
Analysis and Channel selection of MTG-IRS for NWP models 1

Analysis of MTG-IRS observations and general channel
selection for Numerical Weather Prediction models

O. Coopmann∗, N. Fourrié and V. Guidard
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IRS (infra-red Sounder) is an infra-red Fourier transform spectrometer that will be on
board the Meteosat Third Generation series of the future EUMETSAT geostationary
satellites and will have a unique 4D look at the atmosphere. After its planned launch
in 2024, it will be able to measure the radiance emitted by the Earth at the top of
the atmosphere using 1960 channels in two spectral bands between 680 - 1210 cm−1

(long-wave infra-red) and 1600 - 2250 cm−1 (mid-wave infra-red) at a spectral sampling
of 0.6 cm−1. It will perform measurements over the full Earth disk with high spatial
and temporal resolution of 4 km at nadir and 30 minutes over Europe. Thus, the huge
amount of data from IRS will present challenges, particularly in data transmission, data
storage and assimilation into NWP models.
To reduce the volume of data, various methods are available including spatial sampling,
principal component analysis and channel selection. The latter technique will be
discussed in this paper by proposing general channel selection to provide Numerical
Weather Prediction models. The objective of this selection is to improve essential
variables for NWP such as temperature, humidity, skin temperature and ozone. This
work has required the development of a large observation database and takes into
account the main developments in assimilation techniques, including the use of full
observation-error covariance matrices or the assimilation of ozone in global models for
example. This study performs a specific analysis of the sensitivity of IRS observations
and proposes a first general selection of 300 channels for NWP models. This selection
allows us to reduce the analysis error in the troposphere by 48 % in temperature, 65 %
in humidity and 17 % in ozone.
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1. Introduction

The benefits of infra-red hyperspectral sounders in improving
Numerical Weather Prediction and monitoring of atmospheric
composition are well established. Nowadays, the IASI instrument,
on board the Metop-B and C satellites, is the most performing
instrument. They allow a large coverage of the globe, but they can
only observe the same place twice a day due to the nature of the
polar satellites on which they are flown. There are currently two
hyperspectral sounders in geostationary orbit: the Geostationary
Interferometric Infrared Sounder (GIIRS-1 and 2), already aboard
the FY-4A geostationary satellite over East Asia (Yin et al. 2020).

The rapid evolution of instrumental and spectral performance
has enabled EUMETSAT (European Organization for the
Exploitation of Meteorological Satellites) to propose its future
geostationary satellite program, the Meteosat Third Generation
(MTG) series. These platforms, whose first launch is planned

for 2022, will host on board two types of instruments, an
imaging platform (MTG-I) and a sounding platform (MTG-S).
The latter, will have on board the Infra-Red Sounder (IRS) a
imaging Fourier Transform Spectrometer with a spectral sampling
of about 0.6 cm−1 in two spectral bands named Long-Wave
Infra-red (LWIR or band 1) extending from 680 - 1210 cm−1

and Mid-Wave Infra-red (MWIR or band 2) extending from
1600 - 2250 cm−1. After its launch, it will perform measurements
over the full Earth disk with particular focus on Europe (revisited
every 30 min), with a spatial resolution of 4 km at nadir.

Thus, IRS will have higher spatial and temporal sampling than
its precursor GIIRS. In addition, it should also be the first to satisfy
operational requirements, GIIRS-1 and 2 being experimental. IRS
is expected to have a significant impact on NWP and nowcasting.
In addition to the future Copernicus Sentinel-4 instrument which
will be on the same platform, the duo will provide a set of
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useful observations for atmospheric composition and air quality
monitoring applications. The main challenges are:

• The rapidity of observations, where requirements on level 1
and 2 products are to be respectively made available within
15 and 30 minutes from sensing for any given dwell.

• The spatial and temporal resolution of the observations
will be very important and will induce huge amount of
data, which will require information compression. The
spectra will be distributed as principal components using a
so-called hybrid method. This method will make it possible
to conserve the essential part of the atmospheric variability.

• The information content of IRS should be assessed and a
selection of information can be made to reduce the amount
and redundancy of information. The spectral sampling has
been optimised from 0.625 to 0.6 cm−1. An assessment of
the cloud fraction and scene heterogeneity within each pixel
will be available.

• Preparing users for the coming of IRS is essential in order
to be ready when the first data is being acquired. Test data
are provided by EUMETSAT to familiarise them with these
future observation format.

The main objectives of this study are the analysis of the
different sensitivities of IRS observations and a selection of
information to provide a first list of IRS channels able to achieve
the expected improvements for NWP. To carry out this work, we
have developed a large database of synthetic IRS observations,
background and ”realistic” atmospheric profiles. In order to create
this database, we place this work within a one-dimensional
framework with synthetic observations. Finally, we have selected
IRS channels, retaining the most informative ones using a method
derived from Rodgers’ information theory (Rodgers 1996) and
used for the selection of AIRS (Fourrié and Thépaut 2003) or IASI
(Collard 2007; Coopmann et al. 2020b) channels for example.

Section 2 describes in more details the instrumental and spectral
characteristics of IRS and Section 3 presents a sensitivity analysis
of IRS channels to thermodynamics and atmospheric chemistry,

as well as their weighting functions and Jacobians. Then, Section
4 presents the different steps that led to the setting up of IRS
observations and a synthetic observation database that can be used
for the channel selection carried out in Section 5. Finally, Section
6 will deal with the conclusions and propose perspectives for
future studies.

2. IRS caracteristics

The IRS instrument will simultaneously acquire a large number
of spectral soundings using a bi-directional detector array in two
spectral bands (Table 1).

Band 1 Band 2

Number of channels 881 1079

Wave number [cm−1]
679.7034 -

1210.4391

1599.7688 -

2250.5427

Wave length [µm] 8.3 - 14.7 4.4 - 6.3

Max Optical Path Difference [cm] 0.8290 0.8282

Unapodized sampling rate [cm−1] 0.6031 0.6037

Table 1. IRS spectral specifications. Credit: EUMETSAT

Thus the Earth’s disc will be measured by a sequence of square
sub-images called Dwell. The coverage of the Dwells will be
stepped in an east/west direction to form a sounding line, before
moving northward to form a new one. The complete disc formed
by these Dwells will be separated into 4 Local Area Coverage
zones (LAC) as shown in Figure 1. These 4 LAC will be defined
and scanned sequentially. Each Dwell will be measured in 10 s
with a coverage of 640 x 640 km2 at nadir. Each Dwell will
contain 160 x 160 pixels with a spatial sampling distance of
4 x 4 km at nadir and approximately 4 x 7 km over Europe. Europe

Figure 1. MTG Infra-Red Sounder dwell coverage. Credit: EUMETSAT
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located in LAC 4 will be observed every 30 min. Below are the
technical specifications of the instrument (EUMETSAT):

• Volume: 1.4 x 1.6 x 2.2 m3

• Mass: 400 kg
• Power: 750 W
• Radiometric measurement ranges between 180 K and

313 K (equivalent black-body temperature)
• Spectral radiometric noise (excluding spectral calibration)

at 280 K black-body: between 170 mK and 900 mK
depending on the considered wave number inside the band
of interest

3. Preliminary study

3.1. Radiative Transfer Model

In order to evaluate the IRS sensitivity, calculate the Jacobians
and simulate IRS radiances, we used the Radiative Transfer
Model (RTM) RTTOV which is developed and maintained by the
Satellite Application Facility (SAF) of EUMETSAT for NWP. In
the RTTOV algorithm, the input atmospheric profiles (temperature
and humidity) are often variable and provided by the users, the
other constituents such as O3, CO2, CH4, CO, N2O, etc. can
also be provided or are assumed to be constant profiles in time
and space (depending on the version of the coefficients). For our
sensitivity study, all thermodynamic and chemical profiles will be
variable.

