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Abstract A better anticipation of high-impact heat and drought on human activity is8

the underlying motivation of many climate studies focused on the summer season. Al-9

though a large body of research has already highlighted the prominent impact of soil10

moisture anomalies on summer mid-latitudes climate variability and predictability, it11

still leaves room for a wide range of uncertainty and sometimes contradictions. The12

present work aims at revisiting soil moisture sensitivity studies by comparing an ide-13

alized ensemble model experiment in which soil moisture conditions are prescribed14

with a reference experiment in which soil moisture evolves freely. Two regional cli-15

mate models centered over Europe contribute to these experiments and generate very16

similar results. Simulations with constrained soil moisture display significantly in-17

creased correlation between observed and simulated seasonal anomalies of maximum18

temperature, precipitation and surface solar radiation, as compared to the reference19

experiment. This widespread increase is not restricted to regions already known as20

hot-spots of land-atmosphere coupling such as southern Europe, where evapotranspi-21

ration is mainly driven by soil moisture. In spite of a limited change in the ensemble22

spread, the sensitivity experiments show a substantially modified magnitude of tem-23

perature and precipitation variability. A focus on two case studies reveal contrasting24

results for the 2003 and 2010 heat waves. These results stress the prominent role25

of soil moisture as a boundary condition of the climate system in Europe, including26

regions that have not been highlighted by previous sensitivity works.27
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1 Introduction30

A wide range of human activities in mid-latitude regions are specifically affected by31

summer climate, e.g. crop management and harvesting, energy supply, tourism, or32

heat-related health issues (Field and Barros, 2014). Global warming is expected to33

increase the frequency and amplitude of extreme summer events like heat waves and34

droughts, prone to impact these activities (Roudier et al, 2016; Vautard et al, 2014).35

The need for improved anticipation and preparedness emphasizes the expectations36

on the quality and usefulness of summer seasonal forecasts (Buontempo et al, 2014).37

Summer is characterized by a weaker atmospheric variability than winter, which fa-38

vors local drivers of predictability (Doblas-Reyes et al, 2000), such as the land com-39

ponent of the climate system, and in particular soil moisture. However, predictability40

studies focusing on soil moisture initialization have led to contrasting results over41

Europe when considering either sub-seasonal (van den Hurk et al, 2012) or seasonal42

time-scales (Ardilouze et al, 2017). In the latter case, an improved soil moisture ini-43

tialization in spring conveys a robust increase of temperature prediction skill in the44

subsequent summer over Southeast Europe. An increase is also seen over other re-45

gions such as Scandinavia and Eastern Europe, although to a lesser extent. Similar46

results are found when refining the land surface scheme of the forecast system (Bun-47

zel et al, 2018).48

These findings only partially fulfill expectations derived from investigations relat-49

ing soil moisture and summer climate variability. The physical rationale relies on the50

influence of soil moisture on the exchange of energy and water from the surface to the51

bottom layers of the atmosphere through evapotranspiration. For a noticeable impact52

on climate inter-annual variability, and hence potential predictability, the soil water53

content must be abundant enough, but also highly variable from one year to another54

(Orth and Seneviratne, 2017). In addition, soil moisture anomalies must be persistent55

enough to impact the atmosphere at the seasonal scale (e.g. Seneviratne and Koster56

(2012)). These conditions are fulfilled in so called ”transitional regions” between57

arid and wet climates. Quesada et al (2012) and Mueller and Seneviratne (2012)58

showed observational evidence of spring soil moisture anomalies pre-conditioning59

subsequent summer hot days.60

Several studies have contributed to identify those regions where soil moisture can61

modulate the surface climate in boreal summer. The first initiative based on multiple62

dynamical models to characterize these regions was the Global Land-Atmosphere63

Coupling Experiment (GLACE, Koster et al (2004)). Since then, and despite differ-64

ences due to methodology or model response, further studies on land-atmosphere in-65

teractions have agreed on a number of coupling hot-spots. Over boreal mid-latitudes,66

the US Great Plains and Mediterranean Europe have been identified as such (Senevi-67

ratne et al, 2006; Dirmeyer, 2011). At the regional scale, the EURO-CORDEX multi-68

model evaluation from Knist et al (2017) confirms southern (northern) Europe as69

a strong (weak) land-atmosphere coupling region in summer over recent years. In70

that study, the coupling strength is assessed through correlation between variables71

connected to surface exchange processes and compared to references from station72

observations and gridded reanalysis. The transitional zone between strong and weak73
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coupling across Central Europe is only roughly defined due to inter-model spread and74

observational uncertainties.75

Soil moisture deficit also plays a role in the amplification and persistence of ex-76

treme heat waves, in particular those of Western Europe in 2003 (Fischer et al, 2007;77

Weisheimer et al, 2011) and Russia in 2010 (Miralles et al, 2014). The physical pro-78

cesses at play in linking spring drought to summer hot days over Europe are described79

in Zampieri et al (2009) and Quesada et al (2012). Once heat waves have settled, en-80

hanced sensible heat originating from dried-out soils exerts a positive amplification81

feedback. Although Western Europe and Russia are not considered as hot-spots, pre-82

dictability studies such as Prodhomme et al (2016) have shown that an accurate soil83

moisture initialization was needed to correctly capture heat wave events such as the84

