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Abstract: The 15 January 2022 climactic eruption of Hunga volcano, Tonga produced an 
explosion in the atmosphere of a size that has not been documented in the modern geophysical 
record. The event generated a broad range of atmospheric waves observed globally by various 
ground-based and spaceborne instrumentation networks. Most prominent is the surface-guided 
Lamb wave (≲0.01 Hz), which we observed propagating for four (+three antipodal) passages 5 
around the Earth over six days. Based on Lamb wave amplitudes, the climactic Hunga explosion 
was comparable in size to that of the 1883 Krakatau eruption. The Hunga eruption produced 
remarkable globally-detected infrasound (0.01–20 Hz), long-range (~10,000 km) audible sound, 
and ionospheric perturbations. Seismometers worldwide recorded pure seismic and air-to-ground 
coupled waves. Air-to-sea coupling likely contributed to fast-arriving tsunamis. We highlight 10 
exceptional observations of the atmospheric waves. 

One-Sentence Summary: Global multi-technology observations of atmospheric and seismic 
waves from the explosive eruption of Hunga 
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Main Text:  
 
The 15 January 2022 eruption of Hunga volcano (1), Tonga was an unusually energetic explosive 
event. This climactic eruption (the largest eruption of an episode) began just after ~04:00 UTC 
(~17:00 local time) from a submerged vent and delivered volcanic tephra and gas primarily into 5 
the stratosphere. An umbrella cloud developed at approximately 30 km above sea level, with a 
central transient overshoot much higher. Hunga is a largely submerged massif located ~65 km to 
the north-northwest of Tongatapu, Kingdom of Tonga. Eruption episodes consisting of relatively 
low-energy Surtseyan activity in 2009 and 2014–2015 had built a tephra cone that connected the 
established islands of Hunga Tonga and Hunga Ha’apai on the northwestern portion of the massif 10 
(2). Surtseyan eruptions transitioned into violent, impulsive eruptions from 19 December 2021 as 
part of the most recent episode. The climactic 15 January eruption produced a broad range of 
atmospheric waves observed globally by numerous ground-based and spaceborne instrumentation 
systems, including atmospheric pressure sensors, seismometers, hydrophones, Global Navigation 
Satellite System (GNSS) receivers, and weather satellites (Fig. 1A) (3). We highlight exceptional 15 
multi-technology observations of this extraordinary event in the modern digital record and provide 
initial interpretations of the atmospheric wave types generated and their propagation around the 
globe. 
 
The onset of the most recent eruptive episode is characterized remotely by seismicity and co-20 
eruptive infrasound on 19 December 2021, preceded by seismic activity on 18 December 2021 
(16:49:46 UTC, body-wave magnitude mb 4.0) (Fig. 1B) (3). Eruptive activity continued until 
4 January 2022, with decreasing infrasonic amplitudes at International Monitoring System (IMS) 
infrasound station IS22 (1,848 km) and intermittent detections by IMS hydroacoustic stations. 
Powerful eruptive infrasound activity resumed on 13 January 2022, with amplitudes ~10 times that 25 
of the December activity. Infrasound continued on 14 January accompanied by seismic tremor (3) 
(fig. S2A,B); infrasound amplitudes subsequently decreased while the number of hydroacoustic 
T-phase detections increased. Following brief relative quiescence, at least four IMS hydroacoustic 
(fig. S3), all 53 IMS infrasound, and numerous seismic stations detected the main climactic 
eruption on 15 January 2022 (04:14:45 UTC, moment-magnitude Mw 5.7–5.8, Table S1). Regional 30 
infrasound, barometer, and volcanic plume observations suggest a complex eruption sequence 
occurring between 04:00 and ~04:30, not just a single onset or explosion (Figs. 1A,2E,3A). A last 
major eruption at ~08:31 UTC 15 January was detected by at least 20 IMS infrasound and two 
IMS hydroacoustic stations, after which the volcanic activity decreased.  
 35 
Atmospheric waves (4) are propagating mechanical perturbations in the atmospheric fluid. 
Nonlinearities in the propagation cause the spectrum to evolve (i.e., energy cascading), and may 
result in shock-wave formation and period lengthening. Gravity waves are disturbances to the 
balance between buoyancy and gravity (frequency f ≲	3 mHz); acoustic waves manifest as 
propagating compressions and rarefactions (f ≳ 4 mHz). These different physical mechanisms lead 40 
to different propagation speeds. Acoustic-gravity waves (AGWs) are waves exhibiting both 
buoyant and compressional motion (5), typically with mHz frequencies and long wavelengths (tens 
of kilometers) relative to density stratification scale heights (fig. S4). Lamb waves (6) are AGWs 
propagating along Earth’s surface, with group velocities near the mean sound speed of the lower 
atmosphere (~310 m/s for a 16 km scale height above Earth’s surface (7)). Lamb waves are 45 
associated with the largest atmospheric explosions from volcanic eruptions (8) and nuclear tests 
(9) and have periods on the order of several to hundreds of minutes. Audible sound refers to higher 
frequency acoustic waves that can be heard by humans. Infrasound (10) refers to acoustic waves 
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below the standard audio range. The crossover between audible and infrasound is often given as 
20 Hz. 
 