3.2. Sensitivity Analysis

A spectral sensitivity study on the bands of the IRS spectrum was
conducted using the RTTOV version 12 (Saunders et al. 2018).

We used the method developed by (Gambacorta and Barnet
2013) which consists in evaluating the brightness temperature
response to a perturbation for each atmospheric constituent
separately: temperature (T), skin temperature (Tskin), water
vapour (q), ozone (O3), carbon dioxide (CO2), methane (CH4),
carbon monoxide (CO), nitrous oxide (N2O) and sulfur dioxide
(SO2). The brightness temperature response (∆BT) is calculated
by the difference between simulations with perturbed profiles and
simulations with unperturbed profiles. We used 6 atmospheric
profiles spread over the globe from the (Matricardi 2008)
database which we collocated with the space-time coordinates and
instrumental characteristics of IRS. The vertical profiles of each
variable have been modified by a constant perturbation typical of
atmospheric variability whose values are:

• T: 1 K
• Tskin: 1 K
• q: 10 %
• O3: 10 %
• CO2: 1 %
• CH4: 2 %
• CO: 1 %
• N2O: 1 %
• SO2: 1 %

Figure 2 shows the sensitivity analysis of the IRS channels
(1960) by averaging the ∆BT over the 6 atmospheric profiles.
It can be seen that the IRS instrument is potentially sensitive
to all the variables evaluated here. However, the use of IRS to
observe methane seems to be complex since the spectrum of
band 1 stops at the beginning of the CH4 absorption band. We
considered that channels with a ∆BT greater than 0.01 K are
sensitive to the studied species. Thus, IRS is a suitable candidate
for the observation of atmospheric temperature and water vapour,
surface properties and also for the observation and monitoring of
the atmospheric composition of species such as O3, CO2, CO,
N2O and SO2.

3.3. Weighting function and Jacobians

In order to evaluate the sensitivity of these variables according
to the vertical in the atmosphere, we calculated the Weighting
Functions and Jacobians using the RTTOV RTM with the 6
previous profiles. Figure 3 shows the average for these 6 profiles of
the normalized Weighting Functions, the normalized Jacobians of
water vapour, ozone, carbon dioxide, methane, carbon monoxide,
nitrogen oxide, sulphur dioxide and the Jacobians of temperature
as a function of pressure and skin temperature for the 1960 IRS
channels. The Jacobian shows to which levels in the atmosphere
the brightness temperature at given wavenumber is sensitive, with
respect to temperature, humidity or concentrations of the different
gases present in our case. The Jacobian matrix is denoted H in the
following.

It can be seen in Figure 3, that IRS channels are mainly sensitive
in the troposphere for all atmospheric variables except for
temperature and carbon dioxide which has early band 1 channels
sensitive in the stratosphere and UTLS (Upper Troposphere Lower
Stratosphere). Ozone band has also sensitive channels in these
same parts of the atmosphere. It can be noted that Jacobians of
temperature and water vapour are mainly sensitive in the lower
troposphere for channels located in the first atmospheric window
between 770 and 970 cm−1.
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Figure 2. Sensitivity analysis of IRS brightness temperature to temperature, water vapour, ozone and skin temperature (a) and to carbon dioxide, methane, carbon
monoxide, nitrous oxide and sulfur dioxide (b).
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(a) Normalized Weighting Function w.r.t IRS channels
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(b) Temperature Jacobians w.r.t IRS channels
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(c) Normalized Water Vapour Jacobians w.r.t IRS channels
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(d) Normalized Ozone Jacobians w.r.t IRS channels
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(e) Normalized Carbon Dioxide Jacobians w.r.t IRS channels
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(f) Normalized Methane Jacobians w.r.t IRS channels
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(g) Normalized Carbon Monoxide Jacobians w.r.t IRS channels
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(h) Normalized Nitrous Oxide Jacobians w.r.t IRS channels
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(i) Normalized Sulfur Dioxide Jacobians w.r.t IRS channels

0 400 800 1200 1600
IRS channel number

0.00
0.25
0.50
0.75
1.00

(j) Skin Temperature Jacobians w.r.t IRS channels
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Figure 3. Mean of Normalized Weighting Function (a), Temperature Jacobians (b), Normalized Water Vapour (c), Ozone (d), Carbon Dioxide (e), Methane (f), Carbon
Monoxide (g), Nitrous Oxide (h), Sulfur Dioxide (i) Jacobians with respect to pressure and Skin Temperature Jacobians (j) for IRS channels.

4. Database

4.1. Realistic atmospheric data

In order to carry out this study, we have set up a large database
of atmospheric profiles spread over the IRS observation disc
(max zenithal angle of 65 ◦). To do this, we randomly selected
coordinates in the 4 LACs for 7458 cases for the dates of
15 July and November 2016, day and night, on land and sea.
Longitudes, latitudes, zenith and azimuth angles for the IRS
instrument were provided by EUMETSAT and the solar zenith and
azimuth angles have been calculated for these study cases. Finally,
we extracted atmospheric profiles (temperature, humidity, ozone,

cloud fraction, cloud liquid water, cloud solid water) and surface
parameters (surface pressure, skin temperature, temperature at 2
metres, humidity at 2 metres, zonal and meridional wind at 10
metres) for the 7458 case studies. The profiles are extracted from
a research configuration of the ARPEGE NWP global model at
Météo-France (Coopmann et al. 2020a). This database will be
used for the construction of the background profiles used as a
priori and the synthetic observations. It will be considered as the
reality (xt) in the rest of the study. Since the ARPEGE profiles
are on 105 levels, we have interpolated onto 101 levels in order to
have the same pressure levels as the IRS coefficients provided for
the RTTOV RTM.
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4.2. Background atmospheric data

In order to produce the background profiles and IRS observations,
we have chosen the method used in an OSSE (Observing System
Simulation Experiment) context. In a first step, the background
profiles were generated from the database of ”true” profiles
perturbed with the addition of background-errors such as:

xb = xt +B1/2.ηb (1)

where xb is the perturbed background profile, xt is considered
as the ”true” profile, ηb is a random vector drawn from a
Gaussian distribution with zero mean and unit standard deviation
and B1/2 is the square root of the background-error standard
deviations determined from a multi-variate background-error
covariance matrix B. The latter is derived from the Coopmann
et al. (2020b) study and calculated using the NMC (The National
Meteorological Center) method (Parrish and Derber 1992) over
one year of data for temperature, humidity, ozone and skin
temperature.

