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Abstract. This contribution explores a new approach to forecasting multivariate covariances for atmospheric
chemistry through the use of the parametric Kalman filter (PKF). In the PKF formalism, the error covariance
matrix is modellized by a covariance model relying on parameters, for which the dynamics are then computed.
The PKF has been previously formulated in univariate cases, and a multivariate extension for chemical transport
models is explored here. This contribution focuses on the situation where the uncertainty is due to the chemistry
but not due to the uncertainty of the weather. To do so, a simplified two-species chemical transport model over
a 1D domain is introduced, based on the non-linear Lotka–Volterra equations, which allows us to propose a
multivariate pseudo covariance model. Then, the multivariate PKF dynamics are formulated and their results are
compared with a large ensemble Kalman filter (EnKF) in several numerical experiments. In these experiments,
the PKF accurately reproduces the EnKF. Eventually, the PKF is formulated for a more complex chemical model
composed of six chemical species (generic reaction set). Again, the PKF succeeds at reproducing the multivariate
covariances diagnosed on the large ensemble.

1 Introduction

Data assimilation aims to provide an estimation of the true
state of a system. This estimation, called the analysis, is
a compromise between the forecast of the state and the
available observations. The optimal combination of the fore-
cast and the observations relies on their respective error co-
variance matrices as given by the Kalman filter equations
(Kalman, 1960). The accuracy of the analysis is directly re-
lated to the quality of these two matrices.

In atmospheric chemistry applications, the system to
study is the concentration of multiple chemical species in
the atmosphere. In most cases, chemical transport models
(CTMs) are used to forecast the concentrations, such as
the operational Model Of atmospheric Chemistry At larGE
scale (MOCAGE) used in Météo-France (Josse et al., 2004).
CTMs make predictions based on the transport by the wind

(the fields are provided by numerical weather prediction
(NWP) models) and the chemical interactions of the species
(Hauglustaine et al., 1998) and take into account multiple
other important processes, e.g. the diffusion, the emissions,
the deposition, or the interaction with clouds. However,
in CTMs, chemistry does not influence the meteorology,
which is of course a crude approximation of the true atmo-
sphere. The advantage of a CTM is that it allows air quality
prediction at a low numerical cost and is used in several op-
erational centres. For instance, the Copernicus Atmosphere
Monitoring Service (CAMS) regional air quality production
(https://atmosphere.copernicus.eu/cams-european-air-
quality-ensemble-forecasts-welcomes-two-new-state-art-
models, associated with CAMS2.40 at https://confluence.
ecmwf.int/display/CKB/CAMS+Regional%3A+European+
air+quality+analysis+and+forecast+data+documentation;
see here for a scientific description – last access to web
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references: 15 March 2023), which forecasts daily a multi-
model ensemble of 11 members that covers the following
4 d, is performed from the integration of 11 models, of
which 10 are CTMs. Note that each member of the ensemble
relies on its own data assimilation system for providing
its surface analysis, while all the models process the same
set of surface observations, and all the model forecasts are
based on the same meteorological forcings from European
Centre for Medium-Range Weather Forecasts (ECMWF)
high-resolution weather forecasts. In particular, members
of the CAMS multi-model ensemble are not used within an
EnKF to provide its own assimilation system.

In this context, the forecast-error covariance matrix con-
tains the correlations of the forecast errors within and be-
tween the chemical species. In multivariate covariance mod-
elling applied in meteorology, these correlations are respec-
tively denoted as auto-correlations and cross-correlations
(Derber and Bouttier, 1999). Accurately describing the auto-
correlation and cross-correlation is a key component in im-
proving the overall quality of the analysis. Indeed, strong cor-
relations exist between different chemical species, and the
analysis could benefit from them: an observation for a given
species might also correct other concentrations and reduce
their error amplitude at the same time. Note that, in oper-
ational applications, chemical species are often assimilated
separately; for example, in CAMS 2.40, the univariate 3D
variational data assimilation (3DVar) system of MOCAGE is
used for the assimilation of ozone, nitrogen dioxide, sulfur
dioxide, and fine particulate matter PM2.5 and PM10 (follow-
ing a configuration similar to the one used for Monitoring
Atmospheric Composition and Climate: Interim Implemen-
tation (MACII) detailed by Marécal et al., 2015). Note also
that simplifications are often introduced to represent a flow
dependency of the background term. For example, in sev-
eral studies using MOCAGE, the 3DVar background error
standard deviations are specified as a percentage of the first-
guess field (El Amraoui et al., 2020; El Aabaribaoune et al.,
2021; Peiro et al., 2018) – which is very different from the
forecast-error variance in an ensemble Kalman filter (EnKF)
that results from the ensemble estimation and the dynamics
of the uncertainty along the previous analysis and forecast
cycles.

