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ABSTRACT

Bow echoes (BEs) are bow-shaped lines of convective cells that are often associated with swaths of damaging straight-line
winds and small tornadoes. This paper describes a convolutional neural network (CNN) able to detect BEs directly from
French kilometer-scale model outputs in order to facilitate and accelerate the operational forecasting of BEs. The detections
are only based on the maximum pseudo-reflectivity field predictor (pseudo because expressed in mm · h−1 and not in dBZ).
A pre-processing of the training database is carried out in order to reduce imbalance issues between the two classes (inside or
outside bow echoes). A CNN sensitivity analysis against a set of hyperparameters is done. The selected CNN configuration has
a hit rate of 86% and a false alarm rate of 39%. The strengths and weaknesses of this CNN are then emphasized with an object-
oriented evaluation. The BE largest pseudo-reflectivities are correctly detected by the CNN which tends to underestimate the
size of BEs. Detected BE objects have wind gusts similar to the hand labeled BE. Most of the time, false alarm objects and
missed objects are rather small (e.g., < 1500 km²). Based on a cooperation with forecasters, synthesis plots are proposed
that summarize the BE detections in French kilometer-scale models. A subjective evaluation of the CNN performances is also
reported. The overall positive feedback from forecasters is in good agreement with the object-oriented evaluation. Forecasters
perceive these products as relevant and potentially useful to handle the large amount of available data from numerical weather
prediction models.

1. Introduction

Mesoscale convective systems (MCSs, Houze Jr.
2004) are organized thunderstorms with a linear or
round shape lasting several hours, whereas single-
cell thunderstorms last 20-30 minutes on average.
MCSs can cause considerable wind, hail or flood
damage. In an operational context, particular care
must be taken to closely monitor the different types
of MCSs such as squall lines (Trapp et al. 2005) or
mesoscale convective complexes (Laing and Fritsch
1997). Among MCSs, bow echoes (BEs) can occur
all year round in North America as well as in Europe
(Goulet 2015). Even though they are relatively rare
in Europe (around 5 BEs per year in France between
2006 and 2020), BEs can have significant meteoro-
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logical impact because they can generate strong wind
gusts and tornadoes. The size and genesis of BEs can
differ from one case to another but a general common
feature is a bow shape in reflectivity fields. This as-
pect may be explained by a rear inflow jet in the mid
levels of the atmosphere (Przybylinski 1995; French
and Parker 2014). This mid-level jet causes a strong
downdraft and it is also responsible for strong winds
under bow echoes (Fujita 1978; Atkins and Laurent
2009; Markowski and Richardson 2010).

Since the beginning of the 21st century, Numerical
Weather Prediction (NWP) models at convection-
permitting scale have been developed (Done et al.
2004; Seity et al. 2011). These models were some of
the first ones to explicitly simulate MCSs. Due to the
limited predictability at such scales (Hohenegger and
Schär 2007), convection-permitting ensemble predic-
tion systems (EPSs) are necessary. Systems such as
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SREF1 (Du et al. 2003), MOGREPS2 (Bowler et al.
2008), COSMO-DE-EPS3 (Peralta et al. 2012) or
AROME-EPS4 (Bouttier et al. 2016) have been de-
veloped by several national weather services to sup-
plement deterministic forecasts.

However, leveraging the huge information provided
by EPSs to forecast occurrences and trajectories of
MCSs, or more generally, of meteorological objects,
still remains a challenge. A visual examination of
each member is time consuming, and usual products
such as point-based probabilities or percentiles are
not appropriate to recognize the different MCSs sim-
ulated in EPS members. A possible way to over-
come these limitations is to automatically detect
MCSs in NWP outputs and to develop probabilis-
tic diagnostics from detected objects. For opera-
tional forecasting, Updraft Helicity (UH, Kain et al.
2008) has been developed to detect potential severe
convective storms such as supercells (Moller et al.
1994). UH has been used to define severe weather
indices (Sobash et al. 2016; Gallo et al. 2019; Sobash
et al. 2020) and can be combined with reflectivity
fields to recognize severe thunderstorms in a ”mem-
ber viewer” approach (Roberts et al. 2019). MCS de-
tection algorithms have been also used on observed
data (Patil et al. 2019). Concerning BEs, an auto-
mated detection based on computer vision with skele-
tonization and shape matching approaches has been
developed by Kamani et al. (2016). Existing detec-
tion algorithms mostly rely on a threshold of pre-
dictor fields that dictates BE identification in model
outputs. Such approaches require fine tuning and
they are rarely designed to recognize specific shapes,
which is a key aspect for the detection of objects such
as BEs.

In meteorology, machine learning (ML) and deep
learning (DL) methods have recently proved their
ability to detect patterns and objects in observa-
tional and modeling datasets. One of the first DL
method applications was to solve classification prob-
lems with the aim of predicting a label (e.g., sunny
or cloudy) given an image from a large and varied
dataset (Elhoseiny et al. 2015). Liu et al. (2016) were
among the first to detect features in NWP outputs
using Convolutional Neural Networks (CNNs, LeCun
and Bengio 1995) in order to track down tropical cy-
clones, atmospheric rivers and fronts using classifica-
tion systems. Then, ML and DL methods have been
used for segmentation problems in order to detect
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object contours in forecast outputs. Segmentation
algorithms have been applied to extend the previ-
ous work on tropical cyclones and atmospheric rivers
(Kurth et al. 2018) and to detect fronts (Biard and
Kunkel 2019; Matsuoka et al. 2019; Lagerquist et al.
2019).

Regarding the applications to convection, McGov-
ern et al. (2017) and Gagne II et al. (2019) have
shown that CNNs can discriminate severe hailstorms
according to spatial structures of storms. These
CNNs can differentiate a BE from a supercell and a
pulse storm to quantify the risk of hail. Using radar
data and radio-soundings, Jergensen et al. (2020) ap-
plied ML methods to classify convective storms in
three categories, viz disorganised, quasi-linear con-
vective system (QLCS) or supercell. ML and DL
have also been used for short-term predictions of
strong convective wind gusts (Lagerquist et al. 2017)
or tornado occurrences (Lagerquist et al. 2020).

In previously mentioned works, CNN input data
were manually pre-selected or obtained from heuris-
tic algorithms for training and prediction processes,
and ML/DL methods were used to classify these sets
of inputs. In this work, we present a segmentation
model that can directly detect and identify BEs in
deterministic and ensemble model outputs to provide
a comprehensive daily production of BE risk. The
purpose of the present study is to train a CNN-based
detection algorithm for BEs with a database consist-
ing of forecasts from the French kilometer-scale en-
semble prediction system, hereafter called AROME-
EPS. A transfer learning approach is tested to ap-
ply the CNN to the French deterministic AROME
model. This CNN is first assessed with object-
oriented scores. The advantages of this CNN-based
detection for operational purposes are evaluated by
ten forecasters. To assess the practical benefit of
CNN detections, methods for synthesizing informa-
tion are also discussed with forecasters, following the
suggestions by Demuth et al. (2020).

The CNN architecture, AROME-EPS databases,
and scores used to evaluate CNN skills are detailed
in section 2. In section 3, a hyperparameter search is
presented, highlighting the roles of some important
parameters in the CNN setting and in the training
dataset design. The optimal CNN configuration de-
rived from section 3 is further detailed and evaluated
in section 4 to highlight its strengths and weaknesses.
Section 5 discusses the application of the CNN to the
deterministic AROME model without re-training. In
a dedicated end-user section 6, different visualization
products are proposed to summarize the BE risk in
AROME-EPS and AROME models. In the last part
of section 6 forecasters’ feedback on CNN skills and
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advantages in an operational context are gathered.
Conclusions and perspectives are given in section 7.

