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A B S T R A C T   

A Deep Neural Network (DNN) is used to estimate the Advanced Scatterometer (ASCAT) C-band microwave 
normalized backscatter (σ40

o ), slope (σ′) and curvature (σ′′) over France. The Interactions between Soil, Biosphere 
and Atmosphere (ISBA) land surface model (LSM) is used to produce land surface variables (LSVs) that are input 
to the DNN. The DNN is trained to simulate σ40

o , σ′ and σ′′ from 2007 to 2016. The predictive skill of the DNN is 
evaluated during an independent validation period from 2017 to 2019. Normalized sensitivity coefficients 
(NSCs) are computed to study the sensitivity of ASCAT observables to changes in LSVs as a function of time and 
space. Model performance yields a near-zeros bias in σ40

o and σ′. The domain-averaged values of ρ are 0.84 and 
0.85 for σ40

o and σ′, compared to 0.58 for σ′′. The domain-averaged unbiased RMSE is 8.6% of the dynamic range 
for σ40

o and 13% for σ′, with land cover having some impact on model performance. NSC results show that the 
DNN-based model could reproduce the physical response of ASCAT observables to changes in LSVs. Results 
indicated that σ40

o is sensitive to surface soil moisture and LAI and that these sensitivities vary with time, and are 
highly dependent on land cover type. The σ′ was shown to be sensitive to LAI, but also to root zone soil moisture 
due to the dependence of vegetation water content on soil moisture. The DNN could potentially serve as an 
observation operator in data assimilation to constrain soil and vegetation water dynamics in LSMs.   

1. Introduction 

An improved understanding of plant hydraulics, water transport 
processes and their role in carbon exchanges is essential to understand 
the role of vegetation in land-atmosphere exchanges, and its response to 
climate change (Sperry et al., 2016; Lemordant et al., 2018; Li et al., 
2021). Most current Land Surface Models (LSMs) represent the canopy 
water dynamics, i.e. the prognosis of moisture states and fluxes within 
plants, through a semiempirical parameterization of stomatal aperture 
(Damour et al., 2010; Bonan et al., 2014; Konings et al., 2017b). 
Generally, a simple relationship is assumed between leaf net photo
synthesis and stomatal conductance (Ball et al., 1987; Jacobs et al., 

1996), without linking stomatal responses to plant hydraulic states/ 
fluxes (Sperry and Love, 2015; Sperry et al., 2016; Fisher et al., 2017). 
This incomplete parameterization may limit the ability of LSMs to 
represent the response to drought (Powell et al., 2013). Generally, it 
leads to an overprediction of stomatal conductance under water stress 
(Anderegg et al., 2017) and the evapotranspiration sensitivity to soil 
moisture (Liu et al., 2020). It is therefore essential to constrain the 
canopy water dynamics in LSMs. 

Satellite observations from both active and passive microwave 
remote sensing are sensitive to plant water content variations from sub- 
daily to interannual scales (Liu et al., 2011; Friesen et al., 2012; Steele- 
Dunne et al., 2012; van Emmerik et al., 2015, 2017; Konings et al., 
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2017a). This sensitivity to water is central to the value of microwave 
remote sensing for vegetation monitoring in a wide range of applications 
(Teubner et al., 2018; Konings et al., 2019; Moesinger et al., 2020) 
including the parameterization and validation of LSMs (Matheny et al., 
2017; Konings et al., 2017b). 

Since 2007, the Advanced Scatterometer (ASCAT), on board the 
Metop series of satellites operated by the European Organisation for the 
Exploitation of Meteorological Satellites (EUMETSAT), has been 
providing a long-term C-band backscatter data record. C-band back
scatter has been shown to be influenced by water stress or drought 
(Friesen, 2008; Schroeder et al., 2016) and seasonal dynamics of vege
tation (Frison et al., 1998; Jarlan et al., 2002). Similar correlation has 
been shown in backscatter at higher frequencies and attributed to 
vegetation water dynamics (van Emmerik et al., 2017; Konings et al., 
2017b). Furthermore, soil moisture and vegetation optical depth prod
ucts based on ASCAT backscatter have been applied in numerical 
weather prediction (Wagner et al., 2013), land data assimilation 
(Albergel et al., 2017; Fairbairn et al., 2017), natural hazard monitoring 
(Brocca et al., 2017) and agricultural applications (Vreugdenhil et al., 
2018). 

ASCAT backscatter as a function of incidence angle is described by a 
second-order Taylor polynomial (Wagner et al., 1999b; Melzer, 2013; 
Hahn et al., 2017). The incidence angle dependence of backscatter de
pends on the relative dominance of surface, volume and multiple scat
tering. Over bare soil σ∘ decreases sharply as incidence angle increases 
indicating strong surface scattering. Changes in soil moisture lead to an 
increase in backscatter at all incidence angles. Increased volumetric 
scattering in the presence of vegetation reduces sensitivity to incidence 
angle leading to a change in the slope and curvature. The degree to 
which volumetric scattering and multiple scattering between the vege
tation and ground occur depend on vegetation structure, total water 
content and the vertical distribution within the vegetation. In a study of 
ASCAT in the north American grasslands, Steele-Dunne et al. (2019) 
observed that the seasonal climatology, spatial patterns and interannual 
variability in the slope varied between land cover types, reflecting 
variations in the soil moisture availability and growing season length, 
supporting its interpretation as a measure of vegetation density. Results 
demonstrated that curvature is clearly influenced by vegetation 
phenology, with significant variations occurring at the start and end of 
the growing season. Results also suggested that (in grasslands) curvature 
is a measure of the relative dominance of direct scattering from vertical 
vegetation constituents over a ground-bounce contribution, a phenom
enon observed in earlier studies on wheat (Ulaby et al., 1986; Stiles 
et al., 2000; Mattia et al., 2003). Pfeil et al. (2020) observed that dy
namics in slope followed structural and phenological changes in 
broadleaf deciduous forests. A more recent study by Petchiappan et al. 
(2021) showed that slope and curvature dynamics reflected spatial and 
temporal patterns in moisture availability and demand. 

The motivation for the current study is to assimilate a set of ASCAT 
observables, i.e. the normalized backscatter, slope and curvature, to 
constrain water transport processes in a LSM. Several studies have 
assimilated ASCAT soil moisture products alone (Albergel et al., 2017, 
2018), or in combination with LAI (Dewaele et al., 2017; Fairbairn et al., 
2017) to improve the performance of the the CO2-responsive version of 
the ISBA (interactions between soil, biosphere, and atmosphere) LSM 
(Noilhan and Mahfouf, 1996; Calvet et al., 1998; Calvet and Soussana, 
2001). The current ISBA model uses with Jacob’s A-gs relationship 
(Jacobs et al., 1996) (“A” stands for net assimilation of CO2, and “gs” for 
stomatal conductance). This CO2-version of ISBA (i.e. ISBA-A-gs) sim
ulates the dynamic vegetation evolution driven by photosynthesis in 
response to variations in atmospheric and climate conditions (Calvet 
et al., 1998; Calvet and Soussana, 2001; Calvet et al., 2004; Gibelin 
et al., 2006). Therefore, it enables the simulation of carbon and water 
cycles, their role in interactions between land and atmosphere, as well as 
their coupling to stomatal conductance. Meanwhile, the physics of ISBA 
has been implemented in the ECMWF land surface scheme TESSEL (van 

den Hurk et al., 2000). Assimilation of both soil moisture and LAI into 
the ISBA LSM resulted in improved estimates of the carbon fluxes 
(Leroux et al., 2018), and an improved ability to account for the impact 
of heatwave on vegetation (Albergel et al., 2019). More recent studies 
have assimilated backscatter directly using a radiative transfer model 
(RTM) (Lievens et al., 2017; Shamambo et al., 2019). 