However, the estimation and the modelling of multivariate
covariances in air quality are complex topics (Emili et al.,
2016). However, this is not specific to air quality, and two
main approaches are found in data assimilation. The first
one relies on balance operators and has been introduced in
variational data assimilation. These balance operators estab-
lish a relation between the state variables and allow for the
modelling of cross-covariances from the design of univari-
ate covariances. Such operators exist in numerical weather
prediction (Derber and Bouttier, 1999; Fisher, 2003) and for
the ocean (Weaver et al., 2006), but as far as we know, no
balance operators are used in atmospheric chemistry appli-
cations. The second approach relies on the ensemble method

(Evensen, 2009), where an ensemble of forecasts is used to
estimate the multivariate covariance matrix (Coman et al.,
2012). The ensemble method offers a flow-dependent estima-
tion of the error statistics and leads to a practical implementa-
tion of the Kalman filter, which is the EnKF (Evensen, 1994).
The EnKF applies to a wide range of problems, from a simple
Lorenz-63 model (Lorenz, 1963) to the numerical prediction
of the atmosphere or the ocean. At the same time, this ad-
vantage may be seen as a limitation: the EnKF does not nec-
essarily take advantage of the particular set of equations of
a problem, e.g. the continuity of physical fields, which leads
to simplification not available in the usual matrix formula-
tion of the EnKF equations. Moreover, the ensemble method
presents some drawbacks. For instance, since the estimation
often relies on a small ensemble, the statistical estimations
are polluted by a spurious sampling noise which requires the
introduction of filtering (Berre et al., 2007) and localization
(Houtekamer and Mitchell, 1998, 2001). In air quality, it may
be preferable to set the ensemble estimation of the multivari-
ate correlation to zero to avoid polluting the resulting anal-
ysis state (Tang et al., 2011; Gaubert et al., 2014), except at
the globe’s surface (Eben et al., 2005) or when the chemical
species are strongly correlated (Miyazaki et al., 2012). Note
that additional treatments can be required as inflation of the
variance in order to represent effects of model errors (An-
derson and Anderson, 1999; Whitaker and Hamill, 2003). As
another drawback, the numerical computation of the EnKF is
costly since it relies on the several time integrations of a nu-
merical model, which are often computed in parallel at lower
resolution.

Recently, a new approximation of the Kalman filter (KF)
was introduced, the parametric Kalman filter (PKF), where
the error covariance matrices are approximated by a covari-
ance model fitted with a set of parameters, e.g. the grid-point
variance and the local anisotropy (Pannekoucke et al., 2016).
In the PKF, the dynamics of the parameters are described all
along the forecast and analysis steps of the assimilation cy-
cle (Pannekoucke, 2021a). This approach does not rely on
ensembles, and the dynamics of the parameters are deduced
from the partial differential equations that govern the physi-
cal system. Hence, the PKF opens the way to understanding
the physics of uncertainties. However, the construction of the
parameter dynamics is the most difficult part for the design
of the PKF. When the parameters are the variance and the lo-
cal error-correlation anisotropy, a systematic formalism for
deducing the PKF’s equations based on a Reynolds decom-
position (or Reynolds averaging technique; see e.g. Lesieur,
2008, chap. 4) has been introduced, associated with a Python
package, SymPKF (Pannekoucke and Arbogast, 2021; Pan-
nekoucke, 2021b), and is based on the Python computer al-
gebra system Sympy (Meurer et al., 2017). However, mod-
elling the physics of uncertainties often comes with closure
problems. To alleviate this issue, another numerical frame-
work, PDE-Netgen, has been introduced to be able to close
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problems using a deep-learning approach (Pannekoucke and
Fablet, 2020; Pannekoucke, 2020).