Russian summer of 2010.85

The sensitivity of European summer climate inter-annual variability to soil mois-86

ture is therefore incompletely understood and related studies usually fall into one87

of the two following categories. On the one hand, predictability studies help ex-88

ploring the actual prediction skill of coupled forecast systems associated to land89

surface initialization, but they cannot bring much information on the sensitivity of90

climate variability to the soil moisture component throughout the integration of the91

ensemble simulations. On the other hand, model sensitivity studies usually rely on92

a model single long-term integration for which years cannot be compared individu-93

ally to observations. Combining both approaches can help bridging the gap between94

predictability studies relying on initial conditions and sensitivity studies focusing on95

land-atmosphere coupling and seasonal variability. Here, we study the capacity of96

climate model simulations to reproduce observed atmospheric inter-annual anoma-97

lies when soil moisture is ideally constrained compared to simulations when soil98

moisture is only prescribed at initialization. In the approach we have chosen, both99

sets of simulations consist of an ensemble of summer season simulations initialized100

by the same pseudo-observed soil water content, but in one case the simulated soil101

moisture evolves freely afterwards while in the other case, it is constrained towards102

pseudo-observations throughout the course of the model integration. Such an ide-103

alized set-up is inspired by the experimental framework applied in the PROVOST104

project (Palmer et al, 2000), in which sea surface temperature was prescribed instead105

of soil moisture. The comparison focuses on the model accuracy to reproduce the ob-106

served inter-annual variability and their ability to capture two extreme summers. The107

experiments have been performed with regional climate models (RCMs) in order to108

benefit from more detailed surface characteristics and a better simulation of extremes109

than coarser global models (Flato et al, 2013). Two distinct RCMs contribute to this110

study to better assess the model-dependence of our results.111

The paper is structured as follows: section 2 describes in more detail the experi-112

mental set-up, the observational reference datasets and the model evaluation metrics.113

Results are commented in section 3. Finally, section 4 summarizes the main conclu-114

sions and discusses limitations and perspectives to this study.115
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2 Experiments and data116

2.1 RCMs and dynamical downscaling117

The experimental setup is based on the dynamical downscaling of an ensemble of118

seasonal-scale simulations initially performed with General Circulation Models (GCMs)119

on a coarse global grid. These global simulations provide lateral boundary condi-120

tions to RCMs over a high resolution (0.22◦) domain covering Europe. The nested121

experiments are carried out with either interactive (-REF hereafter) or prescribed (-122

SOIL hereafter) soil moisture over the high-resolution domain. More specifically, two123

RCMs contributed to this study: RACMO 2.2 (Van Meijgaard et al, 2012), carrying124

HTESSEL as land surface scheme (Balsamo et al, 2009) and a version of ALADIN-125

CLIMAT 5 (Colin et al, 2010) with a refined land surface scheme (SURFEX 7.2126

(Masson et al, 2013) including a multi-layer soil diffusion scheme (Decharme et al,127

2011)). The common spatial domain is EURO-CORDEX EUR-22 (boundaries: ∼27N128

72N, ∼22W 45E, spatial resolution: 0.22◦). The experiments are listed in Table129

1. For compatibility reasons, the lateral boundary conditions are different for each130

RCM. They are provided by two forcing GCMs, namely EC-Earth 3.1 (Hazeleger131

et al, 2010) for RACMO and CNRM-CM (Voldoire et al, 2013) for ALADIN. All132

experiments consist of 15-member ensembles of 20-year summer season simulations133

initialized on May 1st and spanning the 4 months from May to August 1993 to 2012.134

The main characteristics of the forcing global simulations are reported in Table 2.135

The ensemble spread originates solely from these global simulations. Note that the136

RACMO reference experiment (here R-REF) along with its forcing GCM simulation137

are also used and further described in Manzanas et al (2017). Additional details on138

the CNRM-CM seasonal forecast system used to generate ALADIN lateral boundary139

conditions are provided in Batté et al (2018).140

2.2 Soil moisture reference and prescribing techniques141

Because of too scarce or superficial observations, global soil moisture estimates are142

often derived from land surface model (LSM) reconstructions. Various datasets result143

from offline LSM runs constrained by atmospheric reanalysis forcing (e.g. Sheffield144

and Wood (2007), Reichle et al (2011)). ERA-Interim/Land (Balsamo et al, 2015)145

(hereafter denoted as ERA-Land) is a reconstruction based on the HTESSEL LSM146

(Balsamo et al, 2009; Albergel et al, 2012) forced by atmospheric input derived from147

the ERA-Interim reanalysis (Dee et al, 2011) with corrected precipitation. In spite148

of not assimilating observed data, the fair results of ERA-Land verification against149

observations justify its use as a reference for soil water content estimates. Here, ERA-150

Land is used to prescribe soil moisture in the dedicated RCM experiments, namely151

R-SOIL and A-SOIL. It is also used to initialize the land surface component in the152

GCM simulations that provide forcing boundary conditions to the four RCM exper-153

iments. As can be seen from Table 2 summarizing GCM forcing experiments, the154

CNRM-CM land component differs from that of ERA-Land. To perform the initial-155

ization of land surface from ERA-Land, an interpolation based on a transfer function156
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is applied (Boisserie et al, 2016). Another possibility would have been to retrieve ini-157

tial conditions for the land surface from an offline simulation of the SURFEX LSM.158