Our aim is to assimilate ASCAT observables directly rather than 
assimilating retrieved products to use all information in the incidence- 
angle dependence, to obviate the need for cumulative distribution 
function (CDF)-matching or bias correction (Fairbairn et al., 2017; 
Leroux et al., 2018; Rodríguez-Fernández et al., 2019), and to avoid the 
potential for cross-correlated errors between retrievals and model sim
ulations (Lannoy and Reichle, 2016). In order to assimilate normalized 
backscatter, slope and curvature directly into an LSM, an observation 
operator is needed to predict these observables based on the outputs of 
the land surface model. Lievens et al. (2017) used the water cloud model 
(WCM) as an observation operator to assimilate ASCAT normalized 
backscatter into GLEAM model together with the assimilation of SMOS 
brightness temperature. Shamambo et al. (2019) also proposed using 
WCM as an observation operator linking ISBA-based states to ASCAT 
normalized backscatter. More sophisticated modeling approaches 
(Ulaby et al., 1990; Ferrazzoli et al., 1997; Kim et al., 2014) implement 
double bounce terms that are neglected in WCM. However, they require 
moisture content or dielectric properties of soil and vegetation cover as 
well as descriptions of size, shape, orientation, and distributions of 
scatterers in the canopy. Unfortunately, these parameters are generally 
not simulated by LSM or available globally. Furthermore, despite their 
complexity, these models still have a highly-idealized and simplified 
representation of vegetation and the distribution of water within it. In 
this study, machine learning will be employed to generate a surrogate 
model to circumvent the challenges and limitations of current radiative 
transfer modeling approaches. 

The number and diversity of applications of machine learning has 
increased considerably in recent years Reichstein et al. (2019). In 
remote sensing, neural network (NN) approaches have proved valuable 
to”emulate” or reproduce the outputs of (e.g.) Monte Carlo radiative 
transfer code in a computationally efficient and fast way (Chevallier 
et al., 1998; Castruccio et al., 2014; Verrelst et al., 2016; Fer et al., 
2018). Similarly, they have been applied to emulate retrieval models to 
provide products for assimilation (Rodríguez-Fernández et al., 2019). 
Aires et al. (2021) recently investigated the merits of applying a NN for 
retrieval versus forward modeling to assimilate ASCAT σ40 into a LSM. In 
this study, we will follow the approach of Xue and Forman (2015); 
Forman et al. (2014); Forman and Reichle (2015) where machine 
learning is used to provide a measurement operator for the direct 
assimilation of microwave observables to constrain a land surface 
model. The innovation of our study is that the relationship between the 
LSM and the observables is indirect. In the studies of Xue and Forman 
(2015); Forman et al. (2014); Forman and Reichle (2015) focused on 
snow processes, there is a direct link between the LSM states and the 
passive microwave brightness temperatures. Here, the ASCAT observ
ables are known to depend on vegetation water content, which is not 
directly modeled in ISBA. Therefore, our hypothesis is that dynamics in 
vegetation water content can be captured through the inclusion of ISBA 
land surface variables related to vegetation water transport processes as 
inputs to the measurement operator. 

Here, a Deep Neural Network (DNN) is used to directly relate the 
land surface variables from the ISBA Land Surface Model to the ASCAT 
backscatter, slope and curvature. The objectives are two-fold. First, this 
DNN-model could be used an observation operator to directly assimilate 
these ASCAT observables into ISBA. Second, the sensitivity of the ob
servables to the ISBA land surface variables can improve our under
standing of, and ability to operationally exploit the ASCAT backscatter, 
slope and curvature. The study is conducted over France, using the 
ASCAT data record from 2007 to 2019. The DNN is trained using data 
from the first 10 years of the ASCAT data record. The performance is 
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evaluated in terms of the ability of the DNN to reproduce the observed 
ASCAT backscatter, slope and curvature in the remaining 3 years. The 
sensitivity of the ASCAT observables to the ISBA soil and vegetation 
states is then quantified using so-called Normalized Sensitivity Co
efficients. Particular attention is paid to the influence of land cover on 
seasonal variations in performance and sensitivity. 

2. Data and methods 

2.1. Study area 

The study domain extends from 41.625∘N to 50.875 N∘, and from 
4.625∘W to 9.375∘E Fig. 1. The ASCAT data and land surface variables 
(LSVs) are available almost daily from 2007 to 2019 with a spatial 
resolution of 0.25∘ x 0.25∘. The study domain comprises 1020 grid points 
(GPIs). 

The albedo and LAI values required by the ISBA model are obtained 
from the ECOCLIMAP II database, as well as vegetation fractions of 12 
plant functional types and other land cover types at each GPI (Faroux 
et al., 2013). Data from this global surface parameter database are 
provided at 1 km resolution. The land cover type assigned to individual 
grid points is the dominant land cover types within a 25 km × 25 km 
window centred on the ASCAT GPI (Fig. 1 (a)). The corresponding 
maximum value of land cover fraction in each GPI is shown in Fig. 1 (b). 
Clearly all grid points comprise a mixture of different land cover types. 
Four representative regions of interest (ROIs) are identified with a 
comparatively high fraction of the dominant land cover (Fig. 1 (c)). 

Fig. S1 shows the fraction of vegetation cover types of the GPIs in 
four regions of interest. This mixed composition is accounted for in ISBA 
as each grid cell is composed of patches of the different cover types. 

2.2. ASCAT backscatter-incidence angle dependence 

ASCAT backscatter dependence on incidence angle can be described 
as a second order polynomial: 

σo(θ) = σo(θr)+ σ′

(θr)(θ − θr)+
1
2
σ′ ′(θr)(θ − θr)

2
, [dB] (1)  

where the zeroth order term σo(θr) is the normalized backscatter at 
reference angle (40∘), and the 1st and 2nd order coefficient σ′(θr) and 

σ′′(θr) are referred to as slope and curvature (Hahn et al., 2017). The 
measured backscatter at any incidence angle can be extrapolated to the 
θr as following given the values of σ′(θr) and σ′′(θr): 

σo(θr) = σo(θ) − σ′

(θr)(θ − θr) −
1
2
σ′ ′(θr)(θ − θr)

2 (2) 

In this study, backscatter at 40 degrees is obtained using this equa
tion and referred to as “normalized backscatter” or σ40

o . 
The slope and curvature values are estimated from backscatter 

triplets measured by Metop ASCAT. ASCAT observes backscatter using 
two sets of three side-looking antennas each illuminating a 550 km wide 
swath on either side of the satellite track. On each side, 3 antennas are 
oriented at 45∘ (fore), 90∘ (mid) and 135∘ (aft) to the satellite track. The 
incidence angles are 34–65∘ and 25–55∘ for fore− /aft- and mid- 
antennas, respectively. Backscatter triplets [σf, σmid, σa] (fore-, mid-, 
and aft-beam) at the incidence angles [θf, θmid, θa] are used to produce 
two local slope estimates: 

σ′

(
θmid − θa/f

2

)

=
σo

mid(θmid) − σo
a/f

(
θa/f

)

θmid − θa/f
, [dB/deg] (3) 

A large number of local slope values, distributed over the entire 
incidence angle range (Hahn et al., 2017), are combined to estimate the 
slope and curvature Hahn et al. (2017). Following Melzer (2013), the 
slope and curvature parameters for day d are computed using all local 
slope values within a window with half-width λ centered at d. The value 
of λ is chosen to balance the bias and variance of estimates. Hahn et al. 
(2017) tested the performance and robustness of the kernel smoother 
(KS) globally, by comparing the results obtained from ASCAT on-board 
Metop-A and Metop-B independently. Overall the results from Metop-A 
and Metop-B are in a good agreement, confirming a robust interannual 
estimation of the incidence angle dependence of backscatter using KS. 

