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ABSTRACT

Statistical methods are usually used to provide estimations of the wet tropospheric correction (WTC),

necessary to correct altimetry measurements for atmospheric path delays, using brightness temperatures

measured at two or three low frequencies from a passive microwave radiometer on board the altimeter

mission. Despite their overall accuracy over oceanic surfaces, uncertainties still remain in specific regions of

complex atmospheric stratification. Thus, there is still a need to improve themethods currently used by taking

into account the frequency-dependent information content of the observations and the atmospheric and

surface variations in the surroundings of the observations. In this article we focus on the assimilation of

relevant passive microwave observations to retrieve the WTC over ocean using different altimeter mission

contexts (current and future, providing brightness temperature measurements at higher frequencies in ad-

dition to classical low frequencies). Data assimilation is performed using a one-dimensional variational data

assimilation (1D-Var) method. The behavior of the 1D-Var is evaluated by verifying its physical consistency

when using pseudo- and real observations. Several observing-system simulation experiments are run and their

results are analyzed to evaluate global and regional WTC retrievals. Comparisons of 1D-Var-based TWC

retrieval and reference products from classical WTC retrieval algorithms or radio-occultation data are also

performed to assess the 1D-Var performances.

1. Introduction

Altimeter satellite mission data are widely used to

monitor sea level and are necessary for understanding the

impact of climate change on mean sea level. Since altim-

eters measure the altitude of the satellite above Earth’s

surface, retrieving sea level from these measurements

requires data processing including instrument/platform

corrections, accurate orbit determination, as well as ac-

counting for atmospheric delay and surface effects. With

such considerations, global and regional mean sea level

(MSL) error budget from 1993 to 2012 range under 0.5

and 3mmyr21, respectively Ablain et al. (2012).

The atmospheric propagation delay is mainly caused

by water vapor in the lower-tropospheric layers and dry

gases in the atmosphere. The propagation delays are

named the wet tropospheric correction (WTC) and dry

tropospheric correction (DTC).WhileWTC contributes

to only 10% to the total atmospheric propagation delay,

it contributes to 50% of the global mean sea level error

budget (Ablain et al. 2009; Obligis et al. 2010). It is thus

one of the main corrections of the altimetric signal.

WTC is proportional to the total column water vapor; it

ranges between 0 and 50 cm and is highly variable in

time and space. Areas of strong evaporation are asso-

ciated with rather large and variableWTC (Brown 2010;

Ablain et al. 2012) and its uncertainty reaches 0.74 6
0.15 cm (Brown et al. 2004).

WTC is generally derived from brightness temperature

(TB) measurements from a nadir-viewing radiometer on

board an altimeter mission at two or three dedicated fre-

quencies, oneof thembeing located around the 22.235GHz

water vapor absorption line. WTC retrieval algorithms

aremostly based on a regression approachmaking use of

a database built with atmosphere state analysis from

numerical weather prediction (NWP) model, or with

radiosondes and other ground measurements. In these

a Current affiliation: Laboratoire d’Océanographie et du Climat,

OSU ECCE-TERRA, Paris, France.
b Current affiliation: Centre d’Etudes de la Neige, CNRM-

GAME, Saint-Martin d’Hères, France.

Corresponding author: Laura Hermozo, lhermozo@cls.fr

MARCH 2019 HERMOZO ET AL . 473

DOI: 10.1175/JTECH-D-17-0133.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 05/03/22 01:46 PM UTC

mailto:lhermozo@cls.fr
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


approaches, radiative transfer model simulations provide

TB estimates, to be related with the integrated WTC.

Following this approach, a multilinear regression algo-

rithm was used by Keihm et al. (1995) to retrieve WTC,

with 1.2-cm overall accuracy, using TOPEX/Poseidon

Microwave Radiometer (TMR) measurements for sev-

eral wind speed and cloud liquid conditions. A similar

algorithm was applied by Eymard et al. (1996) to use

the European Space Agency (ESA) European Remote-

Sensing Satellite-1 and -2 (ERS-1 and ERS-2, respec-

tively) missions, radiometer measurements for WTC

estimates. Brown et al. (2004) also used a statistical ap-

proach to retrieve WTC from the Jason Microwave

Radiometer (JMR). Obligis et al. (2006) used a neural

network algorithm for the inversion of the Envisat mi-

crowave radiometer measurements to estimate WTC.

Picard et al. (2015) used the same approach in the context

of the Satellite with Argos and Altika (SARAL) mission.

These algorithms provide WTC estimates with good

accuracy over open seas. However, systematic errors

may occur at regional scales, where atmospheric char-

acteristics are not well represented in the learning da-

tabase. These errors are propagated into the final sea

level maps derived from altimeter data, leading to local

biases. To address this issue, Obligis et al. (2009) used

additional geophysical variables as inputs to the neural

network algorithm (sea surface temperature and tem-

perature lapse rate between surface and 800 hPa),

leading to better regional performances of the retrieved

WTC. As for coastal measurements, both the ocean and

land surfaces contribute to the signal due to the broad

measurement footprint. Such land contamination in

measurements is also a source of degradation of WTC

retrievals, and is caused by the large difference between

land and sea TB measurements (land surface emissivity

is almost 2–3 times greater than sea surface emissivity).

Several methods were tested to address this specific issue.

Most of them are based upon the use of TB corrections

to account for the land signal within the measurement

footprint (Ruf and Giampaolo 1998; Bennartz 1999;

Desportes et al. 2007; Brown 2010). Other methods to

update and improve the WTC in the coastal areas were

also developed combining TB measurements, atmo-

spheric model variables, and WTC derived from Global

Navigation Satellite System (GNSS) data (Obligis et al.