Here, we choose to use the same dataset to initialize both GCMs so as to limit dis-159

crepancies in the experimental design.160

ERA-Land was also used to constrain soil moisture in the RCM experiments161

with ALADIN and RACMO (A-SOIL and R-SOIL, respectively, see Table 1). Al-162

though RACMO and ERA-Land share the same underlying LSM, the difference in163

spatial resolution implies that one ERA-Land grid cell, corresponding to one soil164

type, matches multiple RACMO grid cells potentially differing in terms of soil type165

and thus hydrological properties. Thus, the transfer from ERA-Land to RACMO is166

performed by interpolating a soil moisture index (SMI). It is computed following167

Equation 1, where θ is the volumetric soil water content, θ wp the wilting point of the168

considered soil layer and θ fc the field capacity.169

SMI =
θ −θwp

θ f c −θwp
(1)

SMI is then converted back into water content in the target grid, taking into ac-170

count the soil type attributed to each cell. These retrieved water content values replace171

simulated water content prognostic fields during the RCM integration once a day at172

00Z. In the case of ALADIN, ERA-Land soil water content is interpolated onto the173

SURFEX grid using the aforementionned transfer function, also based on SMI re-174

gridding. Then, at each time step of the model integration, simulated soil moisture175

fields are strongly nudged (Douville, 2003; Douville et al, 2016) towards those de-176

rived from the interpolated ERA-Land data of the corresponding day. If we call X the177

soil water content prognostic variable of a considered soil layer, then the temporal178

evolution of X in A-SOIL follows the nudging Equation 2, where M(X) is the ten-179

dency term for X , σ is a vertical profile factor comprised between 0 and 1, X ref the180

reference soil water value derived from ERA-Land, and τ a characteristic relaxation181

time. Here, σ was set to 1 and τ to 24 hours for every soil layer. We justify this a182

priori choice of relaxation time by the need for a strong nudging of soil moisture to183

stay close to the R-SOIL set-up. This is the case when the soil water content char-184

acteristic time is close to or greater than one day. We infer that only the superficial185

layer water content evolves at a faster pace than one day. There, our nudging remains186

loose but the memory of superficial moisture anomalies is negligible at seasonal time187

scales. Furthermore, applying a sub-daily nudging would require to carry out a dedi-188

cated time interpolation of ERA-Land daily data, hence introducing a new source of189

uncertainty.190

∂X
∂ t

= M(X)+σ · X re f −X
τ

(2)

Note that for R-SOIL and A-SOIL, the method used to prescribe soil moisture191

has been applied similarly to the 15 ensemble members. The ensemble spread results192

from perturbations in the atmospheric component in the forcing GCMs. As an illus-193

tration of the nudging technique, Figure 1 compares A-REF and A-SOIL spread for194

superficial volumetric soil water content over FR for a randomly selected year (1998)195
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where the box and whiskers depict the day-to-day intra-ensemble spread in ALADIN196

experiments.197

Soil moisture-related metrics should focus on the amount of soil water content198

prone to impact climate at the seasonal scale. We therefore use SMI as previously199

described, computed over the root-zone only. This fraction of soil water available for200

evapotranspiration is commonly used in climate studies considering land-atmosphere201

coupling (e.g. Betts (2004)) or to retrieve comparable soil moisture between different202

LSMs that do not share the same soil parametrization and discretization (e.g. Bois-203

serie et al (2016); Douville (2003)).204

The characteristics of the models led us to use two slightly different techniques205

to constrain soil moisture, as described above. However, since both R-SOIL and A-206

SOIL soil water contents have been guided towards the same reference data, they207

should be almost perfectly correlated to each other. This is verified in supplementary208

Figure S.1 where, as expected, these correlations are close to 1 between A-SOIL and209

R-SOIL experiments over the whole domain. One remarkable exception is northern210

Finland. This is the only region where A-SOIL SMI is not correlated to ERA-Land211

in spite of the nudging (not shown). This discrepancy is due to abundant soil water212

content with a relatively low inter-annual variability in this region, characterized by213

organic soils in ERA-Land. After nudging, the soil water content in ALADIN re-214

mains well below that of ERA-Land, probably reaching a saturation threshold, which215

prevents the inter-annual variability signal to be properly conveyed from ERA-Land216

to ALADIN. Overall, since A-SOIL and R-SOIL have an almost identical soil mois-217

ture inter-annual variability, we conclude that the different approaches to constrain218

their soil moisture do not hamper the inter-model comparison.219

2.3 Atmospheric reference data and evaluation metrics220

By design, models represent climate dynamics and processes in an incomplete way.221

Consequently, they produce systematic errors leading to a biased simulated climate222

with respect to observations. A straightforward and commonly-used method to re-223

move the bias in climate predictions is to consider observed and simulated anomalies224

relative to their respective climatologies for a given verifying time. The assessment225

carried out in this study relies on this approach. The anomalies are seasonally aver-226

aged over boreal summer, i.e. the 3-month June to August (hereafter JJA) period.227