2. Methods and Data

a. AROME and AROME-EPS

AROME is the non-hydrostatic high resolution
model of Météo-France, operational since 2008 (Seity
et al. 2011; Brousseau et al. 2016). The model cov-
ers mostly Western Europe (12°W-16°E and 37.5°N-
55.4°N, with a size of 2000×2000km approximately,
cf Fig.S1 in the online supplement for a figure of the
domain). The current operational AROME model
has a horizontal grid spacing of 1.3 km and 90 ver-
tical levels, some statistics concerning the simulated
convective cells in AROME are available in the sec-
tion 3 of Brousseau et al. (2016). AROME is initial-
ized five times a day at 00, 03, 06, 12 and 1800UTC
with lead times up to 48h. Operational at Météo-
France since 2016, AROME-EPS is the convection-
permitting ensemble prediction system based on the
non-hydrostatic AROME model. Its domain is simi-
lar to the one from the deterministic AROME model.
AROME-EPS is a 16-member ensemble (since sum-
mer 2019) with a horizontal grid spacing of 2.5 km
and 90 vertical levels. It is perturbed with four differ-
ent sources of uncertainties : lateral boundary con-
ditions (Bouttier and Raynaud 2018), surface condi-
tions (Bouttier et al. 2016), initial conditions (Mont-
merle et al. 2018; Raynaud and Bouttier 2017) and
model errors (Bouttier et al. 2012). AROME-EPS
is initialized four times a day at 03, 09, 15 and
2100UTC with lead times up to 51h. AROME-EPS
has been developed to improve the prediction of high-
impact phenomena such as convective systems.

b. Input data

1) Bow Echo (BE) labeling

The training and validation datasets for the
CNN segmentation model are built using pseudo-
reflectivity forecasts from AROME-EPS members.
The reflectivity field available in AROME-EPS mem-
bers outputs is calculated with a radar simulator
(Caumont et al. 2006) in mm6 ·m−3. The Marshall-
Palmer Z-R relationship (Marshall and Palmer 1948)
is applied to convert the reflectivity fields into
pseudo-reflectivity fields in mm · h−1. The choice
of mm · h−1 rather dBZ is a historic choice when
the rainfall accumulation was updated hourly. Even
if the fields in mm · h−1 and dBZ are now produced
in operations, only pseudo-reflectivity fields are avail-
able for the oldest dates of the training and validation
databases. The maximum value in the grid column
of pseudo-reflectivities is used as an input for the

CNNs. To train the CNNs and compute the valida-
tion database scores, a corresponding ground-truth
hand-labeled dataset is produced. This dataset is
constructed from the contours of hand-labeled BEs
plotted by one expert and using the VIA software
(VGG Image Annotator, Dutta and Zisserman 2019).
After a postprocessing step, each hand-labeled field
has the same size as the pseudo-reflectivity input,
with a value of 1 for every grid point inside a BE and
0 outside. The labeling process utilizes three vari-
ables: maximum pseudo-reflectivity, mean sea level
pressure (MSLP), and wind speed at 10m. From
these three predictors, the expert uses three con-
ditions to hand-label a BE. The first one is to ob-
serve a bow shape in the pseudo-reflectivity field.
The second one is to notice a gradient in the MSLP
field corresponding to the bow shape. According
to Markowski and Richardson’s (2010) conceptual
model, a specific pressure pattern is observed with
BEs, consisting of a minimum in pressure leading a
BE, a maximum in pressure beneath a BE, and an-
other relative pressure minimum in the trailing strat-
iform rain region. The last condition is to observe the
bow shape in the wind speed field and especially the
strong increase of wind speed in front of the BE.

In practice, the labeling process is highly time-
consuming. In order to facilitate the analysis of
the predictor fields, only two figures are provided to
the expert (Fig. 1), showing the maximum pseudo-
reflectivity field, and the contours of ∥∇(MSLP )∥1
equal to 2 hPa for 10km overlaid with the areas
where the divergence of horizontal wind is below
1.5×10−3s−1. The contours of hand-labeled BEs are
plotted over the pseudo-reflectivity fields. An exam-
ple of fields used for the labeling process is shown in
Fig. 1 where a BE is labeled. Note that the wind gust
field is not considered because it is not instantaneous,
only the maximum over the last hour is computed.

2) BE datasets

The labeling process is applied to specific cases
where BEs are observed (in radar data) in France.
Studying every AROME-EPS run over a long period
would be too time-consuming and simulated BEs can
be preferentially identified among the 16 members
on these specific cases. A list of these observed BEs
in 2017, 2018 and 2019 is subjectively created with
the help of ten forecasters to be sure that no ob-
served BE is omitted. The previous four AROME-
EPS initializations before the beginning of BE events
are used and only the lead times around BE events
are retained to save time during the labeling pro-
cess. Some other severe convective cases (supercells,
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Fig. 1. Example of fields used during the labeling process. The fields are zoomed over the North-East of France. On the
left, the contours of ∥∇(MSLP )∥1 equal to 2 hPa for 10km are in pink, the areas where the divergence of horizontal wind
(div in legend) is below 1.5× 10−3 s−1 in green, and the contour of the labeled BE in black. On the right, the corresponding
pseudo-reflectivity field.

squall lines and quasi-stationary convective systems)
are also integrated in the validation dataset. The
ability of CNNs to learn pseudo-reflectivity signa-
tures not associated with BEs needs to be verified.
Some (∼ 10) hand-labeled BEs were plotted in those
other severe convective cases. Indeed, some mem-
bers can simulate BEs in the AROME domain even
if a quasi-stationary convective system is observed
for instance. Concerning the training dataset, other
organized thunderstorms (especially supercells) are
indirectly integrated because they are simultaneously
simulated over the same areas in similar supporting
environments.

Finally, the training dataset is based on a total of
11 observed BE cases (18 May 2017, 27 June 2017,
10 June 2018, 8 August 2018, 6 July 2019, 6-9-11
August 2019, 21 September 2019, and 14-23 Octo-
ber 2019), leading to 6206 pseudo-reflectivity fields
and 556 hand-labeled BEs. During the design of the
training dataset, a half of the AROME-EPS samples
corresponding to one specific BE case (21 september
2021) is randomly selected. This subsampling is nec-
essary because all the simulated BEs in the AROME-
EPS members are very similar with same pseudo-
reflectivity intensities and same sizes for this case (all
BE contours are available in the online supplement to
this paper, figure S2). If this subsampling were not
made, this BE case could create a large number of
very similar training samples and consequently could
degrade the training process. Concerning the valida-
tion dataset, 4 different observed BE cases (8 August
2017, 26 May 2018, 4 and 5 June 2019) and 3 other

convective cases (squall lines : 2 January 2018 and 3
December 2018, quasi-stationary convective system
: 5 August 2019) are integrated, leading to 2440
pseudo-reflectivity fields and 264 hand-labeled BEs.
This corresponds to approximately 70% of data used
for the training and 30% for the validation dataset.
The training and validation databases are composed
of independent cases to limit as far as possible cor-
relation between the two databases.

3) BE predictors

The selection of CNN inputs is crucial and affects
the CNN ability to correctly detect BEs. Due to lim-
ited computing power, we can only chose one predic-
tor as a first step toward building a BE identification
system. The three variables utilized during the la-
beling process (maximum pseudo-reflectivity, MSLP
and wind speed at 10m) are examined. The MSLP
field is too noisy around mountainous areas (espe-
cially the Alps and the Pyrenees) with noise similar
in magnitude to BE-induced perturbations. An ex-
ample around the Alps at the bottom right corner of
Fig. 1 is shown with pink contours but no precipita-
tion. The wind speed field has sometimes an unreal-
istic behavior in the AROME models and is rejected
at this stage. This behavior is observed in convec-
tive and dry conditions or in showers at the rear of
cold fronts. The mean wind speeds can be above 120
km · h−1 (wind gusts above 210 km · h−1) which are
unreasonable values in France. The AROME mod-
els can also create strong downdrafts in convective



5

cases without associated rainfall. Even if this behav-
ior is occasionally realistic (i.e dry microbursts), fore-
casters tend to use wind speed with care in convec-
tive cases (same conclusion applies to the wind gust
parameter). The CNNs in this paper are univari-
ate models with maximum pseudo-reflectivity fore-
casts as input for that reason. However, wind speed
and especially wind gust speed at 10m (FFgust) re-
main crucial parameters for BEs. The main threat
is strong wind gusts under BEs and therefore fore-
casters need to know magnitudes of these wind gusts
to convey information on hazards. In this paper,
the FFgusts inside BEs will be considered during the
object-oriented evaluation in section 4 and 5 to eval-
uate the selected CNN in the section 3. Using also
wind speed as another predictor could be tested in
future work.

