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Abstract. The Scenario Model Intercomparison Project (ScenarioMIP) defines and coordinates the main set
of future climate projections, based on concentration-driven simulations, within the Coupled Model Intercom-
parison Project phase 6 (CMIP6). This paper presents a range of its outcomes by synthesizing results from the
participating global coupled Earth system models. We limit our scope to the analysis of strictly geophysical out-
comes: mainly global averages and spatial patterns of change for surface air temperature and precipitation. We
also compare CMIP6 projections to CMIP5 results, especially for those scenarios that were designed to provide
continuity across the CMIP phases, at the same time highlighting important differences in forcing composi-
tion, as well as in results. The range of future temperature and precipitation changes by the end of the century
(2081–2100) encompassing the Tier 1 experiments based on the Shared Socioeconomic Pathway (SSP) scenar-
ios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) and SSP1-1.9 spans a larger range of outcomes compared
to CMIP5, due to higher warming (by close to 1.5 ◦C) reached at the upper end of the 5 %–95 % envelope of
the highest scenario (SSP5-8.5). This is due to both the wider range of radiative forcing that the new scenarios
cover and the higher climate sensitivities in some of the new models compared to their CMIP5 predecessors.
Spatial patterns of change for temperature and precipitation averaged over models and scenarios have familiar
features, and an analysis of their variations confirms model structural differences to be the dominant source of
uncertainty. Models also differ with respect to the size and evolution of internal variability as measured by in-
dividual models’ initial condition ensemble spreads, according to a set of initial condition ensemble simulations
available under SSP3-7.0. These experiments suggest a tendency for internal variability to decrease along the
course of the century in this scenario, a result that will benefit from further analysis over a larger set of models.
Benefits of mitigation, all else being equal in terms of societal drivers, appear clearly when comparing scenarios
developed under the same SSP but to which different degrees of mitigation have been applied. It is also found
that a mild overshoot in temperature of a few decades around mid-century, as represented in SSP5-3.4OS, does
not affect the end outcome of temperature and precipitation changes by 2100, which return to the same levels
as those reached by the gradually increasing SSP4-3.4 (not erasing the possibility, however, that other aspects
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of the system may not be as easily reversible). Central estimates of the time at which the ensemble means of
the different scenarios reach a given warming level might be biased by the inclusion of models that have shown
faster warming in the historical period than the observed. Those estimates show all scenarios reaching 1.5 ◦C
of warming compared to the 1850–1900 baseline in the second half of the current decade, with the time span
between slow and fast warming covering between 20 and 27 years from present. The warming level of 2 ◦C of
warming is reached as early as 2039 by the ensemble mean under SSP5-8.5 but as late as the mid-2060s under
SSP1-2.6. The highest warming level considered (5 ◦C) is reached by the ensemble mean only under SSP5-8.5
and not until the mid-2090s.

1 Introduction

Multi-model climate projections represent an essential
source of information for mitigation and adaptation deci-
sions. O’Neill et al. (2016) describe the origin, rationale and
details of the experimental design for the Scenario Model In-
tercomparison Project (ScenarioMIP) for the Coupled Model
Intercomparison Project phase 6 (CMIP6; Eyring et al.,
2016). The experiments produce projections for a set of eight
new 21st century scenarios based on the Shared Socioeco-
nomic Pathways (SSPs) and developed by a number of inte-
grated assessment models (IAMs). Extensions beyond 2100
based on idealized pathways of anthropogenic forcings are
also included (formalized in their protocol by Meinshausen
et al., 2020), together with the request for a large initial con-
dition ensemble under one of the 21st century scenarios. Two
of the scenarios are concentration overshoot (peak and de-
cline) trajectories, while the majority follow a traditional in-
creasing or stabilizing trajectory.

The new scenarios are the result of an intense research
phase that produced a new systematic scenario approach, the
SSP-RCP (Representative Concentration Pathway) frame-
work (van Vuuren et al., 2013), which relates the newer so-
cioeconomic scenarios to the RCPs first adopted in CMIP5
(Moss et al., 2010; Taylor et al., 2012). New qualitative nar-
ratives and future pathways of socioeconomic drivers (pop-
ulation, technology and gross domestic product; GDP) were
developed according to two dimensions relevant to the cli-
mate change problem, i.e., by positioning individual path-
ways as each representing a combination of low, medium
or high degrees of challenge to adaptation and to mitigation
(O’Neill et al., 2013). Five such pathways (SSP1 through
SSP5) were developed. These were in turn used by IAMs
to produce scenarios of anthropogenic emissions and land
use (Bauer et al., 2017; Riahi et al., 2017) consistent with
the qualitative narratives and quantitative elements of each
SSP. In addition to these baseline scenarios (i.e., scenarios
that assume no explicit mitigation policies beyond those in
place at the time the scenarios were created, prior to the Paris
Agreement), a number of additional emissions and land-use
scenarios were produced that included mitigation policies
(Kriegler et al., 2014) that achieved a range of radiative forc-
ing targets for the end of the century. Thus, on the basis of a

given SSP, multiple levels of radiative forcings are achiev-
able, given more or less stringent mitigation. Among this
large set of scenarios, the ScenarioMIP design chose a sub-
set to be run by global climate and Earth system models
(ESMs) in concentration-driven mode. Some were chosen
specifically to provide continuity with the RCPs: SSP1-2.6,
SSP2-4.5, SSP4-6.0 and SSP5-8.5, where 2.6 to 8.5 stand
for the stratospheric-adjusted radiative forcing in Wm−2 by
the end of the 21st century as estimated by the IAMs. Ad-
ditional trajectories were also chosen to fill in gaps in the
previous scenario set for both baseline and mitigation sce-
narios (SSP5-3.4; SSP3-7.0). Yet another was chosen to ad-
dress new policy objectives (SSP1-1.9, designed to meet the
1.5 ◦C target at the end of the century). The request of pri-
oritizing initial condition ensemble members for only one
of the scenarios (SSP3-7.0) was aimed at gathering sizable
ensembles (10 members or more) from various modeling
centers. This was decided in recognition of the important
role of internal variability in contributing to future changes,
whose exploration is facilitated by initial condition ensem-
bles (Deser et al., 2020; Santer et al., 2019). It was also rec-
ognized that the spread in aerosol scenarios in the four RCPs
used in CMIP5 was too narrow, as all assumed a large re-
duction in atmospheric aerosol emissions (Moss et al. 2010,
Stouffer et al., 2017). The new SSP-based scenarios bet-
ter address this uncertainty by sampling a larger range of
aerosols pathways consistent with the corresponding green-
house gas (GHG) emissions (Riahi et al., 2017). Scenario
experiments were enabled by another community effort, in-
put4mip: based on the IAM emission trajectories, and after
harmonization of those to historical emission levels (Gidden
et al., 2019), a community effort took place to translate those
emission time series and amend them with additional input
fields for use by ESMs. These range from providing land-use
patterns (https://doi.org/10.22033/ESGF/input4MIPs.1127),
gridded aerosol emission fields (Hoesly et al., 2018), strato-
spheric aerosols (Thomason et al., 2018), solar irradiance
time series (Mattes et al., 2017) and greenhouse gas concen-
trations (Meinshausen et al., 2020), as well as ozone fields
(https://doi.org/10.22033/ESGF/input4MIPs.1115).

Given the multi-model focus of CMIP and the overview
purpose of this paper, the results reported here aim at giv-
ing a broad-scale representation of ensemble results (mean
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and ranges or other measures of variability). The Scenar-
ioMIP design responded to many complex objectives and
science questions, among which a high priority was the
need to lay the foundation for integrated research across
the geophysical, mitigation, impact, adaptation and vulner-
ability research communities (O’Neill et al., 2020). The fo-
cus of this paper is to provide physical climate context for
these more detailed analyses. Other model intercompari-
son projects (MIPs) within CMIP6 have prescribed experi-
ments that complement the ScenarioMIP design to address
questions about the effects of small radiative forcing dif-
ferences, specific (and often local) forcings like those from
land use and short-lived climate forcers (SLCFs), the dif-
ferential effects of emission-driven vs. concentration-driven
experiments testing the strength of the carbon cycle (Arora
et al., 2020) and the effectiveness of emergent constraints
in reshaping the uncertainty ranges of the new multi-model
ensemble (Nijsse et al., 2020; Tokarska et al., 2020). They
are the Land Use MIP (LUMIP; Lawrence et al., 2016), the
Aerosol Chemistry MIP (AerChemMIP; Collins et al., 2017),
the Coupled Climate-Carbon Cycle MIP (C4MIP; Jones et
al., 2016), the Geoengineering MIP (GeoMIP; Kravitz et
al., 2015) and the Carbon Dioxide Removal MIP (CDRMIP;
Keller et al., 2018).

In this study, we focus the analysis on the future evolu-
tion of average temperatures and precipitation. We address
questions regarding the strength of the signal under the dif-
ferent CMIP6 scenarios and compare to similar CMIP5 sce-
narios: the identification of the time of separation between
the temperature trajectories under the different scenarios and
the time at which they cross global warming thresholds. We
also analyze spatial patterns of change addressing questions
of robustness between the CMIP5 and CMIP6 multi-model
ensembles and within the CMIP6 ensemble among models
and scenarios.

2 ScenarioMIP experiments and participating
models

As described in detail in O’Neill et al. (2016) and summa-
rized in the matrix display in Fig. A1, the ScenarioMIP de-
sign consists of the following concentration-driven scenario
experiments, subdivided into two tiers to guide prioritization
of computing resources. Tier 1 consists of four 21st cen-
tury scenarios. Three of them provide continuity with CMIP5
RCPs by targeting a similar level of aggregated radiative
forcing (but we highlight important differences in the com-
ing discussion): SSP1-2.6, SSP2-4.5 and SSP5-8.5. An addi-
tional scenario, SSP3-7.0, fills a gap in the medium to high
end of the range of future forcing pathways with a new base-
line scenario, assuming no additional mitigation beyond what
is currently in force. The same scenario also prescribes larger
SLCFs concentrations and land-use changes compared to the
other trajectories.

Only Tier 1, which can be satisfied by one realization per
model, is required for participation in ScenarioMIP.

Tier 2 completes the design by adding

– SSP1-1.9, informing the Paris Agreement target of
1.5 ◦C above pre-industrial;

– SSP4-3.4, a gap-filling mitigation scenario;

– SSP4-6.0, an update of the CMIP5-era RCP6.0;

– SSP5-3.4OS (overshoot), which tests the efficacy of an
accelerated uptake of mitigation measures after a de-
lay in curbing emissions until 2040: the scenario tracks
SSP5-8.5 until that date, then decreases to the same ra-
diative forcing of SSP4-3.4 by 2100;

– three extensions to 2300, two of them continuing on
from SSP1-2.6 and SSP5-8.5 and one extending the
SSP5-3.4 overshoot pathway towards the lower radia-
tive forcing level of 2.6 Wm−2, to inform the analysis
of long-memory processes, like ice-sheet melting and
corresponding sea level rise;

– nine additional initial condition ensemble members un-
der SSP3-7.0 to explore internal variability and signal-
to-noise characteristics of the different participating
models.

Here we note that although the labels identify the specific
SSP used in the development of the scenario, the climate out-
comes are still intended to be combined with multiple differ-
ent SSPs in integrated studies. A list of the participating mod-
els, with references for documentation and data, is shown in
Table A1. Table A2 lists the CMIP5 models used in the com-
parisons.

3 Results

For the results shown in this section, we extracted monthly
mean near-surface air temperature (TAS) and precipitation
(PR) from the models listed in Tables A1 and A2 (for CMIP5
scenarios). These were averaged globally or separately over
land and oceans for time series analysis (no correction for
drift was performed) and regridded to a common 1◦ grid by
linear interpolation for pattern analysis. All figures of this
paper are produced with the Earth System Model Evaluation
Tool (ESMValTool) version 2.0 (v2.0) (Righi et al., 2020;
Eyring et al., 2020; Lauer et al., 2020), a tool specifically de-
signed to improve and facilitate the complex evaluation and
analysis of CMIP models and ensembles.

