al., 2017) and the Infrared Atmospheric
Sounding Interferometer - New Generation, IASI-NG (Bermudo et al.,
2014; Crevoisier et al., 2014), both being significant developments of
their predecessors on the Metop series. METimage will have 20 spectral
channels, including a set of IR bands that correspond to those of MODIS
for SSTskin retrievals, but with 500m surface resolution at nadir with a
2670 km swath. IASI-NG will have improved spectral resolution and
better radiometric accuracy than the IASI, but will have the same sur-
face resolution of 12 km. Complementing the AHI, ABI and AMI on
Japanese, US, and Korean geostationary satellites, EUMETSAT will
launch the first of Meteosat Third Generation-Imaging (MTG-I1) three-
axis stabilized satellites in 2021 with the Combined Flexible Imager
(CFI) as part of its payload. CFI will have 16 channels, with surface
resolution of 1 km in the visible and near-IR, and 2 km in the IR, in-
cluding SST channels at λ=3.8 μm, 10.5 μm, and 12.3 μm (Ouaknine
et al., 2013; Durand et al., 2015). Full Disc Scans will have a basic
repeat cycle of 10min, and a European Regional-Rapid-Scan will have a
repeat cycle of 2.5min. When the CFI becomes operational, the globe
will be sampled from geostationary orbit by new generation imagers at
2 km resolution at nadir and 10-minute temporal resolution. The con-
stellation of satellites with microwave sensors with SST capability re-
mains fragile and vulnerable to instrument failure. A major break-
through would be the development of a high-resolution microwave
sensor, such as the Copernicus Imaging Microwave Radiometer (CIMR)
which is a candidate mission within the European Copernicus Expan-
sion program (Kilic et al., 2018). The proposed CIMR would have
channels at 1.4, 6.9, 10.65, 18.7, and 36.5 GHz giving it sensitivity to
SST and also SSS, wind speed and sea ice concentration. The CIMR
design is a conically scanning microwave radiometer with 7m antenna,
giving a spatial resolution of 15 km, about three times better than that
of AMSR-2, and an ability to retrieve SST within 35 km of the coast.

15.2. Validating sensors

The drifting buoy array used in the validation of satellite-derived
SSTs has evolved during the last three decades. At first, the common
drifter type was based on the ARGOS system for geo-location and data
transmission, SST resolution was 0.1 K and position and SST measure-
ments were asynchronous. The migration to a new drifter type, called
HRSST-1, began around 2010 and is almost completed. HRSST-1 buoys
transmit their data through Iridium satellites, are geo-located by GPS,
SST resolution is 0.01 K and position and SST measurements are syn-
chronous. Simultaneously, another drifter type, called HRSST-2, char-
acterized by a better calibrated, digital SST probe, has been developed
and tested. HRSST-2 buoys are not all the same, some of them have
additional improvements such as two SST probes, at 0.17m and 0.48m,
or a careful insulation of the SST sensor from anything other than sea
water (Poli et al., 2018). HRSST-2 buoys provide a more accurate SST
and information on its representativeness, which is very useful when
comparing satellite and buoy SST. With>60 buoys deployed so far and
100 buoys expected in the next three years, HRSST-2 buoys are not
sufficient by themselves for satellite SST operational validation, but
they will significantly contribute to the validation of future instru-
ments.

It is hoped that the current suite of ship-radiometers (Section 6) will
continue to be deployed to provide SI-traceable assessments of the sa-
tellite-derived SSTskin accuracy and thereby contribute to the SST CDR.
The fact that reliable, well-calibrated ship-board radiometers capable of
providing SSTskin values are few in number, but slowly increasing,
means that in the foreseeable future the data for assessing the accuracy

of satellite-derived SSTskin will be comparatively sparse. Efforts are
made to mount the radiometers on research ships for cruises in areas
where conditions are particularly challenging for the cloud-screening
and atmospheric correction algorithms (e.g. Minnett, 2010). Examples
are at high latitudes where the atmospheric conditions are extreme in
the global distributions of atmospheric temperature and humidity and
where drifting buoys are few, or upwelling regions where air-sea tem-
perature differences are generally different from the global distribution
and from where the surface divergence tends to advect drifters. Ad-
ditionally, atmospheric aerosols pose particular challenges to the al-
gorithms (Díaz et al., 2001; Bogdanoff et al., 2015; Luo et al., 2019) and
areas with frequent contamination by aerosols, such as Saharan dust
outflows over the tropical and equatorial north-east and south-east
Atlantic Ocean and Arabian Sea (Prospero and Carlson, 1972; Prospero,
1999; Prospero et al., 2002), or smoke from forest fires, such as off
southwest Africa (Adebiyi et al., 2015) and around Indonesia require
further investigation. There is an additional imperative to studying the
effects of aerosols on the accuracies of infrared-derived SSTskin as the
reduction in surface insolation resulting from aerosol scattering of
sunlight reduces the SST and near-surface heat content (Delworth et al.,
2005; Rajeev et al., 2008; Martínez Avellaneda et al., 2010). The ac-
tivities of those operating ship-board radiometers are coordinated
through the International SST Fiducial Reference Measurement (FRM)
Radiometer Network (ISFRN; see http://www.shipborne-radiometer.
org/), which issues guidelines on the specifications of ship-board
radiometers, on best practices to mount instruments on ships, and the
preferred format of data to facilitate easy data exchange (Ships4SST,
2019). It is in this format, referred to as L2R, that radiometer mea-
surements should be submitted to the ESA Felyx system (Taberner et al.,
2013) for generating match-ups with satellite radiometer measure-
ments.