c. CNN architecture

For BE detection, CNNs are used as segmentation
models. The selected CNN should be suitable for
small training datasets because BEs are rare events
(in space and time). A U-Net architecture (Ron-
neberger et al. 2015) has been chosen because past
studies have shown that it gives satisfactory results
when few data are available. This U-Net architecture
(Fig. 2) is divided into two parts which correspond to
the contracting and expanding paths. The contract-
ing path consists of 2 convolutional layers (32 3×3
filters) followed by a rectified linear unit (ReLU) ac-
tivation function and a dropout rate of 0.2. A 2×2
maxpooling operation is applied to divide the patch
size by 2. The same sequence is repeated two more
times with respectively 64 and 128 filters. The ex-
panding path first performs a 2×2 upsampling (“up-
convolution”) operation. The upsampled maps are
then concatenated with the corresponding maps in
the contracting path, and 2 convolutional layers fol-
lowed by a ReLU activation are applied (with the
same number of filters as in the corresponding con-
tracting path layer). Upsampling, concatenation and
convolution are repeated another time. At this stage,
the outputs have the same size as the inputs. A final
convolutional layer with a 1x1 filter is added to ob-
tain the desired number of classes (two classes here).
In order to get a class probability as an output, a
softmax function is applied. The U-Net architecture
is presented here with an input size of N × M grid
points. Several sizes of inputs are tested in the next
section. Other classical parameters for the U-Net ar-
chitecture such as the number and size of filters, the
dropout rate and the choice of the ReLU activation
are not discussed in the following sections.

d. CNN training

Limited computing power does not allow to take
the entire AROME domain as a CNN input. To
train the U-Nets, patches of N ×M grid points are
extracted from the original pseudo-reflectivity fields
(717×1121 grid points). In addition, because the size
of a BE is much smaller than the domain size, there
is a strong imbalance between the BE and no BE
classes in the training dataset. Extracting smaller
patches allows us to design a more balanced training
database by selecting the most informative patches.
Fig. 3 shows the different steps undertaken to extract
patches (from 1 to 6):

• (step 1) Patches from the pseudo-reflectivity
fields are randomly selected. Npatches are ex-
tracted from each field (values in Table 1).
The associated groundtruth patches are also ex-
tracted.

• (step 2) The pairs of patches (pseudo-
reflectivity/groundtruth) are split into two
groups : the patches with BEs in which at least
one grid point is labeled as a BE and the patches
without any BE.

• (step 3) The number of patches with BEs is
very limited compared to patches without any
BE (1 patch with a BE for every 1600 patches
without a BE). Initially, BEs with moderate
pseudo-reflectivities were not correctly predicted
because they were under-represented in the
dataset. A data augmentation technique is pro-
posed to solve this problem: in a given patch,
the pseudo-reflectivities are multiplied by a coef-
ficient of 0.75 if a BE is within this patch and the
maximum pseudo-reflectivity is above a given
threshold (mentioned in the next section). This
new patch is added in the ones with BEs (step2).
The pseudo-reflectivity field must remain phys-
ically consistent as much as possible. That is
why lower coefficients are not investigated and
only patches with large magnitude in pseudo-
reflectivities are taken into account.

• (step 4) To reduce the number of patches with-
out a BE, the patches without precipitation
(pseudo-reflectivity maximum < 0.1 mm · h−1)
are deleted.

• (step 5) Even after the filtering procedure of step
4, the number of patches without a BE remains
high (1 patch with a BE for every 400 patches
without a BE). To limit the number of patches
without a BE, the ratio between the patches
with and without a BE (Ratio noBE/BE) is
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Fig. 2. U-Net architecture for bow echo detection

Fig. 3. Training database design. Steps 1-6 are denoted by blue circles and are described in the section 2.d.

fixed to a lower value. The patches retained are
randomly selected and the unnecessary patches
without a BE are deleted. This ratio is discussed
in the next section.

• (step 6) During the first tests, all patterns with
strong pseudo-reflectivities were detected as BEs
and consequently the number of false alarms was
very high in the validation database. Strong
pseudo-reflectivities are rare in space and time
and the majority of patches without a BE con-
tains no or weak precipitation whereas BEs are
frequently associated with heavy precipitation.
Only 0.7% of patches without BE are associated
with heavy precipitation (i.e above 60 mm ·h−1)

whereas, after the data augmentation in am-
plitude (step 3), around 55% of patches with
BEs are associated with heavy precipitation. In
this case, the pseudo-reflectivity magnitude is
relied on too heavily to detect the BEs in the
pseudo-reflectivity fields. Patches with large
magnitude pseudo-reflectivities but without a
BE are forced in the training database to solve
this problem and the rate of large magnitude
pseudo-reflectivity patches without a BE in the
total number of patches without a BE is defined
(heavy rate). A patch is considered with large
magnitude pseudo-reflectivities if the maximum
is above 60 mm · h−1. Another way to address
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Table 1. Values of Nstride and Npatch according to input size

Input size Nstride Npatch

24 · 24 7 4000

48 · 48 15 1000

96 · 96 30 250

this problem could be to add more input predic-
tors.

e. CNN prediction

The U-Net inputs and outputs are composed of
N×M grid point patches. The aim of this study is to
predict the BE risk over the entire original AROME
domain. The same U-Net is applied on overlapping
patches as depicted in Fig. 4. The entire grid is di-
vided in ordered patches with a stride of Nstride grid
points along the longitude and latitude axes (Fig. 4
step 1 : blue, black, and orange squares). The values
of Nstride depend on the input size of the U-Net and
are given in Table 1. A prediction for each patch
is computed. The prediction results are patches rep-
resenting the probability of each class (Fig. 4 step 2
: two patches after the U-Net architecture for each
pseudo-reflectivity patch, pn,i is the probability of
the ith grid point according to the nth patch). The
mean probability for each class is computed (Fig. 4
step 3) considering all the patches where the grid
point is included. Finally, the probabilities are used
(>50% defines a categorical prediction) to define a
detected BE (Fig. 4 step 4). Following the training,
Fig. 4 depicts the U-Net application in the predic-
tion process from the input pseudo-reflectivity field
of 717 × 1121 grid points to the segmentation mask
(same shape of 717× 1121).

f. CNN implementation

For the implementation of this CNN, the Tensor-
Flow/Keras software is used (Abadi et al. 2015). Us-
ing only pseudo-reflectivity fields as inputs, the U-
Net is a univariate model. The training and vali-
dation data do not need to be normalized. After
some tests and loss curve verifications, the number
of epochs is fixed at 50. Different batch sizes have
been tested (16, 32 or 64): results are similar with
16 and 32, but with 64 an overfitting is noticed. The
batch size is fixed at 32. The weights of neural net-
works are randomly initialized and updated using the
Adam optimizer (Kingma and Ba 2014), a default
learning rate value of 10−3 is applied. The weights
are iteratively optimized during the training to min-
imize a weighted cross-entropy loss function (L, Eq.

1). Contrary to the U-Net weights, the loss function
weights are fixed. This weighted loss function has
been chosen because BEs are rare events and neu-
ral networks tend to overestimate the ”no bow echo”
class with a non-weighted loss function.

L = − 1

Ngp

Ngp∑
k=1

w0 (1−Yk) log(1−pk)+w1 Yk log(pk).

(1)
In Eq. 1, Ngp is the number of grid points in the
training database, pk the BE probability and Yk the
true label for the kth grid point. w0 and w1 represent
respectively the weights of class 0 (no BE) and class 1
(BE). The value of w0 is fixed to 1. The value of w1 is
discussed in the next section with a hyperparameter
selection. Finally, Table 1 shows the values of Nstride

and Npatch presented in the above subsections.

g. Object-oriented evaluation

The capacity of this CNN to detect BEs is eval-
uated with an object-oriented approach. A grid
point approach is not suitable for assessing the BE
detections because BEs are small objects and rare
events. As a consequence, a small shift between
groundtruth and predicted labels may be responsi-
ble for bad scores, which is known in the literature
as double penalty problem (Davis et al. 2006; Rossa
et al. 2008; Ebert 2008). An object-oriented ap-
proach has already been used to evaluate AROME-
EPS precipitation forecasts (Raynaud et al. 2019).
Object attributes used in this study are respectively
the 0.25-th (Q25) and the 0.9-th (Q90) percentiles of
the pseudo-reflectivity field within bow echo objects,
the position of the object mass center, the object
area and the FFgust maximum within the object.
The attributes are presented in Fig. 5 except for the
last one. The Q25 and Q90 percentiles allow differ-
entiation of strong from moderate bow echoes. An-
other use of Q90 and Q25 is to separate the most
active part of BEs (center) from the least active part
(edge). The object area is used to distinguish large
and small BEs. The maximum FFgust reveals the
intensity of wind around the BE, which is a comple-
mentary signature of a BE. The distribution of object
attributes is computed using all labeled and detected
objects. An attribute comparison for matching ob-
jects is also performed. The labeled and detected
objects are matched if the distance between the cen-
ters of their mass is lower than a given threshold in
the remainder of the paper.

h. Scores

Contingency-based scores are used to quantify the
ability of different U-Net configurations to correctly
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Fig. 4. The whole prediction process from pseudo-reflectivity field (INPUT) to BE segmentation mask (OUTPUT) is
represented. Steps 1-4 are denoted by red circles and are described in the section 2.e.

