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Abstract. In atmospheric chemistry retrievals and data as-
similation systems, observation errors associated with satel-
lite radiances are chosen empirically and generally treated as
uncorrelated. In this work, we estimate inter-channel error
covariances for the Infrared Atmospheric Sounding Interfer-
ometer (IASI) and evaluate their impact on ozone assimila-
tion with the chemistry transport model MOCAGE (Modèle
de Chimie Atmosphérique à Grande Echelle). The method
used to calculate observation errors is a diagnostic based
on the observation and analysis residual statistics already
adopted in many numerical weather prediction centres. We
used a subset of 280 channels covering the spectral range
between 980 and 1100 cm−1 to estimate the observation-
error covariance matrix. This spectral range includes ozone-
sensitive and atmospheric window channels. We computed
hourly 3D-Var analyses and compared the resulting O3 fields
against ozonesondes and the measurements provided by the
Microwave Limb Sounder (MLS) and by the Ozone Moni-
toring Instrument (OMI).

The results show significant differences between using the
estimated error covariance matrix with respect to the em-
pirical diagonal matrix employed in previous studies. The
validation of the analyses against independent data reports
a significant improvement, especially in the tropical strato-
sphere. The computational cost has also been reduced when
the estimated covariance matrix is employed in the assimila-
tion system, by reducing the number of iterations needed for
the minimizer to converge.

1 Introduction

Ozone is an important trace gas that plays a key role in
the Earth’s radiative budget (Iglesias-Suarez et al., 2018),
in the chemical processes occurring in the atmosphere, and
in climate change (United Nations Environment Programme
(UNEP) 2015). Tropospheric ozone also behaves as a pol-
lutant with negative effects on vegetation and human health
(UNEP2015, 2015). The stratospheric ozone is, nevertheless,
a vital component of life on the Earth since it protects the
biosphere from harmful ultraviolet solar radiation (WMO,
2014). Therefore, monitoring the atmospheric ozone has
been a subject of numerous research studies and projects (e.g.
Monitoring Atmospheric Composition and Climate (MACC)
project (Inness et al., 2013)). O3 surveillance is carried out
through numerical forecast models and observational sys-
tems. The information arising from these two sources is,
thereafter, combined with the data assimilation techniques to
improve the system state and forecasts.

Remote soundings from satellites are an essential com-
ponent of an observational network (Clerbaux et al., 2009).
Several remote sensors relying on thermal emission of the
Earth and the atmosphere have demonstrated their ability to
provide appropriate information for total columns or verti-
cal profiles of atmospheric gases such as water vapour, car-
bon dioxide, and ozone (Clarisse et al., 2008; Clerbaux et al.,
2009; Irion et al., 2018). Furthermore, the role of thermal in-
frared sounders does not typically end at the monitoring of at-
mospheric gases. A large number of applications have taken
advantage of these measurements: the estimation of meteo-
rological parameters (clouds, temperature, and humidity) and
climate change studies (e.g. MacKenzie et al., 2012). The In-
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frared Atmospheric Sounding Interferometer (IASI) is one
of these thermal infrared sounders on board Metop-A which
provides global-scale observations for a series of key atmo-
spheric species (Clerbaux et al., 2009).

Data assimilation has been introduced relatively recently
in atmospheric chemistry, in the stratosphere (Fisher and
Lary, 1995) and for the troposphere (Elbern et al., 1997).
Chemical fields estimated by chemistry transport models
(CTMs) are combined with observations to construct a more
accurate description of the atmospheric composition evolu-
tion (Lahoz et al., 2007). Numerous studies have been con-
ducted assimilating satellite retrievals of ozone (Emili et al.,
2014; Massart et al., 2009). However, the quality of anal-
yses might be influenced by the prior information used for
the retrievals. A recent study (Emili et al., 2019) attempted
to assimilate satellite radiances directly in a CTM to over-
come this issue. In chemical assimilation systems that assim-
ilate radiances directly, but also in most of the current satel-
lite retrieval algorithms (Dufour et al., 2012), the observation
errors are empirically adapted from the nominal instrumen-
tal noise and assumed to be uncorrelated. This assumption
is questionable since we use a radiative transfer model that
may introduce similar errors among different spectral chan-
nels (Bormann et al., 2010). In other words, an error depen-
dency between channels of the band used is likely to be intro-
duced. The inter-channel error correlations might originate
from observation operator errors. They can also arise from
the instrument calibration and some practices of quality con-
trol (Bormann et al., 2010; Waller et al., 2016; Geer, 2019).
The representation errors (Janjić et al., 2018) may also in-
troduce correlations. Liu and Rabier (2003) have shown that
the assimilation can lead to sub-optimal analysis errors when
observation-error correlations are neglected.

The weight given to the observation in the assimilation
process is determined by its error covariance matrix R.
Therefore, its estimation plays a crucial role in the assimi-
lation results. While most chemical assimilation systems as-
sume the observation error to be uncorrelated, many numer-
ical weather prediction (NWP) centres have estimated non-
diagonal observation-error covariances for satellite instru-
ments such as the Atmospheric Infrared Sounder (Garand
et al., 2007; Bormann et al., 2010), IASI (Stewart et al., 2009;
Bormann et al., 2010; Weston et al., 2014; Campbell et al.,
2017; Bathmann et al., 2020), and the Spinning Enhanced
Visible and Infrared Imager (Waller et al., 2016). The results
found in the literature for the meteorological applications
incite us to account for a correlated observation error for
the chemical assimilation system as well. Indeed, the stud-
ies mentioned above show that the inter-channel observation
errors are correlated and taking such correlated errors into
account in the assimilation leads to improved analysis accu-
racy. Additionally, Emili et al. (2019) have highlighted some
issues when assimilating radiances in a chemistry transport
model (increase in the ozone analysis errors compared to the
control simulation at some specific altitudes), which might be

due to too simplistic observation errors. The main objective
of this study is, thus, to improve the ozone analysis accu-
racy within a chemistry transport model, by means of using
more realistic observation-error covariances for IASI ozone-
sensitive channels.