Applying the PKF approach for CTMs is attractive be-
cause the parametric dynamics are known for the transport
equations (Cohn, 1993; Pannekoucke et al., 2018), and this
leads to a better understanding of the forecast-error covari-
ance dynamics, e.g. a better understanding of the model-error
covariance due to the numerical integration (Pannekoucke
et al., 2021) and the loss of variance which appears in the
EnKF (Ménard et al., 2021). Moreover, an application of the
PKF was recently proposed for the assimilation of Green-
house Gases Observing Satellite (GOSAT) methane in the
hemispheric Community Multiscale Air Quality (CMAQ)
model (Voshtani et al., 2022a, b), showing the potential of
the PKF in nearly operational applications where only the
error variance evolved. Compared to specifying the back-
ground variance as a percentage of the first guess, as men-
tioned above for the MOCAGE assimilation, the PKF could
provide a flow dependence more consistent with the KF the-
oretical framework but without the numerical cost of using
an ensemble as with an EnKF.

While the PKF has been formulated for univariate statis-
tics, a first attempt at multivariate statistics has been pro-
posed based on the balance operator approach (Pannekoucke,
2021a). However, applying such a balance operator is a chal-
lenge for chemical reactions where no simple relation exists
as the geostrophic balance in weather forecasting. Hence, the
aim of this contribution is to explore how to extend the uni-
variate PKF to a multivariate formulation adapted to CTMs.
To do so, a multivariate covariance model adapted to air qual-
ity prediction is first proposed, and then it is validated by a
twin experiment based on an EnKF using a large ensemble.

This contribution only focuses on the uncertainty dynam-
ics due to the chemistry without accounting for the part of
the uncertainty of the weather: for example, we do not take
into account the uncertainty of the wind that transports the
chemical species.

The paper is organized as follows. Section 2 recalls ba-
sic concepts in data assimilation with the formalism of the
Kalman filter and its parametric approximation in univari-
ate statistics. Then, in Sect. 3, a simplified two-species mul-
tivariate CTM is introduced for which a multivariate para-
metric assimilation is first proposed and then validated based
on a comparison with an ensemble approach. A six-species
chemical scheme is considered in Sect. 4 to evaluate the PKF
multivariate forecast in a more complex context. The conclu-
sions of the contribution are given in Sect. 5.

2 Background on the parametric Kalman filter

The PKF is a recent implementation of the Kalman filter
where the covariance matrices are approximated by some co-
variance model. For the sake of consistency, this section first
recaps the basics of the Kalman filter, and then it recalls the

diagnosis of the covariance matrix in large-dimension and
covariance models to introduce the formalism of the PKF in
univariate statistics. The section ends with a numerical ex-
ample of interest for air quality that illustrates the PKF.

2.1 Analysis and forecast step in the Kalman filter

Here we consider a system whose state is denoted by X and
governed by the evolution equation

∂tX =M(X ). (1)

Time integration from a time tq to a time tq+1 of the dy-
namics in Eq. (1) defines the propagator Mtq+1←tq , which
maps a state X (tq ) to the prediction of Eq. (1), X (tq+1)=
Mtq+1←tqX (tq ). In geophysics, X stands for the multivariate
fields that represent the state of the ocean, the atmosphere, or
chemical species concentration for air quality. The dynamics
M are then given by a system of partial differential equa-
tions. After spatial discretization, M becomes a system of
ordinary differential equations, and X is a vector of dimen-
sion n. Thereafter, X can be seen either as a collection of
continuous fields with dynamics given by Eq. (1) or a dis-
crete vector of dynamics in the discretized version of Eq. (1).

Because of the spatio-temporal sparsity of observations,
modelling, and chaotic amplification of initial error in fore-
cast and measurement errors, the exact actual state at a time
t = tq , X t

q , is unknown.
Data assimilation aims to provide the analysis state, X a

q ,
which is an estimation of X t

q performed from the observa-
tions and the forecast state. The analysis state is decomposed
into X a

q = X t
q + ε

a
q , where εa

q is the analysis error, which is
modelled as a random error of the zero mean and covari-
ance matrix Pa

q = E
(
εa
q (εa

q )T
)

, with E (or its shorthand ·)

the expectation operator and T the transpose operator. This
analysis state X a

q can be obtained by combining the forecast
state X f

q and the observations Yobs
q . Similarly to the analy-

sis state, the forecast and the observations can be written as
X f
q = X t

q+ε
f
q and Yobs

q = Y
t
q+ε

obs
q , introducing the forecast

(observation) error εf
q (εobs

q ), both modelled as random errors

of zero-mean and covariance matrices Pf
q = E

(
εf
q (εf

q )T
)

and

Rq = E
(
εobs
q (εobs

q )T
)

respectively. In the case when the dy-

namic of X t is assumed to be linear, replacing M with its
matrix version M in Eq. (1), and when the errors are Gaus-
sian, uncorrelated in time, and errors between observations
and forecast are independent, the KF’s equations describe the
evolution of the uncertainty over time (Kalman, 1960).