2011). Although these methods show promising results

and have a high potential to reduce estimatedWTCerrors

over coastal areas or under various atmospheric condi-

tions, they remain region/instrument dependent because

they are dedicated to measurements from a given radi-

ometer or because they are valid over specific regions. As

an alternative, physically based methods could provide a

global WTC retrieval method valid over various surfaces

including oceanic and coastal areas, using observations

from different sensors.

Previous studies have already shown the potential of

variational methods such as one-dimensional variational

data assimilation (1D-Var) approaches to retrieve tem-

perature, humidity, and cloud vertical profiles. Over

ocean, SSMISmeasurements were assimilated under clear

and cloudy nonprecipitating conditions by Deblonde and

English (2003) to retrieve temperature and humidity

profiles as well as liquid water content. Liu and Weng

(2005) have shown the potential of assimilating different

sets of observations from AMSU-A and AMSU-B in-

struments to retrieve and better constrain temperature,

humidity, cloud, rain, and ice water profiles. Hewison

(2007) assimilated ground-based microwave observations

as well as other IR and surface sensor measurements in a

1D-Var scheme to retrieve temperature, humidity, and

cloud profiles using a specific cloud classification scheme.

The 1D-Var approach was also found beneficial to

estimate integrated and surface parameters, derived

from retrieved atmospheric profiles and surface pa-

rameters. To address the issue of uncertainties in the

estimated WTC over coastal areas, Desportes et al.

(2010) showed the feasibility of using a 1D-Var ap-

proach to retrieve WTC over coastal areas by assimi-

lating pseudomeasurements, simulated from a radiative

transfer model to fit Envisat radiometer characteristics.

Boukabara et al. (2011) has also developed a ‘‘multi-

surface’’ 1D-Var-based retrieval method. In the latter

study, the authors perform the inversion of passive mi-

crowave observations from various instruments over

ocean, land, and sea ice surfaces and for all-sky condi-

tions to estimate derived surface or integrated products

from retrievals such as sea ice concentration, rainfall

rate, and cloud liquid water content among others. Note

also the study conducted by Bennartz et al. (2017) to

retrieve total column water vapor and WTC over ocean

using measurements from the Microwave Radiometers

(MWRs) onboard theERS-1 andERS-2 and theEnvisat

missions.

The latter studies demonstrate the potential of the

1D-Var approach as a relevant global method to retrieve

WTC over several surfaces. Nevertheless, improve-

ments are still required to fully exploit the benefits of the

1D-Var capabilities. For instance, the antenna pattern of

each observation is not taken into account in the back-

ground information, while it provides information on the

atmospheric variability around each measurement. Even

though the impact is relatively low on retrieved WTC

over ocean, it can be significant over coastal areas, where

atmospheric and surface variabilities are rather large.

High-frequencymeasurements (greater than 89GHz) are

associated with a relatively high horizontal resolution and
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with a sensitivity to atmospheric conditions and could be

very useful to constrain WTC if assimilated in a 1D-Var

approach. These issues should be addressed in the context

of future altimeter missions, aiming to deliver a map of

the topography at a higher temporal rate and smaller

spatial scales, with reduced errors over various oceanic

and heterogeneous surfaces.

In this study, the 1D-Var approach is used to retrieve

WTC over global ocean, with a view to extend its use over

coastal areas in the near future. Different experiments are

performed over ocean to validate the 1D-Varmethod and

to assess its performance in terms of retrieved humidity

and estimatedWTC.Amain improvement of this study as

compared to the previous ones is that the frequency-

dependent measurement resolution is taken into account

while being assimilated in the 1D-Var scheme. Thus, the

contribution of each collocated model grid cell within the

measurement footprint is accounted for in the atmo-

spheric and surface background information.

This paper is organized as follows.Data andmodels are

described in section 2. A first evaluation of the 1D-Var

using simulated observations is presented in section 3. In

section 4 we evaluate the performances of the 1D-Var

using real data. Comparisons between retrieved and ref-

erenceWTC estimations are performed. Conclusions are

given in section 5.

Note that a preliminary version of this article was

copied in the Ph.D. manuscript describing the use of a

1D-Var approach for wet tropospheric correction esti-

mation in the frame of altimetry missions, written by the

same author.

2. Data and methods

a. Microwave radiometer datasets

In this study, we use measurements from the Ad-

vanced Microwave Radiometer (AMR) onboard the

NASA/CNES Jason-2 Ocean Surface Topography

Mission (OSTM). Dedicated to WTC estimations over

ocean, the AMR provides measurements at three frequen-

cies: 18.7, 23.8, and 34GHz.Measurements at the 18.7-GHz

channel aremainly sensitive to ocean surface variations due

to wind. Located near the 22.235-GHz water vapor ab-

sorption band, the 23.8-GHz channel is sensitive to water

vapor in the lower part of the atmosphere whereas the

34-GHz channel is the most sensitive to clouds. AMR

measurements are performed with a horizontal resolution

ranging from 40- to 20-kmmain beam 3-dBwidth, from the

lowest to the highest frequency, respectively.

