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Abstract. The European Space Agency (ESA) Earth Ex-
plorer Mission Aeolus was launched in August 2018, carry-
ing the first Doppler wind lidar in space. Its primary payload,
the Atmospheric LAser Doppler INstrument (ALADIN), is
an ultraviolet (UV) high-spectral-resolution lidar (HSRL)
measuring atmospheric backscatter from air molecules and
particles in two separate channels. The primary mission
product is globally distributed line-of-sight wind profile ob-
servations in the troposphere and lower stratosphere. Atmo-
spheric optical properties are provided as a spin-off prod-
uct. Being an HSRL, Aeolus is able to independently mea-
sure the particle extinction coefficients, co-polarized parti-
cle backscatter coefficients and the co-polarized lidar ratio
(the cross-polarized return signal is not measured). This way,
the retrieval is independent of a priori lidar ratio information.
The optical properties are retrieved using the standard correct
algorithm (SCA), which is an algebraic inversion scheme and
therefore sensitive to measurement noise. In this work, we re-
formulate the SCA into a physically constrained maximum-
likelihood estimation (MLE) problem and demonstrate a pre-
dominantly positive impact and considerable noise suppres-
sion capabilities. These improvements originate from the use
of all available information by the MLE in conjunction with
the expected physical bounds concerning positivity and the
expected range of the lidar ratio. To consolidate and to il-
lustrate the improvements, the new MLE algorithm is eval-
uated against the SCA on end-to-end simulations of two
homogeneous scenes and for real Aeolus data collocated
with measurements by a ground-based lidar and the Cloud–
Aerosol Lidar and Infrared Pathfinder Satellite Observations

(CALIPSO) satellite. The largest improvements were seen in
the retrieval precision of the extinction coefficients and lidar
ratio ranging up to 1 order of magnitude or more in some
cases due to effective noise dampening. In real data cases,
the increased precision of MLE with respect to the SCA is
demonstrated by increased horizontal homogeneity and bet-
ter agreement with the ground truth, though proper uncer-
tainty estimation of MLE results is challenged by the con-
straints, and the accuracy of MLE and SCA retrievals can
depend on calibration errors, which have not been consid-
ered.

1 Introduction

Aeolus is an ESA (European Space Agency) Earth Explorer
Core mission launched on 22 August 2018 (Stoffelen et al.,
2005; ESA, 2008). Aeolus’ payload consists of the Atmo-
spheric LAser Doppler INstrument (ALADIN), which is a
UV high-spectral-resolution (HSRL) Doppler wind lidar op-
erating at 355 nm wavelength (Chanin et al., 1989; Gar-
nier and Chanin, 1992; Korb et al., 1992; Souprayen et al.,
1999b, a; Gentry et al., 2000) and the first Doppler wind li-
dar in space. The primary mission goal is to provide accu-
rate global measurements of vertical wind profiles in the tro-
posphere and lower stratosphere with global coverage each
week for use in operational numerical weather prediction
(NWP) and scientific research. Additionally, Aeolus can con-
tribute to the global monitoring of cloud and aerosol optical
properties due to the applied aerosol HSRL method (Ship-
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ley et al., 1983; Shimizu et al., 1983; Grund and Eloranta,
1991; She et al., 1992; Weitkamp, 2006). Among various
space missions that carry active lidar instruments are the
Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Obser-
vations (CALIPSO), launched in 2006 (Winker et al., 2003);
Ice, Cloud and land Elevation Satellites (ICESat and ICESat-
2), launched in 2003 and 2018 (Spinhirne et al., 2005; Mar-
tino et al., 2019), respectively; and the Cloud–Aerosol Trans-
port System (CATS) deployed on the International Space
Station (ISS) in 2015 (McGill et al., 2015). A further mis-
sion currently being implemented is the ESA’s Earth Clouds,
Aerosols and Radiation Explorer (EarthCARE) scheduled
for launch in 2022 (Illingworth et al., 2015). Particularly
the combination of CALIPSO, CATS, Aeolus and Earth-
CARE will potentially offer a detailed and long-term dataset
of aerosol and cloud optical properties to the benefit of nu-
merical weather prediction and climate research as the largest
single cause of uncertainty in anthropogenic radiative forcing
has been reported to be from the indirect effect of aerosols on
clouds (IPCC, 2013; Illingworth et al., 2015). This dataset is
a unique addition to ground-based lidar networks such as the
European Aerosol Research Lidar Network (EARLINET)
(Pappalardo et al., 2014) due to the regular global coverage.

The key advantage of ALADIN’s HSRL capability is
the independent estimation of volume extinction coefficient
and co-polarized volume backscatter coefficient products at
355 nm from two different spectral channels. On the other
hand, this requires a robust channel crosstalk correction. The
Aeolus atmospheric optical property retrieval is implemented
in the Level 2A processor, as described by Flamant et al.
(2008) and Flamant et al. (2020). Following its launch, the
Aeolus atmospheric backscatter signal levels were found to
be a factor of 2.5 to 3 lower than expected due to lower laser
output energies and a decreased instrument transmission by
about 30 % (e.g. Reitebuch et al., 2020). This has caused
lower signal-to-noise ratios (SNRs) in the receive channels,
and as a result, Aeolus optical property retrieval with the
HSRL standard correct algorithm (SCA) is hampered due
to high noise sensitivity (see Appendix A). Particularly the
particle extinction coefficient retrieval is severely affected
due to its dependency on the slope of already-noisy attenu-
ated molecular backscatter signals. In the past, attempts were
made to mitigate nonphysical optical properties in the SCA
(such as oscillating or negative extinction coefficients in low-
aerosol-load conditions) by measures like zero-flooring or
signal accumulation in even coarser range bins (Sect. 6.2.2.1
and 6.3 in Flamant et al., 2020) but with limited success. Par-
ticle extinction coefficient retrieval from HSRL, and simi-
larly Raman lidar observations, is known to be an ill-posed
problem in the presence of any noise (Shcherbakov, 2007;
Pornsawad et al., 2008, 2012; Denevi et al., 2017; Gar-
barino et al., 2016). A classical mitigation approach is to
increase the SNR by averaging the data in non-overlapping
blocks before processing or application of low-pass filters
on either the measured lidar signal or the atmospheric op-

tical properties, i.e. aerosol backscatter and extinction co-
efficients (Ansmann et al., 2007; Young et al., 2008; Elo-
ranta, 2014; Flamant et al., 2020). Here, the lidar signal is
seen as a two-dimensional image with the dimensions range
and time owing to continuous operation. But decreased res-
olution is often not acceptable due to increase in representa-
tiveness errors, e.g. when the heterogeneity of the observed
atmospheric scene forbids a coarser description in the case
of high gradients (broken clouds with aerosols). For Ae-
olus there is no suitable resolution in between (i) a low-
SNR or noise-dominated regime and (ii) a representation-
error-dominated regime so that suitable regularization tech-
niques and non-linear regression methods must be applied.
The most commonly used methods for retrieval of atmo-
spheric optical properties from active optical remote sensing
by lidars are (penalized) least square fit (LSF) (Whiteman,
1999; Pornsawad et al., 2008, 2012), (penalized) maximum-
likelihood estimation (PMLE) (Shcherbakov, 2007; Denevi
et al., 2017; Garbarino et al., 2016; Marais et al., 2016; Xiao
et al., 2020), and the optimal estimation method or Bayesian
method (OEM) (Povey et al., 2014; Sica and Haefele, 2015;
Donovan et al., 2020). A thorough documentation of the
OEM in inverse problems for atmospheric sounding was
given by Rodgers (2000), whose notation is adapted in this
work for all non-linear regression methods. The strengths of
such techniques lie within the characterization and utilization
of any additional information, such as the measurement un-
certainties or another hypothesis about the state. Such addi-
tional information content (if correct) enables a better charac-
terization of the underlying aerosol optical properties. Most
of the mentioned works exploit the knowledge of measure-
ment uncertainties and positivity constraints on optical prop-
erties and can therefore outperform purely algebraic inver-
sions of particle extinction coefficients. The SCA approach
is such a purely algebraic inversion algorithm. Another spe-
cific advantage in the works of Shcherbakov (2007), Povey
et al. (2014), Marais et al. (2016) and Xiao et al. (2020) is
the coupled retrieval of particle backscatter coefficients and
extinction coefficients via the particle lidar ratio (extinction-
to-backscatter ratio) because particle backscatter coefficients
are usually measured with much higher precision. Thus, the
particle extinction may occur only where there is backscatter
and may vary only in terms of the typical lidar ratio range.
This way, the retrieved set of optical properties is automati-
cally consistent in itself and with the underlying physics (as-
sumptions).

