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A B S T R A C T   

Backscatter measured by scatterometers and Synthetic Aperture Radars is sensitive to the dielectric properties of 
the soil and normally increases with increasing soil moisture content. However, when the soil is dry, the radar 
waves penetrate deeper into the soil, potentially sensing subsurface scatterers such as near-surface rocks and 
stones. In this paper we propose an exponential model to describe the impact of such subsurface scatterers on C- 
Band backscatter measurements acquired by the Advanced Scatterometer (ASCAT) on board of the METOP 
satellites. The model predicts an increase of the subsurface scattering contributions with decreasing soil wetness 
that may counteract the signal from the soil surface. This may cause anomalous backscatter signals that dete
riorate soil moisture retrievals from ASCAT. We test whether this new model is able to explain ASCAT obser
vations better than a bare soil backscatter model without a subsurface scattering term, using k-fold cross 
validation and the Bayesian Information Criterion for model selection. We find that arid landscapes with Lep
tosols and Arenosols represent ideal environmental conditions for the occurrence of subsurface scattering. 
Nonetheless, subsurface scattering may also become important in more humid environments during dry spells. 
We conclude that subsurface scattering is a widespread phenomenon that (i) needs to be accounted for in active 
microwave soil moisture retrievals and (ii) has a potential for soil mapping, particularly in arid and semi-arid 
environments.   

1. Introduction 

One attractive feature of microwave remote sensing techniques is 
that their carrier signals are able to penetrate clouds, vegetation, and 
soils much better than optical and infrared waves can (Ulaby et al., 
1981). Therefore, microwave remote sensing can provide information 
about the physical properties of vegetation and soil undisturbed by at
mospheric conditions. In the case of bare soil surfaces, the penetration 
depth is in the order of millimetres to decimetres depending on the 
wavelength and wetness conditions of the soils. Particularly in arid re
gions, penetration depths may be quite large, allowing to map bedrock 
and gravel surfaces beneath windblown sand several centimetres to 
possibly meters thick (McCauley et al., 1982; Schaber et al., 1986). 
Experimental measurements of radar transmission through dry sand 

conducted by Williams and Greeley (2001) showed that the signal passes 
through hyperarid sand (0.3 vol%) up to 50 cm thick with a decrease in 
signal of less than 6 dB over the frequency range of 0.5–12.6 GHz. But 
even under moister conditions (4.7 and 10.7 vol%) the penetration was 
quite large, particularly at the lower frequencies. Nonetheless, when 
interpreting microwave measurements, the fact that microwave signals 
may be sensitive to subsurface soil properties is often ignored. Instead, 
soils are usually treated as pure surface scatterers or emitters. The im
plicit assumption is that the sensed topmost soil layers can be regarded 
as a homogeneous dielectric medium. This is for example common 
practice when retrieving soil moisture and vegetation from both active 
and passive microwave measurements (Petropoulos et al., 2015; Steele- 
Dunne et al., 2017). 

For the active case, this assumption was driven by the insight that the 
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contribution of scattering from subsurface soil strata to total backscatter 
is usually small and decreases rapidly with increasing soil moisture 
content (Schanda, 1986). Therefore, all commonly used bare soil 
backscatter models ignore subsurface scattering, modelling backscatter 
just in terms of the geometric and dielectric properties of the soil surface. 
For characterising the geometric properties of the soil surface, the most 
commonly used parameters are the root mean square height and auto
correlation length (Verhoest et al., 2008). The soil dielectric properties 
are a function of water content and soil textural composition (Dobson 
et al., 1985). All these models have in common that they predict – 
irrespective of the surface roughness conditions – a monotonic increase 
of backscatter with increasing surface soil moisture. This is true for 
theoretical (Bahar, 1981; Fung et al., 2002), semi-empirical (Wegmuller 
et al., 1994) and empirical models (Dubois et al., 1995; Oh et al., 1992) 
alike. For the theoretical models this behaviour can be traced back to the 
Fresnel equations that describe how the reflectivity of a plane interface 
between two homogeneous media increases with the dielectric contrast 
between the two media. Guided by the theoretical models and trained by 
field data sets collected during field experiments (Ulaby et al., 1978; 
Wegmuller et al., 1994), also all semi-empirical and empirical models 
predict that the backscattering coefficient as measured by radar in
struments increases with soil moisture. This means that, all other things 
being equal, soil moisture and backscatter are expected to be positively 
correlated over bare soil surfaces, while a negative correlation would be 
considered an anomaly. 

Surprisingly, anomalous backscattering signals appear to occur 
worldwide much more often than anticipated. The evidence comes 
mostly from global studies of C-band backscatter data acquired by the 
Metop Advanced Scatterometer (ASCAT) and its predecessor, the ERS 
scatterometer (Wagner et al., 2013). As shown by Fig. 1, ASCAT back
scatter exhibits strong negative correlations with modelled soil moisture 
data over many arid and semi-arid regions. Also global backscatter data 
sets acquired in L- and Ku-band exhibit spurious backscatter signals over 
arid environments (Jaruwatanadilok and Stiles, 2014; McColl et al., 
2014), suggesting that the problem is not just confined to C-band. 
Probably an important reason why these anomalies have received little 
attention so far is that they occur mostly in remote, sparsely vegetated 
areas, where no or only few in situ data are available. Hence, much of 
our current knowledge of the phenomenon stems from comparisons with 
global precipitation and modelled soil moisture data sets (Wagner et al., 
2013). Further evidence comes from inter-comparisons with soil mois
ture data derived from L-band (Kerr et al., 2012; Entekhabi et al., 2010) 
and higher-frequency (de Jeu et al., 2008) brightness temperature ob
servations. While also brightness temperature data are sensitive to 
deeper soil layers, they appear to be much less affected by subsurface 

effects than the backscatter measurements (Dorigo et al., 2010; Fascetti 
et al., 2016; Miyaoka et al., 2017). Noting that passive microwave 
measurements are much less sensitive to the roughness of targets than 
the highly directional radar measurements (Schanda, 1986), this sug
gests that roughness effects play an important role in explaining the 
presence (absence) of anomalies in active (passive) bare soil 
measurements. 