Frequencies and horizontal resolutions from the

AMR radiometer are given in Table 1. In addition to

microwave observations, we use atmosphere and surface

fields from analyses/forecasts from the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF)

NWP model (ECMWF 2012). We use fields of air tem-

perature, and specific humidity profiles at 137 pressure

levels with a grid resolution of 0.258 3 0.258, as well as
fields of 2-m temperature, 2-m dewpoint temperature,

surface pressure, surface skin temperature, and 2-m

zonal and meridional wind speeds. These fields were

taken daily, at the four synoptic hours of 0000, 0600,

1200, and 1800 UTC, for the month June 2015.

b. The 1D-Var approach

In this study we use the stand-alone 1D-Var scheme

provided by the EUMETSAT Numerical Weather Pre-

diction Satellite Application Facility (NWPSAF), available

online [www.metoffice.gov.uk/research/interproj/nwpsaf

(version 1.0)]. The 1D-Var system is based on linear op-

timal estimation to provide the best estimation of the

atmosphere state vector x, which optimally combines

observation vector y and a background state xb coming

from short-range forecasts. An observation operator H is

used to link the observation vector to the atmospheric

state. This operator includes several interpolations from

observation space to model space and radiative transfer

simulations. We use the Radiative Transfer for the Tele-

vision and Infrared Observation Satellite (TIROS) Oper-

ational Vertical Sounder (RTTOV), version 11.2 (Eyre

1991; Saunders et al. 1999; Matricardi et al. 2004).

The best estimation of the atmosphere state is ob-

tained by minimizing the cost function:

J(x)5
1

2
[(x2 x

b
)TB21(x2 x

b
)]

1
1

2
f[H(x)2 y

o
]TR21[H(x)2 y

o
]g . (1)

TABLE 1. AMSU-A, MHS, and AMR channels and horizontal

resolutions

Channel Frequency (GHz)

Resolution at nadir

(3-dB beamwidth) (km)

AMR

1 18.7 40

2 23.8 20

3 34 20

AMSU-A

1 23.8 48

2 31.4 48

3 50.3 48

4 53.6 48

MHS

1 89 17

2 157 17

5 190 17
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where R and B are the observation and background

error covariance matrix, respectively. Superscript 21

indicates the matrix inverse and T its transpose.

The cost function from Eq. (1) is solved iteratively

using the Levenberg–Marquardt technique. More in-

formation on the mathematical method and the con-

vergence criteria used in the 1D-Var minimization

scheme can be found in Press et al. (1988). Similar to

Deblonde and English (2003), the state variables of the

1D-Var are air temperature, specific humidity, surface

pressure, surface humidity, 2-m temperature, skin tem-

perature, and zonal and meridional 10-m wind speeds.

An exception is made for cloud liquid water, which is not

included in the 1D-Var state variables, here, as only

clear-sky measurements are assimilated. The latter state

variables all contribute to the estimation of WTC.

WTC is then estimated from the retrieved tempera-

ture and humidity profiles using the following equation:

WTC5
k

g

ðTOA

surface

q(p)

t(p)
dp , (2)

where k is a constant, g is the gravitational constant, p is

the pressure, and q(p) and t(p) are the specific humidity

and temperature at a given pressure level p, respec-

tively. For an optimal assimilation, observation and

background error covariance matrices should be ap-

propriately defined. The background error covariance

matrix is adapted from that of the NWPSAF 1D-Var

package and is modified in order to constraint humidity

in the upper levels of the atmosphere and relax con-

straints in the lower levels. More information on this

modification can be found in the appendix.

Observation errors are defined assuming no correla-

tions between measurements at different frequencies.

Observation errors for each considered channel have

been estimated using 1 month of data by examining

statistics of the difference between observations and

simulations (noted TBdiff) following themethod used in

Deblonde (2001). Values of the diagonal coefficients of

the observation error covariance matrix are then in-

ferred from standard deviations of TBdiff weighted by a

factor a, between 0 and 1. Several values of a have been

tested and the chosen observation errors are listed in

Table 2 for each assimilated observation in the 1D-Var.

3. Evaluation of the 1D-Var retrievals using
simulated data

Pseudo–brightness temperature observations (pseudo-

TB) are calculated using the radiative transfer model

RTTOV fed by analyses from ECMWF (profiles of

clear-sky temperature and specific humidity, and surface

parameters over open seas). Ocean surface emissivity is

estimated by the Fast Emissivity Model (FASTEM),

version 5.0 (Deblonde and English 2000; Bormann et al.

2012), usingmodel surface skin temperature andwind. To

simulate current operational instruments, simulations are

computed over the AMR passes, during 1 month in June

2015. Two sets of instruments are simulated: a first one

called the ‘‘low frequency’’ configuration (noted LF)

consists of simulating measurements at the AMR fre-

quencies 18.7, 23.8, and 34GHz; and the second one

called the ‘‘high frequency’’ configuration (noted HF)

for which measurements are simulated at 53.6, 89, 157,

and 190GHz (AMSU-A and MHS-like instruments). As

stated earlier, 53.6GHz is a temperature sounding chan-

nel; the other channels are sensitive to the surface and to

the air moisture near the surface. The 53.6- and 190-GHz

channels can also be used for cloud screening. A Gaussian

white noise of 0.5-K standard deviation is added to pseudo-

TBs to simulate actual instrumental noise.

These ‘‘pseudo-observations’’ are then assimilated in

the 1D-Var scheme, which is fed by 24-h forecasts from

ECMWF (atmospheric profiles and surface parame-

ters). The main advantage of this is that we know the

target solution (the reference state of the atmosphere

and surface), which allows a global evaluation of the

1D-Var performances. In addition, such experiments

allow the evaluation of the 1D-Var using two different

instrumental configurations: a classical one and a new

one making use of high-frequency channel assimilation

in addition to classical low frequencies. One could then

evaluate the potential added value of assimilating high-

frequency channels with regard to their sensitivity to the

surface, tropospheric temperature, and humidity and

also with regard to their improved horizontal resolution.