Fig. 2 summarizes the dynamics in ASCAT normalized backscatter, 
slope and curvature during the study period. The interannual variability 
and seasonal variability are estimated by assuming that the time series is 
the additive combination of a seasonal cycle (period = 365 days), trend 
and residual which is decomposed using moving averages (Seabold and 
Perktold, 2010). The interannual variability (IAV) and seasonal vari
ability (SV) indicate the standard deviation of the trend and seasonal 
cycle series respectively. 

Spatial variability in normalized backscatter, slope and curvature 

Fig. 1. The main land cover types and fraction of France 
based on ECOCLIMAP II. (a) the dominant vegetation 
types of France; (b) the vegetation fraction of the domi
nant vegetation types; (c) 4 regions of interest (ROIs) 
representing 4 vegetation types: Broadleaf (20 GPIs in lon 
3–0, lat 44–46.5 with the fraction of temperate broadleaf 
cold-deciduous summergreen (TEBD) ≥ 0.35), Agriculture 
(98 GPIs in lon 0.2–5, lat 47.5–51 with the fraction of C3 
cultures (C3) ≥ 0.5), Grassland (76 GPIs in lon 0.4–5, lat 
43–48 with the fraction of grass (GRAS) ≥ 0.5) and Nee
dleleaf forests (21 GPIs with the fraction of temperate 
needleleaf evergreen (TENE) ≥ 0.4).   
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reflect patterns in dominant land cover. Mean values range from − 10.75 
to − 7.805 dB, from − 0.13 to − 0.075 dB/deg. and from − 0.0027 to 
0.00050 dB/deg2 for σ40

o , σ′ and σ′′, respectively. 
Aside from urban areas, the highest normalized backscatter values 

are observed (− 7.80 dB) in northern France where the main land cover 

type is Agricultural C3 crops, and lowest (− 10.75 dB) in central France 
which is dominated by grassland land cover. The highest mean value of 
σ′ (− 0.075 dB/deg) is found in grassland, while the lowest value (− 0.13 
dB/deg) is found in northern France as shown in Fig. 2 (b). Agricultural 
crop in northern France has the smallest mean value of σ′. 

Fig. 2. The mean values, range values and uncertainty of ASCAT backscatter and DVP from 2007 to 2019. Different columns show backscatter, slope and curvature, 
respectively. Mean values (a - c), the range values (d - f), interannual variability (IAV, g - i), seasonal variability (j - l) and uncertainty (m-o) are shown for the study 
domain. The mean values >98% and smaller than 2% have been masked as the 98% and 2% values respectively. 
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The IAV of normalized backscatter, slope and curvature range from 
0.042 to 0.29 dB, from 0.0013 to 0.0078 dB/deg. and from 7.5e-5 to 
0.00054 dB/deg2, respectively. The corresponding domain-averaged 
values of IAV are 0.15 dB, 0.0033 dB/deg. and 0.00019 dB/deg2. The 
IAV of normalized backscatter is largest in northern agricultural land 
and is generally higher in the north and west part of France, as shown in 
Fig. 2 (g). Meanwhile, in Fig. 2 (h - i), it is observed that IAV of σ′ and σ′′

are largest in the Les Landes forest area. This is likely due to the impact 
of Cyclone Klaus in January 2009, after which the forest degraded from 
2009 to 2012 and started regeneration during 2013–2017 (Shamambo 
et al., 2019; Teuling et al., 2017). As for the seasonal cycle, SV of 
normalized backscatter, slope and curvature are generally largest in 
agricultural areas, with values up to 4.2 dB, 0.11 dB/deg. and 0.0043 
dB/deg2 for σ40

o , σ′ and σ′′, respectively. SV are specifically largest in the 
areas of intensive agricultural land surrounding Paris. The spatial 
pattern of SV is generally similar to the spatial pattern of range values. 

The uncertainty of ASCAT σ40
o , σ′ and σ′′ varies with land cover but is 

overall small compared to the dynamic range. Uncertainties in σ40
o are 

highest in agricultural areas in northern France, mountainous areas such 
as the Alps and coastal areas. 

2.3. Interactions between soil, biosphere and atmosphere (ISBA) model 

Here, the ISBA land surface model (Noilhan and Planton, 1989; 
Noilhan and Mahfouf, 1996) is used to simulate water, energy and 
carbon exchanges at the land surface. The CO2-responsive version of 
ISBA (ISBA-A-gs, here referred as ISBA) is built within the SURFEX 
platform (version 8.1) (Masson et al., 2013; Albergel et al., 2017, 2018). 
With the “NIT” plant biomass monitoring option, ISBA simulates plant 
physiological states and plant growth (Calvet et al., 1998, 2004, 2007). 

Exchanges of water and heat fluxes in the soil are simulated based on 
a multi-layer diffusion scheme (Boone et al., 2000; Decharme et al., 
2013). Here, ISBA simulates soil moisture in 14 layers, with depths of 
0.01 m, 0.04 m, 0.1 m, 0.2 m, 0.4 m, 0.6 m, 0.8 m, 1.0 m, 1.5 m, 2.0 m, 
3.0 m, 5.0 m, 8.0 m, 12.0 m (Albergel et al., 2017; Leroux et al., 2018). 
The ISBA parameters are defined for 19 generic land surface patches as 
described in Table S1. 

Parameters of the photosynthesis model and plant growth model are 
patch-dependent (Lafont et al., 2012). LSV values for the GPI are 
weighted combinations of the values obtained for each patch. The 
nominal values of LSVs from an open loop run of ISBA are used as input 
for DNN. The model was forced by the latest ERA-5 atmospheric rean
alysis from ECWMF (Hersbach et al., 2020) from 1996 to 2019. The 
meteorological forcing data are available on a 0.25∘ x 0.25∘ grid, and 
include rainfall rate, 2 m air temperature, 2 m specific humidity, wind 
speed, wind direction, surface pressure, downward direct shortwave 
radiation, downward diffuse radiation, downward long wave radiation, 
snowfall rate and CO2 concentration. All ERA-5 atmospheric variables 
were interpolated using bi-linear interpolation to match the grid points 
of ISBA. The model was initiated by spinning up with 20 repetitions 
using the 1996 forcing data. The open-loop simulation was obtained 
using the ERA5 forcing data from 1997 to 2019. 

2.4. Deep Neural Network 

Here, a DNN is used to relate the ISBA LSVs to the ASCAT normalized 
backscatter, slope and curvature. DNNs are based on artificial neural 
networks (ANN), and increasingly used for machine learning applica
tions involving large datasets with high dimensionality (Schmidhuber, 
2015; Reichstein et al., 2019) including in the geosciences (e.g. Hong 
et al. (2004); Tao et al. (2016); Tang et al. (2018)). A DNN contains an 
input layer, multiple hidden layers, and an output layer. Each layer 
contains multiple neurons connected to neurons in adjacent layers using 
the corresponding weight and bias matrix (Goodfellow et al., 2016). 
During back-propagation, the weights and biases are updated by a sto
chastic optimization algorithm, Adam (Kingma and Ba, 2014), that 

minimizes (maximizes) the loss (accuracy) between the DNN outputs 
and the training targets. In order to prevent over-fitting, early-stopping 
was used during the training process. DNNs contain more parameters (e. 
g. number of layers and nodes) than other machine learning algorithms, 
so they have the flexibility to capture complex features from high 
dimensional systems (Bengio, 2009; Bianchini and Scarselli, 2014). 