In this work, we want to explore and demonstrate the
potential of non-linear regression in Aeolus’ aerosol opti-
cal property retrieval. The already-implemented SCA ap-
proaches serve as a benchmark for comparison. There-
fore, the retrieval problem is reformulated into a maximum-
likelihood estimation (MLE) problem, which aims to solve
the noted issues in the SCAs as follows: firstly, we account
for the noise of the signals in both channels; secondly, we
suggest that particle backscatter and extinction coefficients
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are retrieved in a coupled way; and, thirdly, we constrain the
solution space to a physically reasonable subset only. This
means constraining the lidar ratio to values in between 2
and 200 sr and setting a positivity constraint on extinction
and backscatter coefficients. A considerable gain in the qual-
ity of the retrievals is expected, particularly due to the lat-
ter two measures, because a coupled retrieval in conjunction
with a box-constrained set of space variables will allow for
important information exchange during the determination of
the self-consistent set of optical properties. Therefore, our
method differs from the approaches in Shcherbakov (2007),
Marais et al. (2016) and Xiao et al. (2020), which first ob-
tain backscatter coefficients and successively calculate ex-
tinction coefficients. It is important to note that such a si-
multaneous retrieval with ground-based lidars would require
the additional geometric overlap function calibration param-
eter. Hence, it is often preferred to retrieve backscatter co-
efficients independent of extinction coefficients to mitigate
biases in the former due to calibration errors. The developed
MLE framework naturally offers the potential to be further
refined into an optimal estimation method (OEM) or penal-
ized maximum-likelihood estimation (PMLE) method due to
the strong similarity between the methods.

This paper is structured as follows: a brief instrument de-
scription in Sect. 2 is followed by a recap of the classical
retrieval algorithms (SCAs) and their underlying set of equa-
tions and the MLE approach in Sect. 3. In Sect. 4, results are
presented and discussed from the comparisons of the SCA
and MLE approaches using end-to-end simulations of ho-
mogeneous standard atmosphere scenes, real Aeolus obser-
vations of a Saharan Air Layer event and Aeolus observa-
tions collocated with ground-based lidar observations near
Tel Aviv. The final section provides the study conclusions
and outlook.

2 Instrument

Aeolus revolves around the Earth in a sun-synchronous polar
orbit at about 320 km altitude with a 7 d repeat cycle. The
ALADIN instrument emits a narrow-bandwidth UV laser
pulse close to 355 nm wavelength, and the instrument is
pointing to Earth with an off-nadir slant angle of 35◦ mea-
sured from the spacecraft, which accounts for an approxi-
mately (37± 0.2)◦ off-nadir angle at the Earth’s surface due
to Earth’s curvature. The diameter of the laser footprint is
about 12–15 m, and the instrument field of view is 19 µrad.
The laser light is backscattered by particles (aerosol and hy-
drometeors resulting in spectrally narrow Mie scattering) and
air molecules (resulting in thermally and pressure-broadened
Rayleigh–Brillouin scattering). The frequency of the atmo-
spheric backscattered laser light is Doppler-shifted relative
to the emitted frequency owing to the relative velocity of the
scattering media (wind speed) along the instrument line of
sight (LOS). The contributions of Earth’s rotation and satel-

lite movement are compensated by Aeolus’ attitude control
and on-ground data processing such that the Doppler shift
is entirely dominated by the LOS wind speeds. In order to
measure the LOS wind speeds, Aeolus utilizes two differ-
ent receiver spectrometers, namely a fringe imaging Fizeau
interferometer for the spectrally narrow Mie backscattered
laser light and two sequential, double-edge Fabry–Pérot in-
terferometers for the spectrally broad Rayleigh backscatter.
Hence, continuous LOS wind speed profiles up to 30 km alti-
tude can be measured regardless of the presence and absence
of aerosol, unless optically thick features such as dense liq-
uid water clouds block the beam. Additionally, the measured
signal intensities allow a retrieval of particle optical proper-
ties.

The core of ALADIN is its diode-pumped frequency-
tripled Nd:YAG laser with 80 mJ nominal pulse emit energy
and 50 Hz pulse repetition frequency. The emit beam is circu-
larly polarized, but the cross-polarized part of the backscat-
tered light is discarded in the receive path optics due to the
instrument design. Hence, in the case of strongly depolar-
izing targets, the signal measured at the detectors is strongly
reduced with respect to non-depolarizing targets (ESA, 2008;
Flamant et al., 2020). Additionally, the expected atmospheric
return signal in orbit is a factor of 2.5 to 3 lower than
expected before launch due to lower laser output energies
than originally intended (45–72 mJ) and decreased instru-
ment transmission by about 30 %, which has caused a lower
SNR since mission start (Reitebuch et al., 2020).

The light backscattered from the atmosphere is an atten-
uation of Mie and Rayleigh backscatter, which is then sep-
arated by the two instrument receivers. Figure 2 in Ans-
mann et al. (2007) illustrates how the spectral characteristics
of the Mie and Rayleigh backscatter are exploited to sepa-
rate them with the spectrometers (channels) (Ansmann et al.,
2007; Reitebuch et al., 2018a). If the LOS wind speed is non-
zero, the whole spectrum will be shifted relative to the chan-
nel transmission curves due to the Doppler shift. The light
first travels to the Mie receiver, where the narrow Mie peak
(fringe) is measured to determine this Doppler shift directly.
The frequency-broadened Rayleigh scattered light gets re-
flected on the Mie channel and is then directed to the two
Rayleigh channel filters. These capture different signal in-
tensities in the two filters centred on each side of the centre
emit frequency. By comparing and normalizing the responses
in the two filters, the LOS wind Doppler shifts can be calcu-
lated. However, the return signals from particles (Mie) and
molecules (Rayleigh) are not entirely separated due to the
overlap of the transmission functions of the two channels
and the sequential design of the receivers. Therefore, chan-
nel crosstalk is present, which needs to be corrected to obtain
unbiased LOS wind and optical properties.

The atmospheric echoes from the single pulses passing
through the instrument receivers are collected with time-
gated accumulation charge-coupled devices (ACCDs). The
time it takes for the light to travel from the instrument,
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through the atmosphere and back to the receivers is used
to accumulate the light from the individual pulses over time
equivalent to atmospheric vertical bins of 250 m. The same
ACCDs, with a quantum efficiency of 85 %, are used for both
the particle (Mie) and molecular (Rayleigh) channels. In or-
der to achieve sufficient charge build-up before read-out and
digitalization, 19 laser pulses are accumulated directly on the
storage columns of the ACCD. The accumulation of 19 laser
pulses corresponds to an on-ground distance of about 2.9 km
along track and is the smallest horizontal measurement which
is down-linked to Earth. Individual, vertical range bin sizes
can be independently varied between 250 and 2000 m in steps
of 250 m while remaining limited to a total number of ACCD
rows and hence vertical range bins of 25 per column. Of
these range bins, one is used for solar background measure-
ments, and one is used to sample the ground. In order to
achieve the mission requirements for random wind errors,
a number of measurements are added up at a coarser scale
during the on-ground processing. For Rayleigh winds, a to-
tal of 30 measurements are accumulated to one basic repeat
cycle (BRC) or observation (Aeolus mission terminology),
equivalent to approximately 87 km along-track distance on
the ground. Mie winds can be provided at smaller scales de-
pendent on the SNR of the aerosol feature. High SNR is also
critical for optical property retrieval, particularly particle ex-
tinction coefficients. Hence, optical properties are primarily
evaluated at the observation scale as well and only refined
afterwards in what is called the group product. An example
of raw signals at the measurement scale (2.9 km) accumu-
lated at the observation scale (87 km) is given in Fig. 1, which
shows the test case discussed in Sect. 4.3.