Three focus regions are defined, over France (hereafter FR), Sweden (SW) and a228

region straddling Ukraine and Russia (RU). They are depicted on Figure 2 and their229

boundary coordinates are reported in supplementary Table S.1. All three have very230

distinct climate features : mainly ocean temperate for FR, continental with warm231

summers for RU and continental with cool summers for SW. RU and FR have also232

been selected for a specific analysis of extreme summers during the full simulation233

period (respectively 2010 and 2003).234

The reference observed daily precipitation, minimum temperature (Tmin) and235

maximum temperature (Tmax) at screen level are taken from EOBS v.14 European236

gridded data set at 0.25◦ (Haylock et al, 2008). Local station observational data of237

monthly downward surface shortwave radiation (DSSR) are derived from the Global238
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Energy Balance Archive (GEBA) (Sanchez-Lorenzo et al, 2015). Neither EOBS nor239

GEBA is a reanalysis stricto sensu, meaning that they are completely independent240

from any model physical parametrization.241

The first part of section 3 presents a deterministic assessment of the experiments.242

This implies that the metrics are only based on their ensemble mean. It relies mainly243

on Pearson correlation over time of grid point or area-averaged variables, and mean244

square errors. The statistical significance is derived from 95% confidence intervals,245

computed after a Fisher z-transformation of the correlation coefficient, or after the246

method by Zou (2007) in the case of correlation difference. The latter is recom-247

mended by Siegert et al (2017) to detect correlation improvements.248

The probabilistic evaluation of our experiments allows to extract information249

given by the ensemble members. In particular, the second part of section 3 details250

the impact of the experimental set-up on the ensemble spread, followed by an analy-251

sis of variance for Tmax and precipitation over the three focus regions.252

3 Results253

3.1 Ensemble mean evaluation254

3.1.1 Inter-annual variability over the simulation period255

Before verifying the capacity of the models to capture inter-annual climate anomalies256

related to a boundary condition such as soil moisture, we first need to assess how well257

soil moisture inter-annual variability is simulated in the unconstrained simulations.258

This is achieved by computing SMI JJA correlations to ERA-Land for both reference259

experiments R-REF and A-REF. Figure 3 shows that these initialized experiments260

manage to significantly capture the inter-annual sign of soil moisture anomalies over261

less than 2/3 of grid points. The only common regions with a fair signal are Iberia262

and a strip extending from southern Germany to the Black Sea. SMI correlations are263

irrelevant, and therefore masked out, in desert regions of North Africa and the Middle264

East where the soil water content is very small. In addition to correlation, the mem-265

ory of soil moisture, i.e. the degree of persistence of spring anomalies throughout266

summer, is assessed over the three focus regions described in section 2.3 (Fig. 4).267

Unlike A-REF, a fair agreement is found between R-REF and ERA-Land over RU268

(long-lived soil moisture memory) and SW (short-lived soil moisture memory). It is269

likely that R-REF and ERA-Land are better matches since both datasets are based on270

the same LSM. However, A-REF SMI memory is closer to ERA-Land than R-REF271

over FR (intermediate memory), suggesting that memory is not exclusively deter-272

mined by the LSM formulation. The sharp drop in correlation during the first days273

for A-REF over the three regions may result from an initialization shock triggered274

by the difference between ALADIN and ERA-Land surface schemes. The diversity275

of models response to soil moisture initialization, together with the uncertain rep-276

resentation of reality by ERA-Land as a model-dependant reference are challenging277

aspects when considering the contribution of soil moisture to climate inter-annual278

variability. However, they confirm a priori the added value of comparing two mod-279
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els in this study. Furthermore, forcing soil moisture towards the same reconstructed280

values in both models allows to obtain two sets of idealized atmospheric simulations281

with a common ’perfect’ evolution of soil moisture as a boundary condition.282

Daytime surface turbulent heat fluxes balance the major part of incoming energy283

from solar radiation. Consequently, evapotranspiration has a pronounced diurnal cy-284

cle (Novick et al, 2009) and reaches a minimum during nighttime, in the absence285

of incoming shortwave radiation. Furthermore, Tolk et al (2006) showed that in a286

semi-arid environment, virtually all the nighttime fraction of evapotranspiration is287

prescribed by atmospheric conditions. Thus, in regions where soil moisture is con-288

sidered a major driver of evapotranspiration, we can infer that the coupling between289

soil moisture and the boundary layer gets cut-off at night. Based on that assump-290

tion, we assess separately the sensitivity of Tmin and Tmax seasonal anomalies to291

soil moisture, the former value being generally reached at the end of the night. Time292

correlations for Tmin (Fig. 5) show little difference between SOIL and REF exper-293

iments for both models, except a substantial gain over the easternmost part of the294

domain for R-SOIL (Fig. 5(c)). Conversely, prescribing soil moisture brings a spec-295

tacular increase in correlation for Tmax (Fig. 6) for both models, over almost the296

whole domain. The only regions exhibiting limited signal in SOIL experiments are297

roughly patches of North-West Europe and Poland for RACMO and most of the Alps298

for ALADIN. This overall improvement was expected for southern Europe, where299

soil moisture is the main driver of evapotranspiration. For the other regions where300

Tmax variability benefits from improved soil moisture, we hypothesize that the other301

terms of the surface energy budget play a prevailing role. Since water content impacts302

the soil heat capacity, it is likely that the SOIL experiments have more realistic inter-303

annual variability of both ground heat fluxes and sensible heat fluxes. Verifying this304

against observation is very challenging because of the lack of reliable observations305

and the model-dependent parametrization of turbulent fluxes. However, the compared306

correlations of these fluxes between models (supplementary Fig. S.2 and S.3) shows307

consistent inter-annual variability in both SOIL experiments, even at higher latitudes.308