One DNN is trained per GPI to obtain normalized backscatter, slope 
and curvature simultaneously. The structure of DNN is fine-tuned by 
Bayesian optimization (Snoek et al., 2012). The parameters to be opti
mized include the number of layers, the number of neurons of each 
layer, batch size, the choice of activation function and learning rate. The 
optimal parameter combination is that which minimizes RMSE between 
observed and estimated σ40

o , σ′ and σ′′ simultaneously during the testing 
period. 

Table S1 lists the ISBA LSVs that are used as inputs to the DNN. These 
are selected to account for the influence of soil and vegetation on the 
ASCAT observables. It is widely understood that surface soil moisture 
has a significant influence on C-band backscatter (Wagner et al., 1999a, 
1999b), therefore WG2 is included. Note that WG2 (5-10 cm) rather than 
WG1 (0-5 cm) is used as surface soil moisture following previous studies 
(Albergel et al., 2017; Draper et al., 2011; Barbu et al., 2014). The 
sensing depth of C-band backscatter is generally assumed to be on the 
order of 2 cm in non-arid environments, therefore there is unlikely to be 
a direct relationship between backscatter, slope or curvature and root 
zone soil moisture. However, root zone soil moisture terms (WG3 - 
WG10) are included as inputs, due to the relationship between root zone 
soil moisture, plant hydraulics and plant water content (Konings et al., 
2021; Li et al., 2021; Liu et al., 2021; Bittner et al., 2012; Janott et al., 
2010; Bohrer et al., 2005; Scott et al., 2003; Matheny et al., 2015, 2016). 
The vegetation interception reservoir water storage (WR) is included to 
allow for the fact that intercepted water (from dew/irrigation) can have 
an effect on backscatter, and hence slope and curvature. This has 
recently been shown for L-band backscatter (Vermunt et al., 2020; 
Khabbazan et al., 2022), but it is reasonable to suspect that it also has an 
effect on ASCAT DVP in C-band (Steele-Dunne et al., 2021). Plant 
transpiration (LETR) and stomatal conductance (XRS) are included as 
they are indicators of the transport of moisture from the root zone to the 
atmosphere, and therefore reflect dynamics in plant water content. Leaf 
Area Index (LAI) and Gross primary production (GPP) are included to 
account for canopy growth and biomass accumulation as both back
scatter, and its incidence angle dependence are influenced by seasonal 
changes in both biomass itself and the associated changes in canopy 
architecture. Net radiation (RN) is included to account for the influence 
of radiation availability on phenology, and particularly structural 
changes in the vegetation (e.g. leaf/bud formation, leaf loss etc.) 
(Petchiappan et al., 2021), and changes in constituent water content 
associated with seasonality (Pfeil et al., 2020). The LSV are obtained 
from the open loop simulations of the ISBA model. The reader is referred 
to the studies of (Draper et al., 2011; Albergel et al., 2017; Barbu et al., 
2011) for information regarding ISBA model error. Note, however, that 
the nominal open loop values are used without any consideration of 
model error. 

The training targets of the DNN are the ASCAT normalized back
scatter, slope and curvature. Rather than training one generic DNN, or 
one DNN per land cover type, a DNN is generated for each individual 
grid point. This is motivated by the coarse resolution of the ASCAT 
observations which means that the ASCAT footprint always contains a 
combination of several land cover types (Fig. 1(b) and Fig. S1). This 
heterogeneity is highly relevant because (1) the relationship between 
ISBA LSVs and the quantities affecting microwave backscatter varies per 
vegetation type (2) microwave interactions with vegetation are different 
per vegetation type and (3) one needs to consider how contributions 
from different surface types are “mixed” to yield the observables at 
footprint scale. Note that the proposed DNN is not simply emulating a 
RTM. To use most RTMs as a measurement operator, one would need to 
translate the outputs of ISBA (the LSVs) to the required inputs of the 
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RTM (e.g. roughness, soil moisture, vegetation water contents, vegeta
tion parameters), run an RTM for each of the vegetation types, and then 
apply a mixing model to obtain the observables at the ASCAT scale. This 
is particularly challenging as the required inputs to the RTM are 
generally not simulated by most land surface models (e.g. VWC). The 
proposed DNN circumvents these challenges by mapping the ISBA LSVs 
directly to the ASCAT observables at the scale of interest. 

The data record was split into a training-testing dataset (2007–2016) 
and an independent validation dataset (2017–2019). Before the training 
process, the inputs and training targets of the DNN are normalized as 
follows to account for the difference in magnitudes among the variables: 

xi,norm =
xi − mean(xi)

std(xi)
(4)  

where xi is the i-th input variable or labels and i = 1, …,m for input LSVs 
or i = 1,2,3 for ASCAT data. During the cross-validation process, a”jack- 
knife” approach was employed where training cycled through the 10- 
year period excluding the current year from the training-testing set 
(McCuen et al., 2005; Forman and Xue, 2016). The best model was 
chosen as that which minimized RMSE among those submodels ac
cording to their performances on the testing dataset. Finally, this best 
model was validated on the independent validation dataset to evaluate 
the performance of DNN based on unbiased Root Mean Square Error 
(ubRMSE), Pearson Correlation Coefficient (ρ) and bias (Entekhabi 
et al., 2014). 

2.5. Normalized sensitivity coefficient 

A sensitivity analysis was conducted to investigate the response of 
each DNN output to small perturbations in the DNN inputs, i.e. the 
sensitivity of the ASCAT observables to the ISBA LSVs. As a DNN was 
generated for each grid point, physical consistency in space and time 
between adjacent and similar grid cells provides an indication of 
robustness. Following Xue and Forman (2015), the normalized sensi
tivity coefficients (NSC) defined by (Willis and Yeh, 1987) were ob
tained using: 

NSC(j, i) =
∂yj

∂xi

xi⃒
⃒yj

⃒
⃒
=

yi
j − y0

j

δxi

x0
i⃒

⃒y0
j

⃒
⃒

(5)  

where xi
0 and yj

0 are the nominal values of input i and output j, yj
i is the 

perturbed output value, δxi is the amount of perturbation; i = 1,…,n; j =
1, …, m; n is the number of input LSVs and m is the number of outputs. 
The absolute value of yj

0 is used to normalize the Jacobian term ∂yj
∂xi 

because the values of σ40
o and σ′ are negative. In that case, NSC keeps the 

same sign as the Jacobian term ∂yj
∂xi

. 
The perturbation is applied to one LSV at a time in order to calculate 

the NSC. If the perturbation is too small, it will merely amplify model 
noise. If the perturbation is too large, the marginal function will not be a 
local estimate of the rate of change in the model output with respect to 
the change in the input (Xue and Forman, 2015). Hence, a perturbation 
of size ±5% of the range of xi

0 was used. 
The NSC is an indicator of the sensitivity of the measurement oper

ator (the DNN-model). These are calculated to confirm that the sensi
tivities of the DNN-based measurement are physically plausible. NSC are 
normalized Jacobian values, analysis of which is commonly performed 
in data assimilation studies to understand the sensitivity of the obser
vations to the states (Rüdiger et al., 2010; Chevallier and Mahfouf, 2001; 
Fillion and Mahfouf, 2003; Garand et al., 2001). This is key to identi
fying which states will be updated using new observation types (Xue 
et al., 2018), and to quantify any seasonal or other variation in this 
sensitivity. Note that the NSC uses the local linear relationship between 
the observables and states and therefore allows for a non-linear rela
tionship between the two. 

