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Abstract: The implementation of statistical postprocessing of ensemble forecasts is increasingly
developed among national weather services. The so-called Ensemble Model Output Statistics (EMOS)
method, which consists of generating a given distribution whose parameters depend on the raw
ensemble, leads to significant improvements in forecast performance for a low computational cost,
and so is particularly appealing for reduced performance computing architectures. However, the
choice of a parametric distribution has to be sufficiently consistent so as not to lose information on
predictability such as multimodalities or asymmetries. Different distributions are applied to the
postprocessing of the European Centre for Medium-range Weather Forecast (ECMWF) ensemble
forecast of surface temperature. More precisely, a mixture of Gaussian and skewed normal distri-
butions are tried from 3- up to 360-h lead time forecasts, with different estimation methods. For
this work, analytical formulas of the continuous ranked probability score have been derived and
appropriate link functions are used to prevent overfitting. The mixture models outperform single
parametric distributions, especially for the longest lead times. This statement is valid judging both
overall performance and tolerance to misspecification.

Keywords: ensemble model output statistics; weather forecasting; ensemble forecasting; postpro-
cessing; calibration; Gaussian distribution; skewed distributions; probabilistic scoring rules

1. Introduction

In numerical weather prediction (NWP), ensemble forecasts aim to capture the ex-
pected uncertainty associated with a weather forecast [1]. In practice, multiple forecasts are
produced with different inputs such as several parametrizations, several model physics, or
slightly perturbed initial conditions. Well-known examples of such forecasts are the density-
based or probability weather forecasts [2,3]. However, for surface variables, ensembles tend
to be biased and misdispersed because some error sources such as insufficient resolution,
discretized physical equations, and processes cannot be handled [4]. For instance, ensemble
bias can be seen as the bias coming from the dynamical core of the deterministic forecast
used to run ensembles, ensemble wrong dispersion can come from a sampling error unable
to catch the underlying distribution of the atmospheric state. Ensemble forecasts thus need
to be statistically postprocessed.

In recent years, numerous techniques of statistical ensemble postprocessing have
been set up. Exhaustive reviews of these techniques are available in Vannitsem et al. [5,6].
The rise of artificial intelligence in weather and climate sciences [7] have permitted the
development of promising data-driven techniques, see e.g., Taillardat et al. [8], Rasp and
Lerch [9], Scheuerer et al. [10], Veldkamp et al. [11], and Grönquist et al. [12]. In practice, a
compromise on operational methods has to be made between data storage issues, reduced
computational resources with respect to NWP models, and tuning and implementation
of the algorithms [13,14]. As a result, lighter and easier methods to implement than
data-driven ones are still up to date.

Hence, this paper deals with the widely used technique called nonhomogeneous
regression or ensemble model output statistics (EMOS) [15]. This type of distribution
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regression approach has been extended to numerous variables’ responses and distributions
such as Gaussian distributions [15,16], truncated normal [17], log-normal [18], gamma [19],
or generalized extreme values [20,21]. Jordan et al. [22] review most of the distributions
commonly used in ensemble model output statistics. Extensions and refinements of this
technique have been proposed to improve the classical framework like the addition or
selection of covariates [23], a more realistic selection of the training sample [24], or semilocal
versions of the algorithm [25,26]. This study focuses on local implementation of EMOS
using only the raw ensemble empirical statistics as potential covariates.

The seminal work of Gneiting et al. [15] considered Gaussian distributions for the
EMOS postprocessing of ensemble forecasts of surface temperature. One can wonder
whether this assumption remains valid among forecast horizons, location specificities, or
unstable atmospheric states. For example, Gebetsberger et al. [27] used logistic and skewed
logistic distributions for site-specific ensemble forecasts. Moreover, Baran and Lerch [28,29]
investigated the mixture and the combination of distributions for statistical postprocessing
in the spirit of the work of Möller and Groß [30], which is particularly appealing if some or
all the members of the raw ensemble are not exchangeable, and offers a simpler framework
than Bayesian model averaging [31]. An example of ensemble prediction system is the 51-
member European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble [32].
This ensemble includes one control (unperturbed) member and 50 exchangeable ones. In
Gneiting [33], a distinction is made between the control forecast and the mean in a single
parametric density. It could be of interest to fit a mixture of distributions accounting for
potential skewness and/or multimodalities of the physically based ensemble forecasts in
order not to lose information on predictability, especially for the longest lead times.