The geolocated measurement data from the satellite, in-
cluding detected Doppler shifts and the useful signals from
the two Rayleigh channels and the Mie channel, are provided
in the Level 1B (L1B) data product (Reitebuch et al., 2018a).
These are the signals that have been corrected for the detec-
tion chain offset (DCO; measured for all range bins in sep-
arate, non-illuminated pixels), dark current charge offset in
memory zone (DC or DCMZ; from on-ground characteriza-
tion), tripod obscuration (TOBS; in Mie channel only) and
the solar background contribution (measured in range bin 25
for all channels) (Reitebuch et al., 2018a). The L1B prod-
uct in combination with additional calibration data from the
CAL Suite processing step and meteorological information
from a global weather forecast from the European Centre of
Medium-Range Weather Forecasts (ECMWF) is used as in-
put by the optical property processor to generate the Level
2A (L2A) data product (Flamant et al., 2020). The calibra-
tion data are obtained from designated instrument modes and
internal reference measurements (Reitebuch et al., 2018a).
Within the L2A product, three different algorithms are im-
plemented: the first is the standard correct algorithm (SCA),
which makes use of the full HSRL potential and uses both
channels to retrieve lidar ratios directly from the data. The
second is the Mie channel algorithm (MCA), which applies

a Klett-like retrieval (Klett, 1981; Fernald, 1984) with an a
priori lidar ratio value (extinction-to-backscatter ratio). The
third, the iterative correct algorithm (ICA), intends to refine
the SCA results at finer vertical scales but fails to gener-
ate reasonable results in the nominal operation due to pro-
nounced sensitivity to noise. Hence, given its more accurate
approach and better performance, only the SCA is considered
in the remainder of this paper.

3 Methods

The atmospheric forward model in lidar applications is based
on the lidar equation (Weitkamp, 2006). In its simplest form,
the lidar equation reads

s(r)=KG(r)β(r)T (r)2. (1)

The signal power s received from distance r is made up of
four factors. The constantK summarizes the signal transmis-
sion through the lidar instrument, and G(r)=O(r)r−2 con-
tains all range-dependent terms regarding the measurement
geometry. For Aeolus the range overlap functionO(r) equals
1. The two unknown terms that contain information on the at-
mospheric state are the total backscatter coefficient β(r) > 0
at distance r and the atmospheric transmission 0< T (r) < 1
that describes how much light gets lost on the way from
the lidar to the target at a distance r . In the following, we
consider the case of the single-scattering approximation; i.e.
multiple-scattering effects are neglected. As discussed in Fla-
mant et al. (2008) and Ansmann et al. (2007), this is a valid
assumption due to the small divergence and narrow field of
view (FOV) of the ALADIN instrument. In the case of AL-
ADIN, the lidar equations for the two channels read

sray(r)=
KrayNpE0

r2

[
βm(r)C1(p, t,f )

+β||,p(r)C2(f )
]
T 2
m(r)T

2
p (r) (2)

smie(r)=
KmieNpE0

r2

[
βm(r)C4(p, t,f )

+β||,p(r)C3(f )
]
T 2
m(r)T

2
p (r), (3)

with the Mie and Rayleigh channel signals s, laser pulse
energy E0, number of accumulated pulses Np, atmospheric
temperature t , atmospheric pressure p, Doppler shift f , in-
strumental calibration constantsKray andKmie, and crosstalk
coefficients C1...4 accounting for the fractions of molecular
and particulate signal in the Rayleigh and Mie channel, re-
spectively. The total backscatter coefficient has been split
into a molecular contribution and particle contribution β =
βm+βp. Here, βp is explicitly split into the cross-polarized
and co-polarized fraction βp = β⊥,p +β||,p, of which only
the co-polarized particle backscatter coefficient is measured
due to instrument design. T 2

label denotes the two way trans-
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Figure 1. Example of raw, in-orbit Rayleigh and Mie “useful signals” from the L1B product in least-significant bits (LSBs) at a measurement
scale of 2.9 km (a, b) and after accumulation to an observation scale of 87 km (c, d) showing the input to the test case that is discussed in
Sect. 4.3.

mission

T 2
label(r)= exp

−2

r∫
0

αlabel(u)du

 , (4)

with range-dependent extinction coefficient α and label m
for molecules and p for particles, respectively. The two
unknown parameters of interest are co-polarized particle
backscatter coefficient β||,p and particle extinction coeffi-
cient αp, which can, in principle, be solved with the two
equations because C1 > C2 > 0 and C3 > C4 > 0 hold true
by instrument design. In the following, we also make use
of the co-polarized lidar ratio (extinction-to-backscatter ra-
tio) γ||,p,i = αp,i/β||,p,i . Since the co-polarized particulate
backscatter β||,p is lower than the total particulate backscat-
ter βp, the co-polarized lidar ratio overestimates the true li-
dar ratio (γ||,p > γp = αp/βp). The lidar equations can be
simplified by introduction of the range-resolved atmospheric
signals at telescope entry

X(r)=
βm(r)

r2 Tm(r)
2Tp(r)

2, (5)

Y (r)=
β||,p(r)

r2 Tm(r)
2Tp(r)

2, (6)

with X(r) for molecular backscatter and Y (r) for particu-
late backscatter in units of m−3 sr−1. These resemble normal-
ized signals that would be obtained in the absence of channel

crosstalk. So the lidar equations read

sray =KrayNpE0

[
C1X+C2Y

]
, (7)

smie =KmieNpE0

[
C4X+C3Y

]
, (8)

where variable dependences are dropped for the sake of read-
ability.

The instrument is calibrated with measurements from
dedicated instrument calibration modes (Reitebuch et al.,
2018a), and the crosstalk coefficients C1...4 are determined
according to Flamant et al. (2020) and the procedure in
Dabas (2017). At (p, t,f )= (1000 hPa, 300 K, 0 MHz), C1
and C4 equal 1 by definition. The other coefficients then typ-
ically take values of about C2 ≈ 0.5 and C3 ≈ 1.25. For the
rest of this work, we assume the calibration as known and
do not include the contribution of calibration errors in the re-
sults. The calibration cannot be perfect in reality but is like-
wise input to all algorithms, which guarantees a fair compar-
ison of retrieval precision in Sect. 4.3 and 4.4.

3.1 Standard correct algorithm (SCA)

For a more detailed description of the SCA and a discus-
sion of its shortcomings, we refer to Appendix A and Fla-
mant et al. (2020). In the following, the index i ≤ n= 24 as
subscript to the properties above denotes the range bin in-
dex. This implies for the signals s, X and Y that the prop-
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erty has been integrated over a discrete range [Ri−1,Ri], i.e.
sray,i =

∫ Ri
Ri−1

sray(r)dr . For all other variables like backscat-
ter coefficients β, extinction coefficients α and range R, this
subscript denotes the average in range bin i, i.e. β||,p,i =

1
1Ri

∫ Ri
Ri−1

β||,p(r)dr , with 1Ri = Ri−Ri−1 and equivalently
for subscript m. As a consequence, particle optical depth of
a bin is denoted Lp,i = αp,i1Ri . The following approxima-
tions for the range-corrected signals (Eqs. 5 and 6) are made
by using the mean bin properties from above (see Eqs. 6.35–
6.36 and definitions above in Flamant et al., 2020):

Xi ≈
1RiT

2
m,iβm,i

R2
i

e−Lm,i
(

1− e−2Lp,i

2Lp,i

)
. . .

· exp
(
− 2Lp,sat− 2

i−1∑
j=0

Lp,j

)
(9)

Yi ≈
T 2
m,i

R2
i

e−Lm,i
(

1− e−2Lp,i

2γ||,p,i

)
. . .

· exp
(
− 2Lp,sat− 2

i−1∑
j=0

Lp,j

)
, (10)

with unknown optical depth Lp,sat in between the telescope
and first range bin. With Eqs. (7) to (10), the SCA solves al-
gebraically for the two unknowns, co-polarized lidar ratios
γ||,p,i and optical depths Lp,i (and Lp,sat), which are equiv-
alent to extinction coefficients αp,i and backscatter coeffi-
cients β||,p,i (and Lp,sat). Backscatter coefficients are simply
retrieved from β||,p,i = Yiβm,i/Xi . The SCA produces two
sets of products, the SCA and the SCA midbin (SCA MB)
backscatter and extinction coefficient profile products and li-
dar ratios. The SCA attempts to regularize the solution by not
allowing negative optical depth within the iterative retrieval
(zero-flooring). The SCA midbin product does not imple-
ment such a constraint but averages the SCA neighbouring
bins at a coarser resolution in order to dampen oscillations
in the retrieved profiles in scenes with low signals in order
to obtain a more stable product. Further details of the prod-
ucts and their performances are provided in Sect. 4 and Ap-
pendix A.

3.2 Maximum-likelihood estimation (MLE) retrieval

The basis of MLE and OEM methods is formed by the for-
ward model y = F(x), which maps physical properties from
state space onto measurement space (Rodgers, 2000). We
use Eqs. (7) to (10) in order to calculate the measurement
space variables (signals) from the state space variables (opti-
cal properties) with

y =



sray,0
...

sray,n
smie,0
...

smie,n


and x =



Lp,0
...