3. Results and discussion 

3.1. Model performance 

In Fig. 3, the three performance metrics are mapped for the study 
domain to evaluate the performance of the DNN model. Note that the 
unbiased RMSE and bias are normalized to account for the variation in 
dynamic range across grid cells due to the difference in land cover. In 
Fig. S5 and S6, the original values of ubRMSE and bias are shown to 
compare with the uncertainty of ASCAT normalized backscatter, slope 
and curvature. ubRMSE is always higher than the uncertainties of the 
observed variables. Pearson Correlation Coefficient, ρ, is generally 
higher for slope and normalized backscatter than it is for curvature. The 
domain-averaged values of ρ are 0.84 and 0.85 for σ40

o and σ′, compared 
to 0.58 for σ′′. The spatial patterns in ρ appear to be related to land cover 
and climate. ρ values for σ40

o and σ′ are higher in northern and north
western France where seasonal variability in both quantities is largest. 
Comparatively low ρ values for σ40

o are found in the Pyrenees and Alps. 
In addition to the influence of elevation and complex terrain, this poor 
performance is likely due to the fact that snow cover was not included in 
the list of inputs to the DNN in this study. Generally ρ for σ′′ reaches the 
largest value in central grassland and northern agricultural areas. In a 
small number of grid cells ρ is around zero for one or more of the ob
servables, but these are often grid cells with urban areas. For normalized 
backscatter, ubRMSE is <11% of the range for 98% of grid cells, with 
most exceptions occurring in the Alps or Pyrenees. Bias is also generally 
low, with 98% of values <3.3% of the dynamic range. Generally, the 
bias is positive in agricultural areas and negative elsewhere with 
particularly large negative biases occur in urban areas. For slope, the 
lowest ubRMSE values occur in C3/C4 crop areas where ρ is highest. The 
ubRMSE is <19% of the range for 98% of grid cells, with larger values 
limited to urban areas. Bias in slope is particularly low, with 95% below 
3.7% of the dynamic range. Bias is slightly positive in grasslands and 
negative everywhere else. 

The poorest performance is observed in the curvature estimates. In 
addition to the lower ρ values, the ubRMSE and bias are both higher 
fractions of dynamic range than in the case of backscatter or slope. The 
median values of ubRMSE and bias are 18% and − 10% of the range, 
with no clear spatial pattern. The curvature is the second derivative of 
the relationship between backscatter and incidence angle. It is estimated 
from the local slope values and is inherently more variable than the first 
derivative (the slope). From a microwave perspective, it has been argued 
that the curvature contains information on the relative dominance of 
various scattering mechanisms, which depends on both the structure 
and the vertical distribution of moisture within the vegetation. Neither 
of these quantities is modeled by ISBA or closely related to states 
simulated by ISBA. For example, Table S2 shows that the maximum 
correlation between the LSVs and σ′′ is just 0.38. Therefore, it is expected 
that the curvature is more difficult to predict than the backscatter and 
curvature. 

Additionally, bias shown in Fig. 3(g - i) is generally lower than 
ubRMSE for σ40

o and σ′, suggesting that the error is primarily due to 
variance rather than bias. This suggests that using the DNN as a mea
surement operator in assimilation could reduce or eliminate the need for 
bias correction. Figs. S2 and S3 show that the DNN compresses the range 
of the ASCAT observables. The median range compression of σ40

o , σ′ and 
σ′′ is 13%, 13% and 17% (median), respectively. 

Fig. 4 shows boxplots of performance matrices binned for the four 
ROIs indicated in Fig. 1. Performance is best in the agricultural ROI 
where ρ is around 0.9 and the ubRMSE is around 10% of the range for 
both σ40 and σ′. The bias is also lower in the agricultural ROI than in the 
other cover types. This may be due to the strong seasonal cycles in both 
σ40 and σ′ in agricultural areas, indicated by a larger range in σ40 (Fig. 4 
(m) and σ′ (Fig. 4(n). In contrast, ρ for both σ40 and σ′ are lowest in the 
broadleaf forest ROI, in which the range of σ40 and σ′ is much lower. 

Note that the performance is generally poor and varies considerably 
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within the needleleaf forest ROI despite its limited spatial extent. This 
spatial heterogeneity may be explained by the damage caused by 
Cyclone Klaus in January 2009. Damage due to the storm itself and the 
subsequent recovery of the forest means that interannual variability is 
high, rendering the observations difficult to predict. 

Fig. 5 shows the time series of predicted and observed normalized 
backscatter, slope and curvature for two grid points in the Agricultural 
ROI. Results in the left column are from the grid point within this region 
that has the best performance in terms of RMSE. The RSMEs in back
scatter, slope and curvature are just 5%, 8% and 13% of the range 
observed in these quantities. The corresponding values for the grid point 
presented on the right (worst performance) are almost twice as high. 

From a visual comparison, their performance does not seem so 
different. At both grid points, the DNN captures the seasonal cycle very 
well. Interannual variability in backscatter and slope is captured 
reasonably well. This is easiest to see in the slope time series, where the 
predicted values match those observed in terms of both magnitude and 
timing. The slope is underestimated in the winters of 2015 and 2016 at 
the”best” grid point (Fig. 5). Note that the observed slope is higher in 
these two years than in the rest of the training period. Their unusually 
high values may be harder to capture, particularly if they are due to an 
extreme value of one of the inputs or an anomalous variations in a 
quantity not included in the list of inputs. In general, performance is 
poorest for curvature. However, given our limited physical under
standing of what the curvature captures in terms of geophysical vari
ables, it is encouraging that the DNN captures the seasonal cycle and 
interannual variability so well. Clearly there is scope for improvement 
through, for example, inclusion of additional input variables. However, 
part of the poor performance may be due to the fact that curvature is 

generally noisier than slope. The predicted slope and curvature are 
noisier than those observed. This may be attributed to the fact that their 
values on a given day are based on all local slope values within a 42-day 
window, effectively smoothing the observations. Applying an Epa
nechnikov kernel smoother to the predicted slope and curvature a pos
teriori could reduce the random errors. 

3.2. Model sensitivity: a qualitative analysis 

Fig. 6 shows the remarkable agreement between the predicted and 
observed ASCAT observables in all ROIs, despite their diversity in terms 
of SM and LAI. The strongest seasonal cycles in WG2 and LAI are 
observed in the Agricultural ROI. Fig. 6(b) shows that σ40

◦

closely follows 
WG2 from day 200 onwards due to the low water content during crop 
senescence, and the sensitivity to soil moisture in the winter months in 
the absence of vegetation cover. This sensitivity is lost in spring as LAI 
rises. Fig. 6(b) also shows that the DNN models the strong drop in 
normalized backscatter from around February to April. This drop occurs 
long before LAI starts to increase (Fig. 6(f)) and starts before surface soil 
moisture starts to decrease (Fig. 6(b)). Such a rapid decrease in the real 
observed backscatter cannot be explained by the change in WG2 alone. 
It may be amplified by agricultural management practices e.g. tillage 
and planting in the spring, though the absence of ground data makes this 
difficult to prove conclusively. The decrease in σ40

◦

with increasing LAI 
has been observed in narrow-leaved crops (e.g. wheat and barley) in 
previous studies (Macelloni et al., 2001; Fontanelli et al., 2013) and can 
be attributed to the transition from soil dominating backscatter in the 
winter, to vegetation dominating during the growing season. Fig. 6(j) 
shows that the slope generally follows the overall seasonal cycles of LAI 

Fig. 3. The performance of the DNN during the validation period (2017–2019). The columns show normalized backscatter, slope and curvature respectively. The 
rows show the Pearson correlation coefficient (a -c), unbiased RMSE normalized by dynamic range (d - f) and bias normalized by dynamic range (g - i). Note that the 
colorbars are different on each plot. 
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Fig. 4. DNN performance during the validation period (2017–2019) for each of the four ROIs. The columns (left to right) correspond to σ40
o , σ′ and σ′′ respectively. 