This article proposes a new distribution for the EMOS, the skew normal distribution,
generalizing the Gaussian distribution with a parameter accounting for asymmetries in
the predictive distribution. Analytical formulas of popular probabilistic scoring rules are
derived and this distribution is combined with the Gaussian distribution and provides
flexibility and skillful predictive distributions. Mixture and single parametric Gaussian
and skew normal distributions are compared on the ECMWF ensemble forecast of surface
temperature, using different estimation methods. Section 2 contains a description of the
data used for this study and exhibits the EMOS models used. Section 3 presents the results
for temperature postprocessing and Section 4 discusses these results and concludes.

2. Data and Methods
2.1. European Centre for Medium-Range Weather Forecasts Ensemble

The ECMWF ensemble consists of one control member and 50 exchangeable members
of 2-m temperature from 3- up to 360-h lead times twice a day. Only the initialization time
00:00 UTC is presented and used in this study. The grid of the ensemble is 0.25° regular and
the members are bilinearly interpolated to 2056 locations in Western Europe where observa-
tions are available, see Figure 1. Data span 3 years from 1 August 2017 to 31 July 2020. The
results presented in Section 3 are based on a leave-one-year-out cross-validation strategy.

2.2. Ensemble Model Output Statistics

A basic example of the EMOS framework for a Gaussian response is recalled in
Section 2.2.1. The EMOS for the skew normal distribution is presented in Section 2.2.2. The
mixture models are presented in Section 2.2.3 and the tuning, link functions, and estimation
methods are summarized in Section 2.2.4. In the following, φ and Φ are the probability
density function (PDF) and the cumulative distribution function (CDF) of the standard
normal distribution, respectively.
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Figure 1. Location of the 2056 stations of this study.

2.2.1. Gaussian EMOS

The work of Gneiting et al. [15] introduced the EMOS for Gaussian distributions.
Here, since only the control run is distinguishable from the other runs, the predictive
distribution is

N (a0 + aCTRLCTRL + aENSENS, b0 + bENSσ2
ENS) (1)

where CTRL denotes the control member, ENS the empirical ensemble mean, and σ2
ENS

the empirical ensemble variance. The coefficients aCTRL, aENS, b0, bENS are constrained
to be non-negative. The value of the coefficients is determined by M-estimation using
the logarithmic scoring rule (LogS, equivalent to a maximum likelihood estimation) [34]
or the continuous ranked probability score (CRPS) [35–37]. In the following, the EMOS
algorithms using a single Gaussian density are called NORM-CRPS and NORM-LOGS
with respect to the scoring rule employed for the estimation of the coefficients.

2.2.2. The Skew Normal Distribution for EMOS

The predictive density of the skew normal distribution is

k(x; m, s, α) =
2
s

φ

(
x−m

s

)
Φ
(

α
x−m

s

)
. (2)

In the following, we use K(x; m, s, α) for the CDF of the skew normal distribution.
Note that if α = 0, we have a Gaussian distribution of mean m and variance s2. For m = 0
and s = 1, the Figure 2 shows the role of α in the skew normal distribution.
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Figure 2. Standard skew normal densities (m = 0 and s = 1) as a function of the parameter α.

The skew normal distribution has a mean and variance, respectively, of

µ = m + sδ

√
2
π

and σ2 = s2
(

1− 2δ2

π

)
(3)

where δ = α√
1+α2 is determined from the skewness γ:

δ =
γ

|γ|

√√√√π

2
|γ| 23

|γ| 23 + ((4− π)/2)
2
3

with γ ∈ (−1, 1). (4)

The extreme values for α = δ√
1−δ2 are reached when δ2 is close to 1, which is equivalent

to |γ| = 0.99527. Therefore, the calculation of α is only possible if |γ| is reasonably small.
Pewsey [38] reports these issues for the skew normal distribution, where no closed-form
expression of the maximum likelihood estimator of (m, s, α) is available (unless α = 0).