A hypothesis for explaining the anomalies seen in ASCAT data was 
put forward by Wagner et al. (2013). They speculated that such anom
alies may be due to the presence of strong subsurface scatterers that 
increasingly make up the total backscatter signal when the soil dries. A 
similar hypothesis was made by McColl et al. (2014) for explaining 
relatively high L-band backscatter values over desert areas as observed 
by the Aquarius scatterometer. Such strong scatterers could e.g. be rock 
surfaces beneath shallow soil layers or small rocks and stones distributed 
throughout the soil profile. This hypothesis was tested by Morrison and 
Wagner (2020) in a laboratory experiment that collected high-resolution 
vertical C-band backscatter profiles of (i) a layer of sand with a flat 
surface overlying a rough subsurface layer, and (ii) a layer of sand 
randomly mixed with stones. The results confirmed that soils possessing 
a distinct, brightly reflecting subsurface layer can produce an anomaly. 
It is enhanced when the soil surface is smooth and the underlying sub
surface rough. Conversely, it is dampened when the soil is rough with 
stony inclusions. Still, depending on the exact composition of the soil 
and the characteristics of the radar (frequency, polarisation, incidence 
angle), anomalies are possible. These findings are in line with the results 
of an earlier field experiment by Liu et al. (2016) where the authors 
acquired co- and cross-polarised L-band data over a bare sandy soil in 
Florida. They found that for the same field plot, the presence of an 
anomaly is dependent on the roughness of the soil surface, i.e. when the 
soil surface was rough, surface scattering was always the dominant 
mechanism. However, when the surface was smooth, a subsurface signal 
emerged in the co-polarised backscatter data (VV and HH) for soil 
moisture levels below 7%. For soil moisture levels higher than this 
threshold, backscatter increased as expected. This resulted in a V-shaped 
soil moisture-backscatter relationship (see Fig. 4 in Liu et al. (2016)). 
The cross-polarised VH data showed no anomaly. 

The goal of this study is to gain a better understanding of subsurface 
scattering effects as observed by ASCAT. Where and when does sub
surface scattering occur? How strong are the effects and how do they 
relate to environmental conditions? As study region we chose a 15◦ by 
15◦ large area covering the Iberian Peninsula and the north-western 
parts of the African continent (10◦W-5◦E, 30–45◦N) as highlighted by 
the box in Fig. 1. The European part of the study domain is where 
Wagner et al. (1999) had first encountered inexplicable backscatter 

Fig. 1. Pearson correlation between multi- 
year ASCAT backscatter time series (at an 
incidence angle of 40◦) and modelled soil 
moisture data from ERA5-Land (Layer 1) 
under snow and frost free conditions. Over 
many arid regions worldwide the correlation 
is negative, pointing to an anomalous back
scattering behaviour. The red box shows our 
area of investigation. Details about the 
ASCAT and ERA5-Land data sets are pro
vided in Section 3. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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anomalies during summer, and where Shamambo et al. (2019) recently 
noted anomalous backscatter behaviour over karst regions. As the 
starting point of our analysis, we introduce a backscatter model con
taining a subsurface scattering term in the next section. By confronting 
three years of ASCAT backscatter measurements with modelled soil 
moisture data we test whether the new model is able to explain the 
ASCAT observations better than a bare soil backscatter model without 
the subsurface scattering term. We complement this model assessment 
by an analysis of how the observed spatiotemporal patterns of subsur
face scattering correspond to climate, soil properties, and land cover. 

2. Theory 

Anomalous backscatter signals have so far been mostly noted in arid 
environments with no or scarce vegetation cover. Nonetheless, for un
derstanding the spatial dimension of this phenomenon, we must also be 
able to describe the impact of vegetation on the backscatter signature of 
soils with subsurface scatterers. Therefore, in this section we formulate a 
subsurface scattering model for soils with and without vegetation cover. 

2.1. Bare soil backscatter with subsurface scattering 

Let us conceptualise the subsurface scattering problem for a bare soil 
by assuming that backscatter is the sum of surface contributions and an 
attenuated subsurface signal: 

σ0
soil = σ0

top +Γ2
soilσ0

sub (1)  

where σsoil
0 is the bare soil backscattering coefficient in linear units 

(m2m− 2), σtop
0 is the backscatter contribution coming directly from the 

soil surface, Γsoil
2 is the two-way attenuation factor describing how much 

energy the microwave pulse loses when travelling forth and back 
through the intermediate soil layer, and σsub

0 is the backscatter from 
subsurface targets. Subsurface scatterers may e.g. be buried rock or 
stones dispersed throughout the soil profile (Fig. 2). For simplicity let us 
assume that the subsurface scattering cross section is a constant, i.e. σsub

0 

= ψ. 
Both σtop

0 and Γsoil
2 depend on the soil moisture content θ within the 

topmost soil layer, but in opposite directions. Assuming exponential 
relationships, we write 

σ0
soil = αeβθ +ψe− ξθ (2)  

where α corresponds to the surface scattering contribution when the soil 
is dry (θ = 0) and β prescribes the sensitivity of σtop

0 to soil moisture 
changes. These two parameters depend on the roughness and texture of 
the soil surface layer. The parameter ξ regulates the strength of the 

attenuation of the subsurface scattering signals by the intermediate soil 
layer and depends on a multitude of factors such as soil texture and the 
nature and depth of the subsurface scatterer, as does ψ . Note that the 
logarithmic transform of the term αeβθ corresponds to the widely used 
linear model for relating σsoil

0 expressed in decibels to θ (Dobson and 
Ulaby, 1986; Kim and van Zyl, 2009). Furthermore, note that soil 
moisture is usually expressed in terms of the volumetric soil moisture 
content in units of m3m− 3, whereas here we prefer to use a relative soil 
moisture index ranging between 0% (dry soil) and 100% (wet soil), 
representing the degree of saturation of the remotely sensed topsoil 
layer. 

The scattering behaviour as predicted by Eq. (2) is illustrated by the 
three graphics shown in Fig. 3. The left graphic (a) represents a land 
surface with a dominant surface scattering contribution. In this case, 
backscatter increases monotonically with soil moisture over the com
plete wetness range, i.e. no anomalies are present. This is the standard 
scattering regime that is expected to occur over the vast majority of land 
surface areas. The opposite behaviour occurs when subsurface scattering 
dominates over the scattering contributions from the soil surface 
(Fig. 3c). In this case, σsoil

0 decreases monotonically with soil moisture, i. 
e. an anomaly is always present. 

Between these two limit cases, Fig. 3b illustrates a mixed scattering 
regime where the subsurface scattering signal shapes the backscatter 
curve under dry conditions, while under wet conditions the surface 
signal dominates. This results in a kind of U-shaped curve comparable to 
the more pronounced V-shaped relationship observed by Liu et al. 
(2016) in their local-scale field measurements. In such a situation, there 
exists a turning point θturn ∈ [0,1] where σsoil

0 is minimal. It can be found 
by setting ∂σsoil

0 /∂θ to zero: 

θturn =
1

β + ξ
ln

ψξ
αβ

(3) 

For soil moisture values smaller than θturn one will observe back
scatter anomalies, while for values θ > θturn backscatter is positively 
correlated with soil moisture. Such a mixed scattering regime becomes 
apparent when ψξ ≥ αβ and (β + ξ) ≥ lnψξ

αβ, i.e. subsurface scattering 
must be sufficiently strong to lead to an initial decrease of total back
scatter at least under dry conditions, but not too strong to still dominate 
under wet conditions. Note that such a mixed scattering regime is 
obviously problematic from the point of view of soil moisture retrievals 
as there is no unique mapping of one backscatter value to one soil 
moisture value. Instead, depending on the wetness conditions, a back
scatter increase could signify both a wetting (at the wet edge) or drying 
(at the dry edge) of the soil surface. To resolve this ambiguity one would 
either need additional radar observations (multiple polarisations, inci
dence angles, or frequencies) (Morrison and Wagner, 2020) or other 

Fig. 2. Bare soil backscatter with contributions from the surface (σtop
0 ) and subsurface dielectric discontinuities (σsub

0 ) dampened by the soil medium (Γsoil
2 ).  
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contextual information. 