The top three rows correspond to the Pearson correlation coefficient (a-c), ubRMSE normalized by dynamic range (d-f), bias normalized by dynamic range (g-i). The 
last two rows show the mean and range of the quantities of interest per ROI. The box extends from the lower to upper quartile values of the data, with a line at the 
median. The lower whisker is at the lowest datum above Q1–1.5*(Q3-Q1), and the upper whisker at the highest datum below Q3 + 1.5*(Q3-Q1), where Q1 and Q3 
are the first and third quartiles. Outliers are indicated as grey dots. 
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closely in the Agricultural ROI. However, they diverge after the LAI peak 
because ISBA does not account for agricultural management practices 
(including harvest) and their effect on simulated LAI (Shamambo, 
2020). In contrast, the limited seasonal variation in WG2 and LAI in the 
Needleleaf ROI translate to limited variations in both σ40

◦

and σ′. In Fig. 6 
(d), σ40

◦

primarily follows WG2 with some seasonal influence of LAI. The 
agreement between σ′ and LAI in Fig. 6 (l) is consistent with slope being 
an indicator of vegetation density. 

The seasonality of WG2 and LAI is similar in Broadleaf and Grassland 
ROIs due to their geographical proximity and similar climate. More 
importantly, Fig. S1 shows that the Broadleaf ROI comprised 38% 
(median value) temperate broadleaf cold-deciduous summergreen forest 
(TEBD) and 30% C4 grass. Similarly, around 20% of the grassland ROI 
consists of TEBD. Therefore, σ40

◦

and σ′ in both ROIs are effectively a 
weighted mixture of the scattering from both TEBD and C4 grass. 
Comparing Fig. 6 (a) and (c), the seasonal cycle of σ40

◦

is larger in 
grassland because the vegetation is less dense, allowing a stronger 
response to soil moisture variations. The seasonal cycle in LAI is, 
nonetheless, sufficient to introduce some change in the sensitivity to soil 
moisture. In Fig. 6 (k) the slope follows LAI reasonably well in Grass
land, but there is clearly some influence from the TEBD fraction. Slope is 
generally higher and more constant in the Broadleaf ROI (Fig. 6(i) due to 
the presence of higher biomass throughout the year. 

Fig. 6(i) shows a clear”spring peak” in σ′ before the LAI peak is 
clearly visible in the broadleaf ROI. A similar feature is visible in all 
cover types but it is on the rising limb of a much stronger seasonal cycle 
and therefore less significant in the overall cycle. It is also apparent in 
Fig. 6 (k) due to the presence of some TEBD in the grassland grid cells. 
Fig. 6 shows that the spring peak is not merely an artefact due to the 

uncertainty of ASCAT processing to obtain σ′.Pfeil et al. (2020) has 
identified this spring peak in broadleaf deciduous forests across Europe 
and attributed it to the elevated water content of twigs and branches 
prior to leaf out. 

3.3. Model sensitivity: normalized sensitivity coefficient 

The values of NSC(σ40
o , WG2) in Fig. 7 (a - f) are consistent with our 

expectations in terms of the sensitivity of σ40
o to surface soil moisture. 

NSC(σ40
o , WG2) is generally positive because backcatter increases with 

soil moisture, and it is highest during the winter months when the 
reduced vegetation cover leads to an increased sensitivity of σ40

o to WG2. 
Comparing Fig. 7(a - f) to Fig. 7 (g - l), it is clear that σ40

o is considerably 
more sensitive to WG2 than to LAI. Values of NSC(σ40

o , LAI) are generally 
closer to zero. NSC(σ40

o , LAI) is highest, and comparable to the values of 
NSC(σ40

o , WG2) in May and July in the west indicating that σ40
o during 

this period is therefore sensitive to both. 
Fig. 7(m - r) show that σ′ is highly sensitive to LAI. NSC(σ′, LAI) is 

generally positive in winter with the exception of areas with needleleaf 
forest. Striking spatial patterns emerge in May (Fig. 7(o)) and July 
(Fig. 7(p)) that correspond to the land cover patterns in Fig. 1. NSC(σ′, 
LAI) reaches exceptionally high values in May, before becoming equally 
large in magnitude but negative in July (Fig. 7(p). 

Fig. 8 shows seasonal variations in the sensitivity of normalized 
backscatter to WG2 and LAI in the four ROIs. In all cover types, NSC(σ40

o , 
WG2) is highest during winter and lowest during the summer months 
when higher biomass reduces the sensitivity of C-band backscatter to 
soil moisture. NSC(σ40

o , LAI) is generally lower than NSC(σ40
o , WG2), 

indicating that σ40
o is more sensitive to WG2 than LAI. The only 

Fig. 5. Time series of predicted (blue) vs observed (black) values of ASCAT normalized backscatter, slope and curvature in the agriculture ROI. The validation period 
(yellow) is from 2017 to 2019, shown as the brown one. The”best” (left column) and”worst” (right column) grid points were selected based on the maximum and 
minimum values of RMSE/range among GPIs in the agricultural ROI. The rows show ASCAT normalized backscatter, slope and curvature respectively. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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exception is in the Agriculture ROI during spring when the backscatter 
dynamics are primarily driven by the increase in biomass during the 
vegetative stages of the crops, resulting in NSC(σ40

o , LAI) higher than 
NSC(σ40

o , WG2). 

The strongest seasonal cycles in both NSC(σ40
o , WG2) and NSC(σ40

o , 
LAI) are observed in the Agriculture ROI. This is due to the contrast 
between bare soil in winter and a vegetated surface during the crop 
growing season. σ40

o has a strong seasonal cycle (range of 3 dB) which is 

Fig. 6. Time series of WG2, LAI w.r.t. normalized backscatter and slope averaged from 2007 to 2019. The predicted value of normalized backscatter (slope) is the 
grey line and the observed normalized backscatter (slope) is the black line. The error estimate for each ASCAT observable is indicated by pink shading. Blue and green 
lines are LSVs of interest, e.g. WG2 (a - d) and LAI (e - l), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 7. Maps of NSC values of normalized backscatter and slope w.r.t WG2 and LAI. The columns show different months. The rows show different NSC, i.e. NSC(σ40
o , 

WG2) (a - f), NSC(σ40
o , LAI) (g - l) and NSC(σ′ , WG2) (g - l). 
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primarily influenced by WG2 in the bare period (DOY 0–100) and DOY 
(300–365), and a combination of WG2 and LAI in the growing season 
(DOY 100–300). NSC(σ40

o , WG2) is higher in the Needleleaf ROI than in 
the Broadleaf ROI because the variations in σ40

o are higher in the Nee
dleleaf ROI and they closely follow WG2 variations (Fig. 6 (d)). This 
sensitivity to soil moisture under a needleleaf forest may be due to the 
multiple scattering between the trunks and soil during low LAI periods. 
This is similar to results found in L-band backscatter modeling studies in 
boreal forested areas (Tabatabaeenejad et al., 2012). 