For this study, the representation of the single parametric skew normal distribution is
as follows:

m̂ = a0 + aCTRLCTRL + aENSENS− ŝ δ̂
√

2/π, (5)

ŝ =
b0 + bENSσENS√

1− 2δ̂2/π
, (6)

γ̂ = c0 + cENSγENS, (7)

δ̂ =
γ̂

|γ̂| min

0.99,

√√√√π

2
|γ̂| 23

|γ̂| 23 + ((4− π)/2)
2
3

, (8)

α̂ =
δ̂√

1− δ̂2
, (9)

where γENS is the empirical ensemble skewness. As for the Gaussian framework, the
coefficients aCTRL, aENS, b0, bENS are constrained to be non-negative. A formula for the
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LogS is not hard to compute. Denoting (; α) = (; 0, 1, α) for k and K, a closed-form
expression of the CRPS is available:

CRPS(K(; α), y) = y[2K(y; α)− 1] + 2k(y; α)− 2δ

√
2
π

Φ
(

y
α

δ

)
+ δ

√
2
π
−
√

8
π3

[√
2 arctan

(α

δ

)
− δ arctan

(
α√
2

)]
(10)

and

CRPS(K(; m, s, α), y) = s CRPS
(

K(; α),
y−m

s

)
(11)

In the following, the EMOS algorithms using a single skew normal density are called
SKN-LOGS and SKN-CRPS.

2.2.3. Mixture Distributions for EMOS

Following the work of Baran and Lerch [28], Möller and Groß [30], we can use a
weighted mixture of distributions to exploit the differences between distinguishable com-
ponents of the ensemble. As mentioned in Baran and Lerch [29], this is different to a combi-
nation of predictive distributions where single parametric distributions are determined and
then pooled in a two-step procedure where the weights are estimated after. This topic is
beyond the scope of the paper, but the interested reader in probabilistic aggregation can re-
fer to Baran and Lerch [29], Ranjan and Gneiting [39], Gneiting et al. [40], Zamo et al. [41].
In this study, two mixtures are proposed. The first one is a mixture of two Gaussian dis-
tributions (called MIXNRM-LOGS and MIXNRM-CRPS in the following). The predictive
density is

ϕ(x; µCTRL, σCTRL, µENS, σENS, ω) = ω
φ
(

x−µCTRL
σCTRL

)
σCTRL

+ (1−ω)
φ
(

x−µENS
σENS

)
σENS

(12)

where µCTRL and µENS are affine functions of CTRL and ENS, respectively. σCTRL is a
non-negative real and σENS is an affine function (with non-negative coefficients) of the
ensemble standard deviation σENS.

The second mixture proposed relies on a skew normal fit for the distribution of the
control run (where the skewness depends on the ensemble skewness) and a Gaussian
distribution for the ensemble mean; in terms of predictive density, this yields

ψ(x; mCTRL, s, µENS, σENS, α, ω) = ωk(x; mCTRL, s, α) + (1−ω)
φ
(

x−µENS
σENS

)
σENS

(13)

where µENS is an affine function of ENS, s is a non-negative real, and σENS is an affine
function (with non-negative coefficients) of the ensemble standard deviation σENS. α is
computed using Equations (7)–(9). mCTRL is calculated with the Equation (5), where, in this
case, aENS = 0. Due to the central limit theorem, a Gaussian distribution for the ensemble
mean is chosen, the skew normal distribution is fitted using CTRL and ensemble empirical
skewness. Grimit et al. [42] provided the closed-form expression of the CRPS for a mixture
of Gaussian distributions, and Baran and Lerch [29] provided a formula for a combination
of two predictive distributions H(t) = wF(t) + (1− w)G(t):

CRPS(H, y) = w2CRPS(F, y) + (1− w)2CRPS(G, y) + 2w(1− w)
∫
(1{x≥y} − F(x))(1{x≥y} − G(x))dx. (14)

The last integral term does not have a closed-form for the mixture proposed in (13).
As a result, only the mixture MIXSKN-LOGS is considered here.