2.2. Subsurface scattering signals in vegetated regions 

To account for vegetation, we use the widely used Water Cloud 
model introduced by Attema and Ulaby (1978) which models back
scatter from vegetation by assuming that the vegetation canopy can be 
conceptualised as a layer of identical and randomly distributed water 
droplets. This model represents a zeroth-order solution of the radiative 
transfer equation applied to a tenuous distribution of particulate media 
overlying a rough surface. According to this model, the principal effects 
of vegetation are to dampen the bare soil backscatter signal and to add a 
contribution from the vegetation canopy: 

σ0 = Γ2
vegσ0

soil + σ0
veg (4)  

where σ0 is the backscatter coefficient measured by a radar sensor, Γveg
2 is 

the two-way attenuation factor describing the two-way loss of energy 
through the vegetation, and σveg

0 is the volume scattering contribution 
from the canopy. Substituting Eq. (2) yields 

σ0 = α̂eβθ + ψ̂ e− ξθ + σ0
veg (5)  

where α̂ and ψ̂ are the surface- and subsurface scattering terms damp
ened by the vegetation layer, i.e. α̂ = Γ2

vegα and ψ̂ = Γ2
vegψ . Other than α 

and ψ, α̂ and ψ̂ vary over the year reflecting the seasonal vegetation 
development. This is also true for σveg

0 . However, the two exponential 

coefficients β and ξ are not affected by vegetation, nor is the ratio ψ̂ ξ
α̂β

. 

Hence, the general U-shape and in particular the position of the turning 
point θturn should remain unaltered by the presence of vegetation and not 
change over the year. Of course, over dense vegetation Γveg

2 becomes so 
small that changes in σsoil

0 cannot be reliably discerned any longer. 
Therefore, over dense forests and shrub land it becomes impossible to 
discern subsurface scattering effects. 

Finally, let us specify the signal range of the two scattering terms 
from completely dry (θ = 0%) to wet (θ = 100%) conditions with 

S top = α̂
(
eβ − 1

)
(6)  

S sub = ψ̂
(
1 − e− ξ) (7)  

where S top is the signal range of the surface contributions and S sub to 
the subsurface scatterers. Both quantities do not just reflect soil prop
erties but also the optical thickness of the vegetation (via Γveg

2 ), and 
inform us about how sensitive the two scattering terms are to soil 
moisture changes. Note that S top applies also to the backscatter model 
without the subsurface scattering term. 

3. Study region and data 

Our study region spans the longitudes from 10◦W to 5◦E and the 
latitudes from 30◦N to 45◦N, covering mainland Portugal and Spain, 
south-western France and the northern parts of Morocco and Algeria 
(Fig. 4). It was chosen to cover a wide range of environmental conditions 
governing subsurface scattering, from hyperarid regions in the Sahara 
with strong and permanent subsurface signals, to semi-arid conditions in 
central and south-eastern Spain with weaker, intermittent anomalies 
(Wagner et al., 1999; Wanders et al., 2012; Escorihuela and Quintana- 
Seguí, 2016) and more humid regions in the northern and north- 
westerly parts of the study domain, where subsurface scattering is un
likely to occur. The gradient from arid to more humid conditions is re
flected by land cover patterns (from bare to densely vegetated areas) and 
soil properties (from sandy and shallow soils to well developed fertile 
soils). To analyse the impacts of climate, soil type, and land cover on 
subsurface scattering, we use the Köppen-Geiger climate classification 
by Beck et al. (2018), the soil groups from the ISRIC SoilGrids250m map 
(Hengl et al., 2017), and the land cover map produced within the 
framework of the European Space Agency’s Climate Change Initiative 
(ESA CCI) (ESA, 2017). Furthermore, we included the World Karst 
Aquifer map (Chen et al., 2017) in our analysis given that rough karstic 
rocks may cause strong backscatter returns and have been found to cause 
unexpected backscatter behaviour (Shamambo et al., 2019). Fig. 4 
shows for each ASCAT grid point the dominant classes for each of these 
four maps. The dominant classes were determined by calculating the 
class frequency within each ASCAT pixel (squares of 12.5 × 12.5 km) 
and selecting for each grid point the most frequently occurring class. 

3.1. ERA5-land soil moisture 

As relative soil moisture index, θ, we use the 0–7 cm soil moisture 
simulations of ERA5-Land (Muñoz-Sabater et al., 2021) and scale them 
between minimum and maximum values for each pixel. ERA5-Land is 
the off-line and independently operated land model component of the 5th 

generation of the European ReAnalysis (ERA5) system (Hersbach et al., 
2020) operated by the European Centre for Medium-Range Weather 
Forecasts (ECMWF). It uses ERA5 for atmospheric forcing and the Car
bon Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land 
(CHTESSEL) model to simulate soil moisture and many other land sur
face variables on a 9 km grid with hourly time steps. Other than ERA5, 
which assimilates ASCAT soil moisture data, ERA5-Land does not 
assimilate land surface observations, i.e. the soil moisture data from 
ERA5-Land and the ASCAT backscatter measurements can be treated as 
independent variables. Also important for this study is that CHTESSEL 
simulates soil moisture dynamics much better than the older TESSEL 
scheme used in past re-analysis. The mean value and standard deviation 

Fig. 3. Backscattering behaviour of a bare soil with (a) dominant surface, (b) mixed, and (c) dominant subsurface scatterers.  
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Fig. 4. Study region characteristics and ASCAT backscatter: a) elevation and country boundaries (solid lines), b) dominant Köppen-Geiger climate classes per ASCAT 
pixel, c) dominant soil groups, d) sand fraction, e) dominant ESA CCI land cover, f) karst acquifer map, g) number of ASCAT measurements masked due to frost or 
snow cover (in %), h) mean annual precipitation (mm) from ERA5-Land, i) mean of ERA5-Land soil moisture (relative units), j) standard deviation of ERA5-Land soil 
moisture (relative units), k) mean of ASCAT backscatter at 20◦ incidence angle over all snow- and frost free days (in m2m− 2), l) standard deviation of ASCAT 
backscatter (m2m− 2). The dotted contour line shows the R = 0 isoline from the Pearson correlation plot between ASCAT backscatter and ERA5-Land soil moisture 
shown in Fig. 1. 
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of θ, calculated for the years 2015–2017, are shown in Fig. 4. One can 
observe the expected soil moisture gradients with low and rather con
stant θ values in the desert regions, and higher and more variable θ 
values in the more humid parts of the study domain. 