The process of estimating the analysis state from a fore-
cast and some observations is called the analysis step. The
forecast-error covariance matrix denoted by Pf

q and the ob-
servation error covariance matrix Rq associated respectively
with X f

q and Yobs
q are used to produce the optimal estimation

(analysis) X a
q of X t

q and the associated analysis-error covari-
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ance matrix Pa
q . The equations of this procedure are

X a
q = X f

q +Kq

(
Yobs
q −HqX f

q

)
, (2a)

Pa
q =

(
In−KqHq

)
Pf
q , (2b)

where Kq = Pf
qHT

q

(
HqPf

qHT
q +Rq

)−1
is the Kalman gain

matrix, with Hq the linear observation operator that maps the
state vector into the observation space, Pa

q the analysis-error
covariance matrix, and In the identity matrix in dimension n.

Next, the forecast step pushes the uncertainty forward in
time. The analysis state X a

q is propagated using the linear dy-
namics M to obtain the forecast X f

q+1 at time tq+1, leading
to an estimation of the true state system X t(tq+1). The Gaus-
sian error statistics for this forecast are given by the Kalman
filter forecast steps

X f
q+1 =Mq+1←qX a

q , (3a)

Pf
q+1 =Mq+1←qPa

q

(
Mq+1←q

)T
+Qq , (3b)

where Qq is the model-error covariance matrix. Thereafter,
no model error is considered: i.e. Q is zero.

While the Kalman filter formalism is based on simple vec-
tor algebra equations, it is not easy to understand the statis-
tical content of the error covariances, which would require
representing each covariance function and exploring their
temporal evolution. Fortunately, simple diagnosis can be in-
troduced to summarize the statistical relationship between
points in the geographic domain. In turn, these diagnostics
can be used as parameters of covariance models, as detailed
now.

2.2 Diagnosis and modelling of the covariance matrix in
a large dimension

In data assimilation, two diagnoses for the error covariance
matrices are often introduced: the variance field and the
anisotropy of the correlation functions which correspond to
the principal axes of the spatial correlation. These diagnoses
are used for the description of the forecast-error covariance
matrix.

The forecast-error variance field, V f, is defined by
V f(x)= E

(
(εf(x))2), where x denotes the coordinate of a

grid point. The variance field also corresponds to the diago-
nal of Pf. The field of variance characterizes the magnitude
of the error at a given position.

When the forecast error is a differential random field, the
anisotropy of the correlation is characterized by the so-called
local forecast-error metric tensor gf(x) that appears in the
Taylor expansion of the correlation function (Daley, 1991)

ρf(x,x+ δx)≈ 1−
1
2
||δx||2

gf(x), (4)

where || · ||g stands for the Euclidean norm associated with a
metric g and defined from ||x||2g = xT gx. The local metric

tensor gf(x) is a symmetric positive-definite matrix that pre-
vents the correlation value from being larger than one. There
is one local metric tensor at each grid location x. The met-
ric tensor is related to the statistics of the random field εf

according to the formula (Berre et al., 2007)

gf
ij (x)= E

[
∂xi

(
εf

σ f

)
∂xj

(
εf

σ f

)]
(x), (5)

where σ f
=
√
V f is the forecast-error standard deviation and

where xi denotes the coordinate functions associated with
the coordinate system x.

In practice, the direction of the largest correlation
anisotropy corresponds to the principal axis of the smallest
eigenvalue for the metric tensor: the metric tensor is con-
travariant. It is thus useful to introduce the local aspect ten-
sor (Purser et al., 2003), whose geometry goes as the corre-
lation and is defined as the inverse of the metric tensor:

sf(x)=
(
gf(x)

)−1
, (6)

where the superscript “−1” denotes the matrix inverse. Note
that, in a 1D domain, the square root of s is homogeneous to
a length, leading to the so-called length scale l =

√
s, which

is often introduced in diagnoses.
One of the motivations behind the diagnosis of the vari-

ance and the local anisotropy tensor is that they can be used
as parameters of covariance models, the VLATcov mod-
els (Pannekoucke, 2021a). For instance, for the covariance
model based on a diffusion equation (Weaver and Courtier,
2001), the anisotropy tensor has been used as a proxy for
setting the heterogeneous diffusion tensor field of the co-
variance model based on a heterogeneous diffusion equa-
tion (Pannekoucke and Massart, 2008; Mirouze and Weaver,
2010). This covariance model is used in variation data as-
similation to generate heterogeneous covariances where cor-
relation functions vary between grid points. While there is
no analytical expression for the covariance functions based
on the diffusion operator, analytical heterogeneous VLATcov
models exist, for instance the heterogeneous Gaussian-like
covariance model

