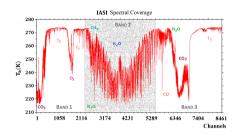
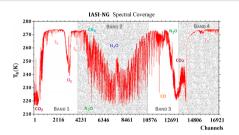
Preparing the assimilation of IASI-NG in NWP models: a first channel selection

Francesca VITTORIOSO, Vincent GUIDARD, Nadia FOURRIÉ

CNRM, Météo-France & CNRS, GMAP/OBS


francesca. vittorioso@meteo.fr



IASI vs IASI-NG

IASI	Main Features	IASI-NG	
4	Pixels in FOV	16	
8461	Channels	16921	
	Radiometric resolution	IASI/2	
$0.25 \ {\rm cm^{-1}} \ @ \ {\rm L1C}$	Spectral sampling	IASI/2	
$< 0.25~\mathrm{K}$ @ 280 K	Abs. radiometric calibration	IASI/2	
3	Spectral bands	4	

Objectives

Why a Channel Selection?

Objectives

Why a Channel Selection?

- High amount of data resulting from IASI-NG
- Many challenges in the areas of data transmission, storage and assimilation
- The number of individual pieces of information will be not exploitable in an operational Numerical Weather Predictions (NWP) context

Objectives

Why a Channel Selection?

- High amount of data resulting from IASI-NG
- Many challenges in the areas of data transmission, storage and assimilation
- The number of individual pieces of information will be not exploitable in an operational Numerical Weather Predictions (NWP) context

 \rightarrow An appropriate IASI-NG channel selection is needed, aiming to select the most informative channels for NWP models

Simulated observation database and 1D-Var retrievals

Full IASI orbit computed, for a total of 5 242 448 simulations for each instrument (IASI scan geometry used for IASI-NG) [Andrey-Andrés et al. (2018)]

Case Study

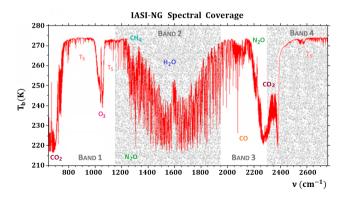
- First stage: nadir over sea clear **sky** conditions (318 319 profiles)
- Subset of 1099 profiles judged to be a representative sample:
 - May and August
 - polar, mid-latitudes and tropical regions
 - day and night

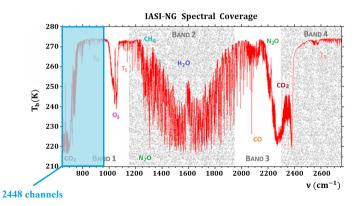
Simulated observation database and 1D-Var retrievals

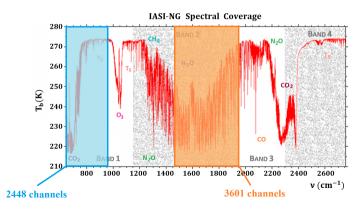
1D-Var retrievals

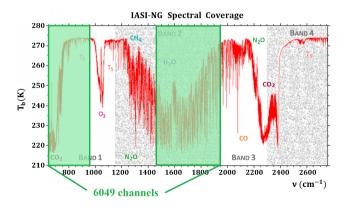
$$J(\mathbf{x}) = \underbrace{\frac{1}{2} (\mathbf{x} - \mathbf{x}^{\mathrm{b}})^{\mathrm{T}} \mathbf{B} (\mathbf{x} - \mathbf{x}^{\mathrm{b}})}_{\text{Background}} + \underbrace{\frac{1}{2} [\mathbf{y} - H(\mathbf{x})]^{\mathrm{T}} \mathbf{R}^{-1} [\mathbf{y} - H(\mathbf{x})]}_{\text{Observations}}$$

 $\mathbf{x} = \text{model state vector}$ (Temperature, Humidity, Skin Temp.)

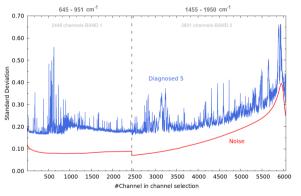

 $\mathbf{x}^b = \text{background state vector}$

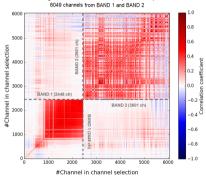

y = vector of observations


 ${f B}={
m background\text{-}error}$ covariance matrix


 $\mathbf{R} = \text{observation-error}$ covariance matrix

H = observation operator





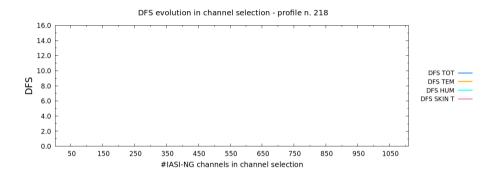
Diagnostic for correlation matrix (5th iteration)