3.2. ASCAT backscatter 

The Advanced Scatterometer (ASCAT) is a C-band (5.255 GHz) fan 
beam scatterometer that uses six antennas to acquire backscatter triplets 
in VV polarisation along two 550 km wide swaths (Figa-Saldaña et al., 
2002). For the two mid beam antennas, the incidence angle varies over 
each swath from 25◦ in near range to 55◦ in far range. For the fore and 
aft beam antennas, the range is 34–65◦. Thanks to its multiple-viewing 
capability, it is possible to characterise the dynamic relationship be
tween the ASCAT backscatter measurements and the incidence angle 
(Hahn et al., 2017), which in turn allows to extrapolate the ASCAT 
triplets to any chosen reference angle. While the standard reference 
angle used in the EUMETSAT H SAF processing chain to retrieve surface 
soil moisture from ASCAT is 40◦ (Wagner et al., 2013), in this study we 
extrapolated the data to 20◦ in order to minimise the effects of seasonal 
vegetation development on σ0 (Wagner et al., 1999; Hahn et al., 2021). 
Azimuthal effects are corrected using the methods introduced by Bar
talis et al. (2006), which is important for reducing the noise of the 
extrapolated backscatter measurements particularly in sloping to steep 
terrain. 

We constructed σ0(20) time series for the years 2015 to 2017 by 
combining data from the two ASCAT instruments flown on board of 
METOP-A (2006–2021) and METOP-B (launch 2012). This is possible 
thanks to the excellent cross-calibration of the two sensors (Anderson 
et al., 2017). The data have a spatial resolution of 25 km and are 
sampled to a 12.5 km grid. In total, there are 9746 ASCAT land pixels in 
our study domain. Backscatter values affected by frost or the presence of 
snow were masked using ERA5-Land soil temperature (≤ 0◦C) and snow 
depth data (> 0 mm). The percentage of masked ASCAT measurements 
(in %) is shown in Fig. 4g. One can see that particularly over the high- 
altitude regions (Pyrenees, Spain’s high plateaus, and Morocco’s Atlas 
mountains) measurements are masked. The mean and standard devia
tion of the ASCAT backscatter measurements over all three years (after 
masking and normalisation to 20◦) are shown in Fig. 4 as well. Their 
spatial patterns reflect land cover and surface roughness properties, with 
Mean(σ0) being lowest over sand dunes and highest over bare rocks and 
urban areas. The standard deviation StDev(σ0) is highest over agricul
tural and grassland regions with high soil moisture variability, while it is 
low over dense vegetation and regions with low soil moisture variability. 

4. Methods 

We investigate our subsurface scattering theory as introduced in 
Section 2 by assessing under which environmental conditions the 
backscatter model with a subsurface scattering term is able to describe 
the relationship between ASCAT backscatter and ERA5-Land soil mois
ture better than the model without a subsurface scattering term. 
Furthermore, we examine whether the observed model behaviour may 
plausibly be explained by the presence of buried rocks, stones and 
pebbles within a sandy soil horizon or other subsurface scatterers such as 
e.g. described by Schaber et al. (1986). Throughout this text we use the 
least squares criterion to quantify the goodness of fit of the models to the 
observations. Let us denote our land surface backscatter model without 
the subsurface scattering terms with M 0, and the corresponding one with 
the subsurface scattering term with M 1: 

M 0 : σ0 = f0(θ) = cσ + α̂eβθ

M 1 : σ0 = f1(θ) = cσ + α̂eβθ + ψ̂ e− ξθ (8)  

where σ0 is the backscattering coefficient measured by ASCAT in m2m− 2 

and θ is the relative soil moisture content in % from ERA5-Land. In these 

two models we have replaced the vegetation term σveg
0 from Eq. (5) with 

a more generic constant backscatter term cσ to account for the fact that 
ASCAT, due to its coarse resolution, inevitably senses not just soils and 
vegetation but also many other land features that have an impact on the 
overall magnitude of the ASCAT signal. Notably, urban areas and 
exposed rocks enhance backscatter strongly, whilst inland water bodies 
decrease backscatter (Wagner et al., 1999). Recall from Section 2.2 that 
the terms α̂ and ψ̂ vary over the seasons reflecting vegetation develop
ment. Because time-dependency would complicate the tasks of model 
fitting and model selection quite significantly, we work with ASCAT 
backscatter measurements standardised to an incidence angle of 20◦. 
This minimises seasonal vegetation effects and allows us to treat α̂ and ψ̂ 
in a first approximation as constants. From now on, unless otherwise 
noted, we use the symbol σ0 to represent ASCAT backscatter measure
ments extrapolated to 20◦. 

To obtain collocated ASCAT and ERA5-Land data pairs we used the 
nearest neighbour method. In space, we selected for each ASCAT grid 
point the closest ERA5-Land point. Temporal matching was done by 
choosing from the hourly ERA5-Land soil moisture time series the 
simulation closest to the ASCAT overflight, which is around ~9:30 local 
time for the descending pass and ~21:30 for the ascending pass. 

4.1. Model fitting 

We fitted the two models M 0 and M 1 to three years (2015–2017) of 
collocated ASCAT σ0 (in m2m− 2) and ERA5-Land θ data pairs for each 
ASCAT land pixel. Before fitting the non-linear model terms, we deter
mined the constant cσ by calculating the mean σ0 value for ten soil 
moisture intervals and selecting the minimum from the resulting ten 
values. For a grid point without subsurface scattering, cσ will normally 
represent the mean σ0 value within the [0,0.1[soil moisture interval, 
while for a point with subsurface scattering it is supposed to represent a 
mean σ0 value near the turning point θturn of the U-shaped curve. To 
illustrate this, Fig. 5 shows a scatter plot of σ0 vs. θ for a region around 
the city of Ciudad Real in Central Spain. Over this region the Mean(σ0) 

Fig. 5. Scatter plot of ASCAT backscatter measurements at 20◦ versus relative 
soil moisture data from ERA5-Land over a region in central Spain (pixel centre: 
39.059◦N, 4.044◦W). The red dashed lines show the mean σ0 values for each of 
the ten intervals and the two solid lines the fitted models M 0 (green line) and 
M 1 (orange). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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values initially decreases with increasing soil moisture, with the mini
mum being reached in the [0.2,0.3[ soil moisture interval. Thereafter, 
Mean(σ0) increases. Thus, cσ is set equal to the Mean(σ0) value from the 
[0.2,0.3[ interval. Note that cσ estimated in this way is a surrogate 
parameter reflecting land cover patterns, whereas high values indicate 
urban areas, open rock and dense vegetation, low to medium values 
grassland and agricultural areas, and very low values sandy deserts. 