The recent, rapid development of reliable and stable unmanned
aerial vehicles (UAVS, commonly referred to as “drones”) has in-
troduced a new potential method for validating satellite-derived
SSTskin. This has spurred the recent development of lightweight min-
iaturized self-calibrating radiometers with low power requirements,
such as the Ball Experimental Sea Surface Temperature (BESST)
Radiometer (Emery et al., 2014). Such radiometers offer a cost-effective
method of validating satellite data in remote or rarely accessed areas.
The BESST was installed on a Boeing ScanEagle UAV (https://en.
wikipedia.org/wiki/Boeing_Insitu_ScanEagle) for the MIZOPEX study in
the Arctic Marginal Ice Zone and the measurements have been analyzed
to quantify SSTskin variability within individual MODIS pixels (Castro
et al., 2017).

A further recent development that is contributing to the validation
of satellite-derived SSTs is the growing use of robotic Autonomous
Surface Vehicles, such as Saildrones (Voosen, 2018) and Wave Gliders
(Manley and Willcox, 2010) as many are fitted with near-surface
thermometers. In a recent deployment, from April 11, 2018–June 11,
2018, of a Saildrone off California and Mexico (Fig. 28), additional self-
recording thermometers were installed on the hull and keel. The great
advantage of such approaches is the possibility of post-cruise calibra-
tion of the sensors, and since they are not disposable platforms, more
expensive and accurate sensors can be deployed than are usually used
on drifting buoys. A comparison between subsurface temperatures
measured by a SeaBird 56 temperature sensor on the Saildrone and L2
SSTskin derived from measurements from MODIS on Terra and Aqua,
and from VIIRS on Suomi-NPP produced very promising results
(Gentemann et al., 2019). The SSTs measured by the Saildrone CTD at
0.6 m depth throughout the deployment are shown in Fig. 28, along
with differences between these temperatures and those in three widely-
used GHRSST L4 SST products: MUR (Chin et al., 2017), OSTIA (Donlon
et al., 2012b), and CMC (Brasnett, 1997; Brasnett and Surcel-Colan,
2016). Such co-located satellite-derived SSTs and Saildrone measure-
ments provide estimates of mean differences, root mean square differ-
ences (RMSD) and correlations (Table 4). Overall, the differences were
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close to zero, except for the MUR data which shows warm biases off-
shore. The high correlations of 0.96 and greater are consistent with the
L4 fields reproducing a significant part of the coastal variability in this
area.

In the summer of 2019, a fleet of six Saildrones was deployed in the
Alaskan sector of the Arctic Ocean in a collaboration between NOAAs
Pacific Marine Environmental Laboratory (PMEL) and a NASA-spon-
sored component of a US National Oceanographic Partnership Program
(NOPP) project called the Multi-sensor Improved Sea-Surface
Temperature (MISST). As with the 2018 Saildrone deployment, the two
MISST Saildrones carry additional sub-surface thermometers, and also a
pair of infrared radiometers, one viewing the sea-surface ahead of the
Saildrone, and the other viewing the sky to provide data for the cor-
rection of reflected sky radiation to permit the retrieval of SSTskin from
the Saildrone. It is anticipated that similar Saildrone deployments will
be made in the summers of the next several years.

As with UAVs carrying radiometers, ASVs can make high-resolution
measurements along their track.

15.3. Gridded SST analyses

For the gridded (L3 and L4) SST analyses in the near future, wider
availability of 1-km and higher spatial resolution L2 input data sets
such as VIIRS, SGLI, SLSTR, and METimage, and new-generation
geostationary imagery could lead to new practices in data interpolation.
The analysis interval would need to be shortened to a sub-daily level to
avoid aliasing of the sub-10 km scale SST features which tend to evolve
faster than their mesoscale counterparts.