2.2.4. Training, Tuning, and Link Functions

Recently, Lang et al. [43] examined the training strategies for nonhomogeneous re-
gression. A trade-off is made between time adaptation and the data over multiple years
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to obtain unbiased and stable regression estimates. Here, the choice is made to adjust the
coefficients seasonally using all of the same seasons available in the data set. More precisely,
each year is divided into four seasons of three months, and the coefficients estimated for
a season with two given years are applied to the third year to compute the predictive
distributions.

Both maximum likelihood (LogS) estimation and CRPS minimization are used when
possible. Gebetsberger et al. [44], Yuen and Stoev [45] notice that these estimations yield
similar results when the response distribution is well specified, which is natural since
one can guess that the minimum expected values of the scores are reached; thus, the
ideal forecast is made, according to the definition of proper scoring rules. Using various
estimation methods permits detecting model misspecification implicitly. Practically, one
must avoid overfitting. For example, in case the coefficients are estimated day by day,
Scheuerer [46] proposes to stop the optimization early provided that starting values are
known to be accurate. The question of numerical optimization is a crucial one when dealing
with a huge number of models where a manual check of the coefficients is hard to do.
Gebetsberger et al. [47] report some solutions to avoid numerical blow up, for example, the
use of the quadratic link function for non-negative coefficients [15]. Moreover, the LogS
and the CRPS are not sensitive to the same errors in numerical optimization and Gneiting
et al. [15] states that a LogS strategy can lead to overdispersed forecasts and CRPS can lead
to sharper but lesser calibrated forecasts [44].

Hence, a universal link function is proposed here, for a parameter θ, based on the
logistic function:

l(θ; A, B) =
A + Beθ

1 + eθ
(15)

The function l(; A, B) is defined on R so no constrained estimation is imposed. In
addition, the link function is bounded on (A, B) and the range of the coefficients can be
controlled. Last but not least, the derivatives of l(; A, B) are mild and easy to compute. The
spirit here is very similar to the use of sigmoid functions in neural networks, leading to
faster convergence with backpropagation [48].

For instance, in the three mixture EMOSs exposed, all three use l(; 0.05, 0.95) to
represent ω. A summary of the link functions employed according to the methods used is
available in Table 1.

Table 1. Summary of the link functions used for parameter estimation.

NORM-CRPS NORM-LOGS SKN-CRPS SKN-LOGS

aCTRL quadratic quadratic quadratic quadratic
aENS quadratic quadratic quadratic quadratic

b0 quadratic l(; 0.2, 1) quadratic l(; 0.2, 1)
bENS quadratic l(; 0.75, 1.8) quadratic l(; 0.75, 2.5)

MIXNRM-CRPS MIXNRM-LOGS MIXSKN-LOGS

µCTRL = a0 + aCTRLCTRL m = a0 + aCTRLCTRL− sδ
√

2/π
aCTRL identity l(; 0.75, 1.25) l(; 0.75, 1.25)

µENS = a′0 + aENSENS
aENS identity l(; 0.75, 1.25) l(; 0.75, 1.25)

σCTRL l(; 0.1, 3) l(; 0.1, 3) -
s - - l(; 0.1, 3)

σENS = b′0 + bENSσENS
b′0 quadratic l(; 0.1, 2) l(; 0.1, 2)

bENS quadratic l(; 0.8, 1.3) l(; 0.8, 1.3)

3. Results

All results presented in the following come from 3-fold cross-validation based on the
3 years of data at hand. For each station, lead time, and season, three regression models
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are estimated using two seasons while the remaining season is used for validation. In the
following, the raw ensemble is denoted by RAW. For the postprocessed methods, quantiles
of order 1

52 , 2
52 , · · · , 51

52 are computed and used in the verification process.

Probabilistic Calibration

Probabilistic calibration is commonly evaluated with probability integral transform
(PIT) or rank histograms (RH) [49–52]. Subject to calibration, the PIT statistic follows
a uniform distribution, its mean is 1

2 , and its normalized variance is 1 [3,53]. Figure 3
summarizes PIT mean and variance on the 2056 weather stations.

Figure 3. PIT mean and PIT variance for the 2056 weather stations of the benchmark. Subject to
calibration, the PIT statistic follows a uniform distribution, its mean is 1

2 , and its normalized variance
is 1.