In Fig. 8 (a-d), NSC(σ′, LAI) also show the sensitivity of slope to LAI. 
Fig. 8 (a) shows that NSC(σ′, LAI) is very low in the Broadleaf ROI. This is 
because the slope is high throughout the year in the Broadleaf ROI and 
exhibits little seasonal variation despite the large change in LAI (Fig. 6 
(i)). Conversely, a stronger seasonal cycle is observed in Needleleaf ROI 
8 (a) because a relatively small change in LAI and stronger seasonal 
cycle in slope is observed in Needleleaf forest than in Broadleaf forest. 
The strongest seasonal cycle in (NSC(σ′, LAI)) is observed in the Agri
culture ROI where the biomass variations (reflected in LAI) during the 
crop growing season change the dominant scattering mechanism from 
surface scattering in winter to volumetric and multiple scattering in 
summer, resulting in a strong seasonal change in slope. Note that there 

are sign changes in (NSC(σ′, LAI)) in all ROIs. From Fig. 6(i) to (l), these 
correspond to the difference in timing between the peaks in LAI and 
those in slope. Combined, Fig. 6(i) to (l) and Fig. 8 suggest that slope is 
sensitive to more than just LAI alone. 

Results are presented in Fig. 9 to explain why the”spring peak” 
feature in Fig. 6 (i) is captured by the DNN despite the absence of in
ternal vegetation water content in the DNN inputs. Fig. 9 (a) shows that 
the spring peak in slope coincides with a rapid decrease in soil moisture 
(WG) in all soil layers. The increase in slope from DOY 160 to 250 also 
coincides with a decrease in soil moisture throughout the profile. Fig. 9 
(b) shows that the local maximum in slope on DOY 198 coincides with 
the peak in LAI, but that the spring peak coincides with a local peak in 
net radiation around DOY 105. Collectively, Fig. 9 (a) and (b) illustrate 
that slope variations reflect vegetation growth and are influenced by 
both water and energy availability in this Broadleaf ROI. 

Comparing Fig. 9 (c) and (d), it is clear that the NSCs related to WG 
are larger in magnitude than those related to net radiation and LAI. From 
Fig. 9 (c), NSC(σ′, WG2) is close to zero, but the magnitude of NSC with 
respect to soil moisture increases with depth reaching values of − 0.2 for 
WG7. Similarity among the NSC values with respect to WG in different 
layers is due to the strong correlation in soil moisture in the various 

Fig. 8. Seasonal cycle of NSC values in Broadleaf (a), Agriculture (b), Grassland (c) and Needleleaf (d) regions of interest. The values correspond to the median value 
among the GPIs, and were calculated using all data from 2007 to 2019. 

Fig. 9. Seasonal cycle of LSVs (including soil moisture from different depths (different WGs) (a) and vegetation related LSVs (LAI and RN) (b)) and their NSC values 
(c - d) of slope in Broadleaf regions of interest. The values correspond to the median value among the GPIs, and were calculated using all data from 2007 to 2019. The 
vegetation related LSVs have been smoothed by a 7-day window in order to compare their peaks with peak in σ′. 
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layers. The magnitude of of NSC(σ′, LAI) is around half that of NSC with 
respect to soil moisture. While NSC(σ′, RN) is non-zero and positive in 
spring, the magnitude is an order of magnitude smaller than that of NSC 
(σ′, WG7). This suggests that net radiation may play a part in the dy
namics of slope, but that the connection is indirect and weak. This 
connection between deep soil moisture and slope is compatible with the 
conclusion of Pfeil et al. (2020) that the slope is sensing the filling of 
branch and twigs prior to leaf-out. It is striking that the combination of 
ISBA and the DNN can predict the observed spring peak by capturing the 
soil moisture dynamics and mapping it directly to slope change without 
explicitly modeling the water storage in the vegetation. 

4. Conclusions 

A DNN was trained per grid point to relate ISBA LSVs to ASCAT 
normalized backscatter, slope and curvature for future use as the 
observation operator within a data assimilation framework. Agreement 
between the predicted and observed ASCAT observables during the in
dependent validation period was very good, with better estimates ob
tained for backscatter and slope than for curvature. Given that we have a 
better understanding of the factors affecting backscatter and slope, and 
our expectation that curvature is influenced by vegetation geometry, 
this is perhaps not too surprising. Results also showed that land cover 
types have a large effect on model performance. Recall that an indi
vidual DNN model is obtained for every grid point. Therefore, smooth 
spatial patterns in the performance metrics, and the appearance of fea
tures related to dominant land cover and fraction of land cover provide 
an indication of robustness. 

Performance could be improved through the inclusion of additional 
LSVs to capture controls on ASCAT observables that are currently 
missing. For example, the relatively poor performance in the Alps is 
partly because snow states were not included. Snow has a strong influ
ence on backscatter and the seasonal variation in the backscatter- 
incidence angle relationship. The inclusion of temperature and radia
tion data provides information that there is a seasonal influence 
affecting the backscatter, but the explicit inclusion of snow states should 
lead to an improvement in performance in areas affected by snow cover. 
Performance could also be improved by adapting the ML implementa
tion, or replacing the DNN with an alternative machine learning 
approach. The variability of predicted slope and curvature are generally 
larger than the observations. While this may partly be due to overfitting, 
it is primarily because the slope and curvature observations are obtained 
by aggregating local slope values in a 42-day window, i.e. an Epa
nechnikov kernel applied to the local slopes (Hahn et al., 2017). The 
time series of the observations are therefore, by definition, very smooth. 
In contrast, the DNN is trained with daily input data. One pragmatic 
solution to reduce the noise in the predicted observables would be to 
filter them a posteriori. Alternatively, one could consider approaches 
such as Long-Short Term Memory (LSTM) to handle the mapping from a 
temporal series of inputs to the ASCAT observables. Using LSTM or 
similar would also provide a means to explicitly handle the strong auto- 
and cross-correlations in the soil states. Furthermore, these correlations 
also mean that there is considerable redundancy in the list of input 
variables. While there is no requirement that the input variables are 
uncorrelated (Lu et al., 2017), performing dimensional reduction to 
provide a reduced set of inputs to the DNN would reduce the compu
tational burden of the training step. One inherent limitation of DNN, and 
any data-driven approach, is that low probability events receive small 
weights and can be neglected during training and prediction. This was 
illustrated by the poor performance of the DNN in the wake of Cyclone 
Klaus, for example. In future research, attention must be paid to how low 
probability events can be flagged and handled in an assimilation system. 

The NSC analysis indicates that the backscatter is very sensitive to 
surface soil moisture and LAI, and that these sensitivities vary during the 
year and among in different land covers. The observed spatial and 
temporal variations in the backscatter NSCs are consistent with our 

understanding of backscatter from theory, observations and modeling. 
This provides an important”sanity check” for our DNN, that it is capable 
of capturing known sensitivities. NSC values also indicate that the slope 
is sensitive to LAI but also to other quantities including root zone soil 
moisture variations or related quantities. Backscatter is sensitive to 
vegetation water content which is not directly accounted for in ISBA, but 
varies as water is transported from the root zone to the atmosphere 
through the vegetation as modeled in plant hydraulics model (Li et al., 
2021). Note, however, that the NSC values are influenced by the choice 
of LSVs included as inputs to the DNN. In particular, our inability to 
explicitly include surface roughness and vegetation water content in the 
DNN inputs produces an increase in sensitivity of the DNN to other ISBA 
LSVs such as root zone soil moisture. This means that we are effectively 
using root zone soil moisture to compensate for the absence of vegeta
tion water content data. 