4.3. Observation data

A major difficulty of this study is that no IRS observations
are already available. To compensate for this lack of data, a
framework is proposed for generating synthetic observations that
are close to reality. As for background profiles, IRS observations
are calculated from perturbed simulations with the addition of
observation-errors such as:

y = H(xt) +R
1/2
NE∆T.η

o (2)

where y is the perturbed IRS observations, H(xt) is the simulated
observations from ”true” profiles, ηo is a random vector drawn
from a Gaussian distribution with zero mean and unit standard
deviation and R

1/2
NE∆T is the square root of the observation-error

covariance matrix (R).
As a first approximation, the diagonal R matrix was constructed

using the instrumental noise values provided by EUMETSAT. The
IRS noise is given in terms of the equivalent noise of temperature
difference at 280 K NE∆T(Tref). For the 7458 case studies,
R matrices were constructed independently from the converted
NE∆T(T) for the corresponding scene temperature T with the
formula:

NE∆T(T) = NE∆T(Tref).
∂B/∂T(Tref)

∂B/∂T(T)
(3)

where (Tref ) denotes values at 280 K, (T) denotes values at the
scene temperature and (B) is the Planck function. This conversion
was applied for each channel and each study case.

To simulate IRS observations, we chose to use the RTTOV
RTM version 12. Atmospheric profiles and surface parameters
from xt were used as input to the RTM. Moreover, having cases on
land and sea and in order to increase the realism of the simulations,
we used the land emissivity values from the Combined ASTER
MODIS Emissivity over Land (CAMEL) (Borbas et al. 2018)
and the emissivity values over sea from a surface emissivity
model (IREMIS) (Saunders et al. 2017) available in RTTOV.
Finally the simulations were performed in clear and cloudy
skies. To take clouds into account, we used the microphysical
properties assembled in the Optical Properties of Aerosols and
Clouds (OPAC) software package (Hess et al. 1998) for liquid
water considering maritime and continental stratus and the optical
properties of ice clouds provided by Baran 2018 for solid water
(Vidot and Brunel 2018). Here, the simulations are performed
without apodisation.

Thus, we simulated IRS observations for the 7458 case studies.
Figure 4 shows the mean (a) and standard deviation (b) of the
simulated spectra for the 1960 channels in clear (blue) and cloudy
(grey) sky. As expected, it can be seen that the means are lower in
cloudy sky for the atmospheric window channels and near-surface
channels. Inversely, these same channels have higher standard
deviations than in clear sky indicating a much greater variability
induced by the presence of clouds.

4.4. Cloud detection

One of the main complexities in the assimilation of infra-red
observations is the consideration of clouds. Indeed, a large part
of the infra-red spectrum is sensitive to clouds. This can be
problematic because, as (Fourrié and Rabier 2004; McNally
2002) show, 90 % of the pixels of the IASI instrument are
totally or partially contaminated by clouds. In order to avoid this
under-use of observation, the major NWP centres have developed
methods to assimilate clear channels above clouds. Among them,
the (McNally and Watts 2003) Cloud Detection Scheme allows
the detection of channel affected by the presence of a cloud.

Within the framework of this study, it is important to assess the
sensitivity of IRS observations to clouds as well as the capacity of
the scheme to detect them. To achieve this, we used the ECMWF
Aerosol and Cloud Detection Software which uses the method
given by (McNally and Watts 2003) available on the NWPSAF
website. To reveal the radiative effect of the cloud and to separate
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Figure 4. Means (a) and standard deviations (b) of IRS spectra simulated in brightness temperature from RTTOV in clear (blue) and cloudy (grey) sky for the 1960
channels.
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it from other contributions, the cloud detection algorithm works
by taking the background departures (i.e., the difference between
the observed and simulated clear brightness temperature (BT))
and looking for the signature of opacity that is not included in
the clear-sky calculation (i.e. cloud). To do this, the channels are
first ranked in the vertical, according to their height assignments
(Eresmaa 2020).

In this section, we have two main objectives;

• Step 1: to evaluate the ability of the algorithm to correctly
classify the clear/cloudy channels based only on the ideal
IRS simulations

• Step 2: to estimate the impact of the instrumental noise
on the cloud detection when creating the synthetic IRS
observation

For this first step we provide the cloud detection software
with the ideal IRS simulations in clear (Hclear(x

t)), cloudy
(Hcloud(x

t)) and the associated height assignments calculated
in the previous section for the 1960 channels and 7458 pixels.
Thus, the algorithm provides a clear/cloudy identification for all
channels and the full data set based on the difference:

δstep1 = Hcloud(x
t)−Hclear(x

t) (4)

The figure 5 shows the frequency of IRS channels flagged
clear for the 1960 channels and 7458 pixels. The behaviour is
consistent with the results obtained by (McNally and Watts 2003)
which show that channels located in the strongly absorbing parts
of the spectrum (CO2 absorption band from 680 to 740) are
generally clear and are correctly evaluated. Also that channels
in the atmospheric window are rarely clear and larger increases
in absorption due to water vapour result in a marked increase
in the occurrence and detection of clear channels. Nevertheless,
we notice that our simulated observations appear clearer overall.
This can be explained by the ideal framework used in this study,
as explained by (Masutani et al. 2010), by a degree of cloud
contamination of the measurements that may be underestimated.
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Figure 5. Frequency of IRS channels flagged clear.

In the same step, we can evaluate the clear/cloudy flagged
channels as a function of the geophysical parameters used to
simulate the all-sky observations in order to identify a consistency
between the sensitivity level of the flagged channel and the
cloud height. Thus, Figure 6 provides an example of the cloud
fraction for three different cases; high (a), medium (b) and low
(c) clouds associated with the normalized weighting functions of
the identified clear (green) and cloudy (grey) channels. It can be
seen that the cloud detection algorithm seems to work well by
identifying as clear only those channels with a sensitivity peak
above the cloud. In case (a) 42 channels are identified clear, 206
in case (b) and 588 in (c). Despite an overestimation of clearly
identified channels, the algorithm is able to consistently classify
IRS channels.
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Figure 6. Normalized Weighing Functions of the IRS channels (identified clear in
green and cloudy in grey) of band 1 (left) and cloud fraction (right) as a function of
pressure for cases of high (a), medium (b) and low (c) clouds.

For the second step, we proceed in the same way with the
difference that the cloud simulation is perturbed by the IRS
instrumental noise (Equation 2). This allows us to evaluate the
effect of the noise on the ability of the software to correctly
classify the clear/cloudy channels:

δstep2 = ycloud −Hclear(x
t) (5)

Figure 7 shows the agreement rate between step 1 and step 2
according to the 1960 channels for the 7458 pixels considered.
It can be seen that the calculation of the synthetic observations
used in step 2, slightly introduce cloudy signal in the channels
by 5 % over the whole spectrum (in yellow) and clears (in
orange) the channels between 5 and 10 % in the CO2 and
water vapour absorption bands. Thus, the calculation of synthetic
observations changes very slightly the nature of the observation in
terms of cloud detection. These results will not have any impact
in our study since we have chosen to work only in clear sky
conditions. However, these results show that in a more operational
assimilation framework, a misclassification of clear1-cloudy2



Analysis and Channel selection of MTG-IRS for NWP models 7

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900
IRS channel number

0

20

40

60

80

100
Po

ur
ce

nt
ag

e 
[%

]

Clear 1 - Clear 2 Clear 1 - Cloud 2 Cloud 1 - Clear 2 Cloud 1 - Cloud 2

Figure 7. Agreement rate between step 1 and step 2 as a function of the IRS channel numbers for the 7458 study cases.