The PIT mean shows a clear improvement of forecast bias regardless of the method
considered. The RAW ensemble is cold-biased, and the diurnal effect on forecast perfor-
mance is reduced. The PIT variance of the RAW indicates an underdispersed forecast, with
a reduction of the underdispersion across lead times. It may be imputable to the inflation
of the spread of the ensemble. Most of the LogS-learned algorithms show a very slight
overdispersion, especially for earlier lead times. NORM-CRPS and SKN-LOGS have an
increase of the PIT variance across lead times, until the RAW PIT variance. Moreover,
SKN-CRPS clearly shows underdispersed forecasts, with its best dispersion from Day 4 to
Day 6. The stability of the behavior of MIXNRM indicates that a fit of Gaussian mixture is a
good specification for ensemble forecasts of temperature. NORM-CRPS probably indicates
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that a normal fit, for longer lead times, is unable to catch enough variability from the RAW
distribution. The bad dispersion of SKN-CRPS may come from a target distribution, which
is not tailored for a single parametric EMOS for temperature or for an erratic management
of forecast variance by the CRPS itself—the LogS being more sensitive to dispersion issues.
At last, it is interesting to see that SKN and NORM have different predictive patterns even
if the Gaussian distribution is a special case of the skew normal distribution.

Figure 4 represents the average CRPS for each technique along lead times. The CRPS
are computed using the 51-quantile forecasts issued from the predictive distributions and
following Hersbach [36], Ferro [54], Zamo and Naveau [55]. Single parametric EMOS have
a performance similar to the RAW ensemble at Day 10, and the CRPSS (skill score—not
shown here) with respect to the raw ensemble are below 0 after Day 10. The EMOS method
is not to blame; however, these results can be explained by the lack of information on the
RAW ensemble (not enough covariates) and predictive distributions that are not flexible
enough. The results until Day 10 are in compliance with Hemri et al. [56]. The three MIX
models are very close together and have the best CRPS averages, especially from Day 6,
showing the importance of a mixture representation of ensemble forecasts of temperature;
in this case, their CRPSS are at 0.4 near Day 1, and fall down to 0.2 at Day 15. Notice that the
SKN-CRPS seems to be the worst postprocessed forecast but one found that misdispersion
(here, sharper but lesser calibrated forecasts) is hidden by the CRPS, which confirms the
finding of Gebetsberger et al. [44].

Figure 4. Average CRPS on 3 years/2056 stations along lead times. The three MIX models are very
close together and have the best CRPS averages, especially from Day 6.

The ECMWF use a new headline index based on the percentage of “large errors”,
i.e., forecasts, where CRPS > 5 ◦C at Day 5 [57]. This idea is taken here and exposed in
Figure 5.

Figure 5 is very similar to Figure 4. There is a clear improvement of the large errors,
especially with the mixture models and after Day 10. However, it is noteworthy that for
the single parametric EMOS, the LogS-learned methods commit less large errors than with
a CRPS optimization. This behavior is quite logical since CRPS provides sharper forecasts;
however, here, it is too confident with respect to the forecast horizon.
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Figure 5. Percentage of CRPS (for each day/station) larger than 5 ◦C along lead times. There is a
clear improvement of the large errors, especially with the mixture models and after Day 10.

In order to understand the differences between optimization strategies, an assessment
of forecast quality using the LogS is presented in Figure 6. The choice is made to work
with the ensemble members instead of the predictive distribution to be fair with the RAW
ensemble. A discretization of the LogS is made in the spirit of Roulston and Smith [34]
proposal. Let f1, · · · , f51 be the ordered (and rounded to the closest tenth) values of the
predictive distribution, the LogS( f , y) (in nat) proposed is

LogS( f , y) =


log(51) + log(max(0.05, f1 − y)) if y ≤ f1

log(51) + log(max(0.05, f j+1 − f j)) if f j ≤ y ≤ f j+1

log(51) + log(max(0.05, y− f51)) if y ≥ f51

(16)

where the lower the better. Here, one must be careful regarding the sensitivity of the
inference of the score above. Indeed, some choices can interfere with our results here.
The interested reader on this topic can consult Weijs et al. [58], Tödter and Ahrens [59],
Siegert et al. [60].