Phe.gauss(V,s)(x,y)=
√
V (x)V (y)

|s(x)|1/4|s(y)|1/4

|
1
2 (s(x)+ s(y))|1/2

exp
(
−

1
2
||x− y||2

[
1
2 (s(x)+s(y))]−1

)
, (7)

with | · | denoting the matrix determinant (Paciorek and
Schervish, 2006).

Heterogeneous covariance models are important because
they provide a way to produce non-obvious correlation func-
tions from a set of parameters. Hence, approximating a co-
variance matrix, as the forecast-error covariance at a given
time, by a covariance model is reduced to the knowledge of a
set of parameters. The parametric Kalman filter takes advan-
tage of this kind of approximation to reproduce the Kalman
filter dynamics as explained now.
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2.3 Formalism of the parametric Kalman filter

A covariance model is first considered, P(P), where P de-
notes a set of parameters. For instance, when the PKF is de-
signed from a VLATcov model, the set of parameters P is
given by the field of variance and of the local anisotropic
tensors, i.e. P = (V,s) or P = (V,g).

To describe the sequential evolution of error-covariance
matrices along the assimilation cycles, we assume that the
forecast-error covariance matrix at a time tq , Pf

q , is approxi-
mated by the covariance model, P(P f

q ), where P f
q denotes a

set of parameters so that P(P f
q )≈ Pf

q .
At an abstract level, the parametric Kalman filter consists

of the following sequential steps (Pannekoucke, 2021a). The
PKF analysis step, equivalent to Eq. (2), consists in deter-
mining the analysis state X a

q and the parameters Pa
q from

X f
q , P f

q , and the observations. In practice, this step con-
sists in sequentially processing observations, similar to the
one often encountered in EnKF (Houtekamer and Mitchell,
2001), which is a sequential assimilation of single observa-
tions based on Eq. (2a) for the mean accompanied by an up-
date of the covariance parameters so that, at the end of the
analysis step, P(Pa

q ) approximates the analysis-error covari-
ance of the Kalman filter Eq. (2b), i.e. P(Pa

q )≈ Pa
q . Note that

this sequential assimilation of observations can be performed
in parallel as for the EnKF, with the difference that the EnKF
often assimilates a batch of observations in place of a single
observation. Of course, for the PKF this step only relies on
the update of the parameters, with no ensemble. For instance,
when considering a VLATcov model P(V,s), the PKF anal-
ysis of a single observation at position xl, of value yo and
observation-error variance V o(xl), is written as (at time tq )
(Pannekoucke, 2021a)

X a(x)=X f(x)+ σ f(x)ρf
xl

(x)
σ f(xl)

V f(xl)+V o(xl)

(yo
−X f(xl)), (8a)

V a(x)= V f(x)
(

1− [ρf
xl

(x)]2
V f(xl)

V f(xl)+V o(xl)

)
, (8b)

sa(x)≈
V a(x)
V f(x)

sf(x), (8c)

where the function ρf
xl

(x)= ρ(sf)(xl,x) is the correlation
function between the observation location and each model
grid point x, associated with the covariance matrix P(V f,sf),
σ f
=
√
V f is the field of the forecast-error standard devia-

tion, and Eq. (8c) is the leading-order approximation of the
anisotropy update (Pannekoucke, 2021a).

Then, the forecast step of the PKF, equivalent to Eq. (3),
consists in finding the dynamics of the parameters in or-
der to predict P f

q+1 from Pa
q , so that P(P f

q+1) approximates
the forecast-error covariance matrix of the Kalman filter, i.e.
P(P f

q+1)≈ Pf
q+1. The equation for the mean is Eq. (3a) of

the KF.

2.4 PKF for the advection equation of the passive tracer

An illustration of the PKF is now proposed for a univariate
advection problem, with a focus on the forecast step. This in-
troduction of an intermediate problem aims to give the reader
a good understanding of the PKF and its advantages and diffi-
culties, which will be necessary to address the more complex
problem encountered in a multivariate CTM.