Additionally, over Northeast Europe, SOIL experiments are better correlated for sen-309

sible than for latent heat fluxes.310

Another noticeable feature is the relative match for each REF experiment between311

the regions with SMI and Tmax significant correlation (Fig.3(a) and 6(a), 3(b) and312

6(c)). Even if correlations do not give insight on causal relationship, this result is313

consistent with a strong link existing between soil moisture and temperature inter-314

annual variability over Europe in summer.315

Since improved soil moisture variability affects Tmax, it may also impact the316

convective boundary layer and diurnal cloud development. We use observed incom-317

ing solar radiation variability as a proxy to verify this hypothesis. Time correlation318

for DSSR between in-situ observations at GEBA stations and simulations at the cor-319

responding grid point are reported on Figure 7. SOIL experiments show either higher320

or unchanged correlations as compared to REF. The correlation increase concerns321

mainly Northeastern-most locations, but also central Europe for R-SOIL. Hence,322

over these regions, seasonal soil moisture anomalies likely drive cloud cover anoma-323

lies to a certain extent, even if the processes involved cannot be clearly identified324

from our study. Based on our results on turbulent fluxes, we can only hypothesize325



Title Suppressed Due to Excessive Length 9

that soil moisture anomalies mainly impact sensible heat fluxes which in turn in-326

fluence the diurnal boundary layer development and ultimately cloud evolution. A327

dedicated process-oriented experiment would be required to specify the underlying328

mechanisms.329

It is well known that the precipitation skill of seasonal forecast systems is very330

limited over Europe (Rodwell and Doblas-Reyes, 2006). This is also the case in our331

REF experiments despite dynamical downscaling (Fig. 8 (a) and (c)). However the332

idealized framework of SOIL experiments leads to a strong increase in precipitation333

correlation for both models (Fig. 8 (b) and (d)). It should be noted that the regions334

benefiting from this improvement are not restricted to southern Europe, usually pin-335

pointed as a hotspot of land-atmosphere coupling. Here again, models partly agree on336

the regions with increased correlation, but most of the areas covered by our three sub-337

domains of interest, namely FR, RU and SW, are concerned. The root mean square338

error of precipitation anomalies is also reduced overall in SOIL experiments as com-339

pared to REF, although this reduction is hardly significant (supplementary Fig. S.4).340

3.1.2 Seasonal bias341

The Tmax summer temperature bias is shown in Figure 9. The slight cold bias present342

over the vast majority of the domain in REF for both models is further increased in343

SOIL experiments, in particular over Eastern Europe and Russia. In the case of AL-344

ADIN, the cooling impact of prescribed soil moisture is very likely due to the increase345

of mean soil water content in the SOIL experiment with respect to REF (not shown).346

Consequences in terms of temperature variance are discussed in the next section. As347

for precipitation, (Supplementary Fig. s.5), the simulations with prescribed soil mois-348

ture tend to produce more precipitation across the whole domain. Thus, dry biases in349

REF are reduced in SOIL, but wet biases are amplified. Overall, the mean climate350

of both models is altered with respect to the reference data when soil moisture is351

prescribed.352

All the results presented so far demonstrate a widespread sensitivity of summer353

inter-annual variability to soil moisture boundary conditions. Despite a slight degra-354

dation of the model mean climate with respect to observations, SOIL experiments355

better capture the sign of annual anomalies. Beyond consequences on the ensemble356

mean, we now investigate the impact of soil moisture prescription in a probabilistic357

framework. To that end, the next section focuses on the sensitivity of the ensemble358

spread to our experimental design and on the analysis of inter-annual and intra-annual359

variance.360

3.2 Probabilistic evaluation361

3.2.1 Regional spread362

The same nudging has been applied across the whole domain for all the ensemble363

members of SOIL experiments. Consequently, one can expect by design a smaller364

soil wetness ensemble spread than in REF for which soil moisture is not constrained.365
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Figure 1 compares A-REF and A-SOIL spread for superficial volumetric soil water366

content over FR for a randomly selected year (e.g. 1998) where the box and whiskers367

depict the day-to-day intra-ensemble spread in ALADIN experiments. This exam-368

ple illustrates the extent to which the soil moisture spread is reduced in the nudged369

experiment. We generalize this spread evaluation for both models by computing the370

quadratic mean of the SMI ensemble variance for each day of the 4-month May-to-371

August period over the 20-year period (Supplementary Equation S.1). The JJA mean372

of these daily values is displayed in Table 3 for the three focus regions. For both mod-373

els, and despite different techniques, soil moisture prescription at a daily frequency374

leads to a reduction of spread by about 70 %, regardless of the considered region.375

The spread reduction is higher for RACMO than for ALADIN, which is not surpris-376

ing since the relaxation technique in ALADIN constrains soil moisture more softly377

than the replacement technique applied in RACMO.378

Theoretically, the reduction of spread for soil moisture could translate into a re-379

duction of spread for near-surface climate fields, at least where soil moisture drives380

the partition of turbulent heat fluxes. These fluxes relate to daytime near-surface tem-381

perature but also precipitation through convective boundary layer development. We382

verify this hypothesis over our 3 focus regions characterized by distinct precipitation383

regimes in summer. Indeed, the share of convective precipitation in total precipita-384

tion is lower over SW (about 50 % according to ERA-Interim) than over FR (approx.385