Lp,n
γ||,p,0
...

γ||,p,n
Lp,sat


, n≤ 24. (11)

The deviation between the actual measurement and the
forward-modelled state is represented by a cost function that
needs to be minimized to obtain a good estimate of the un-
derlying true state. Generally, the cost function in non-linear
regression problems is composed of two terms

J (x,y)= Jobs(x,y)+ Jprior/constraint(x), (12)

of which the first describes deviation from the measurement
and the second the deviation from some a priori state (applied
in the OEM) or from another a priori constraint (applied in
PMLE), e.g. smoothness. The second term is also referred to
as the penalty term. In MLE, J is the log-likelihood function,
which in the case of normally distributed measurement errors
becomes the weighted least squares term

Jobs =
[
y−F (x)

]ᵀS−1
y

[
y−F (x)

]
, (13)

with measurement error covariance matrix Sy (compare to
Eqs. 2.21 or 5.3 in Rodgers, 2000). Often the choice of Pois-
son noise in conjunction with the Kullback–Leibler diver-
gence is preferred in lidar applications (Denevi et al., 2017;
Marais et al., 2016; Garbarino et al., 2016; Weitkamp, 2006)
because photon shot noise is the dominant noise source for
the signals on the detectors, which is fairly Poisson dis-
tributed. Here, we do not restrict noise amplitudes to the
Poisson case to account for additional noise contributions,
such as laser pulse frequency jitter, ACCD readout noise,
dark electron and thermal noise contribution, and potentially
unknown “noise” sources such as atmospheric variability.
The description of Jobs in terms of normal distributions is
not a critical aspect of the method because the discrete Pois-
son noise distribution can be decently well approximated by
a smooth Gaussian distribution with identical mean and vari-
ance for very low (photon) counts, and the aforementioned
additional noise sources and their corrections, e.g. subtrac-
tion of measured solar background, will naturally smear out
the discrete nature of the Poisson noise. For the time be-
ing, no explicit a priori term contributes to the cost function
used throughout this work, although limits will be imposed
on the state space variables by specifically solving the box-
constrained MLE problem

min
x;

2 sr<γ||,p<200 sr; 0≤Lp

[
y−F (x)

]ᵀS−1
y

[
y−F (x)

]
, (14)
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with box constraints on lidar ratio, which is prior information
that cannot be exactly represented by the OEM. The state that
solves this minimization problem (Eq. 14) is denoted x∗. It
is important to mention that it is only the a priori knowledge
in the form of the box constraints that makes the MLE solu-
tion distinct from the algebraic SCA solution (without zero-
flooring; see Sect. 6.2.2.1 in Flamant et al., 2020) because
this algebraic solution corresponds to the exact signal values
in y and therefore to Jobs = 0, which is the global minimum
of the unconstrained counterpart of the problem (Eq. 14).
Due to the implemented zero-flooring of optical depth in the
SCA, its retrieved optical properties do not correspond per-
fectly to the measured signals (see also Fig. 7 in Flament
et al., 2021), though Jobs = 0 still holds in the case of the un-
regularized SCA MB retrieval. In practice, the minimization
problem (Eq. 14) needs to be solved for all optical property
profiles along the Aeolus orbit. So instead of solving Eq. (14)
per single atmospheric column, it is solved for all columns at
once (at the observation scale). Without loss of generality,
this can be realized by minimization of the sum of the single
cost functions

min
x1, ..., xN ;

2 sr<γ||,p<200 sr; 0≤Lp

N∑
k

Jk(yk,xk) (15)

over all N lidar profiles with index k. This is equivalent to
the ensemble of the separate minimization problems because
the kth cost function is strictly positive and only sensitive to
changes in the kth state vector. So the collection of state vec-
tors that minimize the sum of the cost functions have to min-
imize each summand independently. This way, we gain the
freedom to use the inherent 2D information of the lidar sig-
nal in future developments, e.g. to couple neighbouring pro-
files by the introduction of a regularization term to Eq. (15)
that acts on the horizontal direction along the satellite orbit
(Marais et al., 2016; Xiao et al., 2020).

In theory, extinction and backscatter coefficients
(αp,β||,p) can be chosen as a state space description
as well as lidar ratio and backscatter (γ||,p,β||,p). However,
the reason to favour a state space description containing the
lidar ratio is that such states can be easily constrained to
physical bounds by forcing upper and lower ranges within
the retrieval. Within the (αp,β||,p) description, the lidar
ratio constraint would become non-linear and harder to
handle by off-the-shelf tools for numerical optimization. The
crosstalk-corrected signals Xi and Yi instead of the Rayleigh
and Mie channel signals sray,i and smie,i are an equally valid
choice of the measurement space variables y, but then the
measurement covariance matrix Sy would have off-diagonal
entries due to the linear transform in Eqs. (A4)–(A5). The
above choice has been made for the sake of simplicity and
to simplify the cost function and its gradients since the
signals in separated vertical range bins are expected to be
uncorrelated except for a small range bin overlap (Weiler,
2015). This overlap is about ±120 m altitude for Mie ACCD

and ±30 m for Rayleigh ACCD in nominal operation and
regardless of range bin settings. As in the SCA, this overlap
is not considered in this work.

As pointed out by Povey et al. (2014), unbiased uncer-
tainty estimates are a prerequisite to obtain good results.
This is an issue for low signal intensities when estimating
the Poisson uncertainty from the uncertain signal s itself: the
uncertainty will be biased by the exact noise value in the sig-
nal because a single draw in general does not equal the true
mean and the true variance. In Aeolus L1B data products,
the Poisson noise assumption is applied to calculate signal-
to-noise ratio (SNR) in both signal channels, including the
solar background contribution. For Eq. (14), we use instead
the variance measured at 2.9 km resolution, scaled to approx-
imate the noise level in the 87 km bins. This approximation
assumes the scene is homogeneous so that all the variability
is due to measurement error (see Appendix B). Note that the
position of a cost function minimum is invariant to scaling
of the covariance matrix Sy→ λSy with scalar λ, while the
relative magnitude of its entries is important when being sub-
ject to constraints, i.e. in a general case where J > 0 holds at
the minimum.

The choice of the upper and lower lidar ratio bounds takes
the following points into consideration: on one hand, the true
lidar ratio at 355 nm is expected to exceed values of 100 sr
only in rare cases, and a physically lower bound might be
presented by approximately 10 sr (see Fig. 8 in Illingworth
et al., 2015, or Wandinger et al., 2015). On the other hand,
the coarse vertical resolution and the effects of depolariza-
tion need to be accounted for. Therefore, highly depolariz-
ing aerosol, such as desert dust and ice particles in cirrus
clouds, will appear to be highly attenuating since the co-
polarized lidar ratio can be increased by a factor of up to
1.85 for desert dust and 3 for cirrus clouds compared to the
true lidar ratio. Taking into account typical distributions of
lidar ratios and depolarization values as in Wandinger et al.
(2015); Illingworth et al. (2015), values as high as 130 sr will
be well within physical limits for Aeolus. On the other hand,
as shown in Flamant et al. (2020), aerosol partially filling a
range bin can cause the retrieval results to underestimate the
true particle extinction by a factor of 16 and therefore under-
estimate the lidar ratio. The applied bounds need to account
for these forward model errors by an extra margin. All things
considered, the limits of 2 to 200 sr resemble a reasonable
trade-off.

The minimization problem (Eq. 15) is solved approxi-
mately by a Limited-Memory Broyden–Fletcher–Goldfarb–
Shanno algorithm with box constraints (L-BFGS-B), a quasi-
Newton code for bound-constrained optimization. More pre-
cisely, the implementation described in Zhu et al. (1997), ver-
sion 3.0, is used. As an addition, the cost function gradient
is evaluated efficiently via automatic differentiation. The ini-
tial conditions, or the first guess, consist of an aerosol-free
atmosphere with Lp = 0 and a lidar ratio of γ||,p = 60 sr.
Since the L-BFGS-B algorithm is not invariant under vari-
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able transforms, it was necessary to introduce an additional
scale parameter in the state vector for good convergence
rates of the cost function. The applied transformation maps
Lp→ 200Lp in the state vector to ensure that all entries are
about the same order of magnitude. More advanced variable
transforms such as pre-whitening of the variables (Rodgers,
2000) may be appropriate to optimize performance, but the
proposed rescaling is found to be sufficient.