For a 1D and periodic domain, of coordinate x, the con-
servative advection of a tracer, X (t,x), by a stationary het-
erogeneous wind field u(x) can be described by the partial
differential dynamics

∂tX + ∂x(uX )= 0 (9a)

or equivalently by

∂tX + u∂xX =−X ∂xu. (9b)

The forecast step of the PKF is illustrated for the conser-
vative dynamics, where the covariance matrices are approx-
imated by a VLATcov model. The computation of the PKF
dynamics can be performed using SymPKF (Pannekoucke
and Arbogast, 2021) and reads as

∂tX + u∂xX =−X ∂xu, (10a)
∂tV + u∂xV =−2V ∂xu, (10b)
∂t s+ u∂xs = 2s∂xu, (10c)

where here X stands for the mean state X and where the
forecast-error superscript “(·)f” has been removed for V and
s for the sake of simplicity. Note that the PKF system in
Eq. (10), which is decoupled, corresponds to the true un-
certainty dynamics for the advection problem (Cohn, 1993;
Pannekoucke et al., 2016, 2018). This is not true in general
where closure issues can appear, e.g. for a diffusion equation:
because of the second-order derivative, an unknown term ap-
pears in the dynamics of the metric and has to be closed (Pan-
nekoucke et al., 2018).

In the following, a numerical test bed shows the ability of
the PKF to predict the uncertainty dynamics compared to a
reference ensemble estimation (EnKF).

The numerical experiment studies the time propagation of
an uncertainty at time t = 0, featuring a mean state X 0 and an
error covariance P0, to an arbitrary time T . Here, the initial
error covariance is defined as the covariance P0

= P(V 0, s0),
where P(V,s) is the VLATcov model based on the heteroge-
neous Gaussian-like model in Eq. (7) for a given (V 0, s0).

To assess the PKF’s ability to forecast the error statistics,
we compare its results with diagnoses obtained from the fore-
cast of a large ensemble, {X f

k}1≤k≤Ne , of size Ne = 6400,
which implies a relative error of 1.25 %, according to the
central limit theorem. At t = 0, the ensemble is populated
for each k as X f

k(0)= X 0
+P1/2

0 ζk , where P1/2
0 is the square

root of the initial covariance matrix P0 and ζk is a Gaussian
sample with zero mean and covariance matrix In, where n
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Figure 1. Pre-defined heterogeneous and stationary wind field u(x)
used for the transport simulations.

is the dimension of the vector X , i.e. ζk ∼N (0,In). Then,
each member X f

k is computed from the time integration of
Eq. (9b) starting from X f

k(0). Note that, for the linear dy-
namics in Eq. (9a), the full computation of the KF covari-
ance prediction could have been considered, but the ensem-
ble approximation has been preferred since it introduces the
methodology adapted to the non-linear setting explored for
the multivariate situation in Sect. 3.

Hence, from the ensemble, the variance at a given time is
then estimated from its unbiased estimator

V̂ f(x)=
1

Ne− 1

Ne∑
k=1

(
εf
k

)2
, (11)

with εf
k = X f

k(x)− X̂ f(x) and where X̂ f = 1
Ne

∑Ne
k=1X

f
k is the

empirical mean. The metric tensor, defined from Eq. (5), is
estimated by

ĝf(x)=
1
Ne

Ne∑
k=1

(∂x ε̃f
k(x))2, (12)

where ε̃f
k =

1√
V̂ f

(X f
k − X̂ f) is the normalized error and is

used to compute the estimation of the aspect tensor ŝf(x)=

1/ĝf(x) and of the length scale l̂f(x)= 1/
√
ĝf(x)=

√
ŝf(x).

The numerical framework used to forecast both the ensem-
ble and the PKF system is described now. The periodic do-
main is [0,D) with D = 1000 km. It is regularly discretized
withNx = 241 grid points, which corresponds to a mesh size
1x of size 4.15 km. The dynamics in Eqs. (9b) and (10)
are discretized with a finite-difference method, where spa-
tial derivatives are approximated using a centred scheme of
order 2. The time integration is done using a fourth-order
Runge–Kutta (RK4) scheme of time step 1t verifying the
Courant–Friedrichs–Lewy condition (CFL) (Kalnay, 2002)
1t =1x/Umax, where Umax is the maximum wind speed
magnitude of u.