68 %) or RU (75 %). These estimates are derived from a reanalysis and may thus386

be inaccurate but they characterize different precipitation regimes over Europe (sup-387

plementary Fig. S.6). However, Table 4 shows that the reduction in Tmax spread is388

small, and generally below 10 %. A similar analysis for precipitation and DSSR does389

not reveal any change in spread (not shown).390

In contrast with the previous section highlighting an acute sensitivity of the en-391

semble mean to soil moisture, these results suggest that in our models, the ensemble392

spread is barely sensitive to soil moisture over most of Europe.393

3.2.2 Analysis of variance394

The simulations with constrained soil moisture proved to better capture the sign of395

temperature or precipitation summer inter-annual anomalies. The impact on the vari-396

ance of these fields can also be assessed fairly robustly thanks to our experimental397

design based on ensembles. Here we analyze separately the inter-annual and intra-398

annual contributions to the total variance. The intra-annual term is the mean variance399

of daily values computed separately for each year while the inter-annual one is the400

variance of seasonally averaged daily values. The decomposition of the variance for401

a given field X follows Equation 3, where nd is the number of summer days of each402

year y, i.e. 92 from June 1st to August 31st, N is the total number of summer days in403

the entire period (N = nd ∗20). The overbar denotes the arithmetic mean.404

Var(X) =
1
N

N

∑
i=1

(Xi −X)2

=
1
N ∑

y

nd

∑
d=1

(X (y)
d −X (y))2 +

nd

N ∑
y
(X (y)−X)2 (3)
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= Varintra(y)(X)+Varinter(y)(X)

The decomposition is applied to the observations and to the 15 members of each405

experiment. This provides samples of 15 ratios Var(Xexp)/Var(Xobs) per experiment,406

for each term of the variance decomposition. When comparing experiments, a t-test is407

performed to verify if variances significantly differ at a 95% confidence level. Results408

for the three focus regions are reported in Table 5.409

For both temperature and precipitation, the intra-annual term is much greater410

than the inter-annual one, by a comparable factor for observations and simulations411

(not shown). This expected feature relates to the greater magnitude of day-to-day412

variations as compared to that of seasonal ones. Tmax variance terms in SOIL are413

systematically and significantly reduced over RU and FR with respect to REF. The414

reduction also applies to SW but without statistical significance in general. In com-415

parison to observations, SOIL experiments show an improvement for FR where the416

REF experiments overestimate both inter and intra-annual variances. By contrast, the417

variance terms are deteriorated over RU in SOIL experiments which show an exces-418

sively low amplitude. Interestingly, the two variance terms for precipitation evolve419

oppositely in SOIL experiments (5 (c) and (d)) where the intra-annual variance in-420

creases and the inter-annual variance decreases with respect to REF. This tendency is421

however less pronounced and generally not significant for RACMO.422

Hence, the magnitude of inter-annual variability is restrained when soil moisture423

is prescribed in our experiments. This is likely the consequence of a soil mean state424

wetter in SOIL than in REF experiments. The underlying mechanism, described in425

Seneviratne et al (2010) section 7.2, can be described as follows: when soil moisture426

is abundant enough, it stops being a limiting factor of evapotranspiration. This im-427

plies that variations in soil moisture do not translate into variations of surface heat428

fluxes, and therefore limit temperature and precipitation variability. As for the op-429

posite trend of intra-annual variance between precipitation and temperature, we can430

hypothesize that wetter soils in SOIL experiments increase the latent heat flux in re-431

sponse to intense solar radiation, which mitigates daily hot temperature extremes and432

also favors the occurrence of days with convective precipitation.433

3.3 Focus on two extreme summers434

A year-to-year comparison of observed vs. simulated Tmax anomalies averaged over435

FR and RU is shown in Figure 10. The amplitude of simulated anomalies is damped436

by the ensemble averaging. Hence, observed anomalies and simulated ensemble mean437

anomalies are normalized by their respective standard deviation. A similar analysis438

for precipitation can be found in supplementary Figure S.7. As mentioned in the intro-439

duction, the case of 2003 over FR (left-hand column) and 2010 over RU (right-hand440

column) are worthy of attention since these summers were exceptionally warm and441

dry in concerned regions. Generally, SOIL outperform REF experiments in capturing442

a pronounced dry and warm anomaly, except for RACMO in 2003, where R-REF and443

R-SOIL both succeed in simulating these anomalies. Further insight is provided by444

means of an index defined as the number of days where Tmax exceeds a given thresh-445

old during these particular summers. Instead of using a common absolute temperature446
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value as threshold for both observation and simulations, we select relative thresholds447

computed monthly as the 80th percentile of Tmax distribution of each experiment448

and observation. This allows a fair comparison, regardless of the models bias and the449

observational uncertainty. The benefit of prescribing soil moisture is visible for 2010450

where unlike REF, both SOIL experiments capture a positive signal correctly located451

over West Russia (Fig. 11). It should be kept in mind that the difference of ampli-452

tude between indices derived from observation and simulations partly results from453

damping due to ensemble averaging. Conversely, for 2003, despite a weak signal454