3.1 Global temperature and precipitation projections for
Tier 1 and the SSP1-1.9 scenarios

3.1.1 Time series

Figure 1 shows time series of global mean surface air temper-
ature (GSAT) and global precipitation changes (see Fig. A2
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for time series of the same variables disaggregated into land-
only and ocean-only area averages; also see Tables A3 and
A4 for changes under the different scenarios around mid-
century and the end of the century). The historical baseline
is taken as 1995–2014 (2014 being the last year of CMIP6
historical simulations). The five scenarios presented in these
plots consist of the Tier 1 experiments (SSP1-2.6, SSP2-4.5,
SSP3-7.0 and SSP5-8.5) and the additional scenario designed
to limit warming to 1.5 ◦C above 1850–1900 (a period often
used as a proxy for pre-industrial conditions), SSP1-1.9. We
smooth each trajectory by an 11-year running mean to focus
on climate-scale variability.

In the plots, the thick line traces the ensemble average
(see legend and Table A1 for the number of models included
in each scenario calculation) and the shaded envelopes rep-
resent the 5 %–95 % ranges, which are obtained assuming
a normal distribution as 1.64σ , where σ is the intermodel
standard deviation of the smoothed trajectories, computed
for each year. Only one ensemble member (in the majority
of cases r1i1p1f1) is used even when more runs are avail-
able for some of the models. By the end of the century (i.e.,
as the mean of the period 2081–2100), the range of warm-
ing spanned by the multi-model ensemble means under all
scenarios is between 0.69 and 3.99 ◦C relative to 1995–2014
(0.84 ◦C greater when using the 1850–1900 baseline). Con-
sidering the multi-model ensemble means as the best esti-
mates of the forced response under each scenario, the range
spanned by them can be interpreted as an estimate of sce-
nario uncertainty. When considering the shaded envelopes
around the ensemble mean trajectories, about 0.6 at the lower
end and 1.6 ◦C at the upper end are added to this range.
This range can be seen as reflecting the compound effects
of model-response uncertainty and some measure of internal
variability in the individual model trajectories, but the latter
is likely underestimated, given that we are using only one run
per model. The use of initial condition ensembles for each of
the models would better characterize their respective internal
variability (Lehner et al., 2020). Using the 5 %–95 % confi-
dence intervals as ranges, we find that by the end of the 21st
century (2081–2100 average, always compared to the 1995–
2014 average) global mean temperatures are projected to in-
crease between 2.40 and 5.57 ◦C for SSP5-8.5, between 1.95
and 4.38 ◦C under SSP3-7.0, and between 1.27 and 3.00 ◦C
for SSP2-4.5. Global temperatures stabilize or even some-
what decline in the second half of the century in SSP1-1.9
and SSP1-2.6, which span a range from 0.13 to 1.25 ◦C and
0.40 to 2.05 ◦C, respectively, whereas they continue to in-
crease to the end of the century in all other SSPs. The ensem-
ble spread appears to consistently increase with the higher
forcing and over time. This suggests that the model response
uncertainty increases for stronger responses, an expected re-
sult as climate sensitivity – which significantly differs among
the models – more strongly influences the model response in
higher scenarios and later periods (Lehner et al., 2020). This
result appears robust, given the number of models included

(between 33 and 39 for Tier 1 experiments). Only the number
of models contributing to the lowest scenario (SSP1-1.9) is
significantly lower, i.e., 13 at the time of writing, but the anal-
ysis of ensemble behavior of Sect. 3.2.1 below suggests that
for global temperature and precipitation averages 10 ensem-
ble members provide a representative sample of the internal
climate variability. The same qualitative behavior appears for
land-only and ocean-only averages (Fig. A2 and Table A3),
with the faster warming over land than ocean reaching on av-
erage up to 5.46 ◦C under SSP5-8.5 (compared to the global
average reaching 3.99 ◦C) and some models reaching a much
larger value under this scenario of 7.57 ◦C. For the lower sce-
narios, limiting warming in 2100 to 0.69 and 1.23 ◦C globally
translates to an average warming on land of 0.96 and 1.61 ◦C
for SSP1-1.9 and SSP1-2.6, respectively (see Table A3 for
all projections and their ranges referenced to the historical
baseline).

In order to characterize when pairs of scenarios diverge,
we define separation as the first occurrence of a positive dif-
ference between two time series, one under the higher and
one under the lower forcing scenarios, which is then main-
tained for the remainder of the century. This is similar to
Tebaldi and Friedlingstein (2013, TF13 in the following),
who used the first occurrence of a significant trend in the
year-by-year differences, then justified by the RCPs under
consideration, among which only the lowest (RCP2.6) flat-
tened out over the century. In that case, the remainder of the
RCPs considered followed an increasing trajectory, with dif-
ferential rates of increase, therefore justifying the expecta-
tion that year-by-year differences would eventually show a
significant and persisting trend. Among the new scenarios,
at least two are expected to follow a flat trajectory, or even
a slight peak and decline (SSP1-1.9 and SSP1-2.6), render-
ing the expectation of a trend in their differences untenable.
We therefore adopt a slightly different definition here, and
we also note that this definition would need to be modified
if overshoot scenarios – crossing their reference as they de-
crease – were the main focus of this analysis. Also, this is
not the only way to define separating scenarios, and other
studies have applied different, but still fairly similar, defini-
tions, e.g., recently, Marotzke (2019). We use time series of
GSAT after applying a 21-year running mean, as we are con-
cerned with differences in climate rather than in individual
years, whose temperatures are affected by large variability
(this is the part of the definition that takes the place of the
consideration of long-term trends in TF13). We also need to
choose a threshold at which we deem the difference “posi-
tive” and somewhat discernible (this takes the place of ask-
ing for a significant trend in TF13). To do so, we use the re-
sults in Tebaldi et al. (2015), where the regional sensitivities
of temperature and precipitation to changes in global aver-
age temperature were quantified. According to that analysis,
a 0.1 ◦C difference in 20-year means of GSAT was the low-
est value at which a multi-model ensemble consistently had
a positive fraction of the grid cells experiencing significant
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Figure 1. (a) Global average temperature time series (11-year running averages) of changes from current baseline (1995–2014, left axis)
and pre-industrial baseline (1850–1900, right axis, obtained by adding a 0.84 ◦C offset) for SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and
SSP5-8.5. (b) Global average precipitation time series (11-year running averages) of percent changes from current baseline (1995–2014)
for SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Thick lines are ensemble means (number of models shown in the legends).
The shading represents the ±1.64σ interval, where σ is the standard deviation of the smoothed trajectories computed year by year (thus
approximating the 5 %–95 % confidence interval around the mean of a normal distribution). Note that the uncertainty bands are computed
for the anomalies with respect to the historical baseline (1995–2014). Thus, the right axis of the global temperature plot, showing anomalies
with respect to pre-industrial values, applies to the ensemble means, not to the uncertainty bands, which would be narrowest over the period
1850–1900 if we were to calculate uncertainties on the basis of the models’ output over that period, rather than by simply adding an offset
uniformly. See Fig. A2 for land-only and ocean-only averages and Tables A3 and A4 for the values of changes at mid- and late century.

warming. In Table A5, we report the precise years when the
ensemble means of the smoothed GSAT time series under the
various scenario pairs separate according to this definition
and, in parentheses, when the last of all individual models’
pairs of trajectories separate, but of course those precise es-
timates would change if our choices of the moving window
and the threshold had been different. The ensemble average
trajectory of GSAT under SSP5-8.5 separates from the lower
scenarios’ ensemble average trajectories between 2027 and
2034, with the longer time as expected applying to the sepa-
ration from SSP3-7.0. SSP3-7.0 separates from the two sce-
narios at the lower end of the range between 2031 and 2037,
and 10 years later from SSP2-4.5. The ensemble average tra-
jectory of global temperature under SSP2-4.5 separates from
those under the two lower scenarios, SSP1-1.9 and SSP1-2.6,
by 2034 and 2039, respectively, while the ensemble average
GSAT trajectories under the two lower scenarios, SSP1-1.9
and SSP1-2.6, separate from one another in 2042 (in Fig. A3,
the differences between ensemble averages for each pair of
scenarios appear as red lines). When considering individual
models’ trajectories under the different scenarios and defin-
ing the time of separation when the last of all individual pair
of trajectories separates, model structural differences and a
larger effect of internal variability cause a significant delay
compared to the ensemble mean separation. Depending on
the pair of scenarios considered, the length of the delay nec-
essary for the last of the models to show separation varies sig-
nificantly: as few as 6 years for the full separation of SSP1-
2.6 from SSP5-8.5 and as many as 19 years for the full sepa-

ration of SSP3-7.0 from SSP5-8.5 (Fig. A3, black lines, and
values in parentheses in Table A5).

Ensemble mean precipitation change by 2081–2100 (as
a percentage of the 1995–2014 baseline) is between 2.0 %
and 3.0 % for the lowest scenarios (SSP1-1.9 and SSP1-2.6),
4.2 % and 4.9 % for SSP2-4.5 and SSP3-7.0, and 7.3 % for
SSP5-8.5. As expected, the larger variability of precipitation
changes (relative to temperature changes), both from internal
sources and model response uncertainty, is such that only the
highest scenario ensemble mean trajectory separates from the
lower ones appreciably before 2050, while the lowest sce-
nario separates from the rest around mid-century. The en-
semble means of the three scenarios in between overlap un-
til close to 2070. The multi-model spread and internal vari-
ability confound a large fraction of the individual scenarios’
trajectories until the end of the century (Fig. 1b). Both the
magnitude of the changes and their variability are larger for
precipitation averages over land than over oceans (Fig. A2;
see also Table A4 for a complete list of mid- and late-century
changes).

3.1.2 Normalized patterns

In Fig. A4, we show ensemble average patterns of change by
the end of the century under the five scenarios for both vari-
ables. In this section, we focus our discussion on the gen-
eral features emerging from the average normalized patterns.
Normalized patterns are computed as the end-of-century
(percent) change compared to the historical baseline, di-
vided by the corresponding change in global mean tempera-
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ture. This computation is first performed for each individual
model or scenario, at each grid point, after regridding tem-
perature and precipitation output to a common 1◦

× 1◦ grid.
The individual normalized patterns are then averaged across
models and the five scenarios. As we will show, the total vari-
ations among the population of normalized patterns that form
this grand average are mainly driven by intermodel variabil-
ity rather than interscenario differences. Thus, we choose to
synthesize patterns of change across all scenarios by present-
ing regional changes per degree of global warming. More in-
depth analyses, also exploiting complementary experiments
from LUMIP and AerChemMIP, may provide a more refined
view of the interscenario differences possibly arising from
different regional forcings.

Figure 2 (top row) shows the spatial characteristics
of warming and of wetting and drying. For temperature
changes, the left panel confirms the well-established gradient
of warming decreasing from northern high latitudes (with the
Arctic regions warming at twice the pace of the global aver-
age) to the Southern Hemisphere and the enhanced warming
in the interior of the continents compared to ocean regions
(which consistently warm slower than the global average).
This differential is particularly pronounced in the Northern
Hemisphere (and would be muted if the normalized pattern
was computed at equilibrium). The familiar cooling spot in
the northern Atlantic appears as well – the only region with
a negative sign of change. Studies have suggested that the
cooling signal is an effect of the slowing of the Atlantic
Meridional Overturning Circulation, which creates a signal
of slower northward surface-heat transport, resulting in an
apparent local cooling (Caesar et al., 2018; Keil et al., 2020).

For precipitation, the strongest positive changes are in the
equatorial Pacific and the highest latitudes of both hemi-
spheres, especially the Arctic region. The large changes in
subtropical Africa and Asia are due more to the small pre-
cipitation amounts of the climatological averages in these re-
gions (at the denominator of these percent changes) than to a
truly substantial increase in precipitation (see also below for
variability considerations). A strong drying signal continues
to be projected for the Mediterranean together with central
America, the Amazon region, southern Africa and western
Australia.