(in yellow) would prevent the assimilation of some valuable
information, while cloudy1-cloudy2 (in orange) would introduce
wrong information in the system. The cloud detection algorithm
allows to highlight 1700 pixels of which all channels are identified
as clear.

4.5. Observation-errors

The impact of the observation-errors in the data assimilation
process is very important. This is why it is essential to estimate
accurately the observation-error covariances R in this context
which uses synthetic observations (Vittorioso et al. 2021).
For several years, innovative techniques have been used to
achieve this by deriving estimates of the real observation-error
from the departure statistics from assimilation systems (e.g.
Hollingsworth and Lönnberg 1986; Desroziers et al. 2005). These
methods make it possible to diagnose both the variances and
covariances of observation-error, including cross-channel error
correlations allowing an accurate estimate of the total errors that
characterise the observation (instrumental noise, error of spatial
representativeness, error in the calculation of radiative transfer,
etc.).

This work is exploratory since we try to estimate real
observation-errors for synthetic observations. This is a difficult
task but achievable within a precise synthetic observation
framework. Indeed, (Privé et al. 2013) have shown that an
accurate representation of observation-errors is also important in
a synthetic observation context. Nevertheless, the estimated error
in this case will be smaller than the error of the real observations.

As a first step, we estimated the potential bias of these
synthetic observations. We calculated the innovations of each
IRS channel for the 1700 profiles by computing the difference
between the synthetic observations (y) and the simulations of
observations using the background profiles within the RTTOV.
The average of the first-guess departures was used to make a bias
correction applied to the observations (y). This bias correction
is nevertheless slight since the mean of (y −H(xb)) values are
between 0.2 and -0.2 K.

In order to accurately estimate the variances and covariances
of IRS observation-error, as well as inter-channel correlations,
we have chosen to use the method developed in (Coopmann et al.
2020b). It consists in using the values of the standard deviations of

the first-guess departures previously calculated as a first estimate
for standard deviations of observation-error. This diagonal R
matrix determined is the starting point of the computation.
Then, we have used the NWP SAF One Dimensional Variational
(1D-Var) data assimilation algorithm (Havemann and Smith
2020) to apply the Desroziers method to our database and thus to
precisely estimate the IRS observation error-covariance matrix R.

Thus the 1D-Var experiment was carried out on the 1700
cases previously considered as clear (see above). We used
the background profiles (xb on 101 levels) calculated from
Equation 1, associated with the multi-variate B matrix mentioned
previously. The synthetic IRS observations (y on 1960 channels)
are calculated from Equation 2, associated with the diagonal R
matrix estimated by the standard deviations of the First-Guess
departure. 1D-Var data assimilation experiment minimized
on temperature between 1000 and 0.1 hPa, humidity between
1000 and 100 hPa, ozone between 1000 and 0.1 hPa and skin
temperature.

To diagnose the observation error covariance matrices R, the
Desroziers method is commonly used in NWP centres (Weston
et al. 2014; Stewart et al. 2014; Bormann et al. 2016; Coopmann
et al. 2020b;). Since the real state of the atmosphere is not known,
the method shows that it is possible to estimate in the space of the
observations, the R matrix with the deviations of the observations
from the background and the analysis. Given several assumptions,
the previous 1700 analyses allow to statistically diagnose the
observation-error covariance matrix such as:

R = E[do
a(do

b)
T] (6)

where E[.] is the expectation operator, do
a = y −H(xa) is

the Analysis departure and do
b = y −H(xb) is the First-Guess

departure. The diagnosed R matrix contains the variances and
covariances of IRS observation-error taking into account the
cross-channel errors for the 1960 channels considered.

The instrumental noise values of IRS at 280 K are shown
in grey, the values of First-Guess departures standard deviation
(used as a first approximation of observation-errors) in red and
the values of diagnosed observation-errors in blue in Figure 8
(a). Then Figure 8 (b) shows the diagnosed observation-error
correlation matrix. The First-Guess departures standard deviation
(in red) have values close to instrumental noise (0.3 to 1.0 K) up
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Figure 8. Observation-error standard deviation from FG departures standard deviation in red line, diagnosed observation-errors from Desroziers method using 1D-Var
data assimilation system in blue line and instrumental noise at 280 K in grey with respect to 1960 IRS channel number and wave-number [cm−1] (bands 1 & 2) over the
set of 1700 clear atmospheric profiles (a). Diagnostic of IRS observation-error correlation with respect to the same channels as before (b).

to 700 cm−1 in the CO2 absorption band. They are then always
higher than instrumental noise and are between 0.5 and 1.7 K in
atmospheric windows (700 - 1000 cm−1 and 1060 - 1250 cm−1),
between 0.5 and 1.4 K in the ozone absorption band (1000 -
1060 cm−1) and between 0.5 and 2.0 K in the water vapour
absorption band (1600 - 2250 cm−1).

It is noticeable that the First-Guess departures standard
deviation for atmospheric window channels are high values.
This indicates a presence of a incorrect signal in some pixels
of the 1700 clear cases considered and is probably due to the
perturbation of skin temperatures used to obtain the background
value as indicated in the cloud detection study previously
performed. However, the diagnostic of observation-errors
allows this effect to be smoothed out and consistent values
between instrumental noise and observation-errors of FG
departures standard deviation can be found. These diagnosed
observation-errors are close to the errors generally obtained for
infra-red sounders. Nevertheless, these errors are probably lower
than those we would have with real observations. Moreover, the
estimation of these errors takes into account this instrumental
noise and radiative transfer errors but does not take into account
errors related to spatial representativeness for example. In this
context, the diagnostic of the R matrix allows a first estimation
of the observation-errors for the IRS channels. The observation
errors diagnosed for the channels of the ozone absorption band
are lower than those of IASI (between 0.5 - 1.5 K) for example.
This is probably due to the limitation of the ozone variability
within the IRS disk which does not provide measures over the
poles.

The Figure 9 (b) shows higher error correlation values (0.2
- 0.4) for the channels and inter-channels used for temperature
sounding in the lower atmosphere between 700 and 750 cm−1,
as well as for the first atmospheric window between 750 and
950 cm−1. The error correlation values for the channels in
the ozone absorption band are about 0.2 and then 0.25 for the
second atmospheric window between 1060 et 1200 cm−1. Finally,
the error correlation values are low for the channels of the
water vapour band. These error correlation values are lower than
expected in the same way that the errors are generally lower for
these synthetic observations compared to real observations (Privé

et al. 2013). This diagnosed R matrix will be used in the following
to perform IRS channel selection.