over Italy and the Balkans for RACMO, prescribing soil moisture only leads to small455

improvements (supplementary Fig. S.8). Interestingly, REF experiments do manage456

to simulate the observed 2003 negative SMI anomaly over Western Europe but not457

the one over Russia in 2010 (Fig. 12). For the latter year, SOIL protocol deeply mod-458

ifies the average soil moisture state, which seems crucial in the development of the459

heat wave. This result supports the attribution study from Hauser et al (2016), show-460

ing that dry soil conditions alone increased the likeliness of occurrence of the 2010461

event by a factor of six. For 2003, prescribing soil moisture only slightly modifies462

the summer-averaged soil moisture content with respect to REF. This is consistent463

with the limited differences found between the experiments for our heat index. We464

relate the apparently weak response of the models to the findings from Feudale and465

Shukla (2011), suggesting that the 2003 heat wave was more related to the global sea466

surface temperature conditions. Moreover, our index tends to highlight long-lasting467

warm spells, like that of 2010, as opposed to the 2003 summer heat anomaly, which468

was characterized by multiple shorter-lived warm spells, including the relatively brief469

but extremely intense early August episode. Without overlooking the contribution of470

land surface feedbacks in the summer 2003 extreme heat, as such already identified471

by e.g. Weisheimer et al (2011), we infer that our simulations miss a key ingredi-472

ent such as the temporal structure of circulation regimes. This is consistent with the473

mechanism described in Miralles et al (2014) for mega heat waves, suggesting that474

atmospheric high pressure blocking anomalies trigger situations favoring clear skies475

with enhanced evaporative demand, leading to a rapid soil dry-out, which in turn476

contributes to temperature escalation. Very similar results are found when assessing477

these two case studies in terms of precipitation deficit, by means of a 3-month Stan-478

dardized Precipitation Index of these two case studies (not shown). This supports479

the findings of Schär et al (1999) who pointed out the strong positive dependence480

of summertime precipitation to soil moisture over large parts of Europe. Underlying481

processes are less clear than for soil-moisture temperature interplay : the complex482

and sometimes reverse feedbacks and physical mechanisms involved are still being483

investigated (Schär et al, 1999; Seneviratne et al, 2010; Guillod et al, 2015).484

4 Conclusions485

This study investigates the sensitivity of inter-annual climate variability to soil mois-486

ture in climate models over Europe, based on two sets of modelling experiments.487

Constraining daily soil moisture towards reconstructed values provides an idealized488

experiment framework fitted to evaluate the models response with respect to standard489
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initialized simulations, in which soil moisture evolves freely. This work relies on490

two distinct limited area models using boundary forcings from two global initialized491

simulations carried out by different GCMs. Over large parts of Europe, climate sim-492

ulations with imposed realistic soil moisture are significantly more accurate in terms493

of temperature and precipitation inter-annual variability. Models partly disagree with494

each other on the most sensitive regions but the improvement is not limited to south-495

ern or mediterranean Europe, traditionally identified as hot-spots of land-atmosphere496

coupling. Over northern Europe, the results indicate that realistic soil moisture likely497

improves land surface temperature, sensible heat flux and convective boundary layer498

development. The robustness of our results is supported by an overall consistency499

between the two RCMs. The main conclusion from our study is that soil moisture500

as a boundary condition plays a major role in controlling the amount of summer501

climate variability in Europe, including in higher latitude regions where the evapo-502

transpiration is not mainly driven by soil water content. A very similar experiment503

carried out at the global scale with a GCM but not described here for the sake of504

clarity, brings similar conclusions for North America and China. However, no im-505

pact is found over Indian and African monsoon regions. Our results also support the506

findings from Mueller and Seneviratne (2012) whose observational study suggests507

that the extent of regions concerned by strong soil moisture-atmosphere coupling508

has been underestimated by previous model-only studies. Going a step further could509

consist in comparing the impact on summer climate of soil moisture inter-annual510

variability with that of day-to-day variability. Addressing such point would require511

complementary experiments, e.g. by prescribing a seasonally constant soil moisture512

anomaly derived from observations for each simulated year.513

Our idealized framework does not fit the standard of a potential predictability514

study since it prevents any feedback from the atmosphere to the soil moisture and515

it does not address the seasonal predictability of soil moisture itself. However, the516

results from this study may encourage shaping any future predictability research tar-517

geted at making the most out of land surface initialization. In particular, it would be518

worth assessing the gain of prediction skill resulting from a mitigation of model sys-519

tematic errors. These errors on rainfall amount and intensity could rapidly alter the520

information included in land surface initial conditions and thus hinder the prediction521

skill. To our knowledge, the impact of these biases during the early stage of a forecast522

system integration has not been thoroughly evaluated, and would deserve a dedicated523

experiment. Soil moisture might well be an under-tapped source of warm season pre-524

dictability because of uncertainties inherent to the modelling of the land surface and525

its complex interactions with the atmosphere.526
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Fig. 1 Daily spread of superficial (seven top centimeters) soil water content in kg.m-2 from May 1st to
Aug. 31st 1998 over FR for A-REF (cold shades) and A-SOIL (warm shades). The black solid line is the
nudging reference value derived from ERA-Land. The whiskers extend to the most extreme data point
which is no more than 1.5 times the interquartile range depicted by boxes. Outliers are represented by
circles