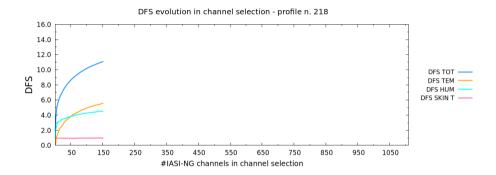
A methodology relying on evaluating the impact of the addition of single channels on a figure of merit has been applied in order to determinate an optimal channel set [Rodgers (1996), Rabier et al. (2002)]

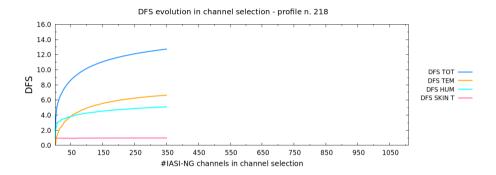
A methodology relying on evaluating the impact of the addition of single channels on a figure of merit has been applied in order to determinate an optimal channel set [Rodgers (1996), Rabier et al. (2002)]

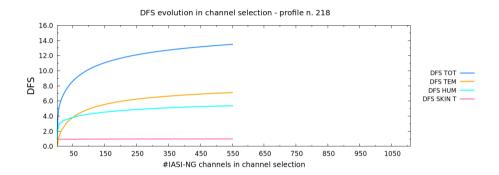
First stage:

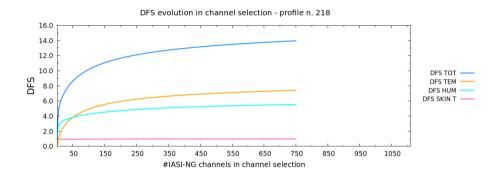
• one among the case study profiles has been picked up (August - night - mid-latitude)

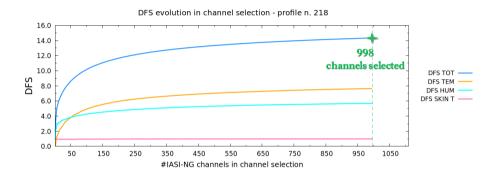

A methodology relying on evaluating the impact of the addition of single channels on a figure of merit has been applied in order to determinate an optimal channel set [Rodgers (1996), Rabier et al. (2002)]

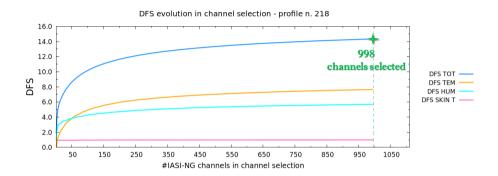

First stage:


- one among the case study profiles has been picked up (August night mid-latitude)
- the figure of merit chosen is the **Total DFS** (Temperature + Humidity + Skin
 Temperature DFS)


$$DFS := Tr (\mathbf{I} - \mathbf{A}\mathbf{B}^{-1}) = [\mathbf{I} + \mathbf{B}\mathbf{H}^{T}\mathbf{R}^{-1}\mathbf{H}]^{-1}$$

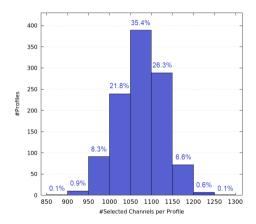




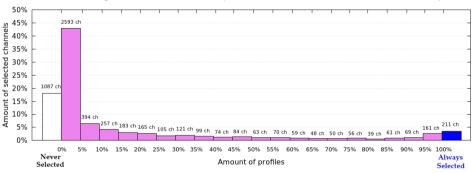


The choice has been narrowed down to the channels showing an absolute difference of Tot DFS ≥ 0.001 (between one iteration and the previous)

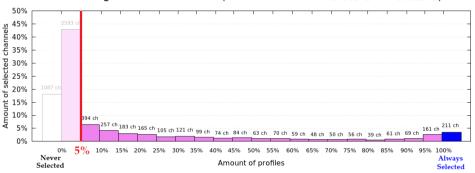
The choice has been narrowed down to the channels showing an absolute difference of Tot DFS ≥ 0.001 (between one iteration and the previous)


 \rightarrow This study has been spread to the whole 1099 profile dataset

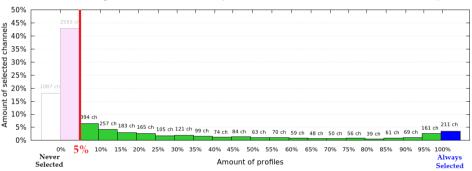
How many channels do we select?

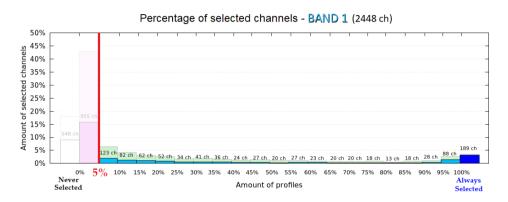

• In 83.5% of cases (profiles), the amount of selected channels is between 1000 and 1150

What about DFS?