Fig. 5. Object attributes. A bow echo is characterized by
3 attributes: intensity, position and area. Bow echo intensity
is described with Q25 and Q90 of pseudo-reflectivities within
the object (pink histogram), position with the center of mass
and area is the number of grid points within object.

detect the occurrence or non-occurrence of BEs in
addition to the comparison of labeled and detected
object attributes. A contingency table is computed
for the validation database as described in Table 2.
The risk of having two or more BEs in the same
field is very low because BEs are rare events. The

Table 2. Contingency table. Hits (a) correspond to the
number of pictures with at least one labeled bow echo and one
detected bow echo. False alarms (b) are the number of pictures
with detected bow echo(es) but not labeled. Misses (c) are the
number of pictures with labeled bow echo(es) but not detected.
Correct negatives (d) are pictures with no labeled and detected
bow echo.

Contingency BE label(s)

Table YES NO

BE detection YES a b

on picture NO c d

contingency table is based on the detection of at least
one labeled or detected BE over the entire grid for
each field. From this contingency table, the classical
hit rate (HR, Eq. 2) and false alarm rate (FAR, Eq. 3)
are used to evaluate the U-Net skill:

HR =
a

a+ c
(2)

FAR =
b

a+ b
(3)

We use the Critical Success Index (or Jaccard In-
dex, Eq. 4) to combine the false alarms and missed
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Table 3. Values tested for the five considered hyperparame-

ters.

Parameters Values

input size 24×24,48×48,96×96

data augmentation threshold 30,40,60 mm · h−1

ratio noBE/BE patch 2,3,4 noBE for one BE

heavy pseudo-reflectivity patch
percentage

15%,25%,35%

class 1 weight (w1) 2.5,3,3.5,4,4.5

detections:
CSI =

a

a+ b+ c
(4)

3. Hyperparameter Search

a. Hyperparameter configuration

The aim of this part is to identify the most in-
fluential hyperparameters and to find the optimal
combination for the U-Net. We apply the tuning
to the following parameters (hyperparameters): in-
put patch size, data augmentation threshold, ratio
noBE/BE, heavy pseudo-reflectivity patch percent-
age and w1 in the loss function. The selection is
based on the scores presented in the previous section
and computed on the validation database. The num-
ber of values that can be tested is restricted because
of limited computing resources. The hyperparameter
values tested are presented in Table 3. The 405 com-
binations are tested. Only the results for input size,
ratio noBE/BE and w1 are presented in the following
paragraphs because the sensitivity to data augmenta-
tion and heavy pseudo-reflectivity patch percentage
turned out to be weak.

b. Filtering threshold

The UNets occasionally predict BEs whose size
is only a few grid points, on account of the pre-
diction process described in Fig. 4 and especially
the choice of a specific probability threshold to split
the U-Net outputs into two classes. These detec-
tions were mostly false detections which affected the
object-oriented scores in a significant way. In order
to remove these very small objetcs, the detected BEs
with an area below a certain threshold are converted
to null events(i.e the class was switched from 1 to
0). The hand-labeled BEs are not affected and they
are all incorporated to calculate the object-oriented
scores. The optimal threshold is selected with the
aid of these object-oriented scores. This threshold is
set from the scores of the 405 configurations (Fig. 6).
The configurations with HRs and FARs equal to 0 are
not taken into account in this figure because they are

Fig. 6. Scores as a function of filtering threshold. Scores
are computed for thresholds from 0 to 400 grid points. Con-
sidering the 405 configurations, the CSI, HR and FAR median
are plotted in respectively black, red and blue.

associated with unskillful U-Nets (cf section 3.c.1).
The hit rate naturally decreases when the filtering
threshold increases. The same behavior is observed
for the false alarm rate. According to the CSI, the
optimum threshold is around 150 grid points. With
a 150-grid-point threshold, the HR is around 70%.
However, forecasters prefer a higher HR even if the
FAR increases simultaneously (see section 6.c, the
second item). Hence, a filtering threshold of 100 grid
points is preferred, since it leads to a HR median
above 80% and a CSI close to the optimal value.
Moreover, this threshold approximately corresponds
to the size of the smallest hand-labeled bow echoes.

c. Results

The sensitivity test results are divided into two
parts. The first part focuses on the U-Nets that al-
ways predict the same probability value for the class
1 in each grid point. This probability value is equal
to 0 or 0.5, depending on the U-Net. This issue is
well known for cases of unbalanced datasets (Chawla
et al. 2004). For these U-Nets, the loss function
remains unchanged according to the epochs. They
converge to an unskillful solution where the class 1
is completely missing, or unable to differentiate the
class 0 and 1 when the probabilities are equal to 0.5
in every grid point. These U-Nets are called unskill-
ful U-Nets hereafter. The second part examines the
performances of other skillful U-Nets able to predict
bow echoes.
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Fig. 7. The number of unskillful U-Nets is counted according to each parameter: input size (left), ratio noBE/BE patch
(center), weight of class 1 in loss function (right).

1) unskillful U-Nets

BEs are rare events in space and in time as pre-
viously mentioned. The training database must be
carefully set up so that a U-Net can properly detect
bow echoes. Fig. 7 shows the number of unskillful
U-Nets as a function of the tested parameters. Sixty-
eight among the 405 U-Nets are found to be unskillful
(17%). The number of unskillful U-Nets increases
with input size, especially from 48×48 grid points
to 96×96 grid points. This result can be explained
by the typical length of BEs which is around 100km
and corresponds to 40 grid points. Bow echoes oc-
cupy relatively less space in a patch of 96×96 grid
points than in one of 48×48 grid points. The classes
0 and 1 are more unbalanced in the first case than
in the second one and the risk of unskillful U-Nets is
higher. Risk of an unskillful U-Net is less frequent
when the ratio noBE/BE patch is 2/1 than when it
is 3/1 because the classes are less unbalanced. Fi-
nally when the weight of class 1 increases, the num-
ber of unskillful U-Nets decreases. The main role of
a weighted loss function is to avoid unbalanced data
issues (Kurth et al. 2018). Those unskillful U-Nets
with a HR and FAR equal to 0 are removed in the
next sub-subsection.

The intuition behind why a smaller patch size and
larger w1 weight produces more skillfull Unets is be-
cause the contribution of BE pixels to the overall DL
loss function are increased for a smaller patch and
a larger w1 weight. In other words, when consider-
ing a smaller patch the ratio of pixels labeled 1 (i.e.,
BE) to pixels labeled 0 (i.e., noBE) is larger. Thus
the influence of BE pixels on the loss (i.e., what the
DL model learns) is larger. Similarly, the larger w1
weight for the BE class accomplishes the same in-
creased influence.