Similar to Tebaldi and Arblaster (2014), we give a measure
of robustness of these patterns by computing the standard de-
viation at each grid point across individual model or scenario
patterns (Fig. 2, rows 2–4). We further distinguish the relative
contribution of scenario and model variability by computing
standard deviations after averaging across models separately
for each individual scenario and across scenarios for each
individual model, respectively. Figure 2, second row, high-
lights in darker colors regions where the standard deviation is
higher and patterns are less robust. For temperature patterns,
as has been found in earlier studies of pattern scaling (starting
from Santer et al., 1990, and in more recent work, like Herger
et al., 2015), the edges of sea ice retreat at both poles are ar-

eas where models disagree, and scenarios, in lesser measure,
can be at odds due to their different timing of persistent ice
melt. The variability and therefore uncertainty of the precip-
itation pattern mirrors the signal of change at low latitudes in
the Pacific and over Africa and Asia. The comparison of pat-
terns in the third and fourth rows of the figure elucidates the
role of intermodel variability rather than scenario variability
for both temperature and precipitation normalized changes,
with scenario uncertainty only contributing to a small area of
sea ice variability in the Arctic for temperature change and a
subregion of the Sahara for precipitation change (where the
denominator of the percentage values is small and therefore
prone to cause instabilities in the values computed). Given
the radically different sample sizes used to compute the aver-
ages from which scenario-driven standard deviations are de-
rived compared to model-driven ones (more than 30 for the
former and only five for the latter), we can also infer that in-
ternal variability is a likely contributor to model-driven stan-
dard deviation, while it is mostly eliminated before the com-
putation of the scenario-driven standard deviation.

The robustness of these multi-model average patterns and
the sources of their variability can be assessed by considering
the same type of graphics computed from the four RCPs from
the CMIP5 model ensemble.

Figures 3 (top row) and A5, using the same color scales,
are easily compared to Fig. 2 and confirm the striking consis-
tency of the geographical features of the normalized patterns,
the size and spatial features of their variability, together with
the components of the latter (i.e., model vs. scenario variabil-
ity).

We deem a rigorous quantification of the differences be-
tween patterns beyond the scope of this paper and focus
on a qualitative assessment of the similarities that surface
by showing in the bottom row in Fig. 3 the difference be-
tween CMIP6 and CMIP5 normalized patterns, confirming
the small magnitude of the discrepancies in TAS over all re-
gions, except for the Arctic, known to be affected by large
variations among models, scenarios (with a possible role of
the lowest scenario in CMIP6, SSP1-1.9, whose land–sea ra-
tio has likely no equivalent among the CMIP5 scenarios, but
further, more rigorous investigation is needed to confirm this)
and internal noise (likely playing a minor role given the num-
ber of models and scenarios contributing to these averages).
Similarly, for percent precipitation, the regions that stand out
where the largest differences are found are the tropics, known
to be affected by large variability and uncertainties. In this
case, the possible role of aerosol forcing (Yip et al., 2011)
warrants further investigation, especially as we consider that
SSP3-7.0 forcing composition and trajectory are quite dif-
ferent from those of previous scenarios. As mentioned, the
use of these experiments in conjunction with their variants
by LUMIP and AerChemMIP could further attribute some of
these scenario-dependent features to differences in regional
forcing like land use or aerosols. Also, a subset of CMIP6
models are running the CMIP5 RCPs, and results from those
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Figure 2. (a, b) Patterns of temperature (a) and percent precipitation change (b) normalized by global average temperature change (averaged
across CMIP6 models and all Tier 1 plus SSP1-1.9 scenarios). (c, d) Standard deviation of normalized patterns for individual CMIP6
models and scenarios. The individual patterns are the elements from which the averages shown in the top row are computed. (e, f) Standard
deviation of normalized patterns, after averaging across scenarios, highlighting the role of intermodel variability. (g, h) Standard deviation
of normalized patterns after averaging across models, highlighting the role of interscenario variability.
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Figure 3. Patterns of temperature (a) and percent precipitation change (b) normalized by global average temperature change (averaged
across models and scenarios) from CMIP5 models and scenarios, for comparison with Fig. 2 (top row). Panels (c) and (d) show differences
between CMIP6 and CMIP5 patterns.

experiments will allow a clean analysis of variance, partition-
ing sources between model and scenario generations.

3.1.3 Comparison of climate projections from CMIP6
and CMIP5 for three updated scenarios

In the previous section, the comparison of normalized pat-
terns was by construction scenario independent. The de-
sign of ScenarioMIP, however, deliberately included scenar-
ios aimed at updating CMIP5 RCPs, and three of those are
in Tier 1. Updates in the historical point of departure (2015
for CMIP6 rather than 2006 for CMIP5) together with up-
dates in the models forming the ensemble which reflect on
the radiative forcing levels simulated by the individual mod-
els (Smith et al., 2020) are obvious differences that hamper a
straightforward comparison. In addition, the emission com-
position of the scenarios also changed with the update, and
we summarize how this occurred after presenting the projec-
tion comparison.

We show time series of global temperature for the three
updated scenarios and the corresponding results from their
CMIP5 counterparts: SSP1-2.6 vs. RCP2.6, SSP2-4.5 vs.
RCP4.5 and SSP5-8.5 vs. RCP8.5 from CMIP6 and CMIP5,
respectively. We show warming relative to the same histor-
ical baseline of 1986–2005 used by CMIP5 (Taylor et al.,

2012) and to 1850–1900. We further show how observational
constraints applied to the range of trajectories from the new
models based on recently published work (Tokarska et al.,
2020) result in lower and narrower projections at the end of
the century and have the effect of bringing CMIP6 projec-
tions in closer alignment to CMIP5 end-of-century warming,
even when the same type of constraints are applied to the
latter.

Figure 4 aligns two pairs of plots showing time series of
global temperature and percent precipitation changes under
the three updated scenarios and the original RCPs, from the
CMIP6 and CMIP5 ensembles, respectively: Fig. 4a and c
show three of the trajectories already shown in Fig. 1 but as
anomalies or percent changes from the period 1986–2005,
i.e., the last 20 years of the CMIP5 historical period (Tay-
lor et al., 2012). Figure 4b and d show CMIP5 results for the
three corresponding RCPs (see Table A2 for a list of the mod-
els used), also using the 1986–2005 baseline. The right axis
on the temperature plots allows an assessment of changes
compared to the 1850–1900 baseline. Table A6 lists mid-
and late-century changes for all model ensembles under the
different scenarios. The new unconstrained results reach on
average warmer levels and have a larger intermodel spread,
especially when comparing SSP5-8.5 to RCP8.5. There is
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Figure 4. Comparison of the three SSP-based scenarios updating three CMIP5-era RCPs with the corresponding CMIP5 output: SSP1-2.6,
SSP2-4.5 and SSP5-8.5 (a, c) can be compared to RCP2.6, RCP4.5 and RCP8.5 (b, d) for global average temperature change (a, b) and
global average precipitation change (c, d) (as a percentage of the baseline values, which are set to 1986–2005 for both ensembles). Indicators
along the right axis of the plots of temperature projections show constrained ranges at 2100, obtained by applying the method of Tokarska
et al. (2020). Note that, as in Fig. 1, the uncertainty bands in all figures are computed for anomalies with respect to the historical baseline
(1986–2005 in this case). Thus, the right axis of the global temperature plots, showing anomalies with respect to pre-industrial values, applies
to the ensemble means, not to the uncertainty bands, which would be narrowest over the 1850–1900 baseline, were they calculated using the
data from simulations over that period, rather than being registered to the new axis only on the basis of the offset. Figure A6 shows a more
direct comparison of the CMIP6 and CMIP5 ranges before and after the application of constraints at 2081–2100, and Table A6 lists those
ranges (and the unconstrained percent precipitation changes for the same comparisons) at 2041–2060 and 2081–2100.

0.46 (for the scenarios reaching 2.6 Wm−2), 0.49 (for the
4.5 Wm−2 scenarios) and 0.67 ◦C (for the 8.5 Wm−2 scenar-
ios) more mean warming, while the upper end of the shading
for SSP5-8.5 reaches 1.5 ◦C higher than the CMIP5 results
(Table A6). The larger warming resulting from the CMIP6
experiments is a combination of different forcings and the
presence among the new ensemble of models with higher
climate sensitivities than the members of the previous gener-
ations. The higher climate sensitivities in CMIP6 compared
to CMIP5 (Meehl et al., 2020; Zelinka et al., 2020) become
more critical for higher forcings, when the model response
is more highly correlated to its climate sensitivity, explaining
the differential in the higher warming across the range of new
scenarios, with the largest difference evident for SSP5-8.5.

Several recent studies (Brunner et al., 2020; Liang et al.,
2020; Nijsse et al., 2020; Ribes et al., 2021; Tokarska et

al., 2020) constrain the ensemble projections according to
the evaluation of the ensemble historical behavior. All stud-
ies find a strong correlation between the simulated warm-
ing trends over the observed historical period and the warm-
ing in SSP scenarios, which suggested constraining future
warming using observed warming trends estimated from sev-
eral observational products, and all come to similar results.
Here, and in Table A6, we show how the 2081–2100 means
for both CMIP5 and CMIP6 are changed as a result of
applying constraints as in Tokarska et al. (2020). Also in
Fig. A6, we show the same results but focus specifically on
these 20-year means, before and after the application of the
constraints. The resulting observationally constrained ranges
bring CMIP6 projections closer to both the raw CMIP5
ranges and their constrained counterparts in both mean and
spread (especially the upper bound). In other words, models
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that project the most warming by the end of the century tend
to do the least well in reproducing historical warming trends
for both ensembles, but the effect is much more pronounced
for CMIP6 than CMIP5 models (see also Fig. A6). After con-
straints are applied, the difference in the mean changes by
2081–2100 is 0.29 for the two lower scenarios and 0.15 ◦C
under SSP5-8.5/RCP8.5. The difference in the upper range
under the latter scenario is reduced to 0.59 ◦C.

Global precipitation projections follow temperature pro-
jections (O’Gorman et al., 2012), and therefore we see
(unconstrained) CMIP6 trajectories reaching higher percent
changes than CMIP5 of just below 1 %. Consistent with the
relatively larger means, the spread of trajectories for indi-
vidual scenarios, which combines internal variability with
model uncertainty, is larger for the new models and scenar-
ios.

As mentioned, part of the differences described are due
to forcing differences between the corresponding scenar-
ios in CMIP5 and CMIP6. These are by design small in
terms of aggregate radiative forcing, when radiative forcing
is defined as Intergovernmental Panel on Climate Change
fifth Assessment Report (IPCC AR5)-consistent total global
stratospheric-adjusted radiative forcing (AR5-SARF). By
this measure of forcing, scenarios differ by less than 6 %
in 2100 for the SSP1-2.6/RCP2.6 pair, 5 % for the SSP2-
4.5/RCP4.5 pair and around 0.3 % at 8.9 Wm−2 for the
SSP5-8.5/RCP8.5 pair. Differences over the full pathway
from 2015 to 2100 are below 15 %, 5 % and 4 %, respectively.
However, the literature in recent years has moved away from
the AR5-SARF definition (in particular, Etminan et al., 2016;
see also implementation in Meinshausen et al., 2020) towards
the use of effective radiative forcing (ERF), which differs
from AR5-SARF in that it includes any non-temperature-
mediated feedbacks (see, e.g., Smith et al., 2020).

Given that CMIP5 and CMIP6 concentration pathways
differ with respect to their composition across gases and
other radiatively active species (Lurton et al., 2020, Fig. 1),
whose respective ERFs can be very different despite a similar
AR5-SARF, the similarity between RCP and SSP scenarios
in terms of forcing deteriorates when moving away from an
AR5-SARF definition. For example, in SSP5-8.5, the AR5-
SARF contribution of CH4 is by 2100 about 0.5 Wm−2 lower
than in the CMIP5 RCP8.5 pathway. This is offset by the
difference in CO2 AR5-SARF, where SSP5-8.5 is around
0.5 Wm−2 higher. In contrast, these compensating effects do
not hold any longer when using ERF. In fact, because ERF is
higher than AR5-SARF for CO2 and even more so for CH4,
the 2100 radiative forcing levels after which both the RCP
and SSP are named are not met precisely anymore when mea-
sured by ERF. Another pronounced difference between the
CMIP5 RCPs and the new generation of SSP-RCP scenarios
is that the latter span a wider range of aerosol emissions and
corresponding forcings. The main reason for this difference
is a wider consideration of the possible development of air
pollution policies, ranging from major failure to address air

pollution in the SSP3-7.0 pathway to very ambitious reduc-
tions of air pollution in the SSP1-2.6, SSP1-1.9 and SSP5-8.5
pathways (Rao et al., 2017). All the CMIP5 RCPs followed
by comparison a more “middle-of-the-road” pollution policy
path. Last, the effective radiative forcing levels reached by
both sets of pathways can be different – depending on each
climate model processes – from their nominal AR5-SARF
values labeling the pathway, usually obtained by running the
emission pathways through simple models, like using the
Model for the Assessment of Greenhouse Gas Induced Cli-
mate Change (MAGICC) in its AR5-consistent setup (Riahi
et al., 2017). A recent study with the EC-Earth model finds
that about half of the difference in warming by the end of
the century when comparing CMIP5 RCPs and their updated
CMIP6 counterparts is due to difference in effective radia-
tive forcings at 2100 of up to 1 Wm−2 (Wyser et al., 2020).
Figure A7, adapted from Meinshausen et al. (2020), shows
a breakdown of the comparison into the three main forcing
agents among greenhouse gases (CO2, CH4 and N2O) from
which the significant differences in the composition can be
assessed. Next to the AR5-consistent SARF time series, we
also show effective radiative forcing ranges under the SSPs
for the end of the 21st century for comparison using a newer
version of MAGICC (MAGICC7.3).