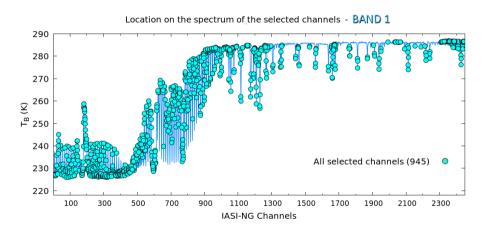

DFS	Tot	Temp	Hum	Skin Temp
Average Max Min	15.2 16.9 13.0	7.9 8.9 7.2	$6.3 \\ 8.0 \\ 4.1$	0.99 1.00 0.96

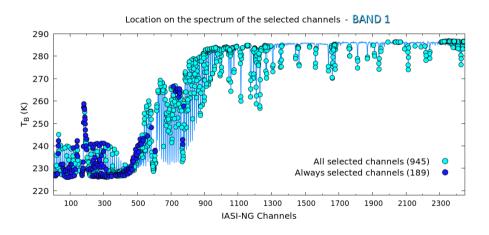
Percentage of selected channels (from 6049 channels - BAND 1 and BAND 2)



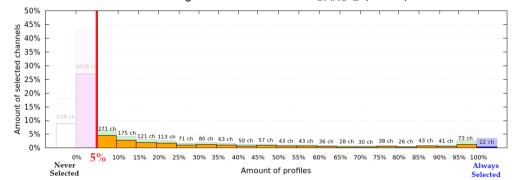


• 3680 channels rejected (channels selected in less than 5% of cases)

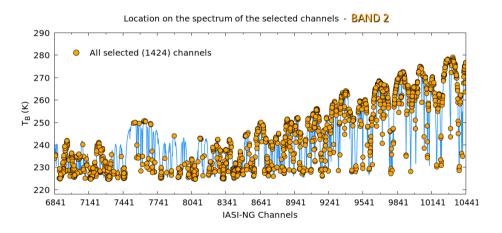


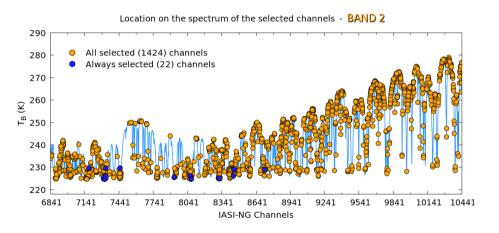


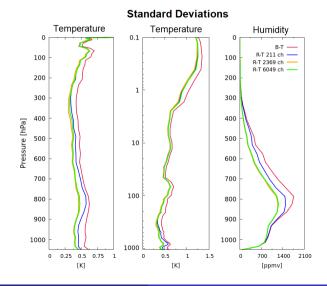
- 3680 channels rejected (channels selected in less than 5% of cases)
- 2369 channels retained, among which 211 always selected (selected in the 100% of cases)



- 1503 channels rejected (channels selected in less than 5% of cases)
- 945 channels retained, among which 189 always selected (selected in the 100% of cases)





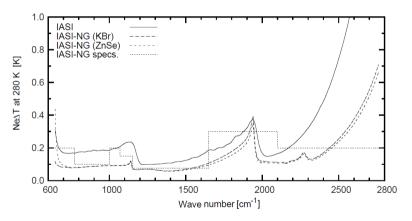


- 2177 channels rejected (channels selected in less than 5% of cases)
- 1424 channels retained, among which 22 always selected (selected in the 100% of cases)

- 1D-Var run using:
 - 6049 channels from BAND 1 and BAND 2
 - "all selected" channels selected at list in 5% of cases (2369)
 - "always selected" channels (211)
- Background and Analysis Errors averaged on the 1099 profiles case study.
- For the "all selected" channels, the Rate of Improvement of Retrieval Standard Deviations compared to Background ones, reaches values up to:
 - 30% for Temperature
 - 50% for Humidity

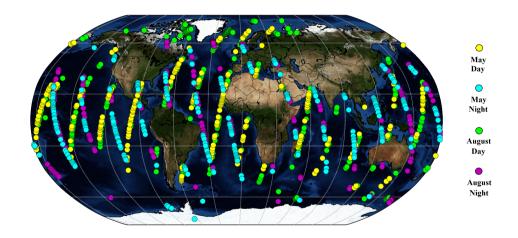
Future works

- Another method of selection will be applied, based on selecting the most relevant channels relying on the characteristics of their weighting functions [collaboration with Antonia Gambacorta (NOAA)]
- Vittorioso et al. in preparation


 \rightarrow Bring the selected channels into the global model ARPEGE data assimilation, with all the observations available and over several weeks (OSSE)

Thank you for your attention!

Questions?



IASI Radiometric Resolution

NEDT noise at 280 K for IASI and IASI-NG (source data from E. Pequignot, CNES)

Case Study

Rate of Improvement

Rate of Improvement =
$$\frac{[(R-T) - (B-T)]}{(B-T)}$$

where R = Retrieval, B = Background, T = Truth