The estimation of R is not straightforward, but a num-
ber of statistical methods are already evaluated in the liter-
ature. Desroziers et al. (2005) have proposed an estimation
based on the observation and analysis residual statistics. By
assuming Gaussian errors and no correlations between ob-
servation and background errors, the error covariance matrix
is provided by the statistical average of observation-minus-
background times the observation-minus-analysis residuals.
This method has been used in many studies to estimate
the observation errors and inter-channel error correlations
(Garand et al., 2007; Weston et al., 2014; Bormann et al.,
2016; Tabeart et al., 2020; Coopmann et al., 2020).

In the present work, we estimate observation errors and
their inter-channel correlations for IASI using the Desroziers
method. We evaluate, then, their impact on ozone assimila-
tion in a CTM (MOCAGE). The paper is organized as fol-
lows. The CTM, the radiative transfer model, the assimi-
lation algorithm, the data, and the experimental framework
are described in Sect. 2. The estimation of R is discussed in
Sect. 3. Then, the impact on data assimilation is reported in
Sect. 4, and validation against independent data is discussed
in Sect. 5. Finally, the summary and conclusions are given in
the last section.

2 Methods and data

2.1 Methods

2.1.1 Chemistry transport model

MOCAGE (Modèle de Chimie Atmosphérique à Grande
Echelle) is the CTM used in this study. It is a three-
dimensional CTM providing the space and time evolution
of the chemical composition of the troposphere and the
stratosphere. Developed by Centre National de Recherches
Météorologiques (CNRM) at Météo France (Josse et al.,
2004), it was used for a large number of applications such
as satellite ozone assimilation (Massart et al., 2009; Emili
et al., 2014), climate (Teyssèdre et al., 2007), and air qual-
ity (Martet et al., 2009). MOCAGE provides a number of
optional configurations with varying domains, geometries,
and resolutions, as well as multiple chemical and physical
parametrization packages.

A global configuration with a horizontal resolution of 2◦

and 60 hybrid levels from the surface to 0.1 hPa was used.
The vertical resolution goes from about 100 m in the bound-
ary layer to about 500 m in the free troposphere and to almost
2 km in the upper stratosphere. MOCAGE is forced by me-
teorological fields from numerical weather prediction mod-
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els such as the Météo France global model ARPEGE (Ac-
tion de Recherche Petite Echelle Grande Echelle, (Courtier
et al., 1991)), limited-area model AROME (Application de la
Recherche à l’Opérationnel à Méso-Echelle), and ECMWF
NWP model and assimilation system (Integrated Forecast
System, IFS) for air quality predictions and ARPEGE-Climat
(Déqué et al., 1994) for climate simulations. In our study,
the ECMWF IFS meteorological forecasts fields are used.
For the chemical scheme, we adopted RACMOBUS, which
bundles the stratospheric scheme (Lefèvre et al., 1994) and
the tropospheric scheme (Stockwell et al., 1997), including
about 100 species and 300 chemical reactions.

2.1.2 Radiative transfer model

Remote sensing instruments measure, within a certain wave-
length range, the intensity of electromagnetic radiation pass-
ing through the atmosphere (radiances). Radiative transfer
models are used to simulate the radiation measured by the
satellite as a function of atmospheric state, to be able to com-
pare the model state to the observed radiances.

In our study, IASI radiances are simulated using the radia-
tive transfer model RTTOV (Radiative Transfer for TOVS),
which was initially developed for TOVS instruments (Saun-
ders et al., 2018). Giving an atmospheric profile of tempera-
ture, water vapour, and, optionally, trace gases, aerosols, and
hydrometeors, together with surface parameters and a view-
ing geometry, RTTOV simulates radiances in the infrared and
microwave spectrum. For IASI, it can reproduce radiances
with an accuracy of less than 0.1 K (Matricardi, 2009). In this
paper, we use the same version used by Emili et al. (2019),
i.e. version 11.3 (Saunders et al., 2013). The radiative trans-
fer computations are performed in clear-sky conditions and
aerosols are neglected. The surface skin temperature, 2 m
temperature, 2 m pressure, and 10 m wind vector are taken
from IFS forecasts. The land surface emissivity is based on
the RTTOV monthly thermal infrared (TIR) emissivity atlas
(Borbas and Ruston, 2010), and the Infrared Surface Emis-
sivity Model (ISEM) (Sherlock, 1999) is used over the sea.
Other chemical variables (CO2, CH4, CO, N2O) were set to
the reference profiles of RTTOV.

2.1.3 Assimilation algorithm

The variational data assimilation system of MOCAGE was
developed jointly by CERFACS and Météo France in the
framework of the European project ASSET (Assimilation
for Envisat data) (Lahoz et al., 2007). It has been used in
several studies such as chemical data assimilation research
(Emili et al., 2014; Massart et al., 2009), aerosol data as-
similation (Sič et al., 2015), and tropospheric–stratospheric
exchange using data assimilation (El Amraoui et al., 2010).
The MOCAGE data assimilation system is flexible and al-
lows multiple assimilation options, for example, the choice
of the variational method (3D-Var, 4D-Var), the representa-

tion of the background-error covariance, and the type of ob-
servation assimilated. It is also used to produce operational
air quality analyses for the European project CAMS (Maré-
cal et al., 2015).

The background-error covariance matrix is divided into
two distinct parts, the diagonal matrix of the standard de-
viations and the correlation matrix. The latter, allowing the
spatial smoothing of the assimilation increments, is modelled
through a diffusion operator (Weaver and Courtier, 2001).

The 3D-Var implementation has been used with hourly
assimilation windows. The variational cost function is
minimized using the BFGS (Broyden–Fletcher–Goldfarb–
Shanno) algorithm (Liu and Nocedal, 1989). The system is
preconditioned with the square root of the B matrix. The con-
trol vector includes only skin surface temperature (SST) and
ozone.