Figure 6. Average LogS on 3 years/2056 stations along lead times. The ranking of the forecasts is
very similar to Figure 4. The RAW ensemble seems to gain predictive performance until Day 6.

First, one can assume that the ranking of the forecasts is very similar to those in
Figure 4; in particular, for the best method at each lead time. Using proper scoring rules in
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verification ensures that the best (but a priori unknown) forecasts are rewarded on average.
Here, the fact that the same forecast (MIXNRM-LOGS) seems to be dominant both in CRPS
and LogS advocates that this forecast is the best subject for the information provided by
the RAW ensemble (i.e., the score has only an uncertainty component remaining). Yet, a
difference between MIXNRM-LOGS and MIXNRM-CRPS is noticeable until Day 3, and the
SKN-CRPS method is still the worst among postprocessed forecasts. In contrast to Figure 3,
the LogS seems to penalize underdispersed forecasts, as in the optimization process. Last
but not least, the RAW ensemble seems to gain predictive performance until Day 6. This is
not the case in Figure 4. This can be due to the initial ensemble perturbations of the RAW
ensemble [61], probably better tailored to medium-range or extended-range forecasts.

The differences between MIXNRM-LOGS, MIXNRM-CRPS, and MIXSKN-LOGS are
not very significant in terms of scoring rules. Therefore, the final choice of a predictive
distribution can be made using a simple tool inspired by the so-called weather roulette [62].
Figure 7 shows the frequency where the CRPS of the postprocessed forecast is better than
the RAW forecast. This tool demonstrates that the MIXNRM-CRPS wins 1% more than the
other methods against the RAW ensemble for the longest lead times.

Figure 7. Proportion of the cases where the CRPS of the postprocessed forecasts are better than the
RAW forecast. This tool demonstrates that the MIXNRM-CRPS wins 1% more than the other methods
against the RAW ensemble for the longest lead times.

4. Discussion and Conclusions

Overall, all the postprocessed forecasts show an improvement compared to the RAW
ensemble. The single parametric distributions are effective until Day 10. The mixture
distributions are the most skillful forecasts, regardless of the forecast horizon. This state-
ment is supported through two different proper scoring rules, emphasizing and penalizing
different types of errors. We are unaware of the connections of the tool of Figure 7 with
some tests of predictive performance, economic value of the forecasts, or scoring rules,
and such a figure should be drawn for LogS. In the future, very simple ideas such as
“Your forecast is better than the RAW one X times over Y” would be in favor of a broader
communication of ensemble information for decision making [63].

The choice of a “perfect” parametric distribution is probably a never-ending story. The
mixture distributions are appealing solutions to overcome this issue. Here, the skew normal
distribution is probably not tailored for a single parametric use and/or for surface temper-
ature ensemble forecasts. Skewed distributions propose new solutions in order to combine
nonexchangeable forecasts with distributions centered on ensemble means. In this study,
the skew normal distributions are applied on the control forecast but one may consider
other ensemble forecasts to combine. Moreover, more and more meteorological variables
are postprocessed with numerous distributions, see e.g., Schulz et al. [64], Baran et al. [65];
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in this context, the more distributions one tries, the better the results will be. For fu-
ture work, one may try to implement EMOS schemes where the choice of a parametric
distribution is related on forecasted weather regimes.

In all cases, the choice of appropriate parameter estimation schemes and link functions
appears to be as important as the choice of target distributions. It is not shown here,
but one finds that the proportion of Normality tests rejected across lead times is clearly
anticorrelated to the RAW LogS, and that tests relying on Kolmogorov–Smirnov statistic are
less powerful than Jarque–Bera or Shapiro–Wilk ones. The Kolmogorov–Smirnov statistic
is based on a CDF distance such as the CRPS. One can wonder whether this behavior is to
associate with the better sensitivity of the CRPS than the LogS to tolerate misspecification
but it upholds the work of Leutbecher and Haiden [66] on a Gaussian approximation of
the CRPS.

This work is also an advocate for the use of several scoring rules in forecast verification.
Some scores, even if they are proper, are sensitive to different types of forecast errors, and
differences among them can pinpoint peculiarities in forecasts. Indeed, minimizing an
expected score may be less important than reducing large (and costly) errors.
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