MLE estimates may suffer from overfitting and noise am-
plification in lidar retrieval problems, so an implicit regular-
ization is often achieved by optimal choice of the number of
iterations (Denevi et al., 2017; Garbarino et al., 2016). But
we suppress noise amplification by the box constraints. So,
the L-BFGS-B iteration is stopped after a predefined number
of iterations of 40 000, after which the average cost function
value per bin is required to be smaller than 1. Usually, this
holds true after far fewer iterations (∼ 50 for the single col-
umn problem (Eq. 14) and ∼ 5000 for the problem (Eq. 15)
with about 450 profiles), but in the spirit of the SCA, the es-
timate should fit as close as possible to the signal data and
only solve the physical contradictions. Hence, a fair compar-
ison to the standard algorithms is achieved only without an
implicit regularization. For operational use we plan to tune
the number of iterations in an ad hoc fashion based on when
the average cost function value per bin has fallen below a
value of 1.

A Monte Carlo approach as in Xiao et al. (2020) is applied
to classify the uncertainties in simulation results in Sect. 4.1
and 4.2. For this, a sufficient number of realizations of the
measurement vector yobs are generated from the homoge-
neous simulation scene. The variation in the SCA- and MLE-
estimated state vector x∗ then yields a reliable measure of
the retrieval variability and the standard error. Such a Monte
Carlo approach is the most representative of the algorithm
performance but cannot be applied to real observation data,
where the noise is unknown and cannot be varied.

The uncertainties in SCA and SCA MB retrievals in ob-
servational data are operationally calculated via standard er-
ror propagation (see Eqs. 6.54–6.100 in Flamant et al., 2020)
and under the assumption of pure Poisson noise in signals s.
While a similar analysis can be made for the MLE, we find
that especially the obtained extinction uncertainties would
strongly overestimate the actual variability in MLE results
due to the omitted constraints in such a procedure. Hence,
future work regarding the implementation of the box con-
straints in the error estimation is pending.

4 Results and discussion

In this section, the two versions of the SCA and the MLE al-
gorithms are tested on synthetic and real Aeolus observation
test cases, and their performances are discussed. The simu-
lated data are produced with the Aeolus end-to-end simula-
tor described in Reitebuch et al. (2018b), which allows re-

alistic simulations of ALADIN measurements from defined
atmospheric scenes as input to the L1B algorithm. Its out-
put data are provided in the same format and temporal and
spatial resolution as nominally downlinked from the satel-
lite in order to test the whole processing chain up to the
optical properties delivered in the L2A product. The simu-
lation covers the charge transfer and detection on the accu-
mulation charge-coupled device (ACCD) including offsets,
non-linearity and noise sources, such as dark current noise,
read-out noise, Poisson detection noise (shot noise) and the
analogue-to-digital conversion with 16 bit. Although perfect
agreement with the instrument on board cannot be achieved,
the simulated noise level resembles nominal operations. Four
simulated and real Aeolus observation test cases have been
defined as follows:

1. atmospheric simulation case I – a horizontally homoge-
neous aerosol profile

2. atmospheric simulation case II – case I with an addi-
tional cloud

3. real data case I – a Saharan Air Layer (dust plume)
above Cape Verde

4. real data case II – a ground-based comparison with a
Polly XT lidar in Tel Aviv.

In the following sections, the results from each test case are
presented.

4.1 Atmospheric simulation case I

The simulated Aeolus observations from this test case are
obtained from the end-to-end simulator and contain horizon-
tally homogeneous aerosol with a constant lidar ratio of 25 sr,
and the calibration data are known from separate simulations
of Aeolus’ calibration modes. A standard atmosphere tem-
perature and pressure distribution are used for the simula-
tion of the molecular backscatter with altitude, and the wind
speed is zero for simplicity. The simulated atmospheric scene
contains aerosol up to 40 km altitude, particularly above Aeo-
lus’ range of about 0–20 km. This aerosol attenuates the use-
ful signals by an additional 0.9 %, but no impact is expected
on the optical properties since all algorithms allow for a con-
stant attenuation factor.

The retrieval results for the simulation are shown for the
SCA, SCA midbin and MLE algorithms in Fig. 2. Please note
the logarithmic scales of the colour bar. The medium aerosol
load in the input atmosphere with backscatter coefficients
on the order of 1 to 10 Mm−1 sr−1 below 2 km is captured
well by all algorithms (rows 1 and 2 of Fig. 2). However,
clear background noise patterns are visible in the optically
thin aerosol regime with particle backscatter coefficients on
the order of order 0.1 Mm−1 sr−1 above 2.5 km for all re-
trievals, as expected due to low Mie channel SNR (rows 1
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and 2 of Fig. 2). Hence, there are many noise-induced neg-
ative values in SCA and SCA midbin retrievals. Addition-
ally, SCA and SCA midbin backscatter profiles are shown to
be biased in this regime. The MLE mean profile resembles
the true backscatter profile, mitigates negative values, and
consistently shows smaller standard deviation than the SCA
and SCA midbin. In order to better illustrate this, the bias
(mean(x∗)− xtrue)/xtrue and relative error SD(x∗)/xtrue for
all retrievals with respect to the true profile are presented in
Fig. 3. Here, the maximum backscatter coefficient bias in the
aerosol layer below 2 km is reduced from about 43 % with the
SCA and SCA MB to 27 % with MLE. The bias is collocated
with the change in range bin size. We argue that its origin
is the non-linear way the backscatter coefficient is calculated
from β||,p,i = Yiβm,i/Xi because here mean(β||,p,i) will be-
come biased high increasingly with increasing uncertainty in
Xi . Because values ofXi are constrained to a physical subset
in MLE, they are less variable, and less bias is observed. The
relative error in backscatter coefficients is consistently lower
for MLE compared to the SCA; in the most interesting area
below 2 km the relative error in backscatter coefficients re-
duces to 50 %–30 % with MLE compared to 120 %–50 % for
the SCA, while MLE performs only slightly better than the
SCA MB.

The coupled retrieval in the MLE unfolds its whole poten-
tial in the extinction retrieval (rows 3 and 4 of Fig. 2): the
curtain plots for the SCA and SCA midbin suffer not only
from intense background noise, but also from negative val-
ues within the dense aerosol close to the ground, whereas the
MLE achieves a much more robust retrieval when compared
to the simulation input. The mean profiles unveil high biases
in the SCA case (see also Fig. 3): especially changes in verti-
cal range bin thickness impose a challenge and are followed
by extinction overestimation (see biases at 2 and 13 km alti-
tude in Fig. 3) due to the feedback between zero-flooring of
extinction coefficients within the processing and decreased
SNR in thin bins (see Appendix A). A detailed explanation
of the noise influence on the SCA extinction retrieval can be
found in Flament et al. (2021). The SCA midbin is less bi-
ased, despite a spurious oscillation at about 10 km altitude,
but at the price of high noise and lowered resolution. With
the exception of the bin closest to the surface, the MLE re-
trieves the least biased extinction coefficients over the whole
profile with standard errors up to a magnitude smaller than
the SCA midbin product (see Fig. 3). Retrieved extinction
coefficients are all biased high in the area below 2 km, with
a maximum bias of 500 % for the SCA, 110 % for the SCA
MB and 70 % for MLE. Between 1.5 and 0.5 km altitude, the
biases are comparable in magnitude, at about 30 %. Concern-
ing the relative extinction errors, an improvement by a factor
of about 1.5 to 2 in comparison to the SCA and SCA MB is
achieved by MLE in the lowermost 2 km. However, the rela-
tive error is on the order of 100 % or greater in all cases. Only
the extinction in the bin closest to the ground appears over-
estimated with MLE. Deviation from the ground truth was

Figure 2. Simulation case I: optical property retrieval results. Ap-
plied algorithms (from left to right) are the SCA, SCA midbin, MLE
and the true simulation input (rightmost). Curtain plots (rows 1, 3
and 5): dark-blue values may exceed the lower colour bar limit, and
black colour indicates negative (or missing) data. Statistics (rows 2,
4 and 6): mean profiles (solid lines), ± standard deviation (shaded)
and median (dotted) obtained from 1000 BRCs.
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Figure 3. Simulation case I: retrieval statistics for backscatter and
extinction coefficients obtained from the mean profiles from Fig. 2.
Left: bias relative to simulation input parameters. Right: standard
error relative to simulation input parameters. Please note the varying
x-axis scales.

expected due to the diminishing influence of the lowermost
optical depth on the cost function.