The NSC values together with the LSV variations provide new in
sights into the observables themselves. This was illustrated for the spring 
peak in slope in broadleaf deciduous forest. The DNN model was able to 
predict the spring peak in slope before the LAI peak. The NSC and LSV 
time series show that the spring peak is related to radiation availability 
and root water uptake, consistent with the hypothesis of Pfeil et al. 
(2020) that the spring peak could be attributed to increased water 
content in the branches prior to leaf-out. These results are significant 
because we can now describe the slope and curvature variations in terms 
of LSVs rather than scattering mechanisms. This brings us a step closer to 
being able to use them directly in applications or to constrain models. 

One of our primary motivations was to develop a DNN model to use 
as a measurement operator for assimilation. Results suggest that the 
DNN model is capable of predicting the observations very well. The NSC 
analysis provides insight into the information content of the slope and 
curvature, and which LSVs should be included in the state vector for 
update. The direct mapping of LSVs to observables circumvents two key 
challenges related to the use of radiative transfer models in assimilation. 
First, it circumvents the challenge of translating the LSVs provided by 
the physical process model to the set of inputs required by the radiative 
transfer model. Second, the direct mapping between the model and 
observables ensures that there is a consistent climatology between the 
predicted and actual observables, obviating the need for CDF-matching 
or bias correction. Furthermore, this approach lends itself to multi- 
observation assimilation as the list of LSVs and observables can easily 
be expanded to produce a measurement operator to ingest data from 
multiple sources. Future research will investigate the performance of the 
DNN as a measurement operator in an assimilation context. In partic
ular, additional research is needed to determine the degree to which 
assimilation using a DNN-based measurement operator can outperform 
an existing approach (e.g. Water Cloud Model) in terms of accuracy and 
practicality. 
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Chevallier, F., Chéruy, F., Scott, N.A., Chédin, A., 1998. A neural network approach for a 
fast and accurate computation of a longwave radiative budget. J. Appl. Meteorol. 37, 
1385–1397. https://doi.org/10.1175/1520-0450(1998)037<1385:annafa>2.0.co;2. 

Damour, G., Simonneau, T., Cochard, H., Urban, L., 2010. An overview of models of 
stomatal conductance at the leaf level. Plant Cell Environ. https://doi.org/10.1111/ 
j.1365-3040.2010.02181.x. 

Decharme, B., Martin, E., Faroux, S., 2013. Reconciling soil thermal and hydrological 
lower boundary conditions in land surface models. J. Geophys. Res.-Atmos. 118, 
7819–7834. 

Dewaele, H., Munier, S., Albergel, C., Planque, C., Laanaia, N., Carrer, D., Calvet, J.C., 
2017. Parameter optimisation for a better representation of drought by LSMs: 
inverse modelling vs. sequential data assimilation. Hydrol. Earth Syst. Sci. 21, 
4861–4878. https://doi.org/10.5194/hess-21-4861-2017. 

Draper, C., Mahfouf, J.F., Calvet, J.C., Martin, E., Wagner, W., 2011. Assimilation of 
ASCAT near-surface soil moisture into the SIM hydrological model over France. 
Hydrol. Earth Syst. Sci. 15, 3829–3841. https://doi.org/10.5194/hess-15-3829- 
2011. 

Entekhabi, D., Yueh, S., O’Neill, P.E., Kellogg, K.H., Allen, A., Bindlish, R., Brown, M., 
Chan, S., Colliander, A., Crow, W.T., et al., 2014. Smap Handbook–Soil Moisture 
Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space. 

Fairbairn, D., Barbu, A.L., Napoly, A., Albergel, C., Mahfouf, J.F., Calvet, J.C., 2017. The 
effect of satellite-derived surface soil moisture and leaf area index land data 
assimilation on streamflow simulations over France. Hydrol. Earth Syst. Sci. 21, 
2015–2033. https://doi.org/10.5194/hess-21-2015-2017. 
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Eitzinger, J., Steinnocher, K., 2013. The ASCAT soil moisture product: a review of its 
specifications, validation results, and emerging applications. Meteorol. Z. 22, 5–33. 
https://doi.org/10.1127/0941-2948/2013/0399. 

Willis, R., Yeh, W.W.G., 1987. Groundwater Systems Planning and Management. 
Xue, Y., Forman, B.A., 2015. Comparison of passive microwave brightness temperature 

prediction sensitivities over snow-covered land in north america using machine 
learning algorithms and the advanced microwave scanning radiometer. Remote 
Sens. Environ. 170, 153–165. https://doi.org/10.1016/j.rse.2015.09.009. 

Xue, Y., Forman, B.A., Reichle, R.H., 2018. Estimating snow mass in north america 
through assimilation of advanced microwave scanning radiometer brightness 
temperature observations using the catchment land surface model and support 
vector machines. Water Resour. Res. 54, 6488–6509. https://doi.org/10.1029/ 
2017wr022219. 

X. Shan et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.rse.2016.01.008
https://doi.org/10.1016/j.rse.2016.01.008
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0430
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0430
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0435
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0435
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0440
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0440
https://doi.org/10.3390/rs11232842
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0450
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0450
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0450
https://doi.org/10.1111/nph.13354
https://doi.org/10.1111/nph.13354
https://doi.org/10.1111/nph.14059
https://doi.org/10.1111/nph.14059
https://doi.org/10.1109/tgrs.2012.2194156
https://doi.org/10.1016/j.rse.2019.01.004
https://doi.org/10.1016/j.rse.2019.01.004
https://doi.org/10.3390/rs13081463
https://doi.org/10.1109/36.823930
https://doi.org/10.1109/tgrs.2011.2173349
https://doi.org/10.1029/2018wr023830
https://doi.org/10.1175/jhm-d-15-0075.1
https://doi.org/10.1016/j.jag.2017.10.006
https://doi.org/10.1038/ncomms14065
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0510
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0510
https://doi.org/10.1080/01431169008955090
https://doi.org/10.1080/01431169008955090
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0520
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0520
https://doi.org/10.1109/tgrs.2014.2386142
https://doi.org/10.1109/tgrs.2014.2386142
https://doi.org/10.1002/2017gl073747
https://doi.org/10.1109/tgrs.2020.3035881
https://doi.org/10.1109/tgrs.2020.3035881
https://doi.org/10.3390/rs8080673
https://doi.org/10.3390/rs8080673
https://doi.org/10.3390/rs10091396
https://doi.org/10.1016/s0034-4257(99)00036-x
https://doi.org/10.1016/s0034-4257(99)00036-x
https://doi.org/10.1109/36.739155
https://doi.org/10.1127/0941-2948/2013/0399
http://refhub.elsevier.com/S0034-4257(22)00230-9/rf0565
https://doi.org/10.1016/j.rse.2015.09.009
https://doi.org/10.1029/2017wr022219
https://doi.org/10.1029/2017wr022219

	Towards constraining soil and vegetation dynamics in land surface models: Modeling ASCAT backscatter incidence-angle depend ...
	1 Introduction
	2 Data and methods
	2.1 Study area
	2.2 ASCAT backscatter-incidence angle dependence
	2.3 Interactions between soil, biosphere and atmosphere (ISBA) model
	2.4 Deep Neural Network
	2.5 Normalized sensitivity coefficient

	3 Results and discussion
	3.1 Model performance
	3.2 Model sensitivity: a qualitative analysis
	3.3 Model sensitivity: normalized sensitivity coefficient

	4 Conclusions
	Credit author statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Supplementary data
	References