Fig. 2 Spatial extent of focus regions

532
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Fig. 3 JJA SMI correlation between ERA-Land and (a) R-REF (b) A-REF. Stippling depicts values sig-
nificantly different from 0 with a 95% confidence. Pixels with ERA-Land SMI values below 0.1 have been
masked out
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Fig. 4 Correlation between May 1st SMI and 5-day running mean SMI for ERA-Land (black), A-REF
(blue) and R-REF (red) over (a) FR (b) RU and (c) SW. Thick circles mark significant correlations with a
95% confidence level



Title Suppressed Due to Excessive Length 17

Fig. 5 JJA Tmin correlation with EOBS for (a) R-REF (b) R-SOIL (d) A-REF (e) A-SOIL and correlation
differences R-SOIL minus R-REF (c) and A-SOIL minus A-REF (f) for experiments initialized 1st May
1993-2012. Stippling depicts values significantly different from 0 with a 95% confidence.
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Fig. 6 Same as Fig. 5 for Tmax.
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Fig. 7 JJA DSSR correlation with GEBA for (a) R-REF (b) R-SOIL (c) A-REF and (d) A-SOIL for
experiments initialized 1st May 1993-2012. Large circles depict correlations significantly positive with a
95 % confidence
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Fig. 8 Same as Fig. 5 for precipitation



Title Suppressed Due to Excessive Length 21

Fig. 9 JJA Tmax bias against EOBS in K for (a) R-REF (b) R-SOIL (c) A-REF and (d) A-SOIL for
experiments initialized 1st May 1993-2012
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Fig. 10 Inter-annual JJA Tmax anomalies for FR (a) (c) and RU (b) (d). The first (second) row shows
RACMO (ALADIN) experiments. The blue (red) solid line depicts REF (SOIL) ensemble mean and the
black broken line the reference. Same colors are used to display the correlation values of corresponding
experiments with the reference in the upper left corner
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Fig. 11 Number of 2010 JJA hot days as defined in section 3.3 in (a) EOBS observation, (b) R-REF, (c)
R-SOIL, (d) A-REF and (e) A-SOIL
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Fig. 12 JJA SMI anomaly: 2003 ERA-Land (a), R-REF (b), A-REF (c) and 2010 ERA-Land (d), R-REF
(e) and A-REF (f)
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Table 1 Experiments summary

Name RCM Soil moisture Land Surface Model
A-REF ALADIN Initialized SURFEX 7.2
A-SOIL ALADIN Daily nudged towards ERA-Land SURFEX 7.2
R-REF RACMO Initialized HTESSEL
R-SOIL RACMO Daily replaced by ERA-Land HTESSEL

Table 2 GCM ensemble simulation characteristics

CNRM-CM EC-Earth 3.1
Horizontal resolution Tl255 (∼ 70km) T255 (∼ 70km)

Interactive ocean Yes No
Ensemble generation Stochastic dynamics Singular vectors
Land Surface Model SURFEX 7.2 HTESSEL

Land Surface initialization Interpolated ERA-Land ERA-Land

Table 3 Soil moisture index spread for RACMO (a) and ALADIN (b)

FR RU SW
R-REF 0.11 0.08 0.10
R-SOIL 8.1×10−3 5.9×10−3 8.9×10−3

Ratio R-SOIL/R-REF 7.5% 7.4% 9.1%

(a)

FR RU SW
A-REF 0.09 0.06 0.05
A-SOIL 8.6×10−3 5.3×10−3 5.9×10−3

Ratio A-SOIL/A-REF 10.0% 9.3% 10.8%

(b)

Table 4 Tmax spread for RACMO (a) and ALADIN (b)

FR RU SW
R-REF 3.91 3.27 3.28
R-SOIL 3.62 3.07 2.94

Ratio R-SOIL/R-REF 92.6% 93.9% 89.7%

(a)

FR RU SW
A-REF 4.01 2.82 3.64
A-SOIL 3.25 2.75 2.74

Ratio A-SOIL/A-REF 81.1% 97.4% 75.2%

(b)
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Table 5 Intra-annual (a) and inter-annual (b) variance ratio for Tmax, and ((c) and (d) respectively) for
precipitation. Bold figures highlight significant differences between REF and SOIL experiments

Tmax (intra) FR RU SW
R-REF/OBS 1.37 0.97 1.02
R-SOIL/OBS 1.22 0.84 0.93
A-REF/OBS 1.35 1.18 0.81
A-SOIL/OBS 0.91 0.72 0.81

(a)

Tmax (inter) FR RU SW
R-REF/OBS 1.47 0.55 0.72
R-SOIL/OBS 0.94 0.41 0.58
A-REF/OBS 1.78 0.82 0.50
A-SOIL/OBS 0.62 0.43 0.42

(b)

Pr (intra) FR RU SW
R-REF/OBS 1.09 0.91 0.99
R-SOIL/OBS 1.11 1.04 1.00
A-REF/OBS 1.04 0.72 1.01
A-SOIL/OBS 1.28 0.98 1.05

(c)

Pr (inter) FR RU SW
R-REF/OBS 1.65 0.95 0.88
R-SOIL/OBS 1.42 0.75 0.87
A-REF/OBS 2.07 1.33 1.02
A-SOIL/OBS 1.56 1.03 0.91

(d)
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