These tests are very useful in the context of future

TABLE 2. Observation minus guess TBs and observation error

standard deviations (STD) for the different 1D-Var experiments

(AMR measurements assimilation and assimilation of virtual-

radiometer measurements). AMR and virtual-radiometer obser-

vation errors are used for the assimilation of ‘‘low frequency’’ and

‘‘high frequency’’ measurements, respectively

Channel frequency (GHz) Observation error (K)

AMR

18.7 6.4

23.8 11

34 8.2

Virtual radiometer

23.8 6.4

31.4 7.3

53.6 1.2

89 6.5

157 6.1

190 4.3
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altimeter missions, such as the Jason Continuity of

Service (CS) mission expected in 2020.

a. Assimilation of low-frequency pseudo-TBs

LF pseudomeasurements are first assimilated in the 1D-

Var scheme. Figure 1a shows the distribution of the ‘‘ob-

served’’ minus first-guess TB difference (TBobs2 TBguess)

at each frequency from the LF configuration for all

1D-Var runs during June 2015. As expected, TB differ-

ences at each frequency show typical zero-mean Gaussian

distributions. Standard deviation of TBobs 2 TBguess is

higher at 23.8GHz than at the other low frequencies,

as water vapor is more variable in time and space, increas-

ing inconsistencies between measurements and simula-

tions.As the ‘‘target truth’’ is known (analyses),we compute

WTC background (derived from ECMWF 24-h forecasts)

and retrieved-WTC root-mean-square errors (RMSEs)

with respect to the reference (derived from ECMWF

analysis), named RMSEBack and RMSERet, respectively.

This comparison allows one to evaluate the performance of

the 1D-Var scheme: regarding the initial background, any

improvement obtained with the 1D-Var retrievals is shown

by an RMSE reduction between background and retrieved

values. Figure 2 shows a map of WTC RMSERet minus

WTCRMSEBack values, normalized by the referenceWTC,

computed within 48 longitude 3 48 latitude boxes within

June 2015. Some regional statistics of the 1D-Var are also

examined over four specific regions, described hereafter:

d The Pacific warm pool (PWP) area, located between

the Australian and South American coasts and char-

acterized by high surface temperatures greater than

300K, on average over the period of study.
d The dry area in the high-latitude bands, mainly located

in the Southern Hemisphere (HL area), where max-

imum surface humidity reaches 0.005 kgkg21.
d Two upwelling regions located off the Horn of Africa

(HA area) and along the west Californian coast

(WC area), characterized by unstable vertical stratifi-

cation of specific humidity and temperature (signifi-

cant decrease in humidity and temperature inversion

around 850 hPa due to high winds blowing in a parallel

direction to the coast). These areas are selected

according to maximum values of the temperature

lapse rate between surface and 850hPa.

Locations of study areas are plotted in Fig. 3. Figure 4

shows profiles of specific humidity RMSEBack (dashed

lines) and RMSERet (continuous line), computed over

the same time period and over each of the four selected

areas.

Figure 2 shows that the main improvements of the

1D-Var retrieved WTC are located in the midlatitude

band, where WTC is maximum. In particular, the as-

similation of LF in the 1D-Var scheme shows an error

reduction of 3%–4% of the WTC reference in the PWP

area. This is mainly due to the highest contribution of

the 23.8-GHz pseudomeasurements in the observation

vector. In this area, background WTC is overestimated

with respect to reference (not shown here), which is a

consequence of overestimated first-guess TBs with re-

spect to pseudo-TBs at 23.8GHz in the same area (as the

23.8-GHz channel is the most sensitive to water vapor in

the lower layers of the atmosphere, the effect of high

humidity increases simulated TB at 23.8GHz). The in-

version of dry pseudo-TBs at 23.8GHz generates lower

retrieved water vapor than background, resulting in re-

trieved WTC closer to reference. Note that the assimila-

tion of pseudomeasurements at the two 18.7- and 34-GHz

channels results in a much lower retrieved-WTC error

reduction, not exceeding 0.8% of reference WTC, as

their sensitivity to water vapor is lower. Regarding re-

trieved profiles of specific humidity in the same area,

improvements are significant around the 850–950-hPa

pressure levels, where 1D-Var retrieved errors with re-

spect to reference are reduced by more than 10% of

FIG. 1. Observedminus first-guess TB distributions computed over open ocean for all 1D-Var runs in June 2015 at

frequencies from (a) the LF configuration (18.7, 23.8, and 34GHz) and (b) the LF1HF configuration (53.6, 89, 157,

and 190GHz).
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background errors (see Fig. 4a) These levels are the

main contributors to integrated WTC from surface to

the top of atmosphere, reaching 8% of the total in-

tegrated WTC (not shown). Other high-surface-

temperature areas show similar results: in the Indian

Ocean and in the South Atlantic Ocean. The 1D-Var

retrieved-WTC error is also reduced in comparison to

background WTC error over the HA area and WC area

upwelling regions. The impact of the assimilation of LF

measurements is however lower than over the PWP

FIG. 2. Normalized RMSE differences between 1D-Var ‘‘low frequency’’ assimilated WTC

and backgroundWTC, with respect to the reference. RMSE is computed for 48 longitude3 48
latitude boxes for June 2015

FIG. 3. Location of the four areas of study chosen according to different geophysical parameters averaged over

June 2015: (top left) the PWP area driven by high surface temperatures, (bottom left) the HL area characterized by

surface humidity lower than 0.005 kg kg21, and the (top right) HA-area and (bottom right) WC-area upwelling

regions characterized by a maximum temperature decrease rate values.
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FIG. 4. The 1D-Var retrieved (dashed lines) and background (continuous lines) RMS error on specific humidity,

computed over the (a) PWP and (b) HL areas and the (c) HA and (d) WC upwelling areas. Dashed lines show the

results from the assimilation of LF pseudomeasurements. Statistics are computed for June 2015.
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area. This is confirmed by Figs. 4c and 4d, where 1D-Var

retrieved humidity RMSE reaches lower values than

background RMSE in the 950–600-hPa layers only and

no effect of the 1D-Var is noticed closer to the surface.