5. Channel selection

5.1. Methodology

The observations measured by the IRS instrument will represent
an impressive amount of data. This high volume of information
constitutes a challenge for data storage and transmission. The
computational cost of assimilating all IRS channels would
be too high and inefficient due to redundant information.
Typically, EUMETSAT disseminate a smaller quantity of
channels especially selected to improve the NWP models of
weather centres. The aim is to make a precise selection of all
IRS channels to provide the optimal information for the NWP
models. Currently, the channels that can provide information on
atmospheric temperature, water vapour and surface temperature
represent the most useful observations for improving weather
forecasts. In addition, several NWP centres have included ozone
as a variable in the models because it improves the assimilation
of specific channels in the infra-red, which are sensitive to ozone,
temperature and water vapour, and it allows better accounting of
radiative feedback, which improves weather forecasts (Derber and
Wu 1998; Lahoz et al. 2007; John and Buehler 2004; Ivanova et al.
2017; Coopmann et al. 2018; Dragani et al. 2018; Coopmann et al.
2020a). Thus, we have selected the most informative channels in
temperature, water vapour, skin temperature and ozone.

To carry out this selection, we applied a method that is
widely used in the scientific community. This is the Degrees
of Freedom for Signal (DFS), which allows to select a set of
optimal channels having the largest information content for each
atmospheric profile as described by (Rodgers 1996, 2000). The
DFS is based on the information theory and provides a measure of
the gain in information gathered by the observations according to
the formula:

DFS = Tr(I−AB−1) (7)

where Tr denotes the trace, I the identity matrix, B ∈ Rnxn

(n parameters to be retrieved) is the background-error covariance
matrix and A ∈ Rnxn is the analysis-error covariance matrix
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Figure 9. Mean ± standard deviation and min-max values of temperature (a), ozone (b) and humidity (c) profile with respect to pressure over the subset of 60 atmospheric
database. Note that humidity statistics are shown between 1000 and 100 hPa

which is calculated as follow:

A = (B−1 +HTR−1H)−1 = (I−BHTR−1H)−1B (8)

where R ∈ Rmxm (m channels considered) is the
observation-error covariance matrix and H ∈ Rmxn (the
derivatives of each channel with respect to each parameter)
represent Jacobians matrix for all IRS channels.

As we have seen previously, some IRS channels, like others
in the infra-red, are sensitive to several variables (multi-sensitive
channels). As we have a diagnosed observation-error covariance
matrix including inter-channel errors, we have carried out this
selection by using as a figure of merit the total DFS taking into
account the DFS of temperature, water vapour, skin temperature
and ozone, in order to select the most sensitive or poly-sensitive
channels that provide the maximum amount of information, such
as:

DFSTOT = DFST +DFSq +DFSO3
+DFSTskin

(9)

Finally, we chose 60 profiles among all the 1700 clear cases
considered and distributed over the full IRS disk (15 profiles
per LAC) in order to carry out the channel selection and to take
into account different scenarios of atmospheric variability (see
Figure 9). The use of cross-channel error correlations allows
us to consider all channels during selection as well as adjacent
channels. We used the diagnosed observation-error covariance
matrix R, the multi-variate background-error covariance matrix
B and the Jacobian matrix H containing for each profile the
Jacobians of the 1960 IRS channels. For channel selection,
the DFS calculation considers for each profile, 93 levels for
temperature and ozone from 1000 to 0.1 hPa and 53 levels for
humidity from 1000 to 100 hPa.

The first selection step consists in selecting for each of the 60
atmospheric profiles the most informative channel with the highest
total DFS among all IRS channels using a R matrix R1x1. For each
profile, the first selected channel is fixed and a new combination of
this with a second channel from the (1959 - 1) channels is searched
using a R matrix R2x2. The combination giving the highest total
DFS allows to select and fix the second channel. This operation is
repeated as many times as necessary. We have chosen to stop this

process after the selection of 500 IRS channels for each of the 60
profiles since EUMETSAT is limited in the dissemination of data
by the Global Telecommunications System (GTS).

5.2. First step of selection
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Figure 10. Evolution of mean DFS for temperature (red), humidity (blue), ozone
(violet), skin temperature (green) and total (black) during the channel selection over
the subset of 60 atmospheric profiles.

Figure 10 shows that the information content increases very
quickly with only 50 channels which represents a mean total DFS
of 11.20 or 66.7 % of the mean total DFS available with 500
channels (total DFS of 16.79). It is noticeable that the mean DFS
of humidity is slightly higher than the mean DFS of temperature.
This is consistent with the previous sensitivity study which
showed that a very large number of IRS channels are sensitive
to water vapour even those located in the atmospheric window
bands. Two other hypotheses can explain this behaviour. Contrary
to other hyperspectral sounders, IRS observations start further
out in the spectrum at around 680 cm−1 unlike IASI and CrIS
which start at 645 and 650 cm−1 respectively. This deprives IRS
of many strongly absorbing and temperature sensitive channels.
In addition, IASI and CrIS observe in other parts of the spectrum
that are highly sensitive to temperature between 1200 -1600 cm−1

and 2250 - 2400 cm−1 which IRS does not possess. Finally,
these results can also be explained by the background errors in
humidity. Indeed, the models are more wrong in humidity than in
temperature, so the humidity errors are proportionally stronger
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than the temperature errors. Finally, we observe that the average
ozone DFS increases very rapidly to reach a plateau, while the
mean skin temperature DFS reaches with only 3 channels more
than 90 % of the mean skin temperature DFS available with 500
channels.

In order to analyse more specifically the selection process, we
have plotted in Figure 11 a histogram of the percentage of the
number of channels selected on the 60 considered atmospheric
profiles. This means that if a channel is selected for all profiles, it
achieves 100 % selection. Conversely, a channel never selected
among 60 profiles reaches 0 % selection. These percentages
are characterised by spectral band and main applications for
the NWP (temperature sounding in the CO2 absorption band,
humidity sounding in the water vapour absorption band, ozone
absorption band and atmospheric windows) and for all channels.
This histogram shows that approximately 434 channels are
always selected between 50 and 100 % of the time (for 30 to 60
profiles) and that 1526 channels are only selected between 0 and
50 % of the time (for 0 to 30 profiles). This shows an information
redundancy of a large number of channels. Thus, a selection from
the 434 channels should be sufficient to extract the maximum
amount of useful information for numerical weather prediction.
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Figure 11. Percentage of the number of channels selected (up to 500 channels)
on the subsets of 60 atmospheric profiles separeted by spectral group and main
application to temperature sounding (in red), humidity sounding (in blue), ozone (in
violet), atmospheric window (in green) and total (in black) with respect to number
of related profiles.

Among the 1960 considered IRS channels, 151 channels are
always selected from the 60 profiles (100 %), among them, 73
for temperature sounding, 48 in the ozone absorption band, 20 in
atmospheric windows and 10 for humidity sounding (in green in
Figure 12). Overall, there is a decrease in the number of channels
selected up to 60 to 69% selection percentage and then an increase
up to 0 % selection percentage. The number of channels always
selected in the ozone absorption band and in the atmospheric
windows is significant and shows the multi-sensitive properties of
these channels, which can provide a large amount of information.
Finally, 542 channels are never selected, mainly in the water
vapour absorption band and in the atmospheric windows (in red
in Figure 12).
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Figure 12. Location on a typical IRS spectrum in brightness temperature of the
always (green) and never (red) selected channels.