The lidar ratios in row 6 (lowest panel of Fig. 2)
are calculated from mean(αp)/mean(β||,p) and
median(αp)/median(β||,p) of rows 2 and 4 and their
respective standard deviation in order to disregard the influ-
ence of bins with nearly vanishing aerosol optical depth, for
which the lidar ratio is arbitrary and which have diverging
error. The lidar ratio results (rows 5 and 6 of Fig. 2) indicate
that the MLE is the most robust as it is the only algorithm for
which the lidar ratio statistics converge to the true value of
25 sr nearly everywhere. The SCA and SCA midbin achieve
this only in a narrow range close to the ground. The SCA
and SCA midbin produce either very high (yellow to red
values) or zero or negative (black) values in these cases.

4.2 Atmospheric simulation case II

In simulation case II, the aerosol profile is the same as for
case I, but in addition a cloud is placed between 8.5 and
10.5 km with an optical depth of 0.4, i.e. the return signals
from below the cloud are more than halved by a slant two-
way transmission of T 2

cloud ≈ 0.38 (see Fig. 4). The disconti-
nuity of the cloud (abrupt changes in optical properties) in-
troduces some artefacts into the retrieval results, as can be
seen in Fig. 4: most prominently, the vertical extent of the
cloud is overestimated by the SCA midbin due to the aver-
aging of neighbouring bins at a coarser resolution (rows 1 to
4). Hence, the cloud thickness appears to be 4 km compared
to 3 km in the SCA and MLE and 2 km in simulation input
parameters. Furthermore, the SCA extinction coefficient re-
acts delayed compared to the SCA backscatter coefficient,
leading to the attenuation by the first 500 m of the cloud not
being correctly captured (compare to ground truth in row 3
of Fig. 4), with consequences for lidar ratio estimation. The
SCA extinction coefficient values below the clouds are bi-
ased high due to the abrupt change in signal error. Hence, the
same feedback loop is triggered as described in simulation
case I for changes in range bin thickness.

The curtain plots of the SCA and SCA midbin optical
properties (rows 1, 3 and 5) reveal more noise-induced neg-
ative values (black) below the cloud. MLE provides the
backscatter estimates with the highest precision and is the
only algorithm for which the relative error drops below the
100 % mark (see Fig. 5). The high backscatter coefficient bias
in the lowermost 2 km is more pronounced in all algorithms
as compared to atmospheric simulation case I, supporting the
hypothesis that it originates from the non-linear ratio oper-
ation rather than the gradient of the aerosol concentration.
Consequently, due to its noise suppression capabilities, that
is likely why MLE shows less bias in the lowermost 2 km.
A similar statement can be made for the extinction because
it is essentially calculated from a ratio of subsequent pure
molecular signal values Xi . A distinct feature of the MLE
result is the bias of up to 100 % between 2 and 8 km alti-
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Figure 4. Simulation case II: as Fig. 2 for case I.

tude, which might be introduced by the positivity constraint
in conjunction with high noise. However, the bias in the area
of interest below 2 km is found to be the lowest in the MLE
case. In general, the statistics below the cloud are heavily
impacted by the signal loss: extinction coefficient estimates
below 2 km are found to be biased extremely high in SCA
and SCA midbin results, and so MLE returns the best fit to

Figure 5. Simulation case II: as Fig. 3 for case I.

the simulation input parameters (row 4 in Fig. 4). Neverthe-
less, Fig. 5 reveals that the bias in MLE extinction coeffi-
cients below 2 km is only acceptably small at about 1 km al-
titude, namely about 20 %. Rows 5 and 6 in Fig. 4 indicate
that regardless of the aforementioned biases, the MLE aver-
age lidar ratio remains quite accurate compared to the SCA
and SCA MB and is furthermore the estimate with the high-
est precision. This suggests that the noise-induced biases in
extinction and backscatter are almost balanced, which can
be motivated by the fact that both variables depend on X−1

i

in the forward model (the aerosol optical depth equals the
normalized log derivative of pure molecular signal and can
be rewritten in terms of the ratio Xi+1X

−1
i ). Hence, the po-

tential of MLE to cope with highly noisy data compared to
the standard approaches is well demonstrated. The SCA and
SCA midbin produce either very high (yellow to red values)
or zero or negative (black) values in these cases.

In summary, the coupled MLE forces extinction and
backscatter to appear collocated and thus consistently out-
performs the standard approaches in terms of both accuracy
and precision.

4.3 Real data case I: classifying a Saharan Air Layer
with Aeolus

In this section, the algorithms are tested and compared us-
ing real Aeolus observations from 30 June 2020 during the
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Aeolus satellite overpass close to Cape Verde between 07:30
and 07:40 UTC. The satellite passed above an extended Sa-
haran Air Layer (SAL; Prospero and Carlson, 1980) contain-
ing significant amounts of desert dust. The spatial extent of
this dust layer is visible in observations of the UV aerosol
index reported by the Copernicus Sentinel-5p TROPOMI
instrument (ESA, 2018) between 12:00 and 15:30 UTC.
Later that day, NASA’s Cloud–Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) (Winker et al.,
2003) made another overpass over Cape Verde between
15:20 and 15:30 UTC, which crossed Aeolus’ ground track,
passing over the SAL (see Fig. 6a). CALIPSO carries the
polarization-sensitive dual-wavelength attenuated backscat-
ter lidar, CALIOP. The fairly uniform and large SAL layer
is an ideal case to compare the CALIPSO vertical feature
mask (VFM) product (v4.20, data release version 4.10) and
the different Aeolus optical property products. The publicly
available L1B data product of baseline 1B10 is used as input
to the L2A optical property prototype processor version 3.12.

The SCA, SCA midbin and MLE processing results for
backscatter, extinction and lidar ratio at a horizontal resolu-
tion of one BRC≈ 87 km along-track distance are shown to-
gether with CALIPSO vertical feature mask (VFM) results in
Fig. 6b. The afternoon CALIPSO VFM results show a partly
lofted aerosol plume that is classified as desert dust in the
latitude band 10 to 20◦ N, which also compares well with
the TROPOMI observations in Fig. 6a. The area towards the
Equator is partly attenuated by a high ice cloud between 10
and 16 km altitude, which was possibly on top of a convec-
tive cloud tower. The dust plume likely extended below as
more dust is reported by the CALIPSO VFM close to the
Equator. In the planetary boundary layer (PBL) low, broken
clouds are visible in the FM. Additionally, patches of clouds
are visible, e.g. at about 5 to 6 km height and 5◦ N. The op-
tical property processing results of the Aeolus signals show
similar features, except for the high cloud, which was not
present during the Aeolus morning overpass. It should also
be noted that convective activity is low in the morning and at
its maximum in the early afternoon. Pronounced background
noise patterns are present in SCA and SCA midbin backscat-
ter coefficients (noise magnitude about 1 Mm−1 sr−1) and ex-
tinction coefficients (noise magnitude about 30 Mm−1), very
similarly to the simulation cases I and II. Therefore, the SCA
and SCA midbin show the dust plume only with little con-
trast and disrupted by noise. What is likely cloud is visi-
ble by a high return signal (yellow spots in backscatter) and
low lidar ratios (dark blue colour). In these bins with a high
signal-to-noise ratio, the SCA and MLE give very similar re-
sults, as expected. The SCA midbin suffers from the lower
vertical resolution and significantly enhances the cloud and
aerosol plume layer thickness, both in the PBL and at about
5 km height, but reconstructs fairly homogeneous extinction
coefficients where the plume is located. Much higher con-
trast to the background is achieved with MLE, so the plume
top and plume bottom heights can be inferred along the lat-

Figure 6. Real data case I: (a) map of Africa’s east coast over-
laid with the ground tracks of the Aeolus satellite between 07:30
and 07:40 UTC (pink, dashed) and the CALIPSO satellite between
15:20 and 15:30 UTC (red, dash-dotted). Overlaid in colour is the
Sentinel-5p UV aerosol index from 388 and 354 nm spectral bands.
(b) Optical property processing results for the extended desert dust
plume (Saharan Air Layer, SAL) from 30 June 2020 for the dif-
ferent algorithms. Columns in panel (b) (from left to right) are the
SCA, SCA midbin and MLE. The rows show backscatter (first row),
extinction (second row) and lidar ratio (last row). The CALIPSO
vertical feature mask (VFM) is repeated in each row. Aeolus and
CALIPSO ground tracks cross at the white line. For better inter-
pretability, the lidar ratio is only shown where the corresponding
backscatter coefficients exceed 0.25 Mm−1 sr−1, and extinction co-
efficients exceed 3.75 Mm−1.

itude. The plume detected by Aeolus algorithms agrees well
with the CALIPSO VFM results despite Aeolus’ coarse res-
olution and possible representation errors due to the differ-
ence in time and space between the observations by the two
satellites. Only MLE captures the partly lofted nature of the
plume north of the co-location point (white line). Further-
more, MLE achieves more homogeneous results along track
for all properties, which demonstrates the advantage of the
box constraints because no such smoothness constraint has
yet contributed to the reconstruction.
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Figure 7. Real data case I: averaged co-polarized lidar ratios ac-
cording to 〈αp〉/〈β||,p〉 along the Aeolus ground track, calculated
from the 4× 15 bins (altitude × latitude) within the white box in
Fig. 6. Applied algorithms (from top to bottom) are (a) the SCA,
(b) the midbin and (c) MLE. The shaded colours indicate the range
between minimum and maximum lidar ratios for all considered bins
in the column. Additionally, the expected range for the co-polarized
lidar ratio of dust is indicated in shaded brown.