Note that the 950-hPa limit corresponds to the tem-

perature inversion and humidity decrease point, as

seen in Fig. 5. The latter illustrates the complex vertical

stratification of temperature and specific humidity in

both WC and HA upwelling areas. Profiles are aver-

aged over June 2015 over both areas (dashed lines) and

compared to those averaged over the global ocean

(continuous line).

Over dry areas such as in the HL area, the impact of

the assimilation of LF artificial measurements on re-

trieved humidity and estimatedWTC is weak. Figure 4b

shows very similar profiles of background and retrieved

specific humidity errors, which results in a weak re-

duction of WTC RMSERet compared to RMSEBack.

These error statistics include some small local degra-

dations of the 1D-Var retrievals with respect to refer-

ence, with retrieved minus background WTC RMSE

difference between 0% and 11% of reference WTC

(see Fig. 2). In these localized regions, background

(derived from ECMWF 24-h forecasts) minus reference

(derived from ECMWF analysis) WTC difference is

high, with an overestimated background WTC of more

than 1 cm regarding reference WTC.

b. Assimilation of high-frequency measurements
in the 1D-Var

To evaluate the potential of high frequencies in the

1D-Var, pseudo-TBs at 53.6, 89, 157, and 190GHz are

assimilated in the 1D-Var in addition to the ‘‘classical’’

low frequencies at 18.7, 23.8, and 34GHz. Similarly to

the assimilation of the LF pseudomeasurements, the

observed minus first-guess TB distribution at each as-

similated high frequency is shown in Fig. 1b for all

1D-Var runs in June 2015. Note that TBobs 2 TBguess

differences at 53.6GHz show the lowest standard de-

viation. The overall statistics for the other channels are

rather satisfactory.

Performance of the 1D-Var assimilating this new set of

frequencies (named LF1HF) is analyzed during June

2015 and compared to the performance of the 1D-Var

retrievals obtained by assimilating LF pseudomeasure-

ments. The LF1HF retrieved minus background RMSE

difference (not shown here) shows similar patterns to

those of Fig. 2, but with higher intensity in the negative

values. Thus, high frequencies contribute to reducing

even more the retrieved-WTC errors regarding the

FIG. 5. Profiles of (a) temperature and (b) specific humidity averaged over WC (dotted lines) and HA (dashed

lines) upwelling areas during June 2015. Profiles are compared to mean temperature and specific humidity profiles

averaged over the global ocean (gray continuous line) for June 2015.
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background, with maximum WTC RMSE reduction be-

tween background and retrievals reaching 5% of refer-

ence WTC. To quantify the improvement with respect to

LF retrieved-WTC performance, Fig. 6 shows the WTC

RMSERet difference between the LF1HF configuration

and the LF configuration, computed over June 2015. An

improvement of LF1HF retrieved WTC regarding LF

retrieved WTC is shown by negative values (in blue).

Conversely, positive values (in red) mean a degradation

of LF1HF retrievedWTC regarding LF retrievedWTC.

The main impact of high frequencies in the 1D-Var

scheme on retrieved WTC is located in the medium-

latitude bands. A study of the separate contribution of

each high frequency on retrieved WTC shows that the

contribution of both the 89- and the 157-GHz channels in

the observation vector is predominant in these areas. This

results in a larger WTC error reduction in the WC area

and HA area upwelling regions as well as in the PWP

area, by almost 2% of reference WTC, regarding LF

WTC RMS error. Similar features are seen in the South

Atlantic and southern Indian Oceans. According to in-

tegrated cloud liquid water content and zonal and me-

ridional wind speed fields from ECMWF analysis, these

regions are mainly related to clear-sky conditions and

medium to low wind speeds in June 2015. In such areas,

where sources of model/measurement inconsistencies

are reduced, the extra surface information brought by the

89- and 157-GHz channels contributes to retrieving drier

WTC than background and than LF retrievedWTC, thus

closer to reference WTC. Pseudo-TBs at 190GHz also

contribute to reduce retrieved-WTC RMSE regarding

LF retrieved-WTC RMSE, but at a smaller scale (the

error reduction does not exceed 0.5%of referenceWTC).

Nevertheless, as it is the most sensitive channel to cloud

liquidwater droplets, this channel is an accurate proxy for

cloud screening. In addition to this characteristic, the

assimilation of 190-GHz measurements could provide an

additional constraint to retrieve cloud liquid water, as

part of further plans for the use of the 1D-Var.

Finally, the impact of the 53.6-GHz channel pseudo-

measurements in the 1D-Var scheme on retrieved WTC

is low: it shows neither an increased nor a decreased

retrieved-WTC RMSE regarding LF retrieved-WTC

RMSE. This can be explained as the 53.6-GHz channel

is highly sensitive to temperature variations in higher

pressure levels (levels that contribute less to total in-

tegrated WTC), while background (from 24-h forecasts)

and reference (from analysis) temperature profiles show

weak differences. In addition, profiles of temperature are

highly constrained in the 1D-Var, as background tem-

perature errors (standard deviation errors) do not exceed

1K from the surface to the other levels of the atmosphere.