For this experiment, the mean state X , the variance field
V , and the aspect-tensor field s are initialized homoge-
neously with values X 0

= 1 and V 0
= (σ 0)2, where σ 0

=

0.1, and s0
= (l0h )2, where l0h = 151x ' 62.2 km. This initial

setting also corresponds to the initial state of the PKF dy-
namics in Eq. (10). With regards to the domain chosen, this
setting for the length scale is in agreement with practical es-
timations often encountered (Ménard et al., 2016). The wind
field considered, shown in Fig. 1, is defined by u(x)= (35+
15cos(2πx))/D and modellizes a wind of average intensity
35 km h−1 and of maximum speed Umax = 50 km h−1. The
characteristic time τadv is defined by τadv =D/u' 28.5 h
and approximately corresponds to the time of a revolution of
the tracer around the periodic domain. The simulation time
horizon T = tend is set to tend = 3τadv.

The dynamics of the uncertainty show in Fig. 2 that the
tracer tends to concentrate in the deceleration zones (see
Fig. 1 from x = 0 to x = 0.5) and to dilute in the accelera-
tion zones (from x = 0.5 to x = 1.0) (Fig. 2a). This observa-
tion also applies to the standard-deviation field in Fig. 2b, as
it is governed by the same dynamics as the tracer’s concen-
tration (it is straightforward to calculate the dynamics of σ
using the dynamics of the variance in Eq. 10b). In Fig. 2c,
the length scales (1D equivalent of the anisotropy) are sub-
ject to two processes: a pure transport term (left-hand side
of Eq. 10c) and a production term related to the wind sheer
(right-hand side of Eq. 10c). This production term is positive
(negative) when the wind field is accelerating (decelerating),
indicating an increase (decrease) in the length scales in the
accelerating (decelerating) wind regions. In contrast to the
concentrations and standard-deviation fields (governed by a
conservative transport), the average value of the length scales
varies in time; however, numerical experiments (not shown
here) have shown that it oscillates around the initial value.

Regarding the performances of the two methods, the PKF
forecast results for the error statistics are quite similar to the
one diagnosed from the ensemble, i.e. the EnKF for this test
bed. The forecasts of the concentrations in Fig. 2a are identi-
cal for both methods. Although the dynamics for the variance
in Eq. (10b) and the anisotropy in Eq. (10c) are exact in the
PKF system, a significant difference is observed between the
forecasts of the two methods (Fig. 2b and c). This difference
is due to errors in the EnKF rather than errors in the PKF.
Note that the model error that affects the EnKF can be cor-
rected by performing high-resolution simulations (Nx = 723;
see Appendix A for details). This highlights some of the lim-
itations of the numerical validation of the PKF by an ensem-
ble method in the presence of model error. This numerical ex-
periment shows that the PKF is able to produce high-quality
forecasts of the diagnoses of the forecast-error statistics, a
result that is confirmed by looking at the forecast-error cor-
relation functions (see Appendix B).

This example shows the motivation behind the PKF: it is
able to predict the (main parameters of the) error covariance
with a good skill and at a low numerical cost. This low nu-
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Figure 2. Comparison of the (low-resolution) forecasts (Nx = 241) of the mean state (a), the forecast-error standard deviation σ =
√
V (b)

and the forecast-error length scale l = 1/
√
g =
√
s (c), shown at times t = [0.6,1.2,1.8,2.4,3.0]τadv, computed from the PKF (red lines)

and compared with the diagnoses of an ensemble of Ne = 6400 forecasts (cyan dash-dotted lines). The more transparent the curve, the closer
it is to t = 0. The horizontal grey lines represent the initial conditions.

merical cost first concerns the computer memory: the infor-
mation contained in a covariance matrix of size O(N2

x ) in the
ensemble case is reduced by the covariance model in Eq. (7),
which only needs a few parameters of sizes of order O(Nx)
(with O being the “Big O” notation, meaning “proportional
to”). However, the low numerical cost also concerns the time
taken to predict the uncertainty: the PKF only relies on the
single time integration of Eq. (10), which represents the cost
of 3 time integrations of the initial dynamics in Eq. (9b) com-
pared to the 6400 time integrations required for the ensemble
used here.

As another advantage, the PKF provides information about
the physics of the uncertainty: when ensemble diagnosis only
observes the time evolution of the statistics without any ex-
plications, the PKF provides a simplified proxy that details
the origins of these statistical evolutions with only three
equations, and thus the PKF improves our knowledge of un-
certainty dynamics.