Here, we note that in an effort to make the compari-
son more direct, CMIP5 RCP forcings are available to be
run with CMIP6 models, and several modeling centers have
started – at the time of writing – these experiments, which
have been added to the Tier 2 design of ScenarioMIP since
the description in O’Neill et al. (2016). If enough models
contribute these results, a cleaner comparison of the effects
of the updated forcing pathways, controlling for the updated
models’ effect, will be possible. Preliminary results with the
Canadian model, CanESM2, confirm the significant role of
higher radiative forcings found with EC-Earth.

3.1.4 Scenarios and warming levels

The ever-increasing attention to warming levels as policy
targets, also due to the recognition that strong relations are
found between them and a large set of impacts, motivates
us to identify the time windows at which the new scenarios’
global temperature trajectories reach 1.5, 2.0, 3.0, 4.0 and
5.0 ◦C since 1850–1900. Table 1 shows the timing of first
crossing of the thresholds by the ensemble average and the
5 %–95 % uncertainty range around that date. This is derived
by computing the 5 %–95 % range for the ensemble of tra-
jectories of GSAT and identifying the dates at which the up-
per and lower bounds of the range cross the threshold. The
range is computed by assuming a normal distribution for the
ensemble as the intermodel standard deviation multiplied by
1.64. Considering this range rather than the minimum and
maximum bounds of the ensembles makes the estimates of
the 5 %–95 % range more robust, especially for the lowest
scenario (SSP1-1.9) for which we only rely on 13 models.
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Table 1. Times (best estimate and range – in square brackets – based on the 5 %–95 % range of the ensemble after smoothing the trajec-
tories by 11-year running means) at which various warming levels (defined as relative to 1850–1900) are reached according to simulations
following, from left to right, SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. Crossing of these levels is defined by using anomalies
with respect to 1995–2014 for the model ensembles and adding the offset of 0.84 ◦C to derive warming from pre-industrial values. We use a
common subset of 31 models for the Tier 1 scenarios and all available models (13) for SSP1-1.9, while Table A7 shows the result of using
all available models under each scenario. The number of models available under each scenario and the number of models reaching a given
warming level are shown in parentheses. However, the estimates are based on the ensemble means and ranges computed from all the models
considered (13 or 31 in this case), not just from the models that reach a given level. An estimate marked as “NA” is to be interpreted as “not
reaching that warming level by 2100”. In cases where the ensemble average remains below the warming level for the whole century, it is
possible for the central estimate to be NA, while the earlier time of the confidence interval is not, since it is determined by the warmer end of
the ensemble range.

SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

1.5 ◦C 2029 2028 2028 2028 2026
[2021, NA] [2020, NA] [2020, 2047] [2020, 2045] [2020, 2040]

(11/13) (30/31) (31/31) (31/31) (31/31)

2.0 ◦C NA 2064 2046 2043 2039
[2036, NA] [2032, NA] [2032, 2082] [2031, 2064] [2030, 2055]

(2/13) (17/31) (31/31) (31/31) (31/31)

3.0 ◦C NA NA 2094 2069 2060
[NA, NA] [NA, NA] [2058, NA] [2052, NA] [2048, 2083]

(0/13) (0/31) (16/31) (31/31) (31/31)

4.0 ◦C NA NA NA 2091 2078
[NA, NA] [NA, NA] [NA, NA] [2071, NA] [2062, NA]

(0/13) (0/31) (1/31) (17/31) (27/31)

5.0 ◦C NA NA NA NA 2094
[NA, NA] [NA, NA] [NA, NA] [2088, NA] [2075, NA]

(0/13) (0/31) (0/31) (3/31) (15/31)

The analysis is conducted after smoothing each of the in-
dividual models’ time series by an 11-year running average
to smooth interannual variability. The width of the intervals
would change if constraints based on the observed warming
trends were applied to the ensemble along the whole century
(as shown in Fig. 4 for the end of the century), but here the
unconstrained ensemble is used. The anomalies from 1850 to
1900 are computed as described in Sect. 3.1.1 by calculating
anomalies with respect to the historical baseline (1995–2014)
and then adding the offset value of 0.84 ◦C to minimize the
effect of biases in the warming during the historical period
of the different models. Note, however, that remaining dif-
ferences between models and observations in the warming
trends over the period 2014 to present, and the effects of dif-
ferences between observed and projected forcings, may still
introduce biases in the crossing level estimates, likely biasing
them low.

We first synthesize results from the experiments from
Tier 1, for which we extract a common subset of 31 models
in order to make the threshold crossing estimates comparable
across scenarios (for completeness, we document in Table A7
the behavior of all models available, which does not change
qualitatively the results that we are about to describe).

The lowest warming level of 1.5 ◦C from pre-industrial
values is reached on average between 2026 and 2028 across
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 with largely
overlapping confidence intervals that start from 2020 as the
shortest waiting time and extend until 2046 at the latest un-
der SSP2-4.5. Note, however, that the lower bound of the en-
semble trajectories (determining the upper bound of the pro-
jected years by which the level is reached) under SSP1-2.6
does not warm to 1.5 ◦C for the whole century (the NA as the
upper bound of the time period signifies “not reached”). The
next level of 2.0 ◦C is reached as soon as 13 years later by
the ensemble average under SSP5-8.5 and as late as 32 years
later under SSP1-2.6, a striking reminder of how different
the pace of warming is in these scenarios. The confidence
intervals have similar lower bounds between 2030 and 2032
and extend to 2077 for SSP2-4.5, while they are significantly
shorter for the higher scenarios (2064 and 2054 for SSP3-
7.0 and SSP5-8.5, respectively). The confidence intervals for
SSP1-2.6 do not reach any of the higher warming levels,
while by 2059 the ensemble average under SSP5-8.5 has al-
ready warmed by 3 ◦C. SSP3-7.0 takes 9 more years, while it
takes until 2092 for the ensemble average under SSP2-4.5
to reach 3 ◦C. Under this scenario, it is worth noting that
only 21 out of 37 models reach that level. Only the ensem-
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ble means of the two higher scenarios reach 4 ◦C, as early
as 2077 for SSP5-8.5 and 14 years later for SSP3-7.0. The
highest warming level considered of 5 ◦C is only reached by
the upper range of SSP3-7.0 (only four models out of 33),
while more than half the models running SSP5-8.5 (21 out of
39) reach that warming level in the last decade of the century
(2094) as an ensemble average and as early as 2074 when the
warmer end of the ensemble range is considered.

Only 13 models are available at the time of writing under
the lowest scenario specifically designed to meet the Paris
Agreement target of 1.5 ◦C warming by the end of the cen-
tury. Of those, two remain below that target for the entire cen-
tury, while others have a small overshoot of the target which
was expected by design. The ensemble mean reaches 1.5 ◦C
already by 2029. The lower bound never crosses that level,
while the upper bound is already at 1.5 ◦C currently, i.e.,
by 2021 (as a reminder, CMIP6 future simulations start at
2015). In Table A8, a comparison of the CMIP5/CMIP6 three
corresponding scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5
compared to RCP2.6, RCP4.5 and RCP8.5) for a slightly
larger ensemble of 36 CMIP6 models for which the three
scenarios are available, and a CMIP5 ensemble of 29 mod-
els, shows dates compatible with the warmer characteristics
of the CMIP6 models or scenarios. On average, the same tar-
get is reached from 3 to 9 years earlier by the CMIP6 ensem-
ble means compared to the CMIP5 ensemble means. A more
in-depth analysis than is in our scope is necessary to fully
characterize the causes of this acceleration. Here, we note
that the behavior of the CMIP6 ensemble means reflects the
use of unconstrained projections, with equal weight given to
high-climate-sensitivity models, which are often also those
less adherent to historical trends and that may show a faster
historical warming in the last decade or so than observed. In
addition, as we discussed in the previous section, even sce-
narios having the same AR5-SARF label see different forc-
ings at play. The result is to make the pace of warming faster,
and, in several cases, a target that was not reached by the
CMIP5 models under a given scenario is instead reached by
the CMIP6 ensemble under the corresponding scenario. For
example, 2.0 ◦C under SSP1-2.6 is reached in mean in 2056,
while it was reached only by the upper bound (by 2040) un-
der RCP2.6; at the opposite end, 5.0 ◦C was reached only by
the upper bound (in 2083) under RCP8.5, while it is reached
by the ensemble mean in 2093 under SSP5-8.5.

3.2 Climate projections from ScenarioMIP Tier 2
simulations

3.2.1 SSP3-7.0 initial condition ensembles

Five models (CanESM5, IPSL-CM6A-LR, MPI-ESM1-2-
HR, MPI-ESM1-2-LR and UKESM1) contributed at least
10 initial condition (IC) ensemble members under SSP3-
7.0. We focus here on the behavior of the ensemble spread
over the 21st century, as measured by the values of the inter-

realization standard deviations. In the following, the phrase
“ensemble spread” is used, which has to be interpreted as
the value of such standard deviation. Figure 5 shows the
time evolution (over 1980–2100) of the ensemble spreads for
global temperature and precipitation computed on an annual
basis (a and b) and after smoothing the individual time se-
ries by an 11-year running mean (c and d). One of the mod-
els, CanESM5, provides 50 ensemble members that we use
to randomly select subsets of 10 members and form a back-
ground “distribution” of the time series of ensemble spreads,
shown in gray in Fig. 5. This is not meant to provide a quanti-
tative assessment but rather a qualitative representation of the
variability of “10-member ensembles”, which is what most
models provide. When we compute trends for the time se-
ries of the temperature-ensemble spreads all show a negative
slope, indicating that the ensemble spread has a tendency to
narrow over time. In the case of the spread being computed
among annual values, only two of the models pass a signif-
icance test at the 5 % level, while for decadal averages all
models show significantly decreasing spreads (significantly
negative trends). Trends of the ensemble spreads for precip-
itation are non-significant for all models when the spread is
computed from annual values, while all are significantly neg-
ative, indicating a decrease in the spread, when that is com-
puted from decadal means. This result appears robust for this
small set of models, but confirmation with a larger number of
models providing sizable initial condition ensembles will be
important. Decreases in GSAT variability have however been
found in earlier studies (Huntingford et al., 2013; Brown et
al., 2017) and attributed to reduced Equator-to-pole gradi-
ents and reduced albedo variability due to the disappearance
of snow and sea ice. A deeper investigation of the sources
of changes in variability for both variables (which could also
tackle how much of the change in precipitation variability is
directly connected to that of GSAT and what other sources
may be at play) is beyond our scope but will be facilitated
by the availability of these CMIP6 IC ensembles in addition
to the already-well-studied CMIP5-era large IC ensembles
(Deser et al., 2020).