Figure 7 shows profiles of RMSERet (dashed lines)

and RMSEBack (continuous lines) on specific humidity,

computed over the four areas of study (Fig. 7a shows the

PWP area, Fig. 7b shows the HL area, Fig. 7c shows the

WC area, and Fig. 7d shows the HA area) during June

2015. The contribution of high-frequency pseudomea-

surements in the assimilation scheme on retrievedWTC

is highlighted by an error reduction in profiles of re-

trieved specific humidity in the PWP area and over the

WC-area and HA-area upwelling regions. The main

FIG. 6. The 1D-Var retrieved-WTC normalized RMSE difference between the assimilation

of LF1HF and of LF artificial measurements. Statistics are averaged in 48 latitude 3 48 lon-
gitude boxes over a 1-month period in June 2015.
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FIG. 7. The 1D-Var retrieved (dashed lines) and background (continuous lines) RMSE on specific humidity,

computed over the (a) PWP and (b) HL areas and the (c) HA and (d) WC upwelling areas. Red dashed lines show

the results from the assimilation of LF pseudomeasurements, and cyan dashed lines show results from the assim-

ilation of LF 1 53 1 157 1 190 pseudomeasurements. Statistics are computed for June 2015.
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improvement is shown between the 800- and 950-hPa

pressure levels, levels contributing the most to total in-

tegrated WTC. As expected, a very weak error re-

duction in profiles of specific humidity is shown in the

HL area, where surface humidity does not exceed

0.005 kgkg21, even when assimilating the HF artificial

measurements in addition to the LF configuration. Ac-

cording to Fig. 6, high frequencies contribute to re-

ducing the retrieved-WTC error of under 0.5% more

than LF retrieved-WTC error. In such areas, this im-

provement is negligible regarding the weakWTC values

in our reference dataset.

4. Impact of real observations on retrieved WTC

Inversion of AMR (Jason-2) measurements

In the previous section, we have shown the impact of

the assimilation of simulated measurements using the

1D-Var scheme on retrieved WTC, with a set of experi-

ments using low-frequency or high-frequency microwave

observations. In this section, the impact of the 1D-Var on

WTC when assimilating real observations is evaluated

over open seas and under clear-sky conditions.

Clear-sky AMR measurements are assimilated over

ocean four times daily at 0000, 0600, 1200, and 1800 UTC

over a 6-month time period, from June to November

2015. To feed the 1D-Var, background fields were taken

from ECMWF analyses to use the best estimate of the

atmosphere/surface state. To avoid any land contamina-

tion in the assimilated measurements, oceanic measure-

ments are selected when they are located at least 50km

away from the coast.

Cloudy situations are screened out using the model

background and observations. Concerning the model,

profiles of cloud liquid water with nonzero values are

taken to screen out cloudy scenes. In addition, we also

used liquid water path product, available from the Geo-

physical Data Record (GDR) products [see Keihm et al.

(1995) for more information on the liquid water path

estimation algorithm]. Only measurements for which

liquid water path is zero are used. Finally, to avoid re-

maining inconsistencies between measured and simu-

lated TBs, measurements are rejected if the observed

minus first-guess TB difference is greater than 2 times

the measured minus simulated data standard deviation

computed over 1 month prior to the assimilation period.

These a priori statistics also allow deriving mean values

for each channel to bias correct RTTOV simulations. The

obtained observed minus first-guess TB difference at

each frequency shows a 0-mean Gaussian distribution, as

illustrated in Fig. 8 at 18.7 (Fig. 8a), 23.8 (Fig. 8b), and

34GHz (Fig. 8c).

Retrieved WTC, noted as WTC1DVAR, is compared to

WTC estimated from the operational log-linear algorithm,

available from the GDR products, named WTCAMR.

Figure 9 shows the scatterplot of WTCAMR versus

WTC1DVAR, computed over open ocean from June to

November 2015. One can note the overall good consis-

tency on average between WTC estimated from the

operational AMRWTC retrieval algorithm and 1D-Var

retrieved WTC, with a mean difference around 0.5 cm

over global ocean. As current WTC retrieval algorithms

are known to have good performance over clear-sky

global ocean, WTCAMR shows rather low uncertainty

(Brown et al. 2004). Thus, this plot underlines the ability

of the 1D-Var to be at least as good as current algo-

rithms’ performance in global oceanic clear-sky condi-

tions. However, Fig. 9 shows more scattered values

resulting in a 1.5-cm standard deviation error. These

scattered values represent less than 5% of the maximum

bin population and correspond to WTCAMR values

ranging between 0 and 30 cm. Most of the large differ-

ences seen between WTCAMR and WTC1DVAR are ex-

plained by the coarse cloud screening used in this study.

This results either in the assimilation of cloudy mea-

surements while assuming clear sky in the inversion

process, or in the assimilated of clear-sky observations

while using cloudy first-guess temperature and humidity

profiles. In the first case, this causes the retrieval of

underestimated water vapor with respect to observa-

tions, as cloud liquid water is not part of the control

FIG. 8. AMR observed minus first-guess TB difference at (a) 18.7, (b) 23.8, and (c) 34GHz without bias correction (light gray) and with

bias correction (dark gray), computed over the 6-month time period from June to November 2015.
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vector, so the minimization process cannot converge to

water vapor close enough to observations. In the second

case, this causes the retrieval of overestimated specific

humidity and thus overestimated WTC1DVAR with re-

spect toWTCAMR, by more than 10 cm in some cases. In

addition to these observations, areas of strong stratifi-

cation in the subtropical region, similar to upwelling

areas, may cause higher uncertainties in WTCAMR and

explain the overestimated values, which questions the

use of WTCAMR as an absolute reference.

To further evaluate the impact of the inversion of

AMR measurements on retrieved WTC, WTC1DVAR is

also compared with independent data over the period

of study. The latter are derived from radio-occultation

measurements provided by the Radio-Occultation Me-

teorology Satellite Application Facility (ROM SAF),

named WTCRO. Collocated WTCRO data are selected if

they are located within 100km and 1h of the AMR as-

similated measurements, to ensure both time and spatial

consistency. Figures 10a and 10b show the scatterplots

of WTCRO versus WTC1DVAR and versus WTCAMR, re-

spectively. Despite the small number of collocations over

the period of study, Fig. 10a illustrates the good agree-

ment between 1D-Var retrieved and radio-occultation

WTC. A higher dispersion of WTC1DVAR values with

respect toWTCRO is noticed for less than 5% of the total

number of observations. One can notice the slightly more

linear relationship between WTC1DVAR and WTCRO

compared to WTCAMR in Fig. 10b, as shown by the

polynomial fit (dash–dotted line) on both plots. This

is due to lower WTCAMR than WTCRO, and closer

WTC1DVAR to WTCRO, for values of WTCRO ranging

between 25 and 35cm. Note that Fig. 9 shows the same

trend for high values of WTC: WTCAMR is drier than

WTC1DVAR for values ranging between 25 and 35 cm.