As we mentioned before, the aim of this work is to evalu-
ate the impact of the estimated observation-error covariances
on the ozone analysis. Hence, in order to be able to com-
pare our results to those that have already been discussed and
validated, we kept exactly the same configurations as those
used in Emili et al. (2019) in terms of model, radiative trans-
fer, and assimilation algorithm parameters. The summary of
these configurations is given in Table 1.

2.2 Data

2.2.1 IASI

IASI is one of the instruments operating on board the polar-
orbiting satellite Metop-A, B, and C launched by the Eu-
ropean organization for the Exploitation of Meteorological
Satellites (EUMETSAT). It is based on a Fourier transform
spectrometer (FTS) and measures the spectrum emitted by
the Earth atmosphere system in the spectral range between
645 and 2760 cm−1 (3.62 and 15.5 µm) with a resolution
of 0.5 cm−1 after apodization, with a spectral sampling of
0.25 cm−1. IASI scans the Earth up to an angle of 48.3◦ on
both sides of the satellite track. The cross-track is observed
in 30 successive elementary fields of view, each composed of
four instantaneous fields of view corresponding to a 12 km
diameter footprint on the ground (Clerbaux et al., 2009). The
swath width on the ground is 2200 km, which provides global
Earth coverage twice a day. The measurements provide in-
formation on atmospheric chemistry compounds such as O3,
surface properties (skin surface temperature, SST), and me-
teorological profiles (humidity and temperature).

For this study, a subset of 280 channels covering the spec-
tral range between 980 and 1100 cm−1 was used. The chan-
nel selection is inherited from IASI Level 2 O3 retrievals
(Dufour et al., 2012; Emili et al., 2019). L1c data have been
downloaded from the EUMETSAT Earth Observation data
portal (https://eoportal.eumetsat.int, last access: 1 May 2020)
in NetCDF format. Data files also contain the co-located
land–sea mask and cloud fraction values, obtained from the
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Advanced Very High Resolution Radiometer (AVHRR) mea-
surements, also on board Metop-A.

2.2.2 MLS

The Microwave Limb Sounder (MLS) provides vertical pro-
files of several chemical components, by measuring the mi-
crowave thermal emission from the limb of Earth’s atmo-
sphere (Waters et al., 2006). More than 2500 vertical profiles
are observed daily, including trace gases with a vertical reso-
lution of approximately 3 km. Several studies benefited from
MLS products, notably the ozone profiles in assimilation ex-
periments (Emili et al., 2014; Massart et al., 2009), thanks
to its low bias in the stratosphere (< 5 %) (Froidevaux et al.,
2008).

In our study, we use the ozone profiles retrieved from MLS
(V4.2 Products) as independent data to validate our results.
The data have been downloaded from the Goddard Earth Sci-
ences Data and Information Services Center (GES DISC)
web portal (https://disc.gsfc.nasa.gov, last access: 1 May
2020).

2.2.3 OMI

The Ozone Monitoring Instrument (OMI) is a nadir-viewing,
ultraviolet–visible (UV-VIS) spectrometer (Levelt et al.,
2018). It provides complete global maps of total column
ozone on a daily basis. The OMI ozone data record starts
in October 2004, shortly after the launch of Aura (McPeters
et al., 2015). The total column averaged over the month of the
study (July 2010), resulting from the OMI-TOMS version 8
algorithm (Bhartia, 2002), is used here to validate the results
of the assimilation experiments.

2.2.4 Ozonesondes

Ozonesondes are in situ instruments carried by a radiosonde
continuously transmitting the measurements as it ascends.
The profiles of O3 are provided up to an altitude that of-
ten exceeds 30 km (Jiang et al., 2007) with a vertical reso-
lution of 150–200 m. They have been used for several ap-
plications such as validating satellite products (Jiang et al.,
2007). In our study, vertical profiles of ozone, collected and
distributed by the Word Ozone Ultraviolet Radiation Data
Centre (http://www.woudc.org, last access: 1 May 2020), are
used to validate the model simulations.

2.3 Setup of the numerical experiments

The main purpose of this study is to estimate the IASI
observation-error covariances and verify their impact on the
quality of the ozone assimilation results. The setup of the
experiment in terms of the period of the study, the model
configuration, the choice of assimilated observations, and the
background-error covariance matrix is reported in Table 1.

The observation-error covariance matrix will be discussed in
the results section (Sect. 3).

The model was initialized with a zonal climatology, and
the spin-up time used is 1 month (June 2010). Then, our
simulations were performed for the month of July 2010.
The ozone forecast-error standard deviation was assumed to
be proportional to the ozone concentration. In fact, Emili
et al. (2019) have evaluated the standard deviation of the free
model simulation against independent data (profiles from
ozonesondes and MLS), and they found a small free forecast
error in the stratosphere, larger error in the free troposphere,
and the highest error close to the tropopause. This strategy
was adopted previously by many studies (Emili et al., 2014;
Peiro et al., 2018; Emili et al., 2019). Emili et al. (2014)
and Peiro et al. (2018) have used a percentage of 15 % in
the troposphere and 5 % in the stratosphere. In this study,
we have adopted a detailed chemical scheme (discussed in
Sect. 2.1.1). This scheme was shown to reduce the model
bias compared to the scheme used in Emili et al. (2014) and
Peiro et al. (2018) (see Fig. 4 in Emili et al., 2019). Hence,
we chose the same background error as in Emili et al. (2019):
2 % of the O3 profile above 50 hPa and 10 % below. An im-
portant reason to keep the background errors similar to the
setup of Emili et al. (2019) is also that we wanted to exclu-
sively examine the impact of R, as mentioned in the intro-
duction.