After detrending the values, we compare the distribution
of the ensemble spreads for an individual model to that of
other models in order to assess if models produce ensem-
bles with spreads that are significantly different. We use a
Kolmogorov–Smirnov test (at 5 % level) which measures dif-
ferences in distribution. For several pairs of models, ensem-
ble spreads based on annual values turn out to be indistin-
guishable: for temperature, CanESM5 ensemble spread is not
significantly different from those of the MPI-ESM model at
low resolution and those of the UKESM1 model. The lat-
ter in turn has an ensemble spread that is not different from
that of the IPSL-CM model. For precipitation, CanESM5 and
IPSL-CM produce comparable spreads, as do the two MPI-
ESM models, and the MPI-ESM at low resolution compared
to UKESM1. When we test the spreads of decadal means,
all models appear significantly different from one another.
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Lastly, we can exploit the CanESM5 large ensemble in or-
der to assess the number of ensemble members necessary to
estimate the forced response of globally averaged TAS and
PR, assuming that the mean response obtained by averaging
the full ensemble of 50 member is representative of the true
forced response. It is found that, for temperature, 10 ensem-
ble members produce an ensemble mean trajectory indistin-
guishable from the one obtained averaging 50 members. For
precipitation, only year-to-year variability is not completely
smoothed out by averaging 10 rather than 50 ensemble mem-
bers, but filtering by an 11-year running mean effectively
cancels out annual “wiggles”.

3.2.2 Effects of mitigation policies comparing SSP5-8.5
with SSP5-3.4OS, and SSP4-6.0 with SSP4-3.4

The ScenarioMIP design includes two pairs of scenarios,
each of which is derived from the same SSP and integrated
assessment model and consists of one baseline scenario with-
out mitigation and one scenario assuming mitigation poli-
cies that reduce radiative forcing. They can therefore be
used to cleanly attribute differences in climate outcomes to
mitigation efforts. The two sets of scenarios are SSP4-6.0
and SSP4-3.4 (produced with the Global Change Analy-
sis Model (GCAM) model; Calvin et al., 2017) and SSP5-
8.5 and SSP5-3.4OS (produced with the REgional Model
of Investment and Development – Model of Agricultural
Production and its Impacts on the Environment (ReMIND-
MagPIE); Kriegler et al., 2017). Figures 6 and 7 show time
series of global temperature and percent precipitation anoma-
lies with respect to the baseline period of 1995–2014 for the
two pairs, and the patterns of differences in temperature and
percent precipitation change by the end of the century, which
we can characterize as the benefits of mitigation within the
two SSP worlds. For reference, the pattern of change for the
lower scenario in the pair is also shown.

Figure 6 shows these outcomes for the pair of scenarios
developed under SSP5. One of them is the unmitigated path-
way already featured in the previous sections (SSP5-8.5), as-
suming high reliance on fossil fuels to support economic de-
velopment and reaching 8.5 Wm−2 by the end of the cen-
tury. The other scenario (SSP5-3.4OS) follows the same path
of emissions until 2040, when it enforces a steep decline
in greenhouse gas emissions, which become negative after
2070 and therefore create an overshoot in concentrations, ra-
diative forcing and global average temperature, to end up at
3.4 Wm−2 at 2100. Note that the endpoint of this scenario,
according to these global measures, coincides with the end-
point of SSP4-3.4, the lower scenario of the other pair con-
sidered in this section, which is however reached along a tra-
ditional non-exceed pathway.

Figure 7 shows results for the other pair, developed under
SSP4, which by the end of the century reach 6.0 (without
mitigation) and 3.4 Wm−2 (with mitigation), respectively.
Their greenhouse gas emissions start diverging immediately,

by 2020, with those of the lower scenario already decreasing
by that time, while those of the baseline scenario continue to
increase for two more decades, plateauing and then decreas-
ing only after 2060. Both scenarios have a non-decreasing
shape in radiative forcing and temperature.

At global scales, Figs. 6 and A8a show that the forced tem-
perature signals (identified by the ensemble averages, i.e., the
red lines in the time series separation plots) for the SSP5-
driven scenario pair respond within a decade of the diver-
gence in the emission pathways; i.e., they separate by 2050
(just a couple of years later if we consider the last of the indi-
vidual models) when we apply the same definition of separa-
tion used in Sect. 3.1.1. Global percent precipitation changes
show the expected delay in the emergence of the mitigation
signal, with ensemble average time series separating only af-
ter 2060 and the overlap of a large fraction of individual en-
semble members under the two scenarios persisting until the
end of the century. The corresponding time series in Fig. 7
(and Fig. A8b) shows that separation of temperature trajecto-
ries takes place even earlier for this pair of scenarios, by 2040
(2045 for the last of the individual models), consistently with
the earlier start of the mitigation. A large majority of the pre-
cipitation trajectories still overlap at the end of the century.

The differential patterns of temperature and precipitation
change have strikingly similar spatial features when com-
paring Figs. 6 and 7, only modulated by the strength of
the changes, proportional to the gap in radiative forcings.
Temperature changes benefit from mitigation over the whole
globe but more significantly and increasingly so the higher
the latitude in the Northern Hemisphere. All land regions see
a benefit of mitigation (in terms of the forced signal, again
represented by the difference in ensemble mean changes) of
at least 2 to 3 ◦C in annual average temperatures at the end of
the century, larger in most of the NH land regions and reach-
ing 8 ◦C in the Arctic for the SSP5-3.4OS/SSP5-8.5 scenario
pair. For precipitation changes, the larger differences trans-
late in a more-than-doubled intensity (note that the colors are
the same or stronger in the difference plot than in the scenario
change plot) in both directions of change over the high lati-
tudes (wetting) and the subtropics (drying). It is worth point-
ing out that patterns of change under the individual scenarios
and patterns of differences between scenarios are similar, a
further indication of the stable nature of the patterns of fu-
ture change across different forcing scenarios.

Lastly, we use Figs. 6 and 7, together with Fig. A8c for
an additional comparison, as the presence of two scenarios
ending at the same level of radiative forcing (AR5-SARF),
SSP4-3.4 and SSP5-3.4OS, allows us to compare the effects
of the overshoot, after performing the same differencing for
the six models that ran both of these scenarios. A comparison
of the patterns of change under the two scenarios shows no
apparent differences in the intensity of the changes for both
temperature and precipitation, consistent with the global time
series reaching a similar warming and precipitation change
level at 2100. The model-by-model differences of these two
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Figure 5. Time series of ensemble spreads (i.e., inter-member standard deviations) computed at each year among annual (a, b) or decadal
(c, d) mean values of TAS (a, c) and PR (b, d). The gray lines are obtained by resampling subset of 10 members from the CanESM5
model ensemble that provides 50 members. They are meant to provide a qualitative indication of the variability “hidden” in the 10-member
ensembles provided by the majority of the models. The color lines show the time series of standard deviations computed from 10 members
of five models running SSP3-7.0: CanESM5 (first 10 members, red), IPSL-CM6A-LR (yellow), MPI-ESM1-2-HR (blue), MPI-ESM1-2-LR
(cyan) and UKESM1 (light purple). Straight lines show least-square fits of the linear trends.

scenarios (see Fig. A8c) for temperature show that the ef-
fects of the overshoot trajectory translate in warmer global
temperatures starting from 2032 and all the way to 2080 in
the ensemble mean and from 2038 to 2087 when considering
the least differentiated of the individual models’ pairs. The
overshoot causes 0.4 ◦C of additional warming in the middle
of the 2030–2080 period (2055), with a cumulative measure
of differential warming over the period of about 14 degree
years. This simple analysis suggests that average tempera-
ture and precipitation changes do not show significant mem-
ory and recover quickly after an overshoot of this magnitude.

The small number of models supporting these conclu-
sions leaves the possibility that some of these numbers could
change when larger multi-model ensembles will become
available.

4 Summary and discussion

This paper provides an overview of ScenarioMIP results for
surface temperature and precipitation projections under both

Tier 1 and Tier 2 experiments, in addition to a comparison
to CMIP5 outcomes for a subset of experiments that updated
three of the RCPs.

The number of models contributing results for the simu-
lations of 21st century scenarios ranges from almost 40 for
experiments in Tier 1 to only 7 for some of the experiments in
Tier 2. At the time of writing, the availability of the long-term
simulations results is too scarce to provide a robust multi-
model ensemble perspective, and we have not included those
results.

Ensemble mean trajectories of global temperature under
the Tier 1 and the 1.5 ◦C scenarios (SSP1-1.9, SSP1-2.6,
SSP2-4.5, SSP3-7.0 and SSP5-8.5) span values between 0.7
and 4.0 ◦C above the historical baseline (1995–2014) (1.5–
4.8 ◦C above 1850–1900 average), but individual models
reach significantly larger warming levels under SSP5-8.5,
above 5.5 ◦C (6.4 ◦C from 1850 to 1900). A comparison with
the three CMIP5 RCPs (RCP2.6, RCP4.5 and RCP8.5) that
reach the same nominal level of radiative forcing in 2100 (in
terms of AR5-SARF) shows a wider range covered in the
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Figure 6. Time series and patterns comparing SSP5-8.5 to SSP5-3.4OS. (a, b) Global average time series of temperature and percent
precipitation change with respect to the 1995–2014 baseline (11-year running means). (c, d) Patterns of change for the same quantities, under
the lower scenario, SSP5-3.4OS (stitched areas are not significant; i.e., the magnitude of the change does not exceed the models’ standard
deviation). (e, f) Differences between the patterns of change under the higher (SSP5-8.5) and lower scenarios.

newest simulations, especially with respect to the upper end.
Studies (Tokarska et al., 2020; Nijsse et al., 2020; Brunner
et al., 2020; van Vuuren and Carter, 2014) have confirmed
that this is attributable to an interplay of both higher radiative
forcings by 2100 in the scenarios (when measured by the cur-
rently preferred metric, ERF) and higher climate sensitivities
in a subset of the CMIP6 models, together with differences
in background volcanic aerosols and greenhouse gases that

make a straightforward comparison not possible (Fyfe et al.,
2020; Lurton et al., 2020; Meehl et al., 2020; Meinshausen et
al., 2020; Michou et al., 2020; Nicholls et al., 2020; Séférian
et al., 2020; Smith et al., 2020; Wyser et al., 2020). We have
shown that when applying constraints based on historical
warming rates that weigh models differently on the basis of
their performance (Tokarska et al., 2020), ensemble means
and ranges of the CMIP6 experiments are brought closer to
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Figure 7. Like Fig. 6 but for SSP4-6.0 and SSP4-3.4.

the corresponding means and ranges from CMIP5 model re-
sults, as many of the models with higher climate sensitivi-
ties also tend to perform less well over the historical period
in terms of regional and aggregate warming trends (Brun-
ner et al., 2020). This remains true even when the same con-
straints are applied to the CMIP5 ensembles, as they do not
have as large an effect on the resulting trajectories (Figs. 4
and A6). A recent assessment performs a thorough attempt
at constraining the distribution of climate sensitivity based
on multiple lines of evidence, independently of climate mod-
els characteristics (Sherwood et al., 2020). If the resulting

distribution of equilibrium climate sensitivity (ECS) were to
be used to downweigh or cull models whose ECS is deemed
an outlier, we would likely see changes in the CMIP6 en-
semble projections in the same direction as those obtained
by historical warming constraints, but formal studies apply-
ing this alternative type of constraint have not yet been pub-
lished. The lack of a one-to-one correspondence between
ECS and transient climate response (Sanderson, 2020), the
latter more directly responsible for transient warming, fur-
ther urges caution with this inference. According to the Tier 1
scenarios and SSP1-1.9, the 1.5 ◦C target (above 1850–1900)
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is reached by the model ensemble average in the second half
of the current decade (between 2026 and 2029, depending
on the scenario). The scenario decides if the 2.0 ◦C thresh-
old is reached after only 13 more years (SSP5-8.5) or after
more than 35 (SSP1-2.6), whereas it is never reached under
SSP1-1.9. Only under SSP3-7.0 and SSP5-8.5 do a major-
ity of models reach 4 ◦C, while 5 ◦C is reached by half of
the ensemble members only under SSP5-8.5: models pro-
duce 4.0 ◦C of warming, on average, under the two higher
scenarios in 2078 (SSP5-8.5) and 2091 (SSP3-7.0), while by
2094 5.0 ◦C is reached by the ensemble average under SSP5-
8.5. Global precipitation change follows the pace and mag-
nitude of warming (O’Gorman et al., 2012; Lambert et al.,
2008) and spans a higher range of ensemble mean projections
(by slightly less than 1 %) than CMIP5 and a wider range
of variability around them. Time series computed separately
for land and ocean regions, and global patterns of change
– calculated as function of global warming – confirm well-
established behaviors: warming is stronger over land than
over oceans; the north-to-south warming gradient over the
globe persists, with strong polar amplification signals result-
ing in projected warming at twice the pace of the global aver-
age in the Arctic region. The regional cooling effect of North
Atlantic upwelling emerges clearly. Precipitation change ap-
pears stronger on average over land than over the globally av-
eraged oceans, with the (by now familiar) multi-model mean
patterns of wetting and drying, with the high latitudes and
the equatorial Pacific seeing increases and the semi-arid re-
gions of the Mediterranean, Australia and South Africa ex-
pecting further drying. As was the case for CMIP5 and pre-
vious multi-model ensembles, the average response across
models is very robust to changes in the size and trajectory of
well-mixed GHG forcings and therefore similar across sce-
narios. However, individual models’ regional behavior may
deviate from the average behavior significantly, especially in
the regions of high internal variability, at the edges of sea ice
melt for temperature and in the equatorial Pacific for precip-
itation.