2) configuration scores

HR, FAR and CSI are analyzed for each hyperpa-
rameter. Only the skillful U-Nets are considered in

this sub-subsection. The major results are presented
in Fig. 8. The size of patches is the main parameter
that explains the fluctuation of scores. HR and FAR
tend to decrease with an increasing input size. The
CSI is lower for 24×24 input because of a high FAR.
These results can be explained by the small input
size (24×24) compared to the typical length of BEs
(40 grid points). The size of U-Net inputs should
be able to get all information of bow echo objects,
otherwise all BEs in the preprocessing step (Fig. 3,
step 1) are split into different CNN inputs and U-
Nets can not properly learn the BE features. Focus-
ing on false alarms, they mainly correspond to ob-
jects with moderate pseudo-reflectivities (Q90 max-
imum around 30 mm · h−1). The false alarm distri-
bution slightly changes with input size, with a shift
towards weaker pseudo-reflectivities for small input
sizes. This result is also consistent with the previous
remark concerning the BEs split into different CNN
inputs. Considering bow echo class weight (w1), HR
tends to increase with higher weights (same tendency
for FAR). Concerning CSI, optimum weights depend
on input size, but no trend is found for 48×48 and
96×96 inputs. However, for 24×24 input, CSI is
higher for the lowest weights thanks to much lower
FAR. Ratio noBE/BE does not have any significant
influence on the different scores contrary to what has
been mentioned in the above paragraph about un-
skillful U-Nets (not shown). The role of the different
parameters can be summarized as follows:

• Input size must be carefully selected because of
its influence on unskillful U-Nets (many more
with large-size input) and scores (HR and FAR
decrease with input size).

• Bow echo class weight (w1) is also an impor-
tant parameter which influences unskillful U-
Nets and global scores (higher HR and FAR with
higher w1). Optimum weights depend also on
input size.
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Fig. 8. Performance scores for skillful U-Nets. On the first line, boxplots for HR (orange), FAR (blue) and CSI (black) are
represented according to input size (left). False alarm distributions for Q90 attribute in mm · h−1 are plotted for the three
input sizes (right). On the last line, a focus on bow echo class weight (w1) and links to input size is proposed. For HR (left),
FAR (center) and CSI (right), scores are plotted according to weights and input sizes separated by dashed gray lines.

• Though ratio noBE/BE has an impact on the
number of unskillful U-Nets, it does not influ-
ence HR and FAR.

d. Optimal configuration

In an operational context, we have to chose a con-
figuration among the 405 ones presented in the sec-
tion 3.a. To make a choice, the fifteen best configura-
tions according to CSI are presented in Table 4. Only
input sizes of 48×48 or 96×96 are included in these
fifteen configurations. Even if the CSIs of these con-
figurations are very close, different “strategies” are
possible. The HR/FAR pairs for each configuration
can have high (8th : 0.8/0.36) or low (3rd : 0.71/0.25)
values and consequently the total number of detec-
tions varies greatly from one U-Net to another. A
way to decide which U-Net is optimal is to consider
how this CNN will be used. Since BEs are severe but
rare events, misses should be avoided. A U-Net with
a high HR is preferable. The optimal configuration
on this specific point is the 10th setup with a HR of
0.86. This configuration is now considered the opti-
mal one and will be described in more details in the
next section.

4. Optimal U-Net : an object-oriented evalu-
ation

Global scores are not sufficient to precisely evalu-
ate the U-Net skills. To go further, attributes of BE

Table 4. Fifteen best configurations according to the CSI.
The values of the five tested hyperparameters are indicated
in the following order : input size, data augmentation thresh-
old, ratio noBE/BE, heavy pseudo-reflectivity patch percent-
age and bow echo class weight. HR and FAR are also shown
for each configuration. The selected configuration is in bold.

U-Net configurations HR FAR CSI

96x96 30 3/1 15 % 4 0.73 0.25 0.58

48x48 60 4/1 35 % 2.5 0.76 0.29 0.58

96x96 60 2/1 35 % 3.5 0.71 0.25 0.57

96x96 60 2/1 25 % 4.5 0.78 0.32 0.56

96x96 40 3/1 25 % 4.5 0.77 0.32 0.56

96x96 40 2/1 15 % 2.5 0.77 0.34 0.56

48x48 60 3/1 35 % 2.5 0.73 0.29 0.56

48x48 40 3/1 35 % 3.5 0.8 0.36 0.56

48x48 40 3/1 25 % 4 0.77 0.33 0.56

48x48 40 2/1 15 % 2.5 0.86 0.39 0.56

96x96 60 4/1 25 % 4.5 0.72 0.29 0.55

96x96 60 2/1 35 % 4.5 0.78 0.35 0.55

96x96 30 2/1 15 % 4 0.75 0.33 0.55

48x48 60 4/1 35 % 4.5 0.82 0.38 0.55

48x48 40 4/1 25 % 3 0.72 0.29 0.55

objects must be analyzed to support the HR, FAR
and CSI scores. Those scores described in the sec-
tion 2.h provide no information about the detection
quality but only about the BE detection and the BE
labeling simultaneously in the same field. A com-
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Fig. 9. Evaluation of the U-Net optimal configuration with an object-oriented approach. At the top left, area histograms
for the optimal configuration (blue) and the hand-labeled dataset (green) are compared (a). The total number of BEs is visible
in the legend. The same is done for Q90 attribute (b) and maximum FFgust (c). Then, the characteristics of false alarm (d)
and miss (e) features are presented. All detected objects are plotted according to area and Q90 in blue, the false alarms are
in red. The same is done for the hand-labeled dataset (blue) and the misses (red). The correlation between matching pairs
of hand-labeled objects (x-axis) and detected objects (y-axis) is studied for four attributes : area (f), Q90 (g), Q25 (h) and
Qmax FFgust (i). The gray dashed line represents a perfect match (y=x). The correlation coefficient is also mentioned in the
legend.

prehensive object-oriented evaluation is done on the

validation dataset. Results are presented in Fig. 9.

Examples of correct detections (Fig.S3), false alarms

(Fig.S4) and misses (Fig.S5) are available in the on-

line supplement to this paper.

a. Attribute histograms

The global distributions of bow echoes areas and
Q90 are first studied (Fig. 9a and b). The area
distribution is different between detected and hand-
labeled datasets. The total number of detected ob-
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jects is rather high with a hit rate of 0.86 and a false
alarm rate of 0.39. No detected object has an area
below 100 grid points thanks to the filtering thresh-
old. Detected objects have mostly an area below 250
grid points with several between 100 and 150 grid
points. The number of detected objects decreases
exponentially with area size. This behavior is not
observed for the hand-labeled dataset, with a maxi-
mum around 300 grid points and objects more nor-
mally distributed. Detected objects are more fre-
quent but they tend to be smaller than hand-labeled
objects. The distributions of pseudo-reflectivity Q90
for detected and hand-labeled objects are quite sim-
ilar even if the total number of detected objects is
higher. The maximum of the Q90 distribution is
around 35mm·h−1 for both detected or hand-labeled
datasets.

The hand-labeled distribution for maximum FF-
gust (Fig. 9c) has a range from 50 km · h−1 to 150
km ·h−1 with two maximums around 70-80 km ·h−1

and 110 km · h−1. The hand-labeled BEs associated
with weak FFgusts are rare. They are examined one
by one and they are mainly BEs at the beginning of
their life cycle with weaker wind gusts. The distribu-
tion of detected objects is very similar with a single
maximum around 80 km·h−1. Even if FFgust is not a
predictor of U-Nets, the comparison of detected and
hand-labeled objects shows that the detected BEs
are associated with the same FFgust distribution as
the hand-labeled BEs. The wide range of FFgust ad-
vocates the addition of a severity attribute for each
BE detection to differentiate ’moderate’ BEs without
significant damage from BEs with potentially signif-
icant damages.

b. False alarm and missed attributes

To extract false alarm and missed features, each
object is represented in area/Q90 graphs (Fig. 9d
and e). BEs with high (respectively low) Q90 are
usually associated with small (respectively large) ar-
eas at first glance. This characteristic is physically
consistent with the life cycle of BEs and the hand-
labeled objects (strong and small at the beginning
and then weaker and larger (Goulet 2015)). This is
a reassuring aspect concerning the general behavior
of the U-Net. The false alarms mainly correspond to
small and weak objects. On the other hand, the large
or strong objects are usually correctly detected. In
an operational context, this information may prove
useful when discussing the relevance of object de-
tections. The number of misses is limited but their
distribution is more homogeneous. They are slightly
more concentrated on small objects but this result

is not as obvious as for false alarms. Two char-
acteristics are nevertheless common : the areas of
missed objects are always below 500 grid points and
the maximum wind gusts are constantly below 110
km · h−1. The prediction of BEs is more difficult for
small and weak objects. This may be related to the
more difficult recognition of these BEs by the expert,
leading to a less precise labeling. In such cases, the
U-Net is not very accurate.