The ozone background-error covariance matrix is split into
a diagonal matrix filled with the standard deviation and a cor-
relation matrix modelled using a diffusion operator. The cor-
relation, characterized by the length scale, spreads the assim-
ilation increments in space. The configurations of horizontal
and vertical length scales are described in Table 1.

The same preprocessing described in Emili et al. (2019)
has been applied to our data before their use in the assimila-
tion system. In order to avoid any contamination from clouds,
data were filtered using a cloud mask, and only pixels with
cloud fraction less than or equal to 1 % were kept. The cloud
fraction values are obtained from the AVHRR measurements
on board Metop-A. Since the spatial resolution of MOCAGE
is coarser than the pixel size, the number of ground pixels
was reduced by thinning the data using a grid of 1◦× 1◦ res-
olution and only keeping the first pixel that falls in every two
grid boxes. A dynamical rejection of observations – with a
threshold of 12 % – based on the relative differences between
simulated and measured values with respect to simulated val-
ues was considered. Some channels affected by H2O ab-
sorption (1008–1019, 1028–1030, 1064–1067, 1072–1076,
1089–1092 cm−1) were removed. Pixels affected by aerosols
are detected and then removed using the index based on V-
shaped sand signature as discussed in Emili et al. (2019).
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Table 1. Summary of the configuration of the MOCAGE assimilation system.

Parameter Configuration in the assimilation system

Period of the study July 2010

Assimilation algorithm Hourly 3D-Var

Radiative transfer model RTTOV v11.3

Spectral window 980–1100 cm−1 of IASI from Metop-A

Ozone background Hourly 3D forecasts of MOCAGE

SST prior information ECMWF IFS forecasts

Control vector O3 and SST

T , H2O fields ECMWF IFS forecasts

IR emissivity TIR atlas emissivity over land and ISEM model over sea

Observation-error covariance Both Desroziers method and the setup of Emili et al. (2019)

SST background-error standard
deviation

4 ◦C

O3 background error Vertically variable and computed as percent of the background
profile (using a value of 2 % above 50 hPa and 10 % below)

O3 background-error zonal
correlation

Exponential with a length scale set to 200 km
and reduced towards the pole to account for the increasing
zonal resolution of the regular latitude–longitude grid

O3 background meridional er-
ror correlation

Exponential with a length scale set to 200 Km

O3 background-error vertical
correlation

Exponential with a length scale set to one grid point (vertical
level)

3 R estimation

3.1 Desroziers diagnostics

The observations used in the assimilation system could have
a margin of error. We can identify two types of errors, sys-
tematic and random errors. The systematic error is ordinarily
corrected before the data assimilation process. In NWP, these
types of errors in satellite observations are in general cor-
rected before assimilating the observations or within the data
assimilation process by the VarBC scheme (Auligné et al.,
2007). The key assumption is that the background state pro-
vided by the NWP system is unbiased. This assumption is
not valid in atmospheric chemistry applications, where mod-
els might have significant biases, which is the case in our
study (see Fig. 4 in Emili et al., 2019). In such a case, VarBC
requires some independent data (anchor) to prevent the drift
of the analyses to unrealistic values that might be introduced
by the model bias. In our case, we control tropospheric and
stratospheric ozone. Identifying an anchor needs to be inves-
tigated carefully. Ozonesondes might be used as an anchor in
the troposphere and low stratosphere, but the number of pro-
files provided is limited spatially and temporally. This might

have an impact on the capacity of ozonesonde measurements
to prevent the drift of the analyses due to the model bias.
Han and McNally (2010) used IASI channel 1585 as an an-
chor in the assimilation of ozone for NWP. Dragani and Mc-
nally (2013) have used the same uncorrected channel as an
anchor, and they showed that its impact was not sufficient to
stabilize the bias correction process for a long period. This
aspect needs to be explored carefully in a separate study.
On the other side, a good understanding of sources of the
measurement bias is a prerequisite to implement a bias cor-
rection scheme. VarBC in NWP applications, for instance,
needs to define a linear model with some predictors (Auligné
et al., 2007). Before adapting this approach in an atmospheric
chemistry framework, the possible sources of systematic er-
rors in the IASI ozone window need to be assessed.

In atmospheric chemistry, we used to assimilate level 2
products of ozone (Massart et al., 2012; Emili et al., 2014;
Peiro et al., 2018). Only recently has the direct assimilation
of IASI radiances been introduced in our chemistry transport
model (Emili et al., 2019). Implementing a bias correction
scheme requires careful diagnosis of the bias from observa-
tion monitoring. On the other hand, choosing an anchor de-

https://doi.org/10.5194/amt-14-2841-2021 Atmos. Meas. Tech., 14, 2841–2856, 2021



2846 M. El Aabaribaoune et al.: Impact of an updated observation error of IASI on ozone analysis

mands particular care, and the choice depends on the full set
of assimilated instruments. In this work, which is not based
on a preexisting operational setup, we do not assimilate other
ozone instruments. Thus, we had to assume that our observa-
tions are unbiased and we did not perform any bias correc-
tion. This assumption has been adopted in many chemical
analysis studies (e.g. Massart et al., 2012; Peiro et al., 2018;
Emili et al., 2019).

Random errors can arise from the measurements (e.g. in-
strumental error), forward model, representativeness error
(e.g. difference between point measurements and model rep-
resentation), or quality control error (e.g. error due to the
cloud detection scheme missing some clouds within clear-
sky-only assimilation). These types of errors should be ac-
counted for by the observation-error covariance matrix R.
According to Weston et al. (2014), the instrument noise could
be assumed to be uncorrelated. However, the IASI measure-
ments are apodized, which may introduce correlations be-
tween neighbouring channels, particularly in our case where
we are assimilating a subset of adjacent channels. The radia-
tive transfer model may also introduce correlations between
channels. The error statistics from the instrument noise are
known, while the characteristics of other sources of error are
not yet well understood.

In this paper, we estimate the total error using the statisti-
cal approach introduced by Desroziers et al. (2005).