Of the atmospheric waves produced by the climactic Hunga explosion, the most prominent is the 
Lamb wave (f ≲	0.01 Hz), which propagates efficiently and is detected globally by numerous 5 
ground-based and spaceborne geophysical instrumentation systems (Fig. 1A; fig. S5) (Movies S1–
S6). Despite the Lamb wave’s large amplitude, its waveform pressure increase as a function of 
time (rise-time) is relatively slow and does not have characteristics of a shock wave. Over six days, 
we observed global propagation of at least four minor-arc Lamb wave passages (A1,3,5,7) and 
three (A2,4,6) major-arc (antipodal) passages (Fig. 1A inset; Fig. 2A,B; fig. S6A).  10 
 
The number of Lamb wave passages observed for Hunga (4 + 3 antipodal) is approximately the 
same as observed for the 1883 Krakatau eruption (11, 12) (Fig. 2A). The exceptional 
spatiotemporal resolution of the evolving wavefield from 2022 Hunga, in comparison to 
1883 Krakatau, is a consequence of more than a century of advances in instrumentation technology 15 
and global sensor density (Fig. 1A). Measurements of Lamb wave peak-to-peak pressure 
amplitudes as a function of distance indicate that the atmospheric pressure pulse generated by the 
Hunga event is comparable to that of the 1883 Krakatau eruption (12) (Fig. 2F; fig. S8). However, 
the Krakatau Lamb pulse was approximately 30% longer-duration than that of Hunga at 
comparable stations (Fig. 2A). Peak-to-peak pressure amplitudes from Hunga generally decreased 20 
logarithmically from 1,473 Pa (756 km) with range (Fig. 2F; fig. S9). We infer that the notable 
scatter in amplitudes at distances >7,500 km is related to winds and wavefront focusing around the 
spherical Earth (3), as well as a potentially anisotropic source. The Hunga signal amplitudes are 
over an order of magnitude larger than those generated by the 1980 Mount St. Helens eruption 
(13). 25 
 
Equivalent explosive yields for large volcanic eruptions have previously been estimated using 
pressure recordings, but quantitative comparisons with non-volcanic sources are problematic. 
During the 1950s–1960s atmospheric nuclear testing era, theoretical and empirical relationships 
were generated relating AGW amplitudes and periods to explosive yield (14, 15). We find that 30 
such relationships are inapplicable to the signals generated by Hunga, as they result in unphysically 
large equivalent yields (3) (fig. S10A). This difference is presumably because, for a given energy 
release, the long-duration climactic eruption excites longer-period pressure disturbances than the 
near-instantaneous nuclear reaction (fig. S10B). Hunga signals have peak-to-peak pressures 
comparable to those produced by the largest historical atmospheric nuclear test (58 Mt, USSR, 35 
1961) (16), but the dominant eruption signal periods (1,700–2,500 s) are approximately four times 
longer than those of the anthropogenic explosion (400–700 s) (17).  
 
The Hunga eruption pressure waves have complex waveform and spectral characteristics, likely 
related to both source and propagation. The Lamb wave is the largest-amplitude pressure wave 40 
arrival (Fig. 2B) (3). Near Hunga, the Lamb wave consists of at least two pulses and begins with 
a 7–10 min pressure increase, followed by a second larger compression and subsequent long 
rarefaction phase (Figs. 1A,2). This sequence is different from a single bipolar pulse typical of 
large anthropogenic explosions (18). The shallow-submarine volcanic source presumably 
contributes to this waveform complexity (19). The Lamb wave period ranges between 0.3–10 mHz 45 
(3,300–100 s) and the group velocity is ~315 m/s (3, 20) (fig. S11). Each subsequent antipodal 
passage produces an observed 90˚ phase shift in the Lamb wave (21) (fig. S12). This 90˚ phase 
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shift is expected by comparison of the asymptotic forms of the equation for a traveling wave on 
the surface of a sphere from before the antipodal crossing to that from after crossing (21, 22). The 
Lamb wave is composed of several AGW modes, and  the Hunga signals show distinct dispersion 
at higher frequencies (fig. S13), which was similarly noted for other large AGW signals (20). Some 
barometer observations also show the arrival of a lower velocity gravity wave (figs. S11,S14). 5 
 