c. Attribute correlations

This section defines a pair of matching objects
(detected/hand-labeled) in order to compute at-
tribute correlations. A pair is formed when the dis-
tance between two mass centers is less than 100km.
Object attributes are compared and a correlation co-
efficient is computed (Fig. 9f,g,h and i). The cor-
relation for the areas is weak. The U-Net tends
to underestimate the size of objects, especially for
the large bow echoes. This conclusion is consistent
with the comparison of the area histograms. Regard-
ing Q90, the correlation is higher and points are lo-
cated around the dashed gray line (y=x). Q90 is
representative of the most active part (i.e heaviest
pseudo-reflectivities) located in the center of BE ob-
jects. Q25 is more representative of the BE borders
with lower pseudo-reflectivities, and the correlation
is worse than that of Q90. These findings point to
the ability of the U-Net to properly retrieve the most
relevant part of BEs, whereas the BEs borders are
less well estimated. The strong correlation of FF-
gust maximum (as well as Q90) supports the con-
clusion of the previous sentence since the strongest
FFgusts are in the most relevant part. In subsection
6.c, the results about the false alarms, misses and
correlation attributes will be further discussed and
compared with comments from forecasters.

d. BE and SC confusion

The capacity of the U-Net to differentiate BEs
from other types of severe convective storms is also
verified. The main issue could be to mix up BE with
other convective storms as intensity can be similar.
Initially, the CNNs detected all patterns with strong
pseudo-reflectivities as BEs (section 2.d, last item).
To remove any doubt, it is verified that BEs are not
mixed up with isolated supercells (SCs, most com-
mon severe convective storm in France) when the
confusion between the two convective events is very
unlikely for a human. Eleven convective situations
that occurred in 2019 and in 2020 are examined (Ta-
ble 5). These situations are covered by 5066 pseudo-
reflectivity forecast fields from AROME-EPS, in
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Table 5. BE and supercell (SC) overlaps. For each date,
the number of fields with hand-labeled supercells (second col-
umn) and predicted bow echoes (third column) is reported.
The last column, overlaps, shows the number of fields where
predicted BE and hand-labeled SC objects have at least one
grid point in common.

Date SCs BEs Overlaps

2019-06-15 67 94 3

2019-06-18 37 27 0

2019-06-19 18 21 0

2019-06-24 47 88 6

2019-07-06 36 6 1

2019-07-15 172 12 1

2019-07-26 34 52 0

2019-08-09 90 38 1

2019-08-18 54 38 1

2020-04-17 25 17 1

2020-05-09 48 37 1

Total 628 430 15

which a same expert hand-labeled 628 SCs. The la-
beling of SCs rely on pseudo-reflectivity fields and
UHmax between 800 and 500 hPa. We keep the
maximum in absolute value of UH to correctly detect
both right and left moving SCs. The specific contour
of 50 m2 · s−2 or (-50 m2 · s−2 for negative values) is
plotted over the pseudo-reflectivity fields to help the
labeling process. Discrete and embedded SCs in lines
of convection are hand-labeled. High reflectivties (>
50 mm ·h−1) and high UHmax values are required to
label a SC. In this analysis, predicted BEs from the
U-Net are compared with hand-labeled SC objects.
The confusions between SCs and BEs are rare with
only 15 occurrences for over 628 SCs and 430 BEs.
As SCs can be embedded in quasi-linear convective
systems, these overlaps can be understandable. A
SC can also sometimes evolve into a BE (Klimowski
et al. 2004) and during the transition phase, an over-
lap between BE and SC labels is possible. These
15 overlapping occurrences have been manually ana-
lyzed to check whether the overlaps occurred in one
of the previously mentioned two cases. Only 3 of
the 15 overlapping occurrences do not occur in one
of the two cases and can be considered as abnormal
overlaps after examination. To conclude, the risk of
confusion between BEs and SCs is very limited with
only 0.5% of SCs wrongly detected as BEs.

5. Extension to the AROME deterministic
model

At this stage, the U-Net has been trained and
tested using AROME-EPS forecasts. The possibil-
ity to detect BEs in the deterministic AROME fore-

Fig. 10. Similar plot to Fig. 6, but only the optimal U-Net is
considered and not all U-Net configurations.

casts, which has a higher resolution (1.3 km instead
of 2.5 km), is also important for forecasters. Trans-
fer learning from AROME-EPS to AROME is tested
because data from deterministic models are limited
and setting up another training database would be
very time-consuming. We test the optimal configu-
ration on the AROME deterministic model without
re-training after encouraging results with AROME-
EPS. Pseudo-reflectivity fields from AROME are
available on the same grid as AROME-EPS (2.5 km)
thanks to a quadratic interpolation method. The
cases in the AROME and AROME-EPS validation
databases should be the same to have comparable
results. There are only 348 pseudo-reflectivity fields
and 62 hand-labeled bow echoes in its validation
database because deterministic AROME is a single
forecast, which can limit the significance of results.

a. Filtering threshold and global scores

Even if the pseudo-reflectivity fields have the same
resolution (2.5km) as those of AROME-EPS, the na-
tive resolution of AROME is smaller (1.3km) and
the pseudo-reflectivity fields in the AROME de-
terministic model are more realistic with stronger
pseudo-reflectivity gradients and consequently we re-
examined the filtering threshold applied to AROME
data. A similar graph to Fig. 6 is plotted in Fig. 10.
With only one setup, the curves are noisier. The
maximum CSI is around 100-150 grid points which
is in favor of retaining the same filtering thresh-
old of 100 grid points as for AROME-EPS (dashed
grey line). With this threshold, the HR (respectively
FAR) is equal to 0.79 (respectively 0.2). The FAR
is better than the one for the AROME-EPS outputs
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(0.39) while the HR is slightly lower. There are sev-
eral possible explanations besides the small size of
the database. Bow echo recognition is in this case
easier for experts with less ambiguous cases because
pseudo-reflectivity fields are more realistic. A hand-
labeled database with higher quality and stronger
pseudo-reflectivity gradients can both explain the
lower FAR.

b. Results

The same figures as in the previous section (Fig. 11
from a to i) are presented to study more specifically
the U-Net behavior in AROME forecast outputs.
The same U-Net behavior is observed despite the
small database. Even if the number of hand-labeled
and detected bow echoes is more even, undersized
objects are still predicted with a correct Q90 distri-
bution. The FFgust distributions are also compara-
ble even if some U-Net detections, which are false
alarm objects, are associated with weak FFgusts.
The false alarm and missed attributes are also very
similar to that of the AROME-EPS database. The
false alarms correspond to weak and small objects.
The misses concern mostly small and weak BEs, but
a small and strong BE (Q90 around 85 mm · h−1)
is also missed. The attribute correlation results are
also very similar to AROME-EPS with a high corre-
lation coefficient for the Q90 and FFgust attributes
but a worse correlation for area and Q25. No signif-
icant change can be noticed when the comparison is
made with the AROME-EPS database except a bet-
ter FAR. We conclude that the same U-Net can be
used to detect bow echoes in AROME deterministic
model. The extension to AROME will be further dis-
cussed in subsection 6.c based on the feedback from
the subjective comparison by forecasters. The pos-
sibility to extend U-Nets from EPS to deterministic
models is an advantage of both DL and ML methods.
EPS outputs are indeed well adapted to these meth-
ods which require large datasets (Schumacher et al.
2021). This is not always the case for deterministic
models. However, this extension is realistic if both
EPS and deterministic models are sufficiently simi-
lar. For instance, the grid of EPS and deterministic
model outputs should be close to assume that spa-
tial features learned during the training process of
the EPS database are still valid for the determinis-
tic models. Otherwise, interpolating model outputs
could be tested.