The availability of 10 (or more) ensemble members un-
der SSP3-7.0 prescribed under Tier 2 and completed by five
models at the time of writing allows us to detect a tendency
toward decreasing internal variability on decadal scales over
time for both temperature and precipitation in all models
(we note that several models have voluntarily provided ini-
tial condition ensembles of various sizes under other sce-
narios, but we have used one member only for those, which
was all that was required for participation in ScenarioMIP).
When considering annual frequencies, only two of the mod-
els show significantly decreasing spread and only for global
temperature. The decadal-scale results appear at odds with
recent studies that detected increased variability of precipita-
tion with warming (Pendergrass et al., 2017; Yun et al., 2021)
and call for in-depth studies of the sources and robustness of
the behavior here described. For several pairs of models, en-
semble spreads based on annual values turn out to be indis-

tinguishable, while after computing running decadal means
all models show significantly different spreads from one an-
other, confirming that the representation of the climate sys-
tem internal noise characteristics remains model dependent
(Parsons et al., 2020). CanESM5 provides 50 members, and
a subsampling of its ensemble confirms that 10 realizations
are sufficient to robustly estimate the forced signal of global
temperature and precipitation by their averages, consistently
with studies that have recently sought to investigate the ques-
tion of how large a large ensemble needs to be for such esti-
mation of those quantities (Milinski et al., 2020).

Lastly, a new feature of ScenarioMIP’s design builds on
the matrix framework combining SSPs to different radiative
forcing levels and therefore allows estimates of the benefits
of mitigation for two pairs of scenarios: one pair under SSP4,
the other under SSP5 and an evaluation of the path depen-
dency of warming in the presence of an overshoot. The com-
parison of SSP5-8.5 to the overshoot pathway that departs
from it in 2040 to strongly mitigate radiative forcing down to
3.4 Wm−2 by 2100 (SSP5-3.4OS) shows that the warming
and absolute changes in precipitation avoided through late
mitigation in 2040 could be up to half the expected changes
under the high scenarios at the end of the century. The com-
parison of the other pair (SSP4-6.0 and SSP4-3.4) shows
a similar geography of avoided physical impacts but with
smaller absolute differences, given the smaller reduction in
radiative forcing between these two scenarios. We also com-
pare the end points of SSP4-3.4, which follows monotoni-
cally increasing forcing over the century, and those of SSP5-
3.4OS, which overshoots the late-century levels in radiative
forcing and temperature and therefore reaches them from
above. Both temperature and precipitation changes (averaged
over the last 20 years of the 21st century) appear compara-
ble in magnitude, suggesting a short memory of the climate
system with respect to global average temperature and pre-
cipitation, at least after it exceeds the ultimate target for up
to 5 decades, and by about 15 ◦C of cumulative differential
warming, as in this comparison. We note, however, that other
environmental dimensions of climate change (such as ocean
acidification or sea level rise) are not as easily reversible, if
at all (Tokarska et al., 2019; Schwinger and Tjiputra, 2018;
John et al., 2015; Mathesius et al., 2015; MacDougall et al.,
2015; Tokarska and Zickfeld, 2015).

A more general analysis of the time it takes for the various
scenarios to see a significant separation of GSAT trajectories
shows that the ensemble averages can show the climatologi-
cal effects of mitigation (which we define as a persistent dif-
ference of at least a tenth of a degree) already within 15 years
from the divergence of forcings when comparing SSP5-8.5
to the two lower scenarios (SSP1-1.9 and SSP1-2.6). “Ad-
jacent” scenarios take longer to separate but they all do so,
according to the ensemble means, by the mid-2040s. Indi-
vidual pairs of trajectories from the ensemble members can
take between about 5 and 20 years longer than the ensemble
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means (the longer period corresponding to the comparison
between the two higher scenarios, SSP3-7.0 and SSP5-8.5).

We have limited this analysis to two variables and sim-
ple descriptive statistics of their behavior. The ScenarioMIP
design together with the presence of complementary exper-
iments in several other MIPs and of the richness of the
archived data (Jukes et al., 2020) from the ESM simula-
tions is going to provide the basis for many more in-depth
analyses of the physical system behavior. This will be fur-
ther supported by a subset of CMIP6 models that are run-
ning CMIP5 RCPs, thus enabling a rigorous separation of
the sources of variation between the two generations of ex-
periments. Importantly, the ScenarioMIP effort aims at sup-
porting integrated analyses of Earth and human systems’ re-
sponses to future changes. These studies will integrate so-
cioeconomic changes described by SSPs with climate system
changes characterized by ESM outcomes to assess risks and
possible mitigation and adaptation response options. While
we do not address the integration of ScenarioMIP outcomes
in interdisciplinary studies within this overview, that integra-
tion remains the overarching motivation for ScenarioMIP co-
ordinated effort.
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Appendix A

Figure A1. ScenarioMIP design (modified from O’Neill et al., 2020). White and colored boxes indicate achievable 2100 levels of forcings
under the different SSPs. Gray areas are at the intersection of SSPs and radiative forcing levels that were not achievable by any of the IAMs
employed to produce these scenarios.
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Figure A2. Land-only and ocean-only average time series of temperature and percent precipitation changes relative to 1995–2014, for the
four scenarios of Tier 1, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 and SSP1-1.9.
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Figure A3. Time series of year-by-year differences in GSAT between each scenario run in Tier 1 and each of the lower scenario runs (includ-
ing SSP1-1.9). The time series from the individual models were first smoothed by a 21-year running mean. First row: differences between
SSP5-8.5 and, respectively, SSP1-1.9, SSP1-2.6, SSP2-4.5 and SSP3-7.0. Second row: differences between SSP3-7.0 and, respectively,
SSP1-1.9, SSP1-2.6 and SSP2-4.5. Third row: differences between SSP2-4.5 and SSP1-1.9 and SSP1-2.6. Fourth row: differences between
SSP1-2.6 and SSP1-1.9. Each black line corresponds to an individual model’s time series of differences. The red line is the ensemble mean
difference. The ensemble size varies across the plots based on the number of models available for which the difference can be computed. It
is as small as 10 members for those differences involving SSP1-1.9 and as large as 25 to 30 members when both scenarios belong to Tier 1.
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Figure A4. Patterns of changes by 2081–2100 relative to 1995–2014 in surface air temperature (◦C) and precipitation (%) under the five
scenarios. Stitched areas are not significant; i.e., the magnitude of the change does not exceed the models’ standard deviation.
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Figure A5. (a, b) Standard deviation of normalized patterns for individual CMIP5 models and scenarios. The individual patterns are the
elements from which the averages shown in Fig. 3 are computed. (c, d) Standard deviation of normalized patterns, after averaging across
scenarios, highlighting the role of intermodel variability. (e, f) Standard deviation of normalized patterns after averaging across models,
highlighting the role of interscenario variability. These standard deviations can be compared with the corresponding results from CMIP6
models and/or scenarios in Fig. A5.
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Figure A6. A closer look at the effects of applying the Tokarska et al. (2020) constraints to CMIP6 and CMIP5 projections (mean changes
at 2081–2100 compared to 1986–2005) for the nominally corresponding scenarios.
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Figure A7. Comparison of CO2, CH4 and N2O concentrations and radiative forcings for the concentration-driven CMIP5 runs with RCP-Y
scenarios (Meinshausen et al., 2011) and CMIP6 runs with SSPX-Y scenarios (Meinshausen et al., 2020). The higher scenario (SSP5-8.5)
features higher CO2 concentrations largely due to updated carbon cycle settings. RCP8.5 emissions with the same carbon cycle settings
(shown as a thin dashed line in panel a) would produce similar CO2 concentrations. The methane and nitrous oxide concentrations are
however lower in SSP5-8.5 than in RCP8.5 (despite updated gas cycles producing higher concentrations for the same emission trajectory).
(a, c, e) Adapted from Fig. 11 in Meinshausen et al. (2020). At the time of producing the SSPs (March 2018), stratospheric-adjusted radiative
forcings have been used to compare the nameplate radiative forcing levels in 2100 using MAGICC6.8 with IPCC-AR5-consistent settings;
see panels (b, d, f). ERFs take additional adjustments into account that are non-temperature induced and differ from stratospheric-adjusted
radiative forcings. Shown are 2080–2100 probabilistic results of SSP ERFs, using MAGICC7.3. These ERFs differ from SARFs and tend
to be higher for CO2 and total radiative forcings; see panels (b, f). Given that the efficacy and rapid adjustments are different for different
forcing agents, also the match between RCPs and SSP scenarios differs when comparing them in the effective radiative forcing space, rather
than in terms of their stratospheric-adjusted radiative forcings.
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Figure A8. As in Fig. A3: year-by-year GSAT differences for the two pairs of scenarios differing only by the amount of mitigation as-
sumed (a, b) and for the two scenarios that achieve the same level of radiative forcing by 2100, with one by overshooting it in the middle
of the century (c). (a–c) Year-by-year differences for the seven models that ran SSP5-8.5 and SSP5-3.4OS, the seven models that ran SSP4-
6.0 and SSP4-3.4, and the five models that ran SSP4-3.4 and SSP5-3.4OS. Black lines are differences computed between pairs of GSAT
trajectories for each of the models. Red lines are differences between the two ensemble mean trajectories.
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Table A1. Modeling centers and their model(s) contributing to CMIP6 ScenarioMIP. The citations are included in the main bibliography.
DOIs refer to the data available through the Earth System Grid Federation. The last columns details the experiments to which the model(s)
contributed.

Institution Model(s) Model reference(s) and
dataset DOIs

Experiments

Alfred Wegener Institute,
Helmholtz Centre for Polar and
Marine Research (Germany)

AWI Semmler et al. (2020)
https://doi.org/10.22033/esgf/cmip6.376
https://doi.org/10.22033/esgf/cmip6.359

historical, ssp126,
ssp245, ssp370, ssp585

Beijing Climate Center (China) BCC-CSM2-MR Wu et al. (2019); Xin et al. (2019)
https://doi.org/10.22033/ESGF/CMIP6.1732

historical, ssp126,
ssp245, ssp370, ssp585

Canadian Centre for Cli-
mate Modelling and Analysis
(Canada)

CanESM5-CanOE;
CanESM5

Swart et al. (2019)
https://doi.org/10.22033/ESGF/CMIP6.1317
https://doi.org/10.22033/ESGF/CMIP6.10207

CanESM5-CanOE:
historical, ssp126,
ssp245, ssp370,
ssp585; CanESM5:
historical, ssp119,
ssp126, ssp245,
ssp370*, ssp434,
ssp460, ssp534-over,
ssp585

Centre for Climate Change Re-
search, Indian Institute of Trop-
ical Meteorology (India)

IITM-ESM Swapna et al. (2018)
https://doi.org/10.22033/ESGF/CMIP6.44

historical, ssp126,
ssp370, ssp585

Centro Euro-Mediterraneo sui
Cambiamenti Climatici (Italy)

CMCC-CM2-SR5 Cherchi et al. (2019)
https://doi.org/10.22033/ESGF/CMIP6.3825
https://doi.org/10.22033/ESGF/CMIP6.3887
https://doi.org/10.22033/ESGF/CMIP6.3889
https://doi.org/10.22033/ESGF/CMIP6.3890
https://doi.org/10.22033/ESGF/CMIP6.3896

historical, ssp126,
ssp245, ssp370, ssp585

Chinese Academy of Meteoro-
logical Sciences (China)