5.3. Results

Once this first step was completed, we sorted these 500
pre-selected channels using two different methods to complete
the final channel selection. The first method consists of selecting
increasingly the most often selected channels while the second
method selects the first rank selected channels. For both methods,
we have separated the selections by packages of 75, 150, 300 and
500 channels. For each of these selections we have calculated
the mean total DFS over 60 profiles. We notice that the first
75 channels selected have a higher mean total DFS than the 75
most selected. Then the selections with 150 channels have an
equivalent mean total DFS. Finally, the selections with 300 and
500 most selected channels have higher mean total DFS than
the first selected channels as shown in Figure 13. To ensure the
robustness of these selections, the latter were used to calculate
the mean total DFS for the 1700 clear profiles. The results are
similar to the values shown in Figure 13. We have therefore
chosen to evaluate the most often selected channel selections in
the following.
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Figure 13. Evolution of the mean total DFS over 60 profiles as a function of the
number of selected channels for the 75, 150, 300 and 500 first selected channels (in
black) and the most selected channels (in red).

Table 2 summarizes the values of mean total DFS for
temperature, humidity, ozone and skin temperature over 60
profiles for the 75, 150, 300, 500 most selected channels and all
channels. It can be seen that the percentage of mean total DFS
available increases rapidly between 75 and 150 channels (9.2 %),
then 6.2 % between 150 and 300 channels and 4.4 % between
300 and 500 channels. A large part of the mean total DFS value is
provided by the mean DFS of temperature and humidity, followed
by the ozone and finally skin temperature components.

To assess the impact of these channel selections on weather
analyses, we performed 1D-Var data assimilation experiments
on the 1700 profiles considered clear. We used the diagnosed
R matrix and the multi-variate B matrix. The data assimilation
process allows to minimize on temperature, humidity, ozone
and skin temperature. These experiments allowed us to calculate
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Temperature DFS Humidity DFS Ozone DFS Tskin DFS Total DFS

75 most
selected channels

3.44 (27.7 %) 3.50 (25.0 %) 1.55 (22.2 %) 0.98 (98 %) 9.47 (26.4 %)

150 most
selected channels

4.98 (35.8 %) 5.01 (35.8 %) 1.78 (25.5 %) 0.99 (99 %) 12.76 (35.6 %)

300 most
selected channels

5.71 (41.0 %) 6.12 (43.7 %) 2.16 (30.9 %) 1.00 (100 %) 14.99 (41.8 %)

500 most
selected channels

6.29 (45.2 %) 6.79 (48.5 %) 2.48 (35.5 %) 1.00 (100 %) 16.56 (46.2 %)

All channels 13.91 13.99 6.98 1.00 35.88

Table 2. Mean of Total, temperature, humidity, ozone and skin temperature DFS over 60 profiles and percentage of available mean DFS for the 75, 150, 300,
500 most selected channels and all channels.
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Figure 14. Vertical profiles of background-error standard deviation (σb) and mean analysis-error standard deviation (σa) for temperature (a), humidity (b) and ozone (c)
and vertical profiles of relative différence between σa and σb for temperature (d), humidity (e) and ozone (f) with respect to pressure. This results are derived from 1D-Var
data assimilation experiments over a set of 1700 atmospheric profiles with different channel selections (75, 150, 300, 500, all channels).
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Figure 15. Location of the 300 selected IRS channels on a typical spectrum by main sensitivity.

analysis-error covariance matrices averaged over the 1700 study
cases. We expect these selections minimize the analysis-error
mainly in temperature and humidity for optimal use in numerical
weather prediction.

We have represented on Figure 14 the vertical profiles of
background-error standard deviation (σb) and mean analysis-error
standard deviation (σa) for temperature (a), humidity (b) and
ozone (c) and the vertical profiles of relative difference between
σa and σb for temperature (d), humidity (e) and ozone (f) with
respect to pressure. The mean of the analysis-error standard
deviations is calculated from the analysis-error covariance
matrices A determined by the 1D-Var experiments over the 1700
cases considered. Data assimilation experiments were performed
for selections of 75, 150, 300, 500 and all channels.

In Figure 14 (a, b, c), the reduction in analysis error is the
greatest in the troposphere and upper stratosphere for temperature
and over the entire troposphere for humidity. The vertical profiles
of analysis error reduction are close between selections of 75 -
150 channels and 300 - 500 channels. Thus, a good compromise
between the quality of the analysis error and the quantity of
used channels would be to select the 300 IRS channel selection.
In Figure 14 (d, e, f) are represented the relative analysis error
reductions compared to the background errors. By selecting 300
channels, the analysis error compared to the background error
can be reduced by up to 48 % for temperature in the troposphere,
up to 65 % for humidity in the Mid-troposphere and up to 17 %
for ozone in the UTLS. These results show the potential for
improvement in weather forecasts by selecting 300 IRS channels
for the NWP.

This selection of 300 channels is shown in Figure 15 on a
typical IRS spectrum per main application for NWP. There are
99 channels mainly selected in the CO2 absorption band and
used to provide information on atmospheric temperature, 55 in
the water vapour absorption band for information on atmospheric
humidity, 70 in the atmospheric windows to provide information
on surfaces but also on temperature and humidity in the lower
troposphere and 76 channels in the ozone absorption band to
provide information on ozone but also on temperature in the
troposphere and stratosphere and humidity in the troposphere. As
seen previously, the ozone and surface channels have multiple
sensitivities making them usable for several applications. This
use is conditioned by the use of an observation error covariance
matrix taking into account cross-channel error correlations. Thus,

in order to extract the maximum amount of information from
the selected channels, a precise estimation of the R matrix is
necessary, which we have tried to do in this study.

6. Conclusions and perspectives

In order to make a first general selection of IRS channels, we
were inspired by the synthetic observation method to build a
database for this work. Our realistic atmospheric state is provided
by the global model ARPEGE (research experiment). A database
of more than 7000 atmospheric profiles was extracted from this
model in order to simulate the satellite observations of IRS using
the RTTOV (version 12) radiative transfer model. The simulations
were carried out under clear and cloudy skies, allowing us to
evaluate the cloudy detection capacity of the IRS channels. A
database of more than 7000 synthetic IRS observations has been
built up and collocated with atmospheric profiles. The latter were
perturbed to obtain background profiles for temperature, humidity,
ozone and skin temperature. This method makes it possible to
obtain an initial database (observations and background) which
can then be used for various studies such as the estimation of
observation errors or the selection of the information content of
IRS.

In this study we used a multi-variate background error
covariance matrix in temperature, humidity, ozone and skin
temperature, calculated in a previous study using the NMC
method over one year of data. In order to extract the maximum
of information from the IRS channels, it is essential to take into
account the cross-channel error correlation. Thus, we calculated
the full observation error covariance matrix taking into account
the inter-channel errors using the Desroziers diagnostic. The
estimation of this R-matrix was performed in a 1D-var data
assimilation experiment using the clear-sky cases. The estimation
of the observation errors shows results consistent with what is
expected for infra-red instruments. The diagnosed observation
error value is between the instrumental noise and the standard
deviations of the first-guess departures (synthetic observations -
simulated observations).