6. Utilization of BE detections by end-users :
synthesis plots and feedback

The satisfactory evaluation of the U-Net perfor-
mances for both AROME-EPS and AROME outputs

motivates the development of forecasting products
about BE detections. For that purpose, synthesis
plots are presented in this section. They have been
designed in collaboration with forecasters, inspired
by Demuth et al. (2020). Three synthesis plots are
presented: trajectory and paintball plots in the first
subsection and a probability map of BE occurrences
in the second subsection. To facilitate the use of U-
Net outputs, each AROME-EPS run is divided into
three different time periods (Day 1, Night Day 1/2
and Day 2). Thanks to these time periods, the en-
tire life cycle of a BE can be followed over only one
of them. The three synthesis plots are computed
for the three time periods and consequently, for each
AROME-EPS run, 3×3 synthesis plots are produced.
The three time periods are based on UTC hour to
facilitate comparisons between AROME-EPS runs.
The last subsection is a summary of forecasters’ feed-
back concerning the U-Net performance and the syn-
thesis plots.

a. Trajectory and paintball plots

One way to summarize U-Net outputs is to plot
the overlapping of the detections of every member
for a time period (Day 1, Night day1/2 or Day2).
The trajectory plot is very useful to visualize the
temporal evolution of a BE in AROME forecasts with
a different color for each UTC hour. Fig. 12a shows
the BE northward trajectory over the North-East of
France. It gives useful information about the BE
risk period which is during the afternoon and early
evening in this case (14UTC and 18UTC from green
to yellow).

The paintball plot (Fig. 12b) helps evaluate the
number of different members that predict a BE with
a different color for each member. Focusing on a
specific BE object, we can assess the member and the
UTC time of the detection by combining both the
trajectory and paintball plots. The U-Net outputs
can be quickly identified thanks to this information.

b. Probabilistic approach

Trajectory and paintball plots are very useful to
evaluate BE risks. However, the interpretation of
a large number of detections over a small area as
shown in Figs. 12a and b can remain troublesome. A
probabilistic approach is useful to quantify the risk
of BEs in AROME-EPS.

1) space-time tolerance

A probabilistic synthesis should allow for some
space and time tolerances because of the rather low
number of AROME-EPS members and the small size
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Fig. 11. Evaluation of the U-Net on the AROME deterministic model database. The subplots are the same as in Fig. 9.

of BEs. For that purpose, a neighborhood disc of ra-
dius εkm, denoted dε, is defined around each grid
point x:

dε(x) = {y | ∥x− y∥2 ≤ ε} (5)

The value of ε will be discussed in the next para-
graph. A neighborhood probability of BE (Pε,l) is
defined by :

Pm
ε,l(x) =

{
1 if

∑
y∈dε(x)

1BE(y) ≥ l

0 otherwise
(6)

1BE(y) corresponds to the U-Net output for the grid
point y (1 in a BE, 0 out). A grid point x for a mem-
ber m is associated with a probability of 1 if at least l
grid points in the neighborhood of x correspond to a
BE detection. To include a time tolerance, the prob-
ability at time t is computed using forecasts valid at
t, t− 1h and t+ 1h :

Pε,l(x, t) =
1

3×Nmb

1∑
i=−1

Nmb∑
m=1

Pm
ε,l(x, t+ i), (7)
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Fig. 12. Synthesis plots of U-Net detections. The forecasts from AROME-EPS launched on 12 June 2020 at 03UTC and
from the deterministic AROME model launched on 12 June 2020 at 00UTC are taken as an example. The considered period
of forecasts is Day 1, ranging from 12 June 2020 at 06UTC to 13 June 2020 at 00UTC. Trajectory plot is on the top left
(a), paintball plot on the top right (b) and probabilistic plot (c) on the bottom left. A different color is used for each UTC
hour of the BE detections for the trajectory plot (a). The paintball plot (b) represents the same detections as the trajectory
ones, but a different color is used for each member (from 1 to 16) instead of UTC time. Black contours are added around
deterministic AROME objects. On the bottom right (d), the predicted pseudo-reflectivity field and the corresponding BE
detection (black contour) are overlaid, using the AROME outputs valid on 12 June 2020 at 16UTC. Forecasters examine this
kind of superposition (d) in section 6.c for their feedback.

where Nmb is the total number of members in

AROME-EPS and Pm
ε,l(x, t+i) indicates the BE prob-

ability of a grid point x at time t + i for a member

m. A probability is defined for each grid point at

a specific time t by taking into account equally all

AROME-EPS members. Over a given time period

(Day 1, Night Day 1/2 or Day 2), only the maxi-

mum probability at each grid point is kept (Eq. 8).

Pmax
ε,l (x) = max {t ∈ period, Pε,l(x, t)} (8)

This maximum probability plot is presented in
Fig. 12c. The value of the radius ε is equal to 150km
and will be discussed hereafter. The value of l is
fixed to 10 hereafter and will not be discussed in aid
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Fig. 13. Density plot of distances between observed BEs
and AROME-EPS detections. The average distance is com-
puted in legend (excluding errors above 500km, see text for
explanation).

of the value of the radius ε. The maximum probabil-
ity shown on Fig. 12c is above 50 % (high probabil-
ity for a BE risk) over Northeastern France, which is
consistent with the other synthesis plots. Moreover,
isolated detections like the ones over the Southwest
of France are filtered (risk below 2,5 %) because of
time averaging.

2) neighborhood distance

An optimal value of the radius ε used for the prob-
ability plot should be defined. Position errors be-
tween observed BEs and AROME-EPS detections
are examined as this ε value depends on AROME-
EPS skill. Observed BEs have been hand-labeled on
radar data, in the same way as for AROME training
or validation databases. However, radar data grid
covers only mainland France and near the borders.
Only AROME-EPS detections over this smaller grid
are kept. A density plot of position errors is pre-
sented in Fig. 13. The majority of position errors
are under 300km. The average error is around 180km
but this value seems to be overestimated because of
some unrealistic distances of several hundred kilo-
meters. In that case the detected object should be
considered as a false alarm and the observed object
as a miss. If distance values above 500km are ig-
nored, the average error is around 150km. The value
of ε is set to 150km based on this result.

c. Forecasters’ feedback

In this study, a U-Net has been trained and tested
to detect bow echoes in AROME-EPS and AROME
forecasts. Only one expert has hand-labeled the

training and validation databases. All findings and
scores are based on these hand-labeled contours of
bow echoes. In some cases the detection of BEs is
highly subjective and there is a need for more experts
to assess the U-Net performance. A subjective evalu-
ation from future users was considered interesting in
addition to object-oriented scores. Ten Météo-France
forecasters contribute to this study. Each expert is
given a superposition of pseudo-reflectivity field and
U-Net detection such as that of Fig. 12d to subjec-
tively evaluate the U-Net. The examined cases come
from the validation AROME-EPS database and the
AROME model. Since the number of pictures is very
large (around 3000), experts are divided into three
groups, and each group examines a third of the pic-
tures. Each forecaster uses an evaluation form for
their evaluation. Each forecaster counts the num-
ber of false alarms, misses or correct detections for
each date and each member using the same criteria
as in section 2.h. A detection rate and false alarm
rate are calculated and compared with the HR and
FAR of sections 4 and 5. This comparison is feasible
because the HR and FAR calculated with the com-
plete validation database are similar to HR and FAR
computed with the three subsets one by one (more
or less 3%). A last section named ’general com-
ments’ in the evaluation form allows for expressing
an opinion concerning U-Net behavior. The results
of the U-Net object-oriented evaluation are not com-
municated to the experts to avoid influencing their
judgement. Concerning the general comment sec-
tion, some guidelines are given to focus on miss, false
alarm features (more frequent in case of large/small
area or strong/weak intensity ?), comparison of U-
Net skills between AROME-EPS and AROME but
also concerning confusion with other MCSs. Each
expert examines, independently of the others, the U-
Net outputs. Feedback and conclusions have been
gathered hereafter (more details concerning the fore-
casters’ feedback are available in the online supple-
ment to this paper). Based on a broad consensus, the
main findings are reported in the following section :

• The feedback is overall positive. The pair of
HR/FAR according to the experts is around
70%/20%. Most of the forecasters consider that
these detections and this work can facilitate the
use of EPS in an operational context. The de-
tection of large BEs is acceptable (still based on
the general comments). This point is consistent
with findings of section 4.