R= E[(y−H(xa))(y−H(xb))
T
] (1)

Here xa is the analysis state vector, xb is the background state
vector, y is the vector of observations, and H is the observa-
tion operator that computes model counterpart in the obser-
vation space.

This method has been used to estimate observation er-
rors and inter-channel error correlations (Stewart et al., 2009;
Bormann et al., 2016; Tabeart et al., 2020; Coopmann et al.,
2020). It can potentially provide information on imperfectly
known observation and background-error statistics with a
nearly cost-free computation (Desroziers et al., 2005). How-
ever, this approach assumes that the R and B matrices used
to produce the analysis are exactly correct, which is almost
never the case in practice. Furthermore, Desroziers diag-
nostics compute the total covariances, but more efforts are
needed to understand and distinguish the sources of the er-
ror.

3.2 Error results

The Desroziers method was computed on the output of a 3D-
Var experiment using a diagonal matrix R (with a standard
deviation of 0.7 mW m−2 sr−1 cm as in Emili et al. (2019)).
The diagnosed R could not be used directly in the assimi-
lation system. In fact, the estimated matrix was asymmetric
and not positive definite. Similar unrealistic features in the
diagnosed covariance matrices were encountered in Stew-
art et al. (2014) and Weston et al. (2014), where an artifi-

cial inflation of observation errors was applied. R needs to
be a valid covariance matrix before being used in the 3D-
Var assimilation system. Therefore, we first symmetrize the
estimated matrix by taking the mean of the original matrix
and its transpose. Then we impose the negative eigenval-
ues to be equal to the smallest positive eigenvalue as in We-
ston et al. (2014) and Tabeart et al. (2020). Another method
which consists of increasing all eigenvalues of R by the same
amount was tested here to recondition the estimated matrix.
We favoured the first method since the standard deviation and
the correlation values remain closer to the initially estimated
quantities.

Using outputs (analyses and forecasts) derived from a 3D-
Var experiment that used a diagonal R matrix (hereafter
called the first 3D-Var experiment) in the estimation process
might have an impact on the diagnosed R matrix. The matrix
derived using these outputs is hereafter called the first estima-
tion. We performed another 3D-Var experiment (second 3D-
Var experiment) using the first estimation. The outputs (anal-
yses and forecasts) of this experiment (second 3D-Var ex-
periment) were used to estimate another R matrix called the
second estimation. The standard deviation of the second esti-
mation is larger than that of the first estimation (not shown).
The same goes for correlations (not shown). It should be
noted that the second estimation was positive definite, un-
like the first estimation where some unrealistic features were
encountered. We have followed the same process to further
estimate two other matrices (third and fourth estimations).
The differences of the estimations in terms of standard devi-
ation and correlations became smaller as we reestimated the
matrices, suggesting a sort of convergence of the estimation.
We have adopted the second estimation for the results shown
in this work. The reason for this choice will be discussed later
(Sect. 5.2).

Figure 1 presents the standard deviation diagnosed using
the Desroziers approach (solid black line) and that used in
Emili et al. (2019) (dotted blue line). The latter was set equal
to 0.7 mW m−2 sr−1 cm for all channels, which is a common
setting for most IASI O3 retrievals (Dufour et al., 2012). At
first glance, we note that the standard deviation used in pre-
vious studies is highly underestimated for the SST-sensitive
channels and overestimated for some ozone-sensitive chan-
nels (around 1040 and 1050 cm−1). The diagnosed standard
deviation increases to reach 2 mW m−2 sr−1 cm for SST-
sensitive channels (the first and the last 20 channels of the
band (980–1000 cm−1 and 1080–1100 cm−1) and the chan-
nels between 1040 and 1045 cm−1) and varies from 0.2 to
1.4 mW m−2 sr−1 cm for the ozone-sensitive channels. The
radiance values for the observations are greater for the SST
channels than those of the ozone. The same goes for the cor-
responding background and the analysis values. Since these
diagnostics are based on observation, background and analy-
sis residuals, a larger standard deviation for the SST channels
than for ozone channels might be expected. We have plotted
the R standard deviation, the average of observations, and the
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Figure 1. Standard deviation estimated using the Desroziers method
(solid black line) and that used in the previous studies (blue dotted
line) (Emili et al., 2019).

average of the background in the observation space on the
same figure (not shown). We have noticed that the estimated
standard deviation has a very similar shape to that of the ob-
served radiances or the equivalent of the background in the
observation space. This may suggest that the larger absolute
error in the SST band compared to the ozone channels might
be explained by the large values of the observation and the
background for the SST channels in comparison with respect
to the ozone channels. It could also be attributed to greater
sensitivity to emissivity and representativity error.

The IASI instrumental error is provided by the CNES
(Centre National d’Etudes Spatiales), taking into account dif-
ferent known effects such as flight homogeneity and apodiza-
tion effect (Le Barbier Laura, personal communication). The
instrumental error covariance matrix is computed as de-
scribed in Serio et al. (2020). This error remains smaller
(about 0.2 mW m−2 sr−1 cm) than that used in the previ-
ous studies (0.7 mW m−2 sr−1 cm). Then, the large estimated
standard deviation noticed in our estimation might be due to
the radiative transfer input error.

To investigate the off-diagonal part of R, we present the
diagnosed correlation matrix in Fig. 2. The results show high
correlations between the majority of the channels (larger than
0.4). In particular, a very high correlation is observed among
SST-sensitive channels (around 0.9 to 1). The regions of, rel-
atively, lower correlation (around 0.4 to 0.7) represent the
ozone channel correlations and cross correlation between
ozone- and SST-sensitive channels.

The high correlation found here was expected since pre-
vious studies have highlighted the same behaviour in this

Figure 2. Correlation matrix estimated using the Desroziers
method.

spectral region (Bormann et al., 2010; Stewart et al., 2014;
Bormann et al., 2016). In fact, the use of the same radiative
transfer model for all channels may introduce similar errors
among these channels.