Mean difference of retrieved minus background

WTC (WTC1DVAR2WTCBACK) is computed as well as

mean difference of retrieved minus AMR-derivedWTC

(WTC1DVAR 2 WTCAMR) and are both illustrated in

Figs. 11a and 11b, respectively. It shows the gridded

average of the differences over the same 6-month period

of study in 28 longitude 3 28 latitude boxes, which

ensure a sufficient number of observations in each bin.

As seen in Fig. 12, the number of clear-sky observations

in each grid cell mainly exceeds 100 per bin. However,

due to the clear-sky filtering, this number decreases

when moving toward high latitudes and close to the

ITCZ. This also explains the need of a relatively long

period to evaluate the impact of the 1D-Var on retrieved

WTC for Jason-2 altimeter mission.

One can notice the dryer WTCAMR than WTC1DVAR

around the ITCZ (where WTCAMR exceeds 30 cm) and

in the high-latitude bands, with differences ranging from

1 to 2 cm, respectively (Fig. 11b). Note that the higher

differences in the Southern Hemisphere, located around

the 608S latitude band, correspond to sea ice occurrence

during the winter period (from June to September).

Localized minimum differences in both the ITCZ and

the high-latitude bands poleward of 608N and 608S
should be interpreted with care as they are located in

regions where valid clear-sky observations are scarce

(under 50 observations in each grid cell; see Fig. 12).

Figure 11a shows clear impact of the 1D-Var on

background WTC in low- and midlatitude bands, with

retrieved WTC drier than background of about 0.5–

1 cm. As seen in Fig. 11b, this results in low differences

between retrieved and radiometer WTC in the same

areas. This is the case in the PWP area (see section 3 and

Fig. 3), characterized by maximum sea surface temper-

ature and high WTC temporal variability within a year

(not shown here).

Even though fewer observations are assimilated in the

ITCZ, one can notice the overestimated WTC1DVAR

with respect toWTCAMR, ranging from 1 to 2 cm. This is

mainly a result of higher observed minus first-guess TB

differences at 23.8GHz (the most sensitive channel to

water vapor), followed by the 34-GHz channel. In this

region, first-guess TBs are overestimated by 3–4K with

respect to measurements at 23.8GHz, resulting from a

wetter background atmosphere than radiometer mea-

surements. This gap makes the 1D-Var minimization

FIG. 9. Dispersion of AMR WTC estimated from current algo-

rithms (WTCAMR) vs 1D-Var retrieved WTC (WTC1DVAR) ob-

tained by assimilating clear-sky AMR measurements over ocean.

Statistics are computed over a 6-month period of study from June

to November 2015.
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process difficult and retrieved WTC remain wetter than

WTCAMR.

Figure 11b shows that the high-latitude band is char-

acterized by an overestimation of retrieved WTC with

respect to WTCAMR. This overestimation cannot be

seen in Fig. 11a because the impact of the inversion of

AMR measurements on background WTC in the high-

latitude band is very weak. This confirms that over-

estimated WTC1DVAR with respect to WTCAMR in the

high-latitude band is mainly due to the already existing

differences between radiometer and background WTC.

Part of these model background/observations inconsis-

tencies can be explained by the time gap between both

datasets, which can be as large as 3h from the model

background (provided four times daily at 0000, 0600,

1200, and 1800 UTC) in a highly variable atmosphere

characterizing the high-latitude bands.

Even though current WTC retrieval algorithms are

globally robust over ocean, they generally show higher

uncertainties in areas where atmospheric conditions

FIG. 10. Dispersion of WTC estimated from collocated radio-occultation (WTCRO) vs (a) 1D-Var retrieved

WTC (WTC1DVAR) obtained by assimilating all-sky AMR measurements over ocean and (b) WTC estimated

from the current operational algorithm for Jason-2 mission (WTCAMR). Statistics are computed over a 6-month

period of study from June to November 2015.

FIG. 11. The 1D-Var (a) retrievedminus backgroundWTC and (b) retrievedminus AMRWTC estimated from the operational algorithm

averaged in 28 3 28 grid cells over 6 months from June to November 2015.
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strongly differ from the ‘‘standard’’ ones, such as in up-

welling areas characterized by complex vertical stratifica-

tion of temperature and humidity profiles. To evaluate the

contribution of the 1D-Var approach regarding the oper-

ational AMRWTC retrieval algorithm, a regional study is

applied over theHAandWCupwelling areas, described in

section 3. Figure 13 shows the distribution of retrieved

humiditymean quadratic error with respect to background

(named MQE1DVAR) anomaly in both upwelling areas

(where surface–800-hPa temperature lapse rate is maxi-

mum). Here, the anomaly is defined as the ratio between

MQE1DVAR at a given grid cell and mean MQE1DVAR,

averaged over ocean from June to November 2015. The

scale varies between 0 and 2, with 0 meaning that

MQE1DVAR is negligible, 1 meaning that MQE1DVAR

is similar to mean MQE1DVAR, and 2 meaning that

MQE1DVAR is doubled regarding the mean MQE1DVAR.