• Only a few cases are identified as false alarms
(mean FAR of 20%). This conclusion is very
promising for an operational application, but it
contradicts the higher false alarm rate of 39 %
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obtained in section 4. Even if most forecast-
ers have found less false alarms, some of them
comply with the conclusions of sections 4 and
5 (higher false alarm rate that corresponds to
small objects). Some experts consider small ob-
jects as cell bow echoes (Klimowski et al. 2004),
which can explain these different judgments.
This result highlights the subjective point of
view of different experts concerning the exact
BE definition and the fact that they only had the
pseudo-reflectivity field at their disposal to as-
sess it in the model, as the U-Net did. Forecast-
ers tend to favor detection algorithm with high
FAR because all detections are carefully exam-
ined. On the contrary, a synthesis plot without
detection does not draw attention. This conclu-
sion supports the selection of the optimal con-
figuration as described in section 4, a high HR
and high FAR are preferred.

• Some misses are also noticed (mean HR of
70%). There are three main reasons to explain
these misses. First in case of weak pseudo-
reflectivities, which is consistent with the object-
oriented evaluation. In case of fragmented BE,
the detection can be missed or incomplete. The
last one highlights a lack of temporal robust-
ness/stability of the detections. A BE is some-
times not detected at each lead time: for in-
stance a BE is detected at the time t, not at
t+1h and detected once again at t+2h. In that
case, misses are less problematic because they
mixed together all the others in the synthesis
plots.

• BE contours are most of the time too small and
focus on the strongest part of BEs. This obser-
vation is consistent with results in sections 4 and
5.

• The detection quality in AROME-EPS and
AROME is approximately the same according
to the majority of experts (consistent with sec-
tion 5). The risk of confusion between SCs and
BEs in AROME is slightly more important ac-
cording to some of them.

• A last comment concerns the poor U-Net be-
havior for a specific weather situation in 2018.
In this case, the BE had an unusual propa-
gation axis from South-East to North-West in
comparison to BE climatology in France (South-
West/North-East or West/East). Both the orig-
inal curve and the fragmented characteristics of
this BE can explain these very bad results of
the U-Net. Fig. 14 is a good example with a

BE correctly detected at 12 and 13UTC but not
at 14UTC. Unusual cases are always difficult to
handle for neural networks when these cases are
not representative in the training samples.

• Trajectory plot (Fig. 12a) is the preferred vi-
sualization for the majority of the expert group,
even though this conclusion should be confirmed
in an operational context.

In summary, forecasters’ feedback is overall positive
and consistent with the object-oriented evaluation.
This experiment is also a first step toward introduc-
ing AI-based products in the forecasters tools. The
cooperation to design the synthesis plots in section 6
was strongly appreciated.

7. Conclusion and future work

In this paper a convolutional neural network in-
spired from a U-Net architecture has been devel-
oped to detect Bow Echoes (BEs), specific Mesoscale
Convective Sytems (MCSs), in the outputs of the
French kilometer-scale AROME and AROME-EPS
models. This U-Net is trained and evaluated using a
hand-labeled dataset of more than 9000 training sam-
ples. Pseudo-reflectivity (pseudo because expressed
in mm · h−1 and not in dBZ) is the unique input of
the neural network. Pseudo-reflectivity fields are cut
into smaller patches and several pre-processing steps
are implemented in order to design a balanced train-
ing database. During the prediction process, pseudo-
reflectivity fields are also cut into smaller overlapping
patches and fields are reconstructed to detect bow
echoes over the whole AROME domain.

A filtering threshold has been defined and fixed
to 100 grid points to optimize object-oriented scores.
Different configurations are tested to understand the
role of several hyperparameters involved in the train-
ing dataset design and in the U-Net. The input
patch size is the most influential parameter. The
size should be large enough to extract information
from the whole BE and its surroundings. The pro-
portions of training patches with and without BEs,
and the weights in the loss function are also influen-
tial hyperparameters. The optimal configuration is
determined from the CSI and the hit rate.

This optimal configuration was examined in de-
tails with an object-oriented approach. The false
alarms and misses mainly correspond to small and
weak objects. The U-Net underestimates the size of
BEs but properly captures the most active part of
BEs. Even if the wind gust speed at 10m (FFgust)
is not a predictor for the U-Net, the detected BEs
are associated with the same FFgust distribution as
the hand-labeled BEs. An extension of the U-Net
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Fig. 14. Forecasts from AROME-EPS initialized on 25 May 2018 at 21UTC, zoomed over western France. Pseudo-reflectivity
fields and BE detections (black contours) from member 2 between 26 May 2018 at 12UTC (left) to 14UTC (right) are overlaid.
The red arrow indicates the BE.

to AROME output without re-training provided sat-
isfactory results. The quality of the detection, as
measured by the object-oriented evaluations, is sim-
ilar for AROME-EPS and AROME. The success of
transfer learning is very promising for future NWP
model evolutions, suggesting that re-training the U-
Net each time the AROME model changes may not
be necessary.

Forecasters have been involved to develop three
kinds of synthesis plots to summarize BE detections
in AROME-EPS and AROME. They sum up in-
formation of more than 700 fields and thus facil-
itate forecasters’ expertise. These plots include a
trajectory visualization that presents all detections
as a function of their validity time, a paintball vi-
sualization with colors according to the member of
AROME-EPS and a probability plot including space-
time tolerances. To subjectively assess the quality of
BE detections, forecasters examine several hundreds
of pictures. Their feedback mainly supports the re-
sults of the previous sections but more formal eval-
uations are necessary to validate these findings. To
continue the evaluation in a real-time context, a daily
production in a research mode is deployed since sum-
mer 2021. This daily production is enabled thanks to
a short computation time in operations mode. The
U-Net predictions (for all AROME-EPS members)
take around 10 minutes with a GPU5.
Future work will explore the addition of FFgust,

FF or other parameters inspired by Lagerquist et al.
(2017, 2020) as predictors of a new U-Net. This
new U-Net could be compared with the current opti-
mal U-Net configuration. Adding a severity attribute
based on FFgust in BE objects will be also a prior-
ity. Another research direction will explore how to
improve the temporal stability of U-Net predictions.
Adding pseudo-reflectivity fields at time t − 1h and

5NVIDIA Corporation GP102 (GeForce GTX 1080 Ti)

t+ 1h as inputs of the U-Net could be a possible so-
lution. This study is largely driven by an expert’s
skill. More objectivity is needed and consequently a
panel of experts could hand-label the same images.
A probability map for the target value instead of a
binary map (0 or 1) could be tested. A U-Net could
also be tested and tuned to apply on radar data in
order to improve the nowcasting of MCSs. These
observed BEs could be used for evaluating the qual-
ity of AROME-EPS and AROME BE forecasts. Fi-
nally, the U-Net approach could be extended to de-
tect other kinds of severe convective storms. Even
if the methodology remains similar, the number of
cases should be sufficient to train AI methods. The
input size of the U-Net could be modified according
to the size of the convective storms. Some additional
predictors may be deemed necessary (Updraft Helic-
ity for supercell detection for instance).
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tin Paccaud for their feedback about U-Net that
used parts of their spare time. The authors thank
also Fabrice Guillemot for his help to selecting
relevant parameters for this study. The authors
acknowledge Jean-Antoine Maziejewski and Gregory
Roux for proofreading and for improving English in
the manuscript.

Data availability statement. The three datasets
(training, validation and deterministic AROME
databases) and the weights of the optimal U-Net are
available online in open access (Mounier (2021) , doi
: 10.5281/zenodo.5534445, license : Etalab Open
License 2.0)



21

References

Abadi, M., and Coauthors, 2015: TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. URL https:
//www.tensorflow.org/, software available from tensor-
flow.org.

Atkins, N., and M. S. Laurent, 2009: Bow echo mesovor-
tices. part i: Processes that influence their damaging po-
tential. Mon. Wea. Rev., 137, 1497–1513, doi:10.1175/
2008MWR2649.1.

Biard, J., and K. Kunkel, 2019: Automated detection
of weather fronts using a deep learning neural net-
work. Advances in Statistical Climatology, Meteorology and
Oceanography, 5, 147–160, doi:10.5194/ascmo-5-147-2019.

Bouttier, F., and L. Raynaud, 2018: Clustering and selection
of boundary conditions for limited-area ensemble predic-
tion. Quart. J. Roy. Meteor. Soc., 144, 2381–2391, doi:
10.1002/qj.3304.

Bouttier, F., L. Raynaud, O. Nuissier, and B. Ménétrier, 2016:
Sensitivity of the AROME ensemble to initial and surface
perturbations during HyMeX. Quart. J. Roy. Meteor. Soc.,
142, 390–403, doi:10.1002/qj.2622.
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