Care has been taken in determination of the co-polarized
lidar ratio of the dust in Fig. 7. All bins that lie within the
white rectangle in Fig. 6b have been considered for the es-
timates due to the fairly homogeneous appearance in MLE
and CALIPSO VFM. It is not reasonable to directly aver-
age the co-polarized lidar ratio over all bins as our con-
vention would bias the result: often, the cross-polarized
backscatter-to-extinction ratio (BER) is reported instead,
but different conventions produce different results because
〈αp/β||,p〉 6= 〈β||,p/αp〉

−1, with mean 〈. . .〉. Hence, we first
average backscatter and extinction coefficients over the box
and report an unambiguous value for co-polarized lidar ratio,
namely

γ||,p = 〈αp〉/〈β||,p〉, (16)

that can be transformed into cross-polarized BER. The re-
sults read 78 sr for SCA, 120 sr for SCA midbin and 104 sr
for MLE, which are in line with the expected values of co-
polarized lidar ratio of 80 to 120 sr for depolarizing desert
dust (Wandinger et al., 2015). This expected range is ad-
ditionally visualized in Fig. 7, which illustrates the noise-
induced variability in the lidar ratio along the plume’s hor-
izontal extent: the standard approaches SCA and SCA mid-

bin fail to indicate a coherent feature along track by means
of lidar ratio. The estimates range from 0 to 320 and 50 to
370 sr, respectively, although the results have been averaged
over 4 km altitude, i.e. four range bins in this case. The MLE
achieves the most coherent results along the SAL, with esti-
mates between 60 and 170 sr. In combination with the curtain
plots in Fig. 6, this demonstrates that the presented MLE ap-
proach allows for more robust aerosol classification than the
SCA and SCA MB based on the lidar ratio estimates.

4.4 Real data case II: ground-based validation

On 9 November 2019, Aeolus passed close to a ground-
based, remote-controlled multiwavelength-polarization Ra-
man lidar (Polly) in Tel Aviv at 03:50 UTC, which is part of
PollyNET (Baars et al., 2016; Engelmann et al., 2016). This
network consists of several such automated Polly lidars for
automated and continuous 24/7 observations of clouds and
aerosols around the world. As such, they can also provide
vital input for calibration and validation activities of Aeo-
lus’ optical property observations. The ground-based lidar
data in Fig. 8 have been accumulated over the time 02:41
to 03:40 UTC. The distance to the centres of the two clos-
est Aeolus observations (which are 87 km averages along the
satellite orbit) are 68 and 84 km. A special range bin set-
ting is operational in this area: the altitude range between
2 and 4 km is divided into eight range bins of 250 m width
to detect lofted dust at the highest possible instrument res-
olution. Thus, the SNR in this layer is smaller than usual,
which provides a challenging test case for validation of MLE
against the standard approaches. The atmospheric scene was
characterized by a temporally stable aerosol layering. For
the entire night over Tel Aviv, a PBL with high backscatter
values (3–6 Mm−1) up to 1 km was observed, while above,
moderate backscattering (about 2 Mm−1) up to 3.5 km was
present. According to the PollyNET target categorization
(Baars et al., 2017), both layers were identified as a mix
of pollution and dust with particle linear depolarization ra-
tio values of about 10 % and co-polarized lidar ratio values
between 40 and 50 sr (at 355 nm).

The optical properties from the SCA, SCA midbin and
MLE processing are overlaid in Fig. 8. The results of
backscatter coefficients appear disrupted by noise for the
SCA and SCA midbin; that is, negative or missing values are
present in all profiles within the aerosol layer below 3.5 km
but for MLE processing. By comparison to the similar sim-
ulation case I, we expect a backscatter coefficient error in
MLE retrieval on the order of 30 % within the aerosol layer
below 3.5 km and an extinction coefficient error on the order
of 100 % for individual range bins. A comparison of SCA and
SCA MB results with the simulation case I and the ground
truth also suggests that the currently reported error in the
L2A product is no reliable estimate. The MLE is also able to
retrieve the vertically coherent aerosol layer in good agree-
ment with the ground truth (Raman method at 355 nm; Ans-
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Figure 8. Real data case II: optical properties of two co-located
Aeolus observations (solid coloured lines) compared to the ground
truth observations over Tel Aviv (solid black lines). The ground
truth co-polarized backscatter and extinction have been binned to
Aeolus resolution. Applied algorithms (from left to right) are the
SCA, SCA midbin and MLE. Distances between the ground station
and the centre of Aeolus observation are 68 and 84 km. The error
bounds from Poisson assumptions are displayed in shaded colours.

mann et al., 1992). Additionally, MLE results for both inde-
pendent Aeolus observations agree well with each other and
show much lower variability than the SCA and SCA midbin
results. All aspects considered, the good agreement with the
ground case and the consistent retrieval in both neighbour-
ing columns are strong indicators that the MLE successfully
suppressed noise.

The extinction retrieval is challenged by the lowered SNR
in the fine vertical range bin setting, but MLE achieves the
most reasonable results closest to the ground truth and sup-
presses outliers above 3.5 km. After all, the coherent aerosol
layer cannot be located by using extinction coefficients alone
due to the fine range bin settings between 2 and 4 km that
cause high noise amplitudes. Still, the averaged co-polarized
lidar ratio is calculated from the altitude range 1.5 to 3.5 km
and both observations, as suggested in Eq. (16). The results
read (75± 98) sr for SCA, (73± 31) sr for SCA midbin and
51 sr for MLE, so MLE retrieves the most accurate result
compared to the ground truth value between 40 and 50 sr,
though the sensitivity of these results to calibration errors has
not been considered.

5 Conclusions

The optical property retrieval within the Aeolus Level 2A
aerosol optical property data product has been reformulated
as a MLE problem and was successfully implemented and
tested. The evaluation of the new MLE retrieval revealed a
predominantly positive impact: it is demonstrated that the
precision of the MLE outperforms the SCA and SCA midbin
in synthetic homogeneous scenes and, additionally, reduces
biases in the mean statistics. Furthermore, these trends have
been confirmed in two cases of real Aeolus data. All cases
consistently indicate that MLE is particularly advantageous
for estimation of extinction coefficients and co-polarized li-
dar ratios. However, the precision of co-polarized backscat-
ter coefficients increased overall as well by application of
MLE. The coupled retrieval of all aerosol optical properties
(extinction, backscatter and lidar ratio) is in line with the
work of Povey et al. (2014) and distinct from the approaches
described in Shcherbakov (2007), Marais et al. (2016) and
Xiao et al. (2020). A retrieval that implements constraints
within the simultaneous retrieval of backscatter and extinc-
tion improves precision. The improvements of the MLE are
due to the introduction of positivity and lidar ratio constraints
that force particle extinction to appear only where there is
particle backscatter along the atmospheric column and vice
versa. Since the box constraints are integral to the simulta-
neous retrieval of backscatter and extinction, noise is sup-
pressed in both products simultaneously in contrast to the
zero-flooring of the SCA, which considers the extinction
variable independently without regard to the fact that the sig-
nal errors are correlated due to channel crosstalk correction
(Appendix A). Furthermore, the results of the SCA and SCA
MB do not strictly fall into a physically meaningful subset of
solutions; e.g. they include negative backscatter coefficients.
It is important to note that despite the improvements, moder-
ate backscatter coefficients of about 0.1 Mm−1 sr−1 can still
not be distinguished from zero on a single-bin basis. Higher
precision can only be achieved by signal accumulation or av-
eraging of the backscatter coefficient estimates.