The climactic Hunga eruption also produced remarkable long-range infrasound (f ~0.01–20 Hz), 
clearly detected at most IMS infrasound arrays (fig. S15) as well as numerous regional arrays and 
networks (3) (Table S4; figs. S16–S21). Infrasound signals arrive after the Lamb wave; at most 
stations, the Lamb wave dominates below ~0.01 Hz, followed by broadband infrasound (Fig. 3). 10 
The IMS infrasound network recorded at least two direct and two antipodal infrasonic wave 
arrivals from the main explosive event. At most of the infrasound stations, array processing 
indicates direct infrasonic arrivals for ~2 hrs with group velocities between 250 to 290 m/s (3) 
(fig. S15). Infrasound amplitudes following the first Lamb wave arrival A1 are on the order of 
several pascals, and are observed to decrease with each global wave passage (Fig. 2F). Complex 15 
waveform interference effects are observed for stations near the source and the antipode, where 
the wavetrains of successive arrivals overlap (3). Prominent time evolution in signal back-azimuth 
and apparent velocity is observed at many infrasound arrays, especially at stations for which the 
propagation path crosses the circumpolar vortex (3) (fig. S22).  
 20 
Accounts of audible sound (f > 20 Hz) were reported across Alaska as far as 10,000 km from 
Hunga (compared to ~4,800 km for Krakatau 1883; (12)) and are verified by ~30 min duration 
signals on higher-sample-rate low-frequency microphone stations (Fig. 3E). The audio signals 
arrive after the Lamb wave and at the end of the infrasound wavetrain, and consist of short-duration 
impulsive signals consistent with repeated “booms” reported by observers. Linear propagation and 25 
attenuation models cannot explain the high-frequency infrasound and audible sound at these 
extreme ranges, implying nonlinearity in generating the higher frequencies along the propagation 
path (3, 13). Evidence of nonlinearity in Fig. 3E is two-fold. First, the high-frequency spectral 
slope during the “peak” time window approximates that of an ideal shock wave in its old-age (3) 
(but still nonlinear) decay: 𝑓!", followed by a faster exponential roll-off at frequencies where 30 
atmospheric absorption dominates nonlinearity. Second, the impulsive events, when separated 
from the lower-frequency, higher-amplitude infrasound portion by filtering (from 10 to 40 Hz), 
have coarsely sampled N-wave shapes reminiscent of explosions or sonic booms. Dramatic 
increases in global population and advances in societal connectivity (e.g., internet vs. telegraph) 
presumably contribute to the enhanced reports of audibility at distances greater than those 35 
historically documented for Krakatau and other large events. 
 
Due to the extraordinary amplitude of the Lamb wave, it produced coupled signals at multi-
technology stations (Fig. 2E); (3). For example, in the Mediterranean, the Lamb wave produced 
signals on hydrophones at ~50 m water depth near Stromboli volcano, 17,740 km from Hunga (3) 40 
(fig. S17B). 
 
Seismometers worldwide recorded ground motions associated with both pure seismic waves (figs. 
S2,S23) and air-to-ground coupled atmospheric waves (Fig. 3; figs. S24,S6B). We associate the 
most prominent seismic (P, S, and Rayleigh waves) and atmospheric arrivals (Fig. 2) with the main 45 
eruption at 04:14:45 UTC, which had a reported Mw 5.7–5.8. Our observations of multiple 
overlapping seismic phases (Fig. 2D) suggest a longer-duration source process, with at least two 
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discrete events and multiple phases. Additionally, seismic ground motions globally exhibit a 
marked spectral peak at 3.7 mHz (Fig. 3D). We interpret this peak as Rayleigh-wave propagation 
(corresponding to Earth normal mode 0S29) resulting from the coupling of fundamental acoustic 
mode oscillations of the atmosphere near the volcanic source into the solid Earth (3) (fig. S25). 
This solid Earth mode was also excited during the 1991 eruption of Mount Pinatubo (23); however, 5 
the seismic oscillations generated by the climactic 2022 Hunga eruption are over an order of 
magnitude larger (3). 
 