The diagnostic discussed above is based on a global es-
timation, without any distinction between the type of the
surface (land or sea) or the time of the observation (day or
night). Since the emissivity varies according to the type of
the surface, and the skin temperature is strongly driven by
the sun radiation, we evaluated R taking these differences
into account. In terms of standard deviation, the error over
land reveals large values for the SST-sensitive channels in
comparison with that estimated over the sea which, in turn,
reproduces a slightly different error in comparison with the
global estimation (not shown). The two surfaces also intro-
duce a slightly different error regarding the ozone band. The
same behaviour as the global estimation is reproduced when
the statistics were performed from the data measured sep-
arately from the day and from the night. The variability in
terms of correlations is more pronounced when the surface
type is considered than in the case of the observation time.
The difference between the correlations estimated using all
observations and pixels over the sea surface varies between
0 % and 40 % for the majority of the channels with values
that can reach 60 %. These differences are located around
1035 and 1060 cm−1, which correspond to the regions of low
correlations (not shown).

The separate treatment of land–sea covariance matrices
did not yield significant differences in terms of assimilation
results compared with the use of global estimation. Hence,
we have adopted the global estimation in our study. The ra-
tionale for this choice will be given during the discussion of
the validation results (Sect. 5.2).
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4 Assimilation results

4.1 Ozone fields

In this section, we discuss the impact of the observation-error
covariances estimated previously on the ozone analysis. To
this end, three experiments for the month of July 2010 were
carried out:

– (i.) model run without data assimilation hereafter called
the free run (or Control), and denoted in the rest of this
paper as ControlExp;

– (ii.) 3D-Var assimilation of IASI radiances using a di-
agonal observation-error covariance matrix (as in Emili
et al. (2019)), referred to here as RdiagExp;

– (iii.) 3D-Var assimilation of IASI radiances using a full
matrix estimated with the Desroziers diagnostic denoted
hereafter as RfullExp.

The first experiment (ControlExp) was run to evaluate the
benefit of the assimilation experiments and to quantify the
improvements of each of the two analyses when they are
validated against independent data. The same setup of Emili
et al. (2019) was adopted for RdiagExp, which was taken as
a reference to characterize the impact of accounting for the
estimated R in the third simulation (RfullExp).

Figure 3 shows the difference between the zonal average
of the ozone analysis from the two assimilation experiments
in units of parts per billion volume (ppbv). The zonal values
were averaged over the month of the study before perform-
ing the difference. The impact of the estimated R varies with
latitude. It also varies with the height, adding or reducing
the amount of ozone. Overall, the estimated R reduces the
amount of ozone in the high latitudes of the free troposphere
and the tropical high stratosphere, whereas the amount is in-
creased in the vicinity of the lower stratosphere. The maxi-
mum reduction of ozone is larger than the amount added. The
amount of ozone reduction reaches 600 ppbv, whereas the in-
crease does not exceed 300 ppbv. In high northern latitudes
(30–90◦ N), a significant addition is found (300 ppbv) cover-
ing almost the whole stratosphere, in opposition to the other
latitudes where the difference changes sign with altitude. On
the other hand, a large reduction of ozone is observed in the
tropics at 20 hPa (more than 600 ppbv). We have performed
a t test to evaluate the significance of these differences be-
tween the two experiments in terms of zonal averages. These
were obtained by averaging the analysis over the month of
the study and over longitudes. We have used the standard de-
viation computed for each average to perform our test. We
have noticed that the majority of regions, especially where
the differences are large (between 300 and 10 hPa), are sta-
tistically significant (not shown). To better understand the
impact of the estimated R, we validate the results with in-
dependent data in the section of validation (Sect. 5).

4.2 Surface skin temperature

The assimilated spectra include channels sensitive to both
ozone and surface skin temperature. The IFS skin temper-
ature was taken as a background in the assimilation process.
We have computed the difference between the SST analy-
sis and the background at the end of each assimilation ex-
periment (RdiagExp and RfullExp). The skin temperature is
physically linked to the ozone measured. In fact, the skin
temperature interacts with the ambient atmosphere. An in-
crease in SST can for example create a convective move-
ment impacting the transport of the ozone. However, the skin
temperature is given only at the observation location in this
study, and it is specified with values interpolated from NWP
forecasts (IFS), whereas ozone is a 3D field issued from the
chemistry transport model. Hence, the estimation and poten-
tial account of error correlations between the two variables
seem challenging in our system. In this work, we did not
consider the background-error correlation that might exist
between O3 and SST.

Figure 4a shows the difference between the analysis of the
SST given by RdiagExp and the IFS SST forecast, whereas
Fig. 4b shows the difference between the analysis of the SST
given by RfullExp and the IFS SST forecast. In terms of
geographical distribution, we notice that the differences are
smaller through the tropics and mid-latitudes, especially over
sea, when the estimated R was adopted. Looking at the aver-
age values, RdiagExp decreases the surface skin temperature
by about 0.55 ◦C with respect to the background. The intro-
duction of the estimated R decreases the difference between
the SST analysis and that of IFS to almost −0.18 ◦C instead
of −0.55 ◦C. The standard deviation was also reduced from
1.39 to 1.05 ◦C. Thus, the use of the estimated R lets the SST
analysis stay closer to the IFS forecasts. However, there is
an increase in difference on land using RdiagExp, mainly in
Africa and South America. This increase in difference over
the land seems related to the dependence of observation er-
rors on the surface. In fact, the number of observations over
the sea represents almost 70 % of the total observations we
have used in this study. Consequently, our SST analysis stays
closer to background values (IFS forecasts) over the sea than
over the land.