CAMS-CSM1.0 Rong et al. (2018)
https://doi.org/10.22033/ESGF/CMIP6.11004

historical, ssp119,
ssp126, ssp245, ssp370,
ssp585

CNRM-CERFACS (France) CNRM-CM6.1-HR;
CNRM-CM6.1;
CNRM-ESM2.1

Roehrig et al. (2020); Michou et al. (2020);
Voldoire et al. (2019); Seferian et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.4191
https://doi.org/10.22033/ESGF/CMIP6.4197
https://doi.org/10.22033/ESGF/CMIP6.4198

CNRM-CM6.1-HR:
historical, ssp126,
ssp245, ssp370,
ssp585; CNRM-
CM6.1: historical,
ssp126, ssp245,
ssp370, ssp585;
CNRM-ESM2.1: his-
torical, ssp119, ssp126,
ssp245, ssp370, ssp434,
ssp460, ssp534-over,
ssp585

CSIRO (Australia) ACCESS-ESM1.5 Ziehn et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.2291

historical, ssp126,
ssp245, ssp370, ssp585

CSIRO-ARCCSS (Australia) ACCESS-CM2 Bi et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.2285

historical, ssp126,
ssp245, ssp370, ssp585

EC-Earth Consortium EC-Earth3, EC-Earth3-
Veg

Doescher et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.727

Both: historical,
ssp119, ssp126, ssp245,
ssp370, ssp585

Department of Energy (USA) E3SM-1.1 Golaz et al. (2019), Burrows et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.4497
https://doi.org/10.22033/ESGF/CMIP6.15179

Historical, ssp585

Earth Syst. Dynam., 12, 253–293, 2021 https://doi.org/10.5194/esd-12-253-2021

https://doi.org/10.22033/esgf/cmip6.376
https://doi.org/10.22033/esgf/cmip6.359
https://doi.org/10.22033/ESGF/CMIP6.1732
https://doi.org/10.22033/ESGF/CMIP6.1317
https://doi.org/10.22033/ESGF/CMIP6.10207
https://doi.org/10.22033/ESGF/CMIP6.44
https://doi.org/10.22033/ESGF/CMIP6.3825
https://doi.org/10.22033/ESGF/CMIP6.3887
https://doi.org/10.22033/ESGF/CMIP6.3889
https://doi.org/10.22033/ESGF/CMIP6.3890
https://doi.org/10.22033/ESGF/CMIP6.3896
https://doi.org/10.22033/ESGF/CMIP6.11004
https://doi.org/10.22033/ESGF/CMIP6.4191
https://doi.org/10.22033/ESGF/CMIP6.4197
https://doi.org/10.22033/ESGF/CMIP6.4198
https://doi.org/10.22033/ESGF/CMIP6.2291
https://doi.org/10.22033/ESGF/CMIP6.2285
https://doi.org/10.22033/ESGF/CMIP6.727
https://doi.org/10.22033/ESGF/CMIP6.4497
https://doi.org/10.22033/ESGF/CMIP6.15179


C. Tebaldi et al.: Climate model projections from ScenarioMIP of CMIP6 281

Table A1. Continued.

Institution Model(s) Model reference(s) and
dataset DOIs

Experiments

First Institute of Oceanography
(China)

FIO-ESM-2.0 Bao et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.9208
https://doi.org/10.22033/ESGF/CMIP6.9209
https://doi.org/10.22033/ESGF/CMIP6.9214

historical, ssp126,
ssp245, ssp585

Institut Pierre-Simon Laplace
(France)

IPSL-CM6A-LR Boucher et al. (2020), Hourdin et al. (2020),
Lurton et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.1532

historical, ssp119,
ssp126, ssp245,
ssp370*, ssp434,
ssp460, ssp534-over,
ssp585

Institute for Numerical Mathe-
matic (Russia)

INM-CM5.0; INM-
CM4.8

Volodin et al. (2017, 2018)
https://doi.org/10.22033/ESGF/CMIP6.12321
https://doi.org/10.22033/ESGF/CMIP6.12322

Both: historical,
ssp126, ssp245, ssp370,
ssp585

Institute of Atmospheric
Physics (China)

FGOALS-f3-L;
FGOALS-g3

He et al. (2019), Li et al. (2019), Bao and Li
(2020)
https://doi.org/10.22033/ESGF/CMIP6.2046
https://doi.org/10.22033/ESGF/CMIP6.2056

FGOALS-f3-L:
historical, ssp126,
ssp245, ssp370,
ssp585; FGOALS-
g3: historical, ssp126,
ssp245, ssp370, ssp434,
ssp534-over, ssp460,
ssp585

JAMSTEC, NIES, AORI, U. of
Tokyo (Japan)

MIROC6; MIROC-
ES2L

Tatebe et al. (2019), Hajima et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.898
https://doi.org/10.22033/ESGF/CMIP6.936

MIROC6: histori-
cal, ssp119, ssp126,
ssp245, ssp370, ssp434,
ssp460, ssp534-over,
ssp585; MIROC-ES2L:
historical, ssp119,
ssp126, ssp245, ssp370,
ssp534-over, ssp585

Korea Institute of Ocean Sci-
ence and Technology

KIOST-ESM Pak et al. (2021)
https://doi.org/10.22033/ESGF/CMIP6.1922
https://doi.org/10.22033/ESGF/CMIP6.11241

historical, ssp126,
ssp245, ssp585

Max Planck Institute for Me-
teorology (Germany), also
Deutsches Klimarechenzen-
trum (Germany) and Deutscher
Wetterdienst (Germany)

MPI-ESM1.2-LR Mauritsen et al. (2019), Mueller et al. (2018)
https://doi.org/10.22033/ESGF/CMIP6.2450
https://doi.org/10.22033/ESGF/CMIP6.1869
https://doi.org/10.22033/ESGF/CMIP6.793

historical, ssp126,
ssp245, sp370*, ssp585

Met Office Hadley Center (UK)
and Natural Environment Re-
search Council (UK)

UKESM1.0-LL;
HadGEM3-GC31-LL;
HadGEM3-GC31-MM

Sellar et al. (2019), Kuhlbrodt et al. (2018),
Williams et al. (2017)
https://doi.org/10.22033/ESGF/CMIP6.1567
https://doi.org/10.22033/ESGF/CMIP6.10845

UKESM1.0-LL:
historical, ssp119,
ssp126, ssp245,
ssp370, ssp534-over,
ssp585; HadGEM3-
GC31-LL: histori-
cal, ssp126, ssp245,
ssp585; HadGEM3-
GC31-MM: historical,
ssp126, ssp585

Meteorological Research Insti-
tute (Japan)

MRI-ESM2.0 Yukimoto et al. (2019)
https://doi.org/10.22033/ESGF/CMIP6.638

historical, ssp119,
ssp126, ssp245,
ssp370, ssp434, ssp460,
ssp534-over, ssp585

NASA GISS (USA) GISS-E2.1-G Kelley et al. (2020), Miller et al. (2021)
https://doi.org/10.22033/ESGF/CMIP6.2074

historical, ssp126,
ssp370, ssp434, ssp460,
ssp585

https://doi.org/10.5194/esd-12-253-2021 Earth Syst. Dynam., 12, 253–293, 2021

https://doi.org/10.22033/ESGF/CMIP6.9208
https://doi.org/10.22033/ESGF/CMIP6.9209
https://doi.org/10.22033/ESGF/CMIP6.9214
https://doi.org/10.22033/ESGF/CMIP6.1532
https://doi.org/10.22033/ESGF/CMIP6.12321
https://doi.org/10.22033/ESGF/CMIP6.12322
https://doi.org/10.22033/ESGF/CMIP6.2046
https://doi.org/10.22033/ESGF/CMIP6.2056
https://doi.org/10.22033/ESGF/CMIP6.898
https://doi.org/10.22033/ESGF/CMIP6.936
https://doi.org/10.22033/ESGF/CMIP6.1922
https://doi.org/10.22033/ESGF/CMIP6.11241
https://doi.org/10.22033/ESGF/CMIP6.2450
https://doi.org/10.22033/ESGF/CMIP6.1869
https://doi.org/10.22033/ESGF/CMIP6.793
https://doi.org/10.22033/ESGF/CMIP6.1567
https://doi.org/10.22033/ESGF/CMIP6.10845
https://doi.org/10.22033/ESGF/CMIP6.638
https://doi.org/10.22033/ESGF/CMIP6.2074


282 C. Tebaldi et al.: Climate model projections from ScenarioMIP of CMIP6

Table A1. Continued.

Institution Model(s) Model reference(s) and
dataset DOIs

Experiments

Nanjing University of Informa-
tion Science and Technology
(China)

NESM3 Cao et al. (2018)
https://doi.org/10.22033/ESGF/CMIP6.2027

historical, ssp126,
ssp245, ssp585

National Center for Atmo-
spheric Research (USA)

CESM2 (CAM6) and
CESM2 (WACCM6)

Danabasoglu et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.10026
https://doi.org/10.22033/ESGF/CMIP6.2201

CESM2: historical,
ssp126, ssp245, ssp370,
ssp585; CESM2-
WACCM: historical,
ssp126, ssp245, ssp370,
ssp534-over, ssp585

National Institute of Mete-
orological Sciences, Korea
Meteorological Administration
(South Korea)

K-ACE-1-0-G Lee et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.2241

historical, ssp126,
ssp245, ssp370, ssp585

NOAA-Geophysical Fluid Dy-
namics Laboratory (USA)

GFDL-CM4; GFDL-
ESM4

Held et al. (2019), Dunne et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.1414
https://doi.org/10.22033/ESGF/CMIP6.9242

GFDL-CM4: histor-
ical, ssp245, ssp585;
GFDL-ESM4: histor-
ical, ssp119, ssp126,
ssp245, ssp370, ssp585

Norwegian Climate Center
(Norway)

NorESM2-LM;
NorESM2-MM

Seland et al. (2020), Tjiputra et al. (2020),
Counillon et al. (2016)
https://doi.org/10.22033/ESGF/CMIP6.604
https://doi.org/10.22033/ESGF/CMIP6.608
https://doi.org/10.22033/ESGF/CMIP6.10894

Both: historical,
ssp126, ssp245, ssp370
ssp585

University of Arizona (USA) MCM-UA-1-0 Delworth et al. (2002), Beadling et al. (2020)
https://doi.org/10.22033/ESGF/CMIP6.2421

historical, ssp126,
ssp245, ssp370 ssp585

Table A2. Modeling centers participating in CMIP5 and their models used in the comparison of SSPs and RCPs.

Beijing Climate Center (China) BCC-CSM1-1; BCC-CSM1-1-M
BNU (China) BNU-ESM
Canadian Centre for Climate Modelling and Analysis (Canada) CanESM2
CNRM-Cerfacs (France) CNRM-CM5
CSIRO-BOM (Australia) ACCESS1-0; ACCESS1-3; CSIRO-Mk3-6-0
EC-Earth Consortium EC-Earth
Euro-Mediterranean Center on Climate Change (Italy) CMCC-CM; CMCC-CMS
First Institute of Oceanography (China) FIO-ESM
Institut Pierre Simon Laplace (France) IPSL-CM5A-LR; IPSL-CM5A-MR; IPSL-CM5B-LR
Institute for Numerical Mathematic (Russia) INM-CM4
Institute of Atmospheric Physics (China) FGOALS-g2
JAMSTEC, NIES, CCSR, U. of Tokyo (Japan) MIROC-ESM; MIROC-ESM-CHEM; MIROC5
Max Planck Institute (Germany) MPI-ESM-LR; MPI-ESM-HR
Met Office Hadley Center (UK) HadGEM2-AO; HadGEM2-CC; HadGEM2-ES
Meteorological Research Institute (Japan) MRI-CGCM3
NASA GISS (USA) GISS-E2-R; GISS-E2-R-CC; GISS-E2-H; GISS-E2-H-CC
National Center for Atmospheric Research (USA) CCSM4; CESM1-BGC; CESM1-CAM5; CESM1-WACCM
NOAA-Geophysical Fluid Dynamics Laboratory (USA) GFDL-CM3; GFDL-ESM2G; GFDL-ESM2M
Norwegian Climate Center (Norway) NorESM1-ME; NorESM1-M
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Table A3. CMIP6 models’ projected warming under the five scenarios by 2041–2060 and 2081–2100 relative to the historical baseline of
1995–2014. Ensemble mean values and, in square brackets, 5 %–95 % confidence intervals (±1.64σ ).