The results obtained for the observation error correlation matrix
show similar behaviour to the other hyperspectral sounders, but
with lower values compared to the correlations obtained for
IASI or CrIS. The largest observations error correlations (0.25
to 0.75 value) were found for CO2 channels sensitive in the
lower troposphere (720-740 cm −1), the sensitive channels in the
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atmospheric windows (742-1010 cm−1 and 1070-1210 cm−1),
in the ozone absorption band (1010-1060 cm −1). Another
group of channels with large observation correlation errors
but in a lesser extent is located in the beginning of the water
vapour sensitive band (1600-1900 cm −1). This estimation of R
provides interesting results but it is important to take into account
the underestimation of errors induced by the use of synthetic
observations.

From this database, we have made a general selection of IRS
channels that can be used for NWP models. The objective is to
provide a first list of the most informative channels before the real
arrival of IRS observations. This selection will also be useful in
the OSSE framework for the regional AROME model, giving us
a channel selection to be simulated and assimilated in the 3D-Var
data assimilation system. The selection of channels was carried
out over the full IRS spectrum using 60 profiles representative
of the atmospheric variability in the IRS disk measurement
area. A selection algorithm was implemented to select the
most informative channels from the DFS (Degree of Freedom
for Signal) method. This selection is carried out iteratively by
selecting the most informative channel in temperature, humidity,
ozone and skin temperature, then the combination of the first with
the second most informative, and so on. We stopped the selection
at 500 channels, which is generally the broadcast limit on the
GTS at EUMETSAT.

The mean evolution of the DFS shows that the IRS channels are
slightly more informative in humidity than in temperature. This
is due to a broad band of sensitivity to water vapour in the IRS
spectrum and also to a high sensitivity of some channels to water
vapour in the atmospheric windows. Two other hypotheses may
explain this behaviour; the non-observation of parts of the infrared
spectrum that are highly sensitive to temperature compared to
other hyperspectral sounders and the higher humidity background
errors than temperature. The information content reaches more
than 66 % of the mean total DFS available over 500 channels (T,
q, O3 and Tskin) with only 50 channels. Over the 60 profiles used
for selection, 151 channels are always selected and 542 are never
selected. The always selected channels consist of 73 channels
that are mainly sensitive to temperature, 48 to ozone, 20 in
atmospheric windows and 10 to humidity. The sensitivity analysis
carried out at the beginning of the study shows that the channels
in the atmospheric windows are also sensitive to temperature
and humidity in the troposphere and some channels in the ozone
absorption band are also sensitive to temperature and humidity in
the troposphere and to temperature in the stratosphere. The use of
an R-matrix taking into account inter-channel error correlations
allows the extraction of all the information that these channels
can provide.

We evaluated the information-providing capacity of several
channel selections (75, 150, 300, 500, all channels) from 1D-Var
data assimilation experiments on 1700 clear cases. The channel
selections were evaluated by their ability to reduce the analysis
error relative to the background error. The results show that
channel selections mainly reduce the analysis error in the
troposphere in temperature and humidity and more slightly in the
upper stratosphere. It can be seen that the (75 and 150) and (300
and 500) channel selections provide close results in analysis error
reduction to each other.

Our objective is to make the best compromise between quantity
and quality of information. We have thus chosen the selection of
300 IRS channels which allows to reduce on mean the analysis
error in temperature in the troposphere by 48 % compared to the

background error, by 65 % for humidity in the mid-troposphere
and by 17 % for ozone at the UTLS. This selection consists
of 99 channels located in the CO2 absorption band primarily
used for atmospheric temperature sounding, 55 in the vapour
absorption band primarily for atmospheric humidity sounding,
76 in the ozone absorption band that can provide information for
temperature and humidity and 70 in the atmospheric windows for
skin temperature, surfaces, temperature and humidity in the lower
troposphere.

This first selection of channels has been made within a general
framework for global NWP. We have taken into account general
atmospheric information over the full IRS disk at surface up
to 0.1 hPa. In order to be able to use this selection of 300 IRS
channels for the AROME model, it is important to identify the
sensitive channels in the upper stratosphere since these will not
be usable in AROME having a model top at 10 hPa. An additional
channel sensitivity study from RTTOV shows that about 280 IRS
channels are sensitive above 10 hPa and 58 are present in our
channel selection (red circles in Figure 16). These are channels
located in the CO2 and ozone absorption band as shown in Figure
26. Thus, 242 channels of our selection will be potentially usable
in our 3D-Var AROME data assimilation system (black circles in
Figure 16).
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Figure 16. Representation of the sensitive IRS channels above 10 hPa (in red)
among the 300 channels selected on a typical spectrum.

The IRS observations are expected to be distributed in the
format of principal components (PCs). As we do not yet have
the necessary information, we have carried out this study based
on brightness temperatures (raw radiances). Data compression
from PCA-based approaches has the advantage of drastically
reducing data volume and reduces noise. However, the variations
of atmosphere signals are more correlated across hyperspectral
channels. This implies higher observation error correlations for
reconstructed radiances. Hence the need for a specific study of the
observation error diagnostics from these reconstructed radiances
to take this behaviour into account. A study will be conducted on
this subject.

A. List of the selection of the 300 new IRS channels
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Channel number Wave-number Main sensitivity

0001 679.70 Temperature

0002 680.31 Temperature

0003 680.91 Temperature

0004 681.51 Temperature

0005 682.12 Temperature

0006 682.72 Temperature

0007 683.32 Temperature

0008 683.92 Temperature

0009 684.53 Temperature

0010 685.13 Temperature

0011 685.74 Temperature

0012 686.34 Temperature

0013 686.94 Temperature

0014 687.54 Temperature

0015 688.15 Temperature

0016 688.75 Temperature

0017 689.35 Temperature

0018 689.96 Temperature

0019 690.56 Temperature

0020 691.16 Temperature

0021 691.77 Temperature

0022 692.37 Temperature

0023 692.97 Temperature

0024 693.58 Temperature

0025 694.18 Temperature

0026 694.78 Temperature

0027 695.38 Temperature

0028 695.99 Temperature

0029 696.59 Temperature

0030 697.19 Temperature

0031 697.80 Temperature

0032 698.40 Temperature

0033 699.00 Temperature

0034 699.61 Temperature

0035 700.21 Temperature

0036 700.81 Temperature

0037 701.41 Temperature

0038 702.02 Temperature

0039 702.62 Temperature

0040 703.23 Temperature

0041 703.83 Temperature

0043 705.03 Temperature

0044 705.64 Temperature

Channel number Wave-number Main sensitivity

0045 706.24 Temperature

0046 706.84 Temperature

0047 707.45 Temperature

0049 708.65 Temperature

0052 710.46 Temperature

0054 711.67 Temperature

0056 712.87 Temperature

0057 713.48 Temperature

0058 714.08 Temperature

0059 714.68 Temperature

0060 715.29 Temperature

0063 717.10 Temperature

0064 717.70 Temperature

0065 718.30 Temperature

0066 718.91 Temperature

0067 719.51 Temperature

0068 720.11 Temperature

0069 720.72 Temperature

0070 721.32 Temperature

0073 723.13 Temperature

0082 728.55 Temperature

0083 729.16 Temperature

0084 729.76 Temperature

0085 730.37 Temperature

0086 730.97 Temperature

0087 731.57 Temperature

0090 733.38 Temperature

0091 733.98 Temperature

0092 734.59 Temperature

0095 736.40 Temperature

0096 737.00 Temperature

0097 737.60 Temperature

0101 740.01 Temperature

0102 740.62 Temperature

0103 741.22 Temperature

0104 741.82 Temperature

0105 742.43 Temperature

0106 743.03 Temperature

0108 744.24 Temperature

0109 744.84 Temperature

0111 746.04 Temperature

0114 747.86 Temperature

0115 748.46 Temperature
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Channel number Wave-number Main sensitivity