Numerous additional Earth observation systems recorded the atmospheric waves from the 
climactic eruption. Data from neutral atmospheric radio occultations (ROs), satellite-based 10 
radiometers, and dual-frequency GNSS receivers, in conjunction with data from ground-based 
infrasound stations and a DART (Deep-ocean Assessment and Reporting of Tsunamis) buoy 
(1,225 km), reveal strong seismo- and hydro-atmospheric coupling in the aftermath of the eruption 
(Fig. 4). The Lamb wave arrival time at IS-II (station CTAO, 3,997 km) is consistent with that 
obtained using brightness temperature differences measured by the Himawari-8 satellite (3) (fig. 15 
S5). At this time, an RO profile over Eastern Australia (RO-III, 3,781 km) clearly displays 
heightened gravity-wave activity in the stratosphere. In the hours after the eruption, ROs in the 
vicinity of Hunga (RO-I, 366 km, and RO-II, 453 km) also reveal strong gravity wave activity in 
the stratosphere with temperature perturbations of ±4 K, four times the typical background activity.  
 20 
The atmospheric waves also propagated to the ionosphere, where 1 Hz data recorded in real-time 
by ground-based GNSS stations can be converted to ionospheric total electron content (TEC). TEC 
data clearly demonstrate wave-like structures of unprecedented magnitude traveling between ~320 
and 1,000 m/s. TEC profiles (G-I and G-II) collocated with infrasound stations IS-I (station MSVF, 
756 km) and IS-II show the arrival of the Lamb wave in the ionosphere ~24 min after it is recorded 25 
at the infrasound station (propagating at an apparent vertical velocity of ~312 m/s for an assumed 
ionospheric shell height of 450 km). Similar to the global barometer data (Fig. 2B), the Lamb wave 
was observed worldwide in TEC data. In addition, a DART buoy (B-I) and a nearby TEC record 
(G-III) north of Hunga record tsunami-like waves generated by the atmospheric pulse (i.e., air-sea 
waves; (8)), one hour before the appearance of tsunami signatures of direct volcanic origin (3) (fig. 30 
S26). 
 
Understanding these geophysical observations from the Hunga eruption requires accurate 
propagation modeling. However, simulating atmospheric wave propagation is challenging here for 
multiple reasons. (i) The complexity of the highly-energetic, shallow submarine, and multiphase 35 
eruption is beyond existing capability for modeling the source and the subsequent repartition of 
energy among the different waves (3). (ii) The physical problem involves multiple scales. Indeed, 
observed atmospheric waves contain energy extending from the acoustic-gravity regime, including 
a strong Lamb wave, through the infrasonic range, and into audio frequencies (Fig. 3). (iii) 
Atmospheric wave propagation is strongly nonlinear, which leads to energy cascading into higher 40 
frequencies even far from the event. For such energetic events, wave propagation nonlinearities 
remain important far from the source. Considering (ii) and (iii) together, the challenge is due to 
the nonlinear energy cascading that couples these various regimes (acoustic-gravity, infrasound, 
audio) and requires modeling methods that account for that coupling. (iv) Finally, substantial 
temporal and spatial variations of atmospheric conditions along propagation paths render a 45 
stratified atmospheric model inappropriate. Existing propagation algorithms (based, for instance, 
on the equations of fluid mechanics, the parabolic approximation of the wave equation, normal-
mode summation, or ray tracing; (3)) are limited in their physics and computational feasibility (fig. 
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S27). Nevertheless, preliminary simulations (3) find notable departures of predicted propagation 
paths from great circle paths (fig. S28; Movie S7), which leads to direction-of-arrival deviations 
qualitatively in agreement with observations (fig. S22; Table S5). 
 
The impacts of volcanic atmospheric waves are usually limited, but sometimes shock waves from 5 
strong volcanic explosions damage nearby infrastructure (24, 25). Atmospheric waves from the 
main Hunga eruption had far more extensive impacts. Unusual sea level changes or tsunamis were 
observed in the Pacific earlier than predicted, and in the Caribbean and Mediterranean without 
direct ocean routes. We report observations of early sea level oscillations in the Pacific (3). At 
coastal tide gauges, the tsunami onset time coincides approximately with the Lamb wave arrival 10 
(2 hPa pulse); the tsunami onset is unclear, but wave amplitudes gradually increase over 2–4 hrs 
to >1 m in some locations. In contrast, deep-sea tsunamimeters record a clear leading 5 hPa 
pressure pulse, more than double that of the air-pressure pulse (3) (figs. S29,30). Air-sea coupling 
(8, 26) likely caused these exceptional observations, and should be considered in future scenarios 
for tsunami early-warning systems. 15 
 