After fixing a value for cσ, only two respectively four free parameters 
are left in models M 0 and M 1. The non-linear model fits are computed 
using the Python/scipy-implementation of the trust region reflective 
(TRF) algorithm (Branch et al., 1999), with start values estimated from 
the distribution of the observed backscatter values. Furthermore, we 
restrained the range of model parameters to physically meaningful 
ranges, most importantly the condition that α̂ must be >0, and β, ψ̂ , and 
ξ must be ≥0. The two model fits for our ASCAT pixel in Central Spain 
are also shown in Fig. 5. It can be seen that over this area only model M 1 
is able to reproduce the U-shaped relationship between σ0 and θ, while 
model M 0 increases monotonically. Compared to the Mean(σ0) values 
for the ten wetness intervals (red dotted lines in Fig. 5), the fitted 
instance of the M 1 exhibits a quicker decrease at low soil moisture 
values, causing the turning point θturn of M 1 (blue point) to be situated in 
the [0.1,0.2[ interval instead of the [0.2,0.3[ interval. 

4.2. Model selection 

Model selection refers to the task of choosing from several possible 
candidate model classes M 0, M 1, …, M p the one which explains best the 
observations O (Hastie et al., 2009), and combines classification, i.e., 
the selection of the correct model (class) M j, with parameter estimation 
for the model instances: for each model class M j, a model instance f̂ j is 
fitted to the observations – the training set O =

(
σ0

i , θi
)
,1 ≤ i ≤ N – 

resulting in a training error expressed in terms of the mean squared error 
(MSE): 

MSEj =
1
N

∑N

i=1

(
σ0

i − f̂ j(θi)
)2
. (9) 

However, one cannot simply choose the model M c with the smallest 
training error c = arg  min MSEj. This is because the results may differ 
by less than what is a physically meaningful threshold considering the 
uncertainty of the data, in which case the simpler model is to be chosen 
over the more complex model. Moreover, complex models will typically 
lead to a smaller MSE on the training set given their higher flexibility 
compared to more parsimonious models. Nonetheless, beyond a given 
complexity, they will incur an increase in the MSE for non-training data, 
a phenomenon known as overfitting. 

There are two principal avenues to model selection. The first, k-fold 
cross validation, is very general and can be used for any kind of model, 
but requires repeated estimation of the model parameters. The second 
are approaches that inflate the training error based on the effective 
degrees of freedom of the model, but these are limited (at least, in 
theory) to the class of linear models. We shall consider each one in turn. 

4.2.1. k-fold cross validation 
The k-fold cross validation (CV) method is based on the concept of 

empirical cross validation, i.e., the use of a separate validation data set 
(apart from the training set) to determine how compatible a particular 
model class M j (more precisely, a fitted instance of this class) is with the 
observations. It is implemented by subdividing the training set in k 
equally large parts (the folds) of size Ns = N/k, and using each of these 
folds as validation set for a model instance trained on the remaining k −
1 folds: thus, for each model class M j, k model instances ̂f ji,1 ≤ i ≤ k are 
trained on a reduced training set, with the removed part of the training 
set with indices i1, …, iNs used for validation, giving 

CVji =
1
Ns

∑Ns

l=1

(
σ0

il − f̂ ji
(
θil

) )2
. (10) 

The goodness of model M j is obtained as average of the k validation 
errors, CVj =

∑
i=1
k CVji/k. The simplest strategy is to choose the model 

class c with the smallest average validation error c = arg  min CVj, 
although more refined approaches are possible. Here, we adopt the one 
standard error rule (Hastie et al. (2009), p. 216), which states that the 
simplest model M j with CVj within one standard error ε of CVc should be 
chosen; this means specifically that the complex model accounting for 
subsurface effects will only be chosen if it decreases the CV by more than 
ϵ. 

4.2.2. Methods based on the modification of the training error 
These approaches work by inflating the training error of a fitted 

model instance by adding a term reflecting the complexity of the model 
class (e.g., two vs. one exponential basis functions); the complexity is 
quantified by the number of effective parameters d, which, in our case, is 
identical with the number of model parameters. The goal here is not to 
infer an estimate of the true test error, but to compute a quantity that 
reflects the relative performance of the different models on new data. 

The Akaike Information Criterion (AIC) is probably the best known 
representative of this group 

AICj = MSEj + 2
d
N

ŝ2 (11)  

where d is the number of parameters, N is the number of training points, 
and ŝ2 an estimate of the noise variance (which can, for example, be 
derived from the RMSE of a complex, i.e. low bias, model fit). More 
complex models (with more parameters) are more heavily penalised. 

In our experiments, we do not use the AIC but the Bayesian Infor
mation Criterion (BIC) because of its tendency to select simpler models: 

BICj =
N
ŝ2

(

MSEj + logN
d
N

ŝ2
.

)

(12) 

It can be seen that it is basically proportional to the AIC, with the 
factor 2 replaced by logN. The motivation and derivation of the BIC, 
however, is rooted in Bayesian Statistics and quite different from the 
AIC; all the more remarkable that they are so similar. For a full deri
vation and more detailed discussion, the reader is referred to Hastie 
et al. (2009). 

5. Results 

In this section we present the results of fitting the two backscatter 
models without (M 0) and with (M 1) subsurface scattering term to the 
ASCAT backscatter and ERA5-Land soil moisture data, and selecting the 
best fitting model using both the CV and BIC methods. 

5.1. Model fitting 

As described in Section 4.1, the first step of the fitting procedure was 
to estimate the scattering constant cσ by finding the minimum Mean(σ0) 
value from ten soil moisture intervals. The resulting cσ map (not shown) 
mirrors the spatial patterns of the Mean(σ0) map displayed in Fig. 4k, but 
at reduced backscatter levels. The cσ values range from minimum values 
around 0.04 m2m− 2 (− 14 dB) over sand desert areas in Algeria to 
maximum values of around 0.3 m2m− 2 (− 5.2 dB) over the Atlas 
mountains in Morocco. 

The results of the non-linear model fitting process are summarised by 
Fig. 6 for both M 0 and M 1. The figure shows all non-linear model pa
rameters along with the RMSE values and the derived parameters, 
namely the signal ranges S top and S sub, and the soil moisture value at 
the turning point θturn. One can observe that in the more humid parts of 
the study domain, all parameters related to the surface scattering 
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Fig. 6. Results of fitting the models without (M 0) and with (M 1) a subsurface scattering term to ASCAT backscatter and ERA5-Land soil moisture data. The top row 
shows from left to right the model parameters α̂ and β, the signal ranges S top, and the RMSE of M 0. The second row shows the corresponding maps for M 1. The last 
row shows the subsurface scattering parameters ψ̂ , ξ, S sub, and θturn. 
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contribution, i.e. α̂, β, and S top, are in general quite similar for both 
models. This speaks for the robustness of our fitting procedure and im
plies that subsurface scattering is either weak or non-existent in these 
regions. Differences between the surface terms of M 0 and M 1 are most 
pronounced in the arid parts of the study area, and best visible when 
comparing the two β maps: While β of M 1 has values equal to zero only in 
the Sahara, β of M 0 also vanishes in some regions in Spain (white areas in 
Fig. 6b). This means that without allowing for an initial decrease of 
backscatter, it would appear that backscatter exhibits no sensitivity to 
soil moisture in these regions. Given that this behaviour cannot be 
explained by dense vegetation cover that fully blocks the microwave 
signals from the ground, this is a first indication that M 1 is able to 
describe the physical reality better than M 0. Overall, it appears that β 
and S top of M 1 reflect vegetation patterns quite well. When looking at 
S top, it is highest over grassland and agricultural regions with values in 
the range from 0.15 to 0.3 m2m− 2. Over forests and shrubland S top is 
typically below 0.1 m2m− 2. 