A remaining shortcoming of the SCA and MLE algo-
rithms is the signal accumulation at coarse horizontal scales
of 87 km, although measurements are principally available
at 3 km horizontal resolution. If the SNR was sufficient, the
MLE could be applied at finer scales as the horizontal resolu-
tion alters only the number of atmospheric profiles within the
minimization problem (see Eq. 15). In order to guarantee a
sufficient SNR, it is possible to include a feature mask in the
processing chain. With this, the MLE could be performed on
distinct features with sufficient signal accumulation. But any
attempt to create a feature mask from the lidar signals itself
is flawed because even a homogeneous patch of atmosphere
can appear inhomogeneous (in the signals) when parts of the
profiles have been attenuated above. Therefore, in order to
estimate aerosol optical properties at finer scales, it is more
elegant to apply a suitable regularization within the retrieval
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problem itself, i.e. to add an additional regularization term in
the cost function (see Eq. 15). Shcherbakov (2007) applied
a Tikhonov smoothness constraint in the vertical direction
but stressed the need for a regularization that favours piece-
wise constant functions. Marais et al. (2016) and Xiao et al.
(2020) have therefore made use of the total variation regu-
larization in HSRL lidar ratio retrieval along both horizontal
and vertical directions. This is particularly useful to retrieve
piecewise constant functions and is hence the optimal choice
for the lidar ratio variable when the atmosphere is assumed to
consist of patches of the same aerosol species. In summary,
such regularization is principally able to merge (i) the prob-
lem of defining a feature mask from raw lidar data and (ii) the
optical property retrieval in low-SNR conditions. Eventually,
we propose to extend the current MLE approach by a total
variation regularization term in order to enable robust opti-
cal property retrievals with Aeolus at finer scales. This could
be attempted in future versions of the MLE algorithm. Ad-
ditionally, a proper implementation of the box constraints in
the uncertainty estimation is lacking so far, which requires
future investigation.

Appendix A: Standard correct algorithm (SCA)

All details of the SCA are thoroughly described in the al-
gorithm theoretical baseline document of the L2A proces-
sor (Flamant et al., 2020), but this section briefly recaps the
main steps and discusses the shortcomings of the SCA. In
the following, the index i ≤ n= 24 as subscript to the prop-
erties in Sect. 3 denotes the range bin index. This implies for
the signals s, X and Y that the property has been integrated
over a discrete range [Ri−1,Ri], i.e. sray,i =

∫ Ri
Ri−1

sray(r)dr .
For all other variables like backscatter coefficients β, ex-
tinction coefficients α and range R, this subscript denotes
the average in range bin i, i.e. β||,p,i = 1

1Ri

∫ Ri
Ri−1

β||,p(r)dr ,
with 1Ri = Ri −Ri−1, and equivalently for subscript m. As
a consequence, particle optical depth of a bin is denoted
Lp,i = αp,i1Ri , and the particle one-way transmission be-
comes

Tp,i = exp
(
−Lp,sat−

i−1∑
j=0

Lp,j

)
, (A1)

with unknown optical depth Lp,sat in between the telescope
and first range bin. The following approximations for the
range-corrected signals (Eqs. 5 and 6) are made by using the
mean bin properties from above (see Eqs. 6.35–6.36 and def-
initions above in Flamant et al., 2020):

Xi ≈
1RiT

2
m,iβm,i

R2
i

e−Lm,i
(

1− e−2Lp,i

2Lp,i

)
. . .

· exp
(
− 2Lp,sat− 2

i−1∑
j=0

Lp,j

)
(A2)

Yi ≈
T 2
m,i

R2
i

e−Lm,i
(

1− e−2Lp,i

2γ||,p,i

)
. . .

· exp
(
− 2Lp,sat− 2

i−1∑
j=0

Lp,j

)
. (A3)

With this, Eqs. (7) and (8) can be rephrased to

sray,i ≈KrayNpE0

[
C1Xi +C2Yi

]
(A4)

smie,i ≈KmieNpE0

[
C4Xi +C3Yi

]
. (A5)

This way, the signals in the Rayleigh and Mie channels
are expressed as functions of aerosol optical property prox-
ies γ||,p,i and Lp,i (and Lp,sat) solely, which are equivalent
to αp,i and β||,p,i (and Lp,sat). Temperature, pressure and
Doppler shift (due to horizontal-line-of-sight wind) are as-
sumed known a priori by means of ECMWF medium-range
weather forecasting. Hence, the molecular optical properties,
i.e. all variables with subscript m, can be inferred with suf-
ficient accuracy as well. The standard SCA solves Eqs. (A2)
to (A5) exactly in a recursive scheme beginning with default
initial conditions in the first range bin to correct for non-
zero optical depth above the measurement volume. More pre-
cisely, backscatter is calculated directly from

β||,p,i = Yiβm,i/Xi . (A6)

And layer optical depth is retrieved independently from the
profile of Xi . Afterwards, the slant optical depth is trans-
formed into the nadir optical depth by a trigonometric cor-
rection factor, from which extinction is directly calculated.

But the SCA suffers from several shortcomings. Any in-
put data are assumed noise-free, and an exact solution of
the extinction retrieval problem is calculated. Among the for-
mer strategies to dampen the noise within the SCA are aver-
aged extinction estimates over vertically neighbouring range
gates, which are called midbin properties (Sect. 6.3 in Fla-
mant et al., 2020), and zero-flooring (Sect. 6.2.2.1 in Flamant
et al., 2020) whenever negative extinction values would be
obtained in the regular case. These SCA midbin properties
are also denoted by the SCA MB in this work. Both strate-
gies are ad hoc, but averaging is believed to introduce less
bias than flooring because noise is cut off only in one di-
rection by the latter. Furthermore, the signal noise amplitude
can change abruptly from one range bin to another due to the
varying vertical range bin heights (250 m to 2 km). Hence,
since this varying reliability of the signals is not taken into
account, biases or oscillations in the extinction variable can
potentially be triggered by zero-flooring whenever range bin
heights change. This is due to the fact that extinction es-
sentially depends on the moving ratio of noisy signal values
along an atmospheric column. The mean absolute of this ra-
tio increases with increasing noise, which may then lead to a
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bias after zero-flooring negative values in the SCA (see also
Flament et al., 2021, for a graphical explanation and a show-
case without flooring). Additionally, extinction is retrieved
independently from backscatter after the linear equation sys-
tem in Eqs. (A4) and (A5) has been solved via standard meth-
ods. But due to the linear transform, the errors in properties
Xi and Yi are found to be highly anti-correlated. To illustrate
this, one can solve Eqs. (A4) and (A5) to obtain from error
propagation that

εX,i = C̃3εray,i − C̃2εmie,i (A7)

εY,i =−C̃4εray,i + C̃1εmie,i, (A8)

with noise terms ε and rescaled coefficients C̃1...4 > 0. Ac-
cordingly, the noise from the Mie and Rayleigh channels con-
tributes to the noise in Xi and Yi with alternating signs so
that the negative cross-correlation 〈εX,iεY,i〉< 0 is obtained.
This means, for example, that one noisy value in the Mie (or
Rayleigh) channel disturbs both backscatter and extinction
coefficients. That also implies that if an unphysical, negative
value is obtained in one bin for backscatter (or extinction) in
the final result, then the value for extinction (or backscatter)
is definitely disturbed as well, whether it lies within physical
bounds or not. This additional knowledge is not accounted
for within the processing, and hence low SNR in one of the
signal channels has the potential to deteriorate both backscat-
ter and extinction estimates. For example, the contribution
from the Mie channel in a particle-free atmosphere is more
than half noise, which affects the crosstalk-corrected molecu-
lar signalX and consequently the extinction retrieval as well.

Appendix B: Uncertainty estimates from measurement
variability

The lidar data at a 2.9 km measurement scale (indexed m)
within an observation are horizontally accumulated at an ob-
servation scale of 87 km before the analysis; i.e.

s =

30∑
m

sm. (B1)

In the case that the scene is truly homogeneous, sm has the
same mean and standard deviation σconst = σsm∀ m. Then, a
more robust estimate of the signal uncertainty can be pro-
vided from error propagation

σ 2
s =

30∑
m

σ 2
sm
= 30σ 2

const, (B2)

and σconst can be estimated from the variance of the 30 signal
values at the measurement scale, namely

σ 2
const = var(sm)=

1
30− 1

30∑
m

(sm−
1

30

30∑
m

sm)
2. (B3)

This estimate will cover all additionally known and unknown
noise sources and coincides with the Poisson noise hypothe-
sis in the case that the measurement-scale signals are truly
Poisson-distributed. The measurement error covariance Sy
comprises the terms σ 2

s for both channels, Mie and Rayleigh,
and all range bins on its diagonal.
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