4.3 Computational cost

In our assimilation setup, the cost function is minimized
hourly. For each window, the minimizer needs to converge
after a certain number of iterations. The cost of each iteration
is dominated by the cost of the radiative transfer operators
(tangent linear, the adjoint model) and of the background-
error covariance operators. When the observation error was
assumed to be uncorrelated (RdiagExp), the number of iter-
ations needed for each hourly cycle is significantly higher
than when the estimated observation-error covariance matrix
is used. In fact, the introduction of the estimated R reduces
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Figure 3. The difference between the zonal average of the analysis (ppbv) from the two assimilation experiments, averaged over the month
of the study (nonlinear colour map).

Figure 4. Difference (◦C) between the IFS SST forecast and the analysis of the SST given by RdiagExp (with a diagonal matrix) (a) and that
given by RfullExp (with a correlated matrix) (b) averaged by a box of 2◦.

the number of iterations from 150 (a fixed value to stop it-
erations if the convergence criteria were not attained to save
computational time) to 89 iterations on average. This means
that the CPU time is reduced by more than 150 % for each as-
similation cycle. The convergence criteria of the BFGS algo-
rithm are based on either the reduction of the cost function or
the norm of its gradient below some given small thresholds.
For the RfullExp, the convergence is achieved due to the sta-

tionarity of the cost function (first criterion). The widespread
correlations (high condition number) and larger variance of
the estimated R matrix lead to a downweight of the observa-
tions and are likely the reason for the improved convergence
in RfullExp. This increase in the convergence speed was en-
countered in the Met Office 1D-Var system (Tabeart et al.,
2020) where a correlated observation matrix was introduced
in the system. Moreover, in Tabeart et al. (2018) the matrix
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Figure 5. (a) Difference of the ozone total column (DU) provided by OMI and that of the assimilation experiment RdiagExp (b) and that of
RfullExp, averaged over the month of the study.

R and the observation-error variance appear in the expression
of the condition number of the Hessian of the variational as-
similation problem, indicating that these terms are important
for convergence of the minimization function.

In an attempt to distinguish the impact of the variance
on the convergence speed from that of the correlations, we
have performed three assimilation experiments using differ-
ent R matrices. The first experiment (first experiment) em-
ployed R that was estimated from the analysis computed us-
ing a diagonal R matrix. The minimizer takes 149 iterations
on average to converge (average computed for all the assimi-
lation cycles of the month). We used the analysis given by the
first experiment to estimate another R matrix. We have used
this estimation to run another assimilation cycle (second ex-
periment). We have noticed that the minimizer needs about
89 iterations on average. We have modified the R matrix of
the first experiment by keeping its correlations and replac-
ing its standard deviation with that of R used in the second
experiment. The resulting matrix was used to run a third as-
similation experiment. The minimizer needs about 90 itera-
tions to converge. The results of the third experiment seem to
suggest that updating the variance has a larger impact on the
convergence speed.

5 Validation of O3 analyses

5.1 Total column

Figure 5 shows the difference of the ozone total column (in
Dobson units (DU)) provided by OMI and that of RdiagExp
(a) and that of RfullExp (b). At first sight, we note smaller
differences over the tropics between the OMI total column
and the total column given by RfullExp in comparison with
that given by RdiagExp. This behaviour was expected since a
large reduction of the amount of ozone was observed in these
regions (see Fig. 3). In the high northern latitudes, the differ-

ences were slightly increased when the estimated matrix was
adopted. This is a consequence of the increase in the amount
of ozone encountered in these regions in the stratosphere,
compared to the amount reduced in the same region in the
troposphere (Fig. 3). On the other hand, the global mean and
the standard deviation of these differences are lower in the
case of using the new estimated matrix (10.1 DU as a mean
and 6.3 as a standard deviation when the new estimated ma-
trix was used instead of 10.6 DU as a mean and 7.3 as a stan-
dard deviation when a diagonal matrix was used). Hence, we
conclude that the estimated matrix R has slightly improved
the results in terms of ozone total columns.

5.2 Vertical validation

In this section, we validate the two simulations against ra-
diosoundings and MLS data. We use the root-mean-square
error (RMSE) as the main statistical indicator to quantify the
accuracy of the experiments.

We compute the relative (to the control simulation) differ-
ence of RMSE with respect to radiosoundings and MLS av-
erages globally and for five different latitude bands. The dif-
ference is computed by subtracting the RMSE of each exper-
iment from that of the control simulation. Negative values in-
dicate an improvement of the O3 profiles. It should be noted
that the representativeness of the statistics given by the MLS
in the stratosphere is better than that of the radiosoundings
because the number of profiles provided by MLS is much
higher compared to the radiosounding ones. Consequently,
higher confidence is given to the validation using the MLS
data in the stratosphere.

Figure 6 reports the RMSE differences with respect to
the radiosoundings. Considering the global RMSE (ALL),
we notice that the experiment with the estimated matrix im-
proves the results above 150 hPa, around 400 hPa, and near
the surface. However, it also reduces the improvement from
30 % (the case of using a diagonal matrix) to 15 % in the
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Figure 6. Normalized difference of the RMSE with respect to the ozonesondes for the R estimated (green) and R diagonal (blue). The
difference of the RMSE was computed by subtracting the RMSE of the analysis from the RMSE of the control for each experiment, divided
by the average profile of the ozonesondes. Negative values mean that the assimilation improved (decreased) the RMSE of the control
simulation, and positive values indicate degradation (increase) of the RMSE (vertical levels are in hectopascals).

vicinity of the upper troposphere–lower stratosphere (UTLS,
100–300 hPa).

The issue of increasing the ozone analysis errors compared
to the control simulation encountered in Emili et al. (2019)
is especially severe in the tropics (30◦ S–30◦ N). The use of
the estimated R has substantially enhanced the results in this
latitude band, bringing the error from +15 % to −2 %. Apart
from the vicinity of 50 and 400 hPa, the results in the trop-
ics were improved over the entire vertical profile. Regarding
other latitude bands, almost the same feature of the global
validation is found in the Northern Hemisphere. The two
experiments show almost the same behaviour in the south-

ern latitudes, with a slight improvement for RfullExp in the
southern high latitudes (60–90◦ S).