Geophysical records of the January 2022 Hunga eruption represent an unparalleled global dataset 
of atmospheric wave generation and propagation, providing an opportunity for multi-technology 
observation, modeling, and validation unprecedented in the modern record. The datasets 
highlighted here are not exhaustive; there is outstanding potential for augmenting details of the 20 
global wavefield capture through incorporating numerous additional interdisciplinary datasets, 
including citizen-science data (27, 28). The January 2022 Hunga eruption presents an 
extraordinary opportunity to advance understanding of rarely captured physical phenomena, 
including global Lamb wave propagation, atmospheric free-oscillations coupling with the solid 
Earth, nonlinear energy cascading in atmospheric wave propagation, excitation of infrasound and 25 
audible sound at global distances, air-sea waves, and many others. 
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Fig. 1. Global distribution of recording geophysical sensors used in this study and remotely-
observed eruption chronology. (A) Sensor map. Background image is brightness temperature 
difference (Himawari-8) at 07:10 UTC on 15 January 2022. Selected four-hour pressure 5 
waveforms are filtered 10,000–100 s. GNSS, Global Navigation Satellite System; RO, radio 
occultation; DART, Deep-ocean Assessment and Reporting of Tsunamis. Upper-right inset shows 
Hunga wave paths around Earth. (B) Hunga activity, December 2021 through January 2022, 
observed at IMS hydrophone, seismic, and infrasound stations (REB, Reviewed Event Bulletin); 
Hunga detections from nearest IMS infrasound array IS22 (1,848 km). Frequency responses for 10 
atmospheric pressure sensors used in this study are displayed in fig. S1. 
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Fig. 2. Ground-based observations. (A) Lamb wave arrival times for 2022 Hunga (black) 
compared to 1883 Krakatau (blue); inset: Lamb A1 arrival waveform comparison (3). Global 
record sections of (B) barometer, (C) infrasound, and (D) seismic data showing the multiple 5 
arrivals and wave passages (see Fig. 1A inset); waveforms aggregated by radial distance (Fig. S7). 
A separate Rayleigh R1 is associated with the later ~08:31 event. (E) Colocated microbarometer 
(black), infrasound sensor (blue), and seismometer (orange) waveforms; lower panel shows 
inverted displacement envelope. (F) Wideband peak-to-peak pressure versus distance comparing 
2022 Hunga with large historical explosive events (Table S2). 10 

 

 

 

 

 15 
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Fig. 3. Seismoacoustic spectral properties. Colocated wideband (A) pressure and (B) seismic 
spectrograms (top) and unfiltered waveforms (bottom). (C, D) Power spectral densities and 
seismoacoustic coherences worldwide show that pressure waves couple to the solid Earth through 
both (i) direct conversion as the Lamb wave passes the station and (ii) near-source excitation of 5 
atmospheric acoustic modes. (E) Alaska infrasound stations recorded audio range signals at great 
distances, apparent in the spectra (top) and as intermittent transients with shock-like features 
(middle and bottom panels). (F) Observed wideband pressure spectral character of Hunga 
compared to published instrumental observations of previous events (Table S3). 
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Fig. 4. Seismo- and hydro-atmospheric coupling from Earth’s surface to space. (A) Brightness 
temperature variations in Himawari-8 data showing waves emanating from the Hunga eruption 
site. (B) Map of the inset in (A) with measurement locations in this figure. Ionospheric pierce point 
arcs (see Supplementary Material Section 14) are shown in green for the Lamb wave arrival for 5 
links G-I and G-II, and from 04:00 to 12:00 UTC for link G-III. (C) Infrasound (stations IS-I, IS-
II) and TEC (GNSS links G-I and G-II) waveforms showing Lamb wave arrival; all signals high-
pass filtered with 0.278 mHz (corresponding to 1-hr period)  cutoff. (D) RO-I and RO-II at 06:50 
UTC and 10:00 UTC showing strong coherent gravity wave activity several hours after the 
eruption; RO-III at 07:42 UTC also exhibits large gravity waves coincident with Himawari-8 data 10 
(A). (E) Hodochron plot of TEC records showing long-distance ionospheric wave propagation 
following the eruption. Features I and II are the first arrivals with different apparent wave velocities 
(551–1,333 m/s) due to the near-field wavefront curvature. Feature III, identified over 6,000 km 
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from the eruption, propagates at 478 m/s and is more likely linked to long-period gravity waves. 
(F) Buoy B-I data compared to TEC data from an adjacent GNSS link (G-III) showing efficient 
air-sea-air coupling across a broad frequency spectrum (3). 
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