3 Toward a multivariate formulation of the PKF

The exploration of the multivariate extension is now ad-
dressed. For multivariate problems, a modellization of the
cross-correlation functions (or inter-species correlation func-
tions) is needed. Moreover, it would be convenient to in-
troduce a multivariate covariance model that extends the
univariate VLATcov model, as the heterogeneous Gaussian
model (Eq. 7), to take advantage of the PKF dynamics of
univariate statistics.

Because multivariate modelling is a difficult topic, a multi-
variate covariance model is proposed in a simplified test bed
in Sect. 3.1, where data-driven modelling is considered to
determine a multivariate covariance model and its parame-
ters. Next, the multivariate PKF is formulated, detailing the
prediction and the analysis steps in Sect. 3.2. Finally, two nu-
merical assimilation experiments are conducted in Sect. 3.3.

3.1 Development of a proxy multivariate covariance
model

3.1.1 Introduction of the simplified chemical transport
model

To explore a multivariate formulation of the PKF, a simpli-
fied chemical transport model is introduced that mimics the
MOCAGE framework. This simplified CTM contains the es-
sential features of what can be found in a more realistic CTM,
i.e. advection, multiple chemical species, and non-linearities.

To do so, a 1D periodic domain of coordinate x is con-
sidered, where two non-linearly reactive chemical species,
A(t,x) and B(t,x), are advected in a conservative way by a
heterogeneous and stationary wind field u(x). The non-linear
reaction is given by the Lotka–Volterra (LV) equations (see
Appendix C), which leads to the coupled dynamics

∂tA+ u∂xA=−A∂xu+ k1A− k2AB, (13a)
∂tB + u∂xB =−B∂xu+ k2AB − k3B, (13b)

where the transport is written following the univariate 1D ex-
ample in Eq. (9b) and where the LV reaction appears as the
last two terms on the right-hand side of each prognostic equa-
tion. The constants k1, k2, and k3 characterize the reaction
rates: k1 corresponds to the rate at which A is produced, con-
stant k2 represents the rate at which the chemical reactions
between A and B produce 2B, and k3 describes the decay
rate for species B. Note that, at a formal level, the state vec-
tor associated with Eq. (13) is then X (t,x)= (A,B)(t,x).

Considered as a dynamical system of ordinary equations
and represented in the phase space (A,B), the solutions of
the Lotka–Volterra dynamics are periodical orbits flowing
around the critical point of coordinates (Ac,Bc)=

(
k3
k1
, k1
k2

)
,

as shown in Fig. 3. This is the kind of time evolution ob-
served at each grid point when there is no wind (u= 0).

In this multivariate framework, the error-covariance ma-
trix P= E

(
εX (εX )T) associated with the state X = (A,B),
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Figure 3. Numerical simulations of the Lotka–Volterra dynamical
system whose solutions are periodical orbits (purple curves with
different transparencies), flowing anti-clockwise around the critical
point (Ac,Bc)=

(
k3
k1
,
k1
k2

)
(black dot).

of error εX = (εA,εB ), reads as a block matrix

P=
(

PA (PAB )T

PAB PB

)
, (14)

where PA and PB are the auto-covariance matrices of the er-
rors, and PAB is the cross-covariance matrix, or the inter-
species covariance matrix, of the errors. Note that, in general,
PAB is not symmetric, i.e. (PAB )T

6= PAB . The two-point
cross-covariance function PAB (x,y)= εA(x)εB (y) between
grid points of coordinates x and y is written as

PAB (x,y)=
√
VA(x)

√
VB (y)ρAB (x,y), (15)

where

ρAB (x,y)=
PAB (x,y)

√
VA(x)

√
VB (y)

(16)

is the cross-correlation function. The cross-correlation func-
tion is not symmetric in general, i.e. ρAB (x,y) 6= ρAB (y,x).
In particular, if CAB denotes the associated cross-correlation
matrix, then CAB 6= (CAB )T.

From a covariance-modelling point of view, and from the
perspective of the PKF, the univariate covariances PA and PB
could be approximated by a VLATcov model, e.g. P(VA, sA).
Moreover, the single-point cross-covariance field defined as
VAB (x)= εA(x)εB (x) will appear in the dynamics of VA and
VB because of the coupling due to LV equations and should
be considered a natural parameter for a multivariate PKF. At
this stage, the question is whether it is possible to approx-
imate the two-point cross-covariance functions PAB (x,y)
knowing the parameters (A,B,VA,VB ,VAB , sA, sB ), which
are functions of x.

Since no multivariate modelling extending the VLATcov
model is available, a numerical exploration of the dynamics

of multivariate statistics is