The MLS validation in Fig. 7 shows almost the same be-
haviour reported by radiosounding validation in the tropical
stratosphere, where the reduction of error is remarkable. In
the other latitude bands, MLS reports a similar behaviour
of the two experiments, with some small differences in the
Northern Hemisphere.

To evaluate the significance of the differences between
the analyses of the two experiments with respect to MLS
and ozonesounding measurements, we have performed the
t test of the differences between analyses and observa-
tions (ozonesondes then MLS). We have noticed that for the
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Figure 7. Normalized difference of the RMSE with respect to the MLS for the R estimated (green) and R diagonal (blue). The difference of
the RMSE was computed by subtracting the RMSE of the analysis from the RMSE of the control of each experiment, divided by the average
profile of the MLS. Negative values mean that the assimilation improved (decreased) the RMSE of the control simulation, and positive values
indicate degradation (increase) of the RMSE. (Vertical levels are in hectopascals.)

ozonesoundings, the significance differs among vertical lev-
els. The reduction of the error between 20 and 50 hPa and
between 300 and 400 hPa reported in Fig. 6 is statistically
significant. For the low troposphere the differences are not
significant. Unlike the ozonesounding results, the differences
with respect to the MLS measurements are statistically sig-
nificant for all levels discussed in MLS validation.

All things considered, the introduction of the estimated R
has globally improved the O3 profiles in the stratosphere and
in the free troposphere, especially in the tropics. In spite of
its degradation in the vicinity of the UTLS, the improvement
always remains advantageous with respect to the control run.

The matrix used for this study (see Sect. 3.2) will now be
discussed in this section since the decision was also based
on the outcome of the assimilation experiments presented
in this section. We sequentially performed three assimilation
experiments using the first, second, and third estimations of
R (Sect. 3.2). The results of validation against radiosound-
ings and MLS showed small differences (not shown). There-
fore, to avoid the initial impact of using a diagonal matrix, we
have adopted the second estimation (which uses the analyses
derived from the experiment using the first estimation). In
an operational framework, we may estimate the matrix daily
(weekly or monthly if the period of the study is considerably
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long) using the analyses of the previous day (using the anal-
ysis of the previous week or month respectively). In other
words, we may use a diagonal matrix to produce analyses for
the first day or spin-up period, these analyses will be used to
estimate the matrix that will be used for the second day, and
so on throughout the period of the study.

We have also discussed the type (sea or land) and the time
(day or night) of the observations while estimating the matri-
ces. To check the impact of these differences on the assim-
ilation results, we ran an additional assimilation experiment
using the matrix estimated considering the type of the surface
of each observation (since the differences were more impor-
tant than if the time of the observation was considered). Only
slight differences among the results have been noticed (not
shown). This behaviour might be explained by the number
of observations over the sea and over the land. In fact, the
observations over the sea represent more than 70 % of the to-
tal observations. The differences, in terms of standard devi-
ation, of the global estimation and that using pixels over the
sea is very small in comparison with that using pixels over
the land (not shown). The differences are also small in terms
of correlations in the case of the sea surface in comparison
with the land surface (not shown). Hence, we consider that
the predominance of observations over sea averages out the
potential differences caused by a separate land–sea specifica-
tion of R. Thus, for simplicity, it seems reasonable to adopt
the global estimation of the matrix and neglect the effect of
the time and the type of the surface of the observations.

6 Conclusions

The correct specification of the observation error becomes a
critical issue to efficiently assimilate the increasing amount
of satellite data available in recent years. We have estimated
the observation errors and their inter-channel correlations for
clear-sky radiances from IASI ozone-sensitive channels. We
have evaluated, then, the impact of the estimated R on the
SST and ozone analysis within our 3D-Var assimilation sys-
tem. The outcome has been compared with an assimilation
experiment where the observation-error covariance matrix
was assumed to be diagonal and the standard deviation as-
signed empirically like in previous studies. The results of the
experiments were, then, validated against independent data:
OMI, MLS, and ozonesondes.

The Desroziers diagnostics were adopted here to estimate
R. The diagnostics used the analyses derived from a varia-
tional data assimilation experiment. The results have shown
high correlations between the majority of the IASI spectral
channels, particularly among the SST sensitive channels.

Significant differences between the results of the experi-
ments were encountered. The introduction of the estimated
R reduces the amount of ozone in the free troposphere and in
the high tropical stratosphere, whereas ozone is added in the
vicinity of the lower stratosphere. A validation against OMI

has shown that the results were closer to the observations
when the estimated matrix was adopted.

The validation against MLS and ozonesondes showed that
the introduction of the estimated R has globally improved
the results in the stratosphere, especially in the tropics. In
spite of a slight reduction in accuracy in the vicinity of the
UTLS, the improvement always remains advantageous with
respect to the reference assimilation. Concerning the compu-
tational cost, the introduction of the estimated R significantly
reduces the number of iterations needed for the minimizer to
converge.

In summary, accounting for an estimated R significantly
improves the ozone assimilation results. This approach might
be adopted in the assimilation of other chemical species and
also in level 2 O3 retrievals.

In this study, the estimation was computed without taking
into account any distinction of the error sources and assum-
ing that the observation error was unbiased. More efforts will
be needed to tackle these points. It should also be noted that
we kept the same experiment setup of Emili et al. (2019) in
order to be able to exclusively quantify the impact of the R.
The background-error matrix was still defined using a rela-
tively simple and empirical method. Further research might
be needed to perform a better estimation of the background
error. A new channel selection might also be performed to re-
duce the computational cost and the information redundancy
of the IASI spectrum. On the other hand, all the experiments
are performed in the context where aerosols are neglected
and over 1 month. Including modelled aerosols within the
radiative transfer may bring some improvements to the anal-
yses. These aspects will be covered in future research.
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