0116 749.06 Temperature

0121 752.08 Temperature

0122 752.68 Temperature

0124 753.89 Temperature

0125 754.49 Temperature

0126 755.09 Temperature

0127 755.70 Temperature

0129 756.90 Temperature

0131 758.11 Temperature

0141 764.14 Temperature

0147 767.76 Temperature

0149 768.96 Temperature

0152 770.77 Temperature

0160 775.60 Window

0161 776.20 Window

0162 776.80 Window

0166 779.22 Window

0169 781.03 Window

0173 783.44 Window

0174 784.04 Window

0175 784.64 Window

0176 785.25 Window

0187 791.88 Window

0188 792.49 Window

0189 793.09 Window

0190 793.69 Window

0192 794.90 Window

0194 796.10 Window

0195 796.71 Window

0197 797.91 Window

0198 798.52 Window

0199 799.12 Window

0200 799.72 Window

0202 800.93 Window

0204 802.13 Window

0206 803.34 Window

0207 803.94 Window

0208 804.55 Window

0210 805.75 Window

0214 808.17 Window

0222 812.99 Window

0224 814.20 Window

0242 825.05 Window

Channel number Wave-number Main sensitivity

0245 826.86 Window

0267 840.13 Window

0268 840.73 Window

0281 848.57 Window

0284 850.38 Window

0286 851.59 Window

0287 852.19 Window

0288 852.80 Window

0289 853.40 Window

0320 872.10 Window

0331 878.73 Window

0345 887.17 Window

0377 906.47 Window

0388 913.11 Window

0439 943.87 Window

0514 989.10 Window

0529 998.14 Window

0531 999.35 Window

0533 1000.56 Ozone

0536 1002.37 Ozone

0538 1003.57 Ozone

0540 1004.78 Ozone

0542 1005.99 Ozone

0543 1006.59 Ozone

0544 1007.19 Ozone

0548 1009.60 Ozone

0549 1010.21 Ozone

0550 1010.81 Ozone

0556 1014.43 Ozone

0561 1017.44 Ozone

0562 1018.05 Ozone

0568 1021.67 Ozone

0569 1022.27 Ozone

0570 1022.87 Ozone

0572 1024.08 Ozone

0573 1024.68 Ozone

0574 1025.28 Ozone

0576 1026.49 Ozone

0577 1027.09 Ozone

0578 1027.70 Ozone

0579 1028.30 Ozone

0580 1028.90 Ozone

0581 1029.51 Ozone
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Channel number Wave-number Main sensitivity

0582 1030.11 Ozone

0583 1030.71 Ozone

0584 1031.32 Ozone

0586 1032.52 Ozone

0587 1033.13 Ozone

0588 1033.73 Ozone

0589 1034.33 Ozone

0590 1034.93 Ozone

0592 1036.14 Ozone

0593 1036.74 Ozone

0594 1037.35 Ozone

0595 1037.95 Ozone

0596 1038.55 Ozone

0597 1039.16 Ozone

0598 1039.76 Ozone

0599 1040.36 Ozone

0600 1040.97 Ozone

0601 1041.57 Ozone

0602 1042.17 Ozone

0606 1044.58 Ozone

0609 1046.39 Ozone

0611 1047.60 Ozone

0614 1049.41 Ozone

0615 1050.01 Ozone

0616 1050.62 Ozone

0617 1051.22 Ozone

0618 1051.82 Ozone

0619 1052.42 Ozone

0620 1053.03 Ozone

0621 1053.63 Ozone

0623 1054.84 Ozone

0624 1055.44 Ozone

0625 1056.04 Ozone

0626 1056.65 Ozone

0627 1057.25 Ozone

0628 1057.85 Ozone

0629 1058.46 Ozone

0630 1059.06 Ozone

0631 1059.66 Ozone

0632 1060.26 Ozone

0633 1060.87 Ozone

0634 1061.47 Ozone

0635 1062.07 Ozone

Channel number Wave-number Main sensitivity

0636 1062.68 Ozone

0637 1063.28 Ozone

0638 1063.88 Ozone

0639 1064.49 Ozone

0640 1065.09 Ozone

0641 1065.69 Ozone

0642 1066.30 Ozone

0643 1066.90 Ozone

0656 1074.74 Window

0683 1091.02 Window

0691 1095.85 Window

0709 1106.70 Window

0713 1109.12 Window

0717 1111.53 Window

0733 1121.18 Window

0746 1129.02 Window

0757 1135.65 Window

0761 1138.07 Window

0784 1151.94 Window

0806 1165.21 Window

0820 1173.65 Window

0821 1174.25 Window

0822 1174.86 Window

0823 1175.46 Window

0825 1176.66 Window

0841 1186.31 Window

0842 1186.92 Window

0844 1188.12 Window

0859 1197.17 Window

0862 1198.98 Window

0886 1602.18 Water-vapour

0890 1604.60 Water-vapour

0892 1605.81 Water-vapour

0896 1608.22 Water-vapour

0898 1609.43 Water-vapour

0900 1610.64 Water-vapour

0901 1611.24 Water-vapour

0908 1615.46 Water-vapour

0909 1616.07 Water-vapour

0911 1617.28 Water-vapour

0912 1617.88 Water-vapour

0920 1622.71 Water-vapour

0921 1623.31 Water-vapour
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Channel number Wave-number Main sensitivity

0923 1624.52 Water-vapour

0924 1625.12 Water-vapour

0926 1626.33 Water-vapour

0927 1626.93 Water-vapour

0928 1627.54 Water-vapour

0932 1629.95 Water-vapour

0938 1633.58 Water-vapour

0939 1634.18 Water-vapour

0940 1634.78 Water-vapour

0941 1635.39 Water-vapour

0942 1635.99 Water-vapour

0943 1636.59 Water-vapour

0946 1638.40 Water-vapour

0951 1641.42 Water-vapour

0954 1643.23 Water-vapour

0955 1643.84 Water-vapour

0956 1644.44 Water-vapour

0957 1645.05 Water-vapour

0960 1646.86 Water-vapour

0961 1647.46 Water-vapour

0962 1648.06 Water-vapour

0966 1650.48 Water-vapour

0968 1651.69 Water-vapour

0972 1654.10 Water-vapour

0974 1655.31 Water-vapour

0987 1663.16 Water-vapour

0991 1665.57 Water-vapour

0992 1666.17 Water-vapour

0996 1668.59 Water-vapour

0999 1670.40 Water-vapour

1007 1675.23 Water-vapour

1022 1684.28 Water-vapour

1040 1695.15 Water-vapour

1041 1695.75 Water-vapour

1054 1703.60 Water-vapour

1057 1705.41 Water-vapour

1058 1706.02 Water-vapour

1075 1716.28 Water-vapour

1664 2071.85 Window

1800 2153.95 Window

1930 2232.43 Water-vapour

1949 2243.90 Water-vapour
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