The subsurface scattering parameters ψ̂ , ξ, and S sub become 
important mostly over some of the arid regions of our study domain. The 
values of S sub are highest in the Sahara, with values of up to 0.08 
m2m− 2. But also over the European parts of the study domain S sub can 
be significant with values exceeding 0.02 m2m− 2 in some areas in Spain. 
In those areas where S sub > 0, one also finds valid solutions for the 
turning point (θturn ∈ [0,100] ), with values of θturn varying mostly in the 
range from 10 to 30% (cf. Fig. 6k and l). Nonetheless, in some parts of 
the Sahara our data only depict decreasing backscatter values with 
increasing soil moisture, implying that in these areas subsurface scat
tering dominates under all conditions and there is no physically valid 
solution for θturn. 

The RMSE maps of M 0 and M 1 look at first sight very similar to each 
other, with most values being small in the range from 0.005 to 0.015 
m2m− 2. Substantially higher RMSE values in the range from 0.02 to 0.05 
m2m− 2 can be found in some of the agricultural and grassland regions. 
However, this does not mean that the fit was less successful, but merely 
reflects the fact that the natural variability of the ASCAT backscatter 
measurements is highest in these regions. Indeed, when comparing the 
RMSE maps with the StDev(σ0) map shown in Fig. 4l one finds very 

similar spatial patterns, only the magnitude is different with RMSE 
values being ∼ 2

3StDev(σ0). Subtle differences between the two RMSE 
maps are mostly apparent in the arid regions. These differences are the 
basis for the model selection as discussed in the next section. 

5.2. Model selection 

The results of model selection using the k-fold cross validation (CV) 
and Bayesian Information Criterion (BIC) methods are shown in Fig. 7. 
For the CV method we used a constant ε value equal to 10− 3 m2m− 2 

(− 30 dB), which is at least a factor of 10 smaller than any signal vari
ation we can reasonably hope to capture given the uncertainty of our 
observations O =

(
σ0

i , θi
)
. The areas shown in orange colour are those 

areas where M 1 yields a better fit to the observations than M 0 does. One 
can see that the CV method favours M 1 over M 0 over more and larger 
regions than the BIC method. Nonetheless, both methods yield consis
tent results, selecting M 1 over M 0 in those regions where S sub and θturn 
take on non-zero values. The majority of these subsurface scattering 
areas are situated in arid climates. Nonetheless, some of them can even 
be found in more humid climatic zones, e.g. in the north of Portugal and 
Spain and even some areas in France. 

To obtain a more quantitative understanding of where subsurface 
scattering occurs, we determined for each class C of the climate, soil, 
and land cover maps shown in Fig. 4 the number of ASCAT pixels 
affected (n1) and unaffected (n0) by subsurface scattering. From this we 
calculated the likelihood P (M 1|C ) = n1/(n0 + n1) for each class per 
map and for both the CV and BIC methods. The resulting probabilities 
(in %) are shown in Table 1. The results confirm our hypothesis that the 
aridity of the environment in combination with Leptosols (very shallow 
soils over hard rock or highly calcareous material, but also deeper soils 
that are extremely gravelly and/or stony) or Arenosols (unconsolidated 
sand deposits) represent ideal environmental conditions for the occur
rence of subsurface scattering. Bare soils, sparse vegetation cover, and 
shrubland are also indicative, but this does not mean that there are no 
subsurface scatteres in more densely vegetated areas. For example, in 
some forest-dominated areas inland of the Spanish Mediterranean 
coastline, subsurface scattering is detected in spite of a rather small 

Fig. 7. Models selected according to the (a) k-fold cross validation (CV) method and (b) Bayesian Information Criterion (BIC) method. Green shows where M 0 (no 
subsurface scattering) was selected, orange M 1 (with subsurface scattering). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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backscatter variability that indicates a dense vegetation canopy with few 
gaps through which subsurface scattering effects can be sensed. The 
karst map shown in Fig. 4f helps little in understanding subsurface 
scattering in the African part of our study area, but nonetheless gives 
some clues to where subsurface scattering may become detectable in the 
European part. This is because karstified carbonate rocks and evaporites 
are extremely rough targets for a radar, potentially yielding very strong 
subsurface scattering signals. 

6. Discussion 

Our method for detecting subsurface scattering in ASCAT backscatter 
measurements rests on several simplifying assumptions. Firstly, the 
models M 0 and M 1 only account for zeroth-order radiative effects in the 
vegetation layer, neglecting high-order soil-vegetation interactions that 
are typically weak but may nonetheless be important for modelling 
ASCAT backscatter measurements over low to medium vegetation cover 
(Crow et al., 2010; Quast et al., 2019). However, these interactions are 
not expected to impact the analysis of backscatter anomalies as they 
always enhance total backscatter with increasing ground scattering, i.e. 
they do not alter the general direction of signals from the ground sur
face. Another simplification is that by fitting the models M 0 and M 1 to 
the complete three-years long σ0(20) time series, seasonal vegetation 
effects are neglected. While it is clear that backscatter shows the highest 
sensitivity to the ground at steep incidence angles (Magagi and Kerr, 

1997; Hahn et al., 2021), this assumption introduces some noise in the 
σ0 − θ scatterplots as shown in Fig. 5. This noise comes on top of the 
measurement noise, uncertainties related to the extrapolation of the 
backscatter measurements to 20∘, and uncertainties in the modelled soil 
moisture data. Nonetheless, the functional relationship between σ0 and θ 
could be clearly discerned over all pixels of our study domain, resulting 
in satisfactory model fits and model selections. 