Surface air temperature
change (◦C) (1995–2014)

SSP1-1.9
(13 models)

SSP1-2.6
(38 models)

SSP2-4.5
(37 models)

SSP3-7.0
(33 models)

SSP5-8.5
(39 models for
global, 38 for
land or ocean)

2041–2060 global 0.83 [0.31, 1.36] 1.07 [0.51, 1.63] 1.32 [0.77, 1.88] 1.46 [0.82, 2.10] 1.74 [1.05, 2.42]
2081–2100 global 0.69 [0.13, 1.25] 1.23 [0.40, 2.05] 2.14 [1.27, 3.00] 3.16 [1.95, 4.38] 3.99 [2.40, 5.57]
2041–2060 land only 1.16 [0.45, 1.87] 1.45 [0.73, 2.17] 1.80 [1.04, 2.55] 1.97 [1.10, 2.84] 2.35 [1.43, 3.28]
2081–2100 land only 0.96 [0.17, 1.74] 1.61 [0.56, 2.65] 2.85 [1.73, 3.97] 4.26 [2.63, 5.90] 5.46 [3.36, 7.57]
2041–2060 ocean only 0.69 [0.26, 1.12] 0.91 [0.42, 1.40] 1.12 [0.64, 1.59] 1.24 [0.70, 1.78] 1.46 [0.87, 2.05]
2081–2100 ocean only 0.57 [0.11, 1.03] 1.06 [0.33, 1.79] 1.83 [1.07, 2.59] 2.70 [1.65, 3.74] 3.41 [2.06, 4.75]

Table A4. CMIP6 models’ projected changes in precipitation under the five scenarios by 2041–2060 and 2081–2100 expressed as percentages
relative to the historical baseline of 1995–2014. Ensemble mean values and, in square brackets, 5 %–95 % confidence intervals (±1.64σ ).

Precipitation change
(%) (1995–2014)

SSP1-1.9
(13 models)

SSP1-2.6
(37 models)

SSP2-4.5
(36 models)

SSP3-7.0
(33 models)

SSP5-8.5
(38 models for
global, 37 for
land or ocean)

2041–2060 global 2.04 [0.53, 3.56] 2.37 [0.63, 4.10] 2.33 [0.81, 3.85] 2.08 [0.58, 3.57] 2.78 [0.89, 4.67]
2081–2100 global 2.02 [0.37, 3.67] 3.05 [0.81, 5.28] 4.19 [1.79, 6.59] 4.88 [1.92, 7.85] 7.30 [−0.65, 15.26]
2041–2060 land only 2.59 [0.53, 4.66] 2.90 [−0.07, 5.87] 2.91 [0.21, 5.61] 2.67 [−0.22, 5.57] 3.90 [0.55, 7.24]
2081–2100 land only 2.32 [0.03, 4.61] 3.57 [0.04, 7.11] 4.83 [1.06, 8.60] 6.19 [1.14, 11.24] 8.61 [2.37, 14.85]
2041–2060 ocean only 1.81 [0.44, 3.17] 2.21 [0.54, 3.88] 2.16 [0.60, 3.72] 1.95 [0.53, 3.38] 2.56 [0.72, 4.40]
2081–2100 ocean only 1.87 [0.36, 3.38] 2.88 [0.77, 5.00] 4.01 [1.55, 6.47] 4.67 [1.62, 7.72] 6.21 [2.07, 10.35]

Table A5. Time of separation between smoothed GSAT trajectories under pairs of scenarios. Shown are the years by which the ensemble
means separate and, in square brackets, the years by which the last of the separation among individual models’ trajectories takes place.
Separation is defined as the emergence of a positive difference (we use 0.1 ◦C as the threshold) that persists for the remainder of the century.
We first apply a 21-year running mean to the GSAT time series in order to characterize separation “of climates”.

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

SSP1-1.9 2042 [2050] 2034 [2043] 2031 [2041] 2027 [2036]
SSP1-2.6 2039 [2053] 2037 [2048] 2030 [2036]
SSP2-4.5 2046 [2058] 2031 [2044]
SSP3-7.0 2034 [2053]
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Table A6. Projected warming and precipitation change under comparable scenarios, for CMIP5 and CMIP6 ensembles, and for the CMIP6
ensemble constrained by the method of Tokarska et al. (2020). For the latter, the number of models remains the same as for the unconstrained
projections. Differently from Tables A3 and A4, which use the CMIP6 current baseline period of 1995–2014, here all changes are relative
to the CMIP5 current baseline period of 1986–2005. See also Fig. A6 for a graphical representation of the raw and constrained temperature
projections for 2081–2100, besides Fig. 4 in the main text.

GSAT change (◦C; 1986–2005) Precipitation change (%; 1986–2005)

2041–2060 2081–2100 2041–2060 2081–2100

RCP2.6 (28 models) 1.01 (0.50, 1.62) 1.01 (0.23, 1.74) RCP2.6 (27 models) 2.20 (0.90, 3.50) 2.52 (0.77, 4.27)
RCP2.6 constrained 0.85 (0.38, 1.31) 0.83 (0.15, 1.50)
SSP1-2.6 (37 models) 1.35 (0.77, 2.06) 1.47 (0.80, 2.44) SSP1-2.6 (37 models) 2.78 (0.95, 4.61) 3.46 (1.14, 5.79)
SSP1-2.6 constrained 1.07 (0.54, 1.59) 1.12 (0.38, 1.85)
RCP4.5 (36 models) 1.33 (0.86, 1.83) 1.90 (1.07, 2.72) RCP4.5 (38 models) 2.42 (1.23, 3.61) 3.64 (1.71, 5.57)
RCP4.5 constrained 1.19 (0.75, 1.62) 1.71 (0.87, 2.56)
SSP2-4.5 (38 models) 1.57 (1.04, 2.30) 2.39 (1.53, 3.50) SSP2-4.5 (36 models) 2.75 (1.11, 4.39) 4.62 (2.08, 7.16)
SSP2-4.5 constrained 1.30 (0.80, 1.79) 2.00 (1.20, 2.80)
RCP8.5 (37 models) 1.79 (1.25, 2.37) 3.71 (2.71, 4.71) RCP8.5 (36 models) 3.00 (1.54, 4.46) 6.20 (3.35, 9.06)
RCP8.5 constrained 1.62 (1.12, 2.12) 3.45 (2.43, 4.46)
SSP5-8.5 (40 models) 2.02 (1.37, 2.95) 4.38 (2.92, 6.20) SSP5-8.5 (37 models) 3.25 (1.26, 5.24) 7.05 (3.03, 11.06)
SSP5-8.5 constrained 1.62 (0.99, 2.24) 3.60 (2.13, 5.05)

Table A7. Like Table 1 in the main text: times of crossing of different warming levels by the available ensembles running the various
scenarios (best estimate and range – in square brackets – based on the 5 %–95 % range of the ensemble after smoothing the trajectories by
11-year running means). Crossing of these levels is defined by using anomalies with respect to 1995–2014 for the model ensembles and
adding the offset of 0.84 ◦C to derive warming from pre-industrial values. Since the number of models available under each scenario varies,
and in some cases not all models reach a given warming level, those numbers are shown in parentheses. However, the estimates are based on
the ensemble means and ranges computed from the whole ensemble, not just from the models that reach a given level. An estimate marked
as “NA” is to be interpreted as “not reaching a given level by 2100”. In cases where the ensemble average remains below the warming level
for the whole century, it is possible for the central estimate to be NA, while the earlier time of the confidence interval is not, since the upper
bound of the ensemble range may still reach that warming level.

SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

1.5 ◦C 2029 2028 2027 2028 2026
[2021, NA] [2020, NA] [2020, 2046] [2020, 2045] [2020, 2040]

(11/13) (37/38) (37/37) (33/33) (39/39)

2.0 ◦C NA 2060 2045 2043 2039
[2036, NA] [2032, NA] [2031, 2077] [2031, 2064] [2030, 2054]

(2/13) (21/38) (37/37) (33/33) (39/39)

3.0 ◦C NA NA 2092 2068 2059
[NA, NA] [NA, NA] [2059, NA] [2052, NA] [2047, 2082]

(0/13) (1/38) (21/37) (33/33) (39/39)

4.0 ◦C NA NA NA 2091 2077
[NA, NA] [NA, NA] [NA, NA] [2071, NA] [2062, NA]

(0/13) (0/38) (2/37) (18/33) (33/39)

5.0 ◦C NA NA NA NA 2094
[NA, NA] [NA, NA] [NA, NA] [2088, NA] [2074, NA]

(0/13) (0/38) (0/37) (4/33) (21/39)
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Table A8. Warming level crossings for CMIP5 and CMIP6 scenarios/ensembles. Shown are times when an 11-year running average of the
ensemble mean trajectory, and the lower and upper bounds of its 90 % confidence interval (1.64σ , where σ is the ensemble standard deviation
after smoothing) cross various warming levels, under the three comparable scenarios: SSP1-2.6, SSP2-4.5 and SSP5-8.5 for CMIP6 models,
RCP2.6, RCP4.5 and RCP8.5 for CMIP5 models. NA values indicate that the corresponding ensemble metric (mean, lower or upper bound
of the confidence interval) does not reach the corresponding warming level by 2100. The numbers on the bottom row of each cell indicate the
number of models that reach that warming level. The largest ensemble available under all three scenarios considered is used in both cases,
with 36 CMIP6 models and 29 CMIP5 models.

SSP1-2.6 SSP2-4.5 SSP5-8.5 RCP2.6 RCP4.5 RCP8.5

1.5 ◦C 2025 2026 2024 2034 2029 2027
(2020, NA) (2020, 2047) (2020, 2040) (2018, NA) (2021, 2055) (2018, 2039)

35/36 36/36 36/36 23/29 29/29 29/29

2.0 ◦C 2056 2043 2038 NA 2051 2041
(2029, NA) (2028, 2080) (2027, 2054) (2040, NA) (2035, NA) (2030,2056)

18/36 36/36 36/36 7/29 24/29 29/29

3.0 ◦C NA 2089 2058 NA NA 2063
(2092, NA) (2055, NA) (2045, 2082) (NA, NA) (2069, NA) (2051, 2085)

2/36 20/36 36/36 0/29 7/29 29/29

4.0 ◦C NA NA 2076 NA NA 2084
(NA, NA) (2092, NA) (2060, NA) (NA, NA) (NA, NA) (2068, NA)

0/36 2/36 31/36 0/29 0/29 24/29

5.0 ◦C NA NA 2093 NA NA NA
(NA, NA) (NA, NA) (2073, NA) (NA, NA) (NA, NA) (2083, NA)

0/36 0/36 20/36 0/29 0/29 10/29
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Code and data availability. CMIP5 (see Table A2) and CMIP6
(see Table A1) model output is available through the Earth System
Grid Foundation (ESGF) and can be directly used within the ESM-
ValTool (e.g., https://esgf-data.dkrz.de/projects/esgf-dkrz/, last ac-
cess: 7 January 2021) (ESGF, 2021). The corresponding recipe that
can be used to reproduce the figures of this paper will be included
in ESMValTool v2.0 (Righi et al., 2020; Eyring et al., 2020; Lauer
et al., 2020; Weigel et al., 2020) as soon as the paper is published.
ESMValTool (v2.1) is released under the Apache License, VER-
SION 2.0. The latest release of ESMValTool v2.1 is publicly avail-
able on Zenodo at https://doi.org/10.5281/zenodo.4300499 (Andela
et al., 2020b). The source code of the ESMValCore package, which
is installed as a dependency of ESMValTool v2.1, is also publicly
available on Zenodo at https://doi.org/10.5281/zenodo.4525749
(Andela et al., 2020a). ESMValTool and ESMValCore are de-
veloped on the GitHub repositories available at https://github.
com/ESMValGroup (last access: 7 January 2021) (ESMValGroup,
2021). As of December 2020, 27 modeling centers participated in
ScenarioMIP by running at a minimum its Tier 1 experiments and
provided their output through the ESGF. Table A1 lists them, to-
gether with their model(s) and the DOI referencing the data.
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