Figures 13a and 13b show that the impact of the inversion

ofAMRmeasurements in the 1D-Var schemeonhumidity

in both upwelling areas is weak, with a mean MQE1DVAR

anomaly around 0.7 and 0.8 in HA and WC areas re-

spectively: MQE1DVAR remains lower than global mean

MQE1DVAR. Thus, retrieved humidity profiles remain

close to background over both areas. This results in a

higher retrieved WTC of only 0.2 cm regarding back-

ground and confirms that the systematic underestimated

WTC1DVAR with respect to WTCAMR of around 1cm, as

shown in Figs. 13c and 13d, is mainly due to preexisting

differences between background WTC and AMR esti-

mated WTC.

5. Discussion and conclusions

The aim of this study is to explore the potential

benefits and limits of a one-dimensional variational

method to retrieve clear-sky WTC over global ocean.

We developed our assimilation method using a stand-

alone 1D-Var tool available from the NWPSAF and we

adapted it to allow the assimilation of passive micro-

wave observations sensitive to the air humidity in the

low-atmosphere levels and to surface properties. The

1D-Var gives as outputs profiles of temperature and

humidity, which are then used to calculate WTC. To

evaluate the 1D-Var tool, impact studies were per-

formed using simulated measurements. Several config-

urations of pseudo-observations were tested: a classical

low-frequency configuration similar to operational al-

timeter missions and a low–high-frequency configura-

tion not yet used in the context of altimeter missions but

very useful to prepare future altimeter missions, such as

the Jason-CS mission expected in 2020.

The 1D-Var impact studies using ‘‘pseudomeasure-

ments’’ showed that this approach allows the retrieval of

WTC of improved quality with regard to the back-

ground. Root-mean-square errors of WTC are reduced

with the assimilation of observations (with respect to the

targetWTC).When assimilating classical low-frequency

observations, the mean impact on WTC are located in

areas of high WTC in the low-latitude band, with a 3%–

4% error reduction between background and retrieved

WTC. Improvements are also highlighted in upwelling

areas, characterized by complex vertical stratification in

the temperature and humidity profiles. Note that current

statistical WTC estimation algorithms show large un-

certainties in these regions. The impact of assimilating

low- and high-frequency channels on retrieved WTC is

larger on average than the impact of assimilating low-

frequency channels alone. The effect of their assimila-

tion is extended to the low- and midlatitude bands,

where WTC error is reduced by 5% between back-

ground and analyses. The 89- and 157-GHz-frequency

channels showed the highest contribution to this error

FIG. 12. Number of AMR clear-sky observations assimilated in the 1D-var scheme in each

28 3 28 grid cell from June to November 2015.
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reduction. This shows the benefit of the information

content of such channels, sensitive to surface and

low layers of the atmosphere. The contribution of the

190-GHz channels seemed weaker, but these chan-

nels could be very useful for cloud screening.

We also evaluated the performances of the 1D-Var us-

ing real observations from the AMR radiometer on board

Jason-2. The assimilation of these measurements (at low

frequencies) results in an overall good agreement between

retrieved and referenceWTC (taken from the operational

AMR WTC retrieval algorithm, available from the GDR

products). Analyzed WTC were also compared with esti-

mates from independentdataderived fromradio-occultation

data. The comparison is in favor of the 1D-Var analyzed

WTC. The assimilation of low- and high-frequency

channels seems to be very promising but should be con-

ducted with care. We looked at the potential use of the

1D-Var to retrieveWTC from real ‘‘low1high’’-frequency

measurements (results not shown in this paper).

Measurements were obtained from the AMSU-A and

MHS onboard NOAA-18 and interpolated at nadir

to simulate the altimeter-coupled radiometer measure-

ments. The assimilation of these observations shows sat-

isfactory results concerning the quality of analyzedWTC.

The latter was found in good agreement with analyzed

WTC when assimilating low-frequency channels. This

means that wedo not degrade the assimilation but thatwe

still have to improve the assimilation of high-frequency

channels to use the information content of these obser-

vations: among others, there is a need to better define

observation errors, and to better screen for clouds.

The studies described above were conducted

under clear-sky conditions. They underline the need to

improve the assimilation of radiometer measurements

from current altimeter missions under cloudy condi-

tions. This requires accounting for some microphysical

variables of clouds in the control variable of the 1D-Var,

similarly to the study of Martinet et al. (2013).

FIG. 13. (top) Retrieved-humidity mean quadratic error with respect to background anomaly over (a) HA and

(b)WC upwelling areas, selected according to maximum values of the surface–800-hPa temperature lapse rate, and

computed from June to November 2015 in 28 3 28 grid cells. (bottom) AMR minus 1D-Var retrieved-WTC dif-

ferences are computed over (c) HA and (d) WC upwelling areas.
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APPENDIX

Background Humidity Error Definition

Background errors provided by theNWPSAF 1D-Var

package over 54 fixed pressure levels are usually

designed for temperature and humidity retrievals by

assimilating sounding channels, peaking in the mid- and

high troposphere. Thus, higher humidity errors are set in

the higher-tropospheric layers and decrease when

approaching the surface. In this study, the 1D-Var ap-

proach is used to estimate WTC from retrieved tem-

perature and humidity profiles. Figure A1a shows the

contribution of each pressure level to the integrated

WTC from the surface to the top of the atmosphere.

Almost 10% of the total WTC is formed in the lower

troposphere, around the 950–1000-hPa interval. Thus,

lower constraints are needed on retrieved humidity

around these pressure levels, which implies higher

background humidity errors. To better adapt the

NWPSAF 1D-Var scheme toWTC estimation, humidity

errors are weighted by the contribution of each pressure

level to the integrated WTC. The new humidity

standard deviation errors (diagonal coefficients of the

background error covariance matrix) are illustrated in

Fig. A1b.
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