Our results demonstrate that subsurface scattering occurs mostly in 
arid environments, but is not necessarily confined to them. Apparently, 
when there are strong subsurface scatterers (e.g. karstic rock), especially 
when they are near the soil surface, they may also become detectable in 
more temperate climatic regions during dry spells. To illustrate the 
resulting scattering behaviour in different parts of the study area, Fig. 8 
shows selected σ0 − θ scatterplots along with the fitted instances of M 1. 
Over the three barren landscape sites in the Sahara (DZ-1 and -2, MA-2), 
the subsurface scattering term ψ̂e− ξθ clearly dominates over the surface 
term α̂eβθ, resulting in an initially fast decrease of σ0 with θ, and more or 
less constant backscatter for wetter conditions. Interestingly, such a 
behaviour may emerge for very different backscatter backgrounds, with 
cσ being as small as 0.055 m2m− 2 over the sand desert at point DZ-1, and 
as high as 0.27 m2m− 2 over the Atlas mountain range (MA-2). Over all 
other sites σ0 either decreases slightly or is more or less constant for dry 
to medium wet soil conditions. Thereafter, it increases at a rate that 
depends mostly on vegetation density, from very low values over 
densely vegetated areas (e.g. ES-3 and FR-2) to high values over agri
cultural and sparsely vegetated regions (e.g. MA-1, and ES-1 and -2). 
This behaviour has two important consequences: Firstly, dependent on 
the subsurface scattering strength, one should observe intermittent 
backscatter anomalies during dry conditions. Secondly, subsurface 
scattering may substantially reduce the sensitivity of σ0 to θ under dry 
conditions, even in situations when the subsurface scatterers are not 
strong enough to enforce an initial decline at the dry edge (cf. Fig. 3). 
The implications of these points are discussed below. 

6.1. Occurrence of intermittent backscatter anomalies 

From the functional relationship between σ0 and θ over mixed 
surface-subsurface scattering areas, we expect to observe negative cor
relations between these two variables under dry conditions and positive 
correlations during wet conditions. Moreover, we expect that the 
sensitivity S top to subsurface scatterers is an important control as to 
how often intermittent backscatter anomalies occur. To verify these 
expectations, we calculated the Spearman rank correlation ρ between 
ASCAT backscatter and ERA5-Land soil moisture for each day using a 
sliding window of one month (31 days) and determined the number of 
days for which ρ < − 0.4, adopting the methods first tested by Frie
ßenbichler (2020) over South Africa. Dividing this number by the total 
number of days yields an estimate of the probability of occurrence of 
backscatter anomalies, P ano, shown in Fig. 9a. A comparison to Fig. 4 
shows that the P ano maps nicely reflect mean annual rainfall and soil 
moisture patterns, with P ano < 10% over regions with mean annual 
rainfall >800 mm and reaching values of up to 80% over the desert 
regions. As expected, it is even more closely related to S sub, as the 
scatterplot between these two variables in Fig. 9b demonstrates: at first 
there is a rapid increase of P ano with increasing S sub values, and then a 
flattening out of the curve as P ano saturates. The rank correlation be
tween these two variables is 0.71. This confirms that the anomalous 
ASCAT backscatter behaviour in dry regions, as observed in many soil 
moisture validation studies (Fascetti et al., 2016; Mousa and Shu, 2020; 
Zhang et al., 2021), is caused by subsurface scattering. It may also 
explain why rainfall variability better explains temporal variability of 
soil moisture retrieval errors than leaf area index (LAI), as recently 
found by Wu et al. (2021). 

Table 1 
Likelihood (%) of subsurface scattering occurring for different classification 
schemes and classes. The second column shows the number of ASCAT pixels 
covered by the respective class. The third and forth columns show the likelihood 
calculated based on the cross validation (CV) and Bayesian Information Crite
rion (BIC) criteria respectively. Classes with NASCAT < 100 pixels are not shown.  

Class NASCAT CV 
(%) 

BIC 
(%) 

Köppen-Geiger Climate Classification 
BWh - Arid desert hot 2203 92.6 91.7 
BWk - Arid desert cold 995 47.9 45.4 
BSh - Arid steppe hot 264 9.8 9.1 
BSk - Arid steppe cold 2137 33.5 31.3 
Csa - Temperate dry hot summer 2138 6.6 6.0 
Csb - Temperate dry warm summer 685 11.2 9.3 
Cfa - Temperate no dry season hot summer 106 5.7 2.8 
Cfb - Temperate no dry season warm summer 1073 9.6 7.0  

ISRIC Soil Groups 
15–20 - Arenosols 639 86.9 84.8 
21–24 - Calcisols 1369 27.0 25.3 
25–35 - Cambisols 2242 7.1 4.8 
68–72 - Leptosols 2762 80.0 78.9 
76–84 - Luvisols 2225 12.9 11.7 
115–118 - Vertisols 267 0.0 0.0  

ESA CCI Land Cover Classification 
10 - Cropland rainfed 600 7.2 6.0 
11 - Cropland rainfed, herbaceous cover 1612 8.9 7.9 
12 - Cropland rainfed, tree or shrub cover 417 12.9 10.3 
20 - Cropland irrigated or post-flooding 166 2.4 1.8 
40 - Mosaic natural vegetation (>50%)/cropland 

(<50%) 
234 7.7 7.7 

60 - Tree cover broadleaved deciduous, closed to 
open (>15%) 

648 3.5 1.5 

70 - Tree cover needleleaved evergreen, closed to 
open (>15%) 

416 13.7 9.9 

100 - Mosaic tree and shrub (>50%)/herbaceous 
cover (<50%) 

901 30.3 28.6 

120 - Shrubland 326 37.7 33.1 
130 - Grassland 304 6.9 5.9 
150 - Sparse vegetation (<15%) 210 38.6 36.2 
153 - Sparse herbaceous cover (<15%) 813 39.1 38.5 
200 - Bare areas 2913 84.2 82.9  

W. Wagner et al.                                                                                                                                                                                                                                



Remote Sensing of Environment 276 (2022) 113025

11

6.2. Reduced sensitivity of backscatter to soil moisture 

On top of causing intermittent backscatter anomalies, subsurface 
scattering reduces the sensitivity of backscatter to soil moisture under 
dry soil conditions. From a modelling point of view this is not such a big 
problem given that also a model M 0 without the subsurface scattering 
terms is normally able to describe the functional relationship between 
σ0 and θ in weak subsurface scattering areas (e.g. PT-1 und − 2, DZ-3). 

Nonetheless, it is of course problematic from a soil moisture retrieval 
point of view, as noise in the backscatter data translates into higher soil 
moisture retrieval errors. Even in regions with a dominant surface signal 
this may have implications given that subsurface scattering reduces the 
signal range of backscatter to soil moisture, such that S top of a model 
instance of M 0 is in reality S top − S sub of an unobservable model with 
subsurface scattering M 1 (cf. Fig. 3a). 