The current NOAA 5 km Geostationary-Polar SST Analyses are
generated on a daily basis for day and night, nighttime and diurnally
corrected L4 products (Maturi et al., 2017). The availability of new,
rapidly-sampled SST retrievals from geostationary satellites com-
plemented by high latitude sampling from the new polar-orbiting sen-
sors will support the development of a unified methodology to in-
vestigate the global characteristics of diurnal variability. This will
support the optimal integration of diurnal variability in operational
modelling systems, leading to improved L4 SST analyses products that
resolve the daily cycle. The analysis methodology could build on that
used in the current Geo-Polar Blended SST analysis (Maturi et al., 2017)
but applied at a higher resolution. This will provide detection of high
resolution spatial and temporal variability in coastal regions for the
protection, restoration and management of coastal and ocean resources
through ecosystem-based management, and contribute a better under-
standing of climate variability and change.

Another aspect related to the generation of L4 SST fields, in addition
to diurnal temperature effects, is the drastic difference in L2 sample
density between areas with and without sensor coverage and this will
need to be dealt with, perhaps by determining inter-sample correla-
tions, to avoid interpolation artifacts of numerical origin. The

Fig. 28. The track of the Saildrone deployment from April 11, 2018–June 11, 2018 (top left), colored by the measured SST, as indicated by the temperature scale at
right. Other panels show the differences between three L4 satellite-derived SST fields and the Saildrone measurements, colored according to the temperature
difference scale at far right. After Vazquez-Cuervo et al. (2019).

Table 4
Statistics of differences between L4 satellite-derived SST fields and Saildrone
measurements (after Vazquez-Cuervo et al., 2019).

Parameter Bias (K) RMSD (K) Correlation (R) Signal-to-noise ratio

CMC −0.03 0.43 0.97 4.3
OSTIA 0.04 0.39 0.98 5.0
MUR 0.32 0.42 0.97 4.4

The signal to noise ratio indicates that the signal, as defined by each of the
satellite derived data sets, is significantly larger than the noise, as defined by
the differences between the satellite derived product and Saildrone.

P.J. Minnett, et al. Remote Sensing of Environment 233 (2019) 111366

39



geolocation information in the L2 data sets would also need to be fully
accounted for, without truncating its sub-grid portion, to represent SST
features, such as front locations, with higher fidelity.

15.4. Ocean heat contents and severe storms

To improve our ability to resolve the sources and sinks of OHC in all
ocean basins, at least three radar altimeter missions are needed for sea
surface height anomalies (SSHA) for adequate daily sampling and to
provide a realistic product for mesoscale oceanography needed for
improved forecasting of severe storms. Given that only 17-years of OHC
are currently available, such applied research efforts must continue
over the next decade to build an evaluated data base, useful also for
climate studies. While OHC has been principally used during tropical
cyclone seasons, daily mapping also provides valuable data to address
key science questions related to climate, such as the extent of warming
(or cooling) in the warm pools of the Atlantic and Pacific Oceans,
thermodynamic processes in the equatorial wave guides associated with
eastward propagating Kelvin Waves, and linkages to the Madden-Julian
Oscillation across the tropics.

In the coastal regime, connections to the nation-wide array of high
frequency surface current radars and glider technologies will allow the
derivation OHC closer to the coast. Thus, a more complete picture will
emerge of OHC variability for use in basic and applied research as well
as operations such as forecasting hurricane intensity change.

Anticipated benefits include new understanding of upper ocean
thermodynamics, dynamics and air-sea processes relevant to tropical
cyclone intensity forecasting, climate variability (e.g., SST anomalies
and OHC anomalies over various time and spatial scales), fisheries,
coral reef bleaching and air-sea fluxes. Over the longer term, the ben-
efits will be for understanding climate variability including SST and
OHC anomalies across the ocean basins.

15.5. Data distribution

In terms of data archive and distribution, the primary challenges for
the future include allowing access and manipulation to larger amounts
of data over longer periods of time, developing cloud technologies that
allow users to implement their own processing algorithms (for example
cloud masking/optimal interpolation), and visualization and extraction
tools for near real time applications. Data quality standards should be
measured by two issues: 1) Adherence to metadata standards that allow
for interoperability, while maximizing implementation across a wide
range of tools and services and 2) access to validation (matchup data-
bases) that allow users to assess the quality of the data in their area of
interest. Cloud technologies must be adopted cautiously, as it will re-
quire major paradigm shifts in both accessing data and information. An
associated issue is ensuring that the user community is aware of new
SST products, and of their strengths and weaknesses, so that new data
sets that meet the users' requirements can be appropriately exploited.
Some further evolving aspects of data centers have already been dis-
cussed in Section 14.
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