It also has implications as regards to the choice of backscatter models 

Fig. 8. Relationship between ASCAT backscatter σ0 and ERA5-Land soil moisture θ over a number of locations in Algeria (DZ), France (FR), Morocco (MA), Spain 
(ES) and Portugal (PT), where the CV method selected the model M 1 with the subsurface scattering term (the map in the middle is identical to the one shown in 
Fig. 7). The X-symbol indicates the location of the data from Fig. 5. 
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to be used for soil moisture retrievals from ASCAT and other C-band 
radars. In the TU Wien change detection algorithms for ASCAT (Bartalis 
et al., 2007) and Sentinel-1 (Bauer-Marschallinger et al., 2019), which 
are used in the EUMETSAT H SAF and Copernicus Land Monitoring 
Services (CLMS), we assume that backscatter expressed in decibels is 
linearly related to soil moisture. Unfortunately, even when converting 
the σ0 data as shown in Fig. 8 to decibels, the curves retain a slightly 
convex shape. Therefore, the H SAF ASCAT and CLMS Sentinel-1 soil 
moisture retrievals tend to overestimate soil moisture in case of sub
surface scattering. This problem would be even more pronounced when 
using bare soil backscatter models based on the Fresnel equations, such 
as Fung’s integrated equation model (IEM) or the new reflectivity index 
recently published by Zribi et al., 2021, given that these have a concave 
shape due to the saturation of the Fresnel reflectivity for higher soil 
moisture values. Interestingly, when Zribi et al. (2014) considered a 
heterogeneous soil moisture profile in their IEM simulations, they could 
establish a linear relationship between their multilayer backscatter 
model and soil moisture. Therefore, it seems overall quite important to 
account for subsurface effects in bare soil backscatter models. 

7. Conclusion 

In this study we showed that a subsurface scattering term of the form 
ψe− ξθ is key for explaining the behaviour of ASCAT backscatter mea
surements in arid environments. Moreover, weak subsurface scattering 
signals may also occur in more temperate climates during dry spells. 
Therefore, it appears that subsurface scattering is a widespread phe
nomenon that has so far not received enough attention by the micro
wave remote sensing community. Much more work will be needed to 

understand the adverse impacts of subsurface scattering on soil moisture 
and vegetation retrievals, and to come up with improved backscatter 
models and retrieval approaches. This entails the need to improve our 
understanding of how subsurface scattering changes with incidence 
angle, polarisation, and frequency. Thankfully, the increasing avail
ability of radar observations at multiple polarisations, incidence angles, 
or even frequencies will help to study these dependencies and come up 
with means to differentiate the different scattering mechanisms acting at 
the soil surface and within (Morrison and Wagner, 2020). For ASCAT, 
the possibility to use the so-called slope and curvature along with 
backscatter to characterise the land surface (Steele-Dunne et al., 2019) 
may be an opportunity to discern subsurface scattering effects. For the 
successor instrument of ASCAT, the SCA instrument to be flown on the 
second generation METOP-SG B satellites, the two additional polar
isations acquired by the mid-beam antennas (VH and HH) represent 
another big opportunity to improve scatterometer soil moisture re
trievals (Stoffelen et al., 2017). Much will also be learned from the 
analysis of Synthetic Aperture Radar (SAR) backscatter time series given 
that the much higher spatial resolution of the data will allow to directly 
relate the radar signals to field observations and small-scale geomor
phological patterns (Ullmann et al., 2019). Furthermore, the phase as 
measured by SAR sensors is sensitive to the scattering mechanisms 
within the soil profile in low moisture regimes (Zwieback et al., 2015), 
which will not only help to investigate soil moisture processes in arid 
environments but also to estimate the depth of subsurface scatterers 
(Morrison and Wagner, 2022). Therefore we see a large potential of 
scatterometer and SAR techniques for characterising soil properties, 
particularly in arid and semi-arid environments. 

Fig. 9. Probability of the occurrence of ASCAT backscatter anomalies (a), and its relationship to the effective signal range S sub of the subsurface scattering term (b).  
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Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., 
Rozum, I., Vamborg, F., Villaume, S., Thépaut, J., 2020. The ERA5 global reanalysis. 
Q. J. R. Meteorol. Soc. 146, 1999–2049. https://doi.org/10.1002/qj.3803. 

Jaruwatanadilok, S., Stiles, B.W., 2014. Trends and variation in Ku-band backscatter of 
natural targets on land observed in QuikSCAT data. IEEE Trans. Geosci. Remote 
Sens. 52, 4383–4390. URL.  

Kerr, Y.H., Waldteufel, P., Richaume, P., Wigneron, J.P., Ferrazzoli, P., Mahmoodi, A., Al 
Bitar, A., Cabot, F., Gruhier, C., Juglea, S.E., Leroux, D., Mialon, A., Delwart, S., 
2012. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 
50, 1384–1403. URL.  

Kim, Y., van Zyl, J., 2009. A time-series approach to estimate soil moisture using 
polarimetric radar data. IEEE Trans. Geosci. Remote Sens. 47, 2519–2527. URL.  

Liu, P.W., Judge, J., DeRoo, R.D., England, A.W., Bongiovanni, T., Luke, A., 2016. 
Dominant backscattering mechanisms at L-band during dynamic soil moisture 
conditions for sandy soils. Remote Sens. Environ. 178, 104–112. URL. https://linki 
nghub.elsevier.com/retrieve/pii/S0034425716300918. https://doi.org/10.1016/j. 
rse.2016.02.062. 

Magagi, R.D., Kerr, Y.H., 1997. Retrieval of soil moisture and vegetation characteristics 
by use of ERS-1 wind scatterometer over arid and semi-arid areas. J. Hydrol. 188- 
189, 361–384. URL. https://www.sciencedirect.com/science/article/pii/S0022169 
496031666. https://doi.org/10.1016/S0022-1694(96)03166-6. 

McCauley, J.F., Schaber, G.G., Breed, C.S., Grolier, M.J., Haynes, C.V., Issawi, B., 
Elachi, C., Blom, R., 1982. Subsurface valleys and geoarcheology of the eastern 
Sahara revealed by shuttle radar. Science 218, 1004–1020. https://doi.org/ 
10.1126/science.218.4576.1004. 

McColl, K.A., Entekhabi, D., Piles, M., 2014. Uncertainty analysis of soil moisture and 
vegetation indices using aquarius scatterometer observations. IEEE Trans. Geosci. 
Remote Sens. 52, 4259–4272. URL.  

Miyaoka, K., Gruber, A., Ticconi, F., Hahn, S., Wagner, W., Figa-Saldana, J., 
Anderson, C., 2017. Triple collocation analysis of soil moisture from Metop-a ASCAT 
and SMOS against JRA-55 and ERA-interim. IEEE J. Sel. Top. Appl. Earth Obs. 
Remote Sens. 10, 2274–2284. URL.  

Morrison, K., Wagner, W., 2020. Explaining anomalies in SAR and scatterometer soil 
moisture retrievals from dry soils with subsurface scattering. IEEE Trans. Geosci. 
Remote Sens. 58, 2190–2197. URL.  

Morrison, K., Wagner, W., 2022. A novel DInSAR algorithm for the retrieval of soil 
moisture and soil depth over arid regions of the world. Can. J. Remote. Sens. 
submitted.  

Mousa, B.G., Shu, H., 2020. Spatial evaluation and assimilation of SMAP, SMOS, and 
ASCAT satellite soil moisture products over Africa using statistical techniques. Earth 
Space Sci. 7 https://doi.org/10.1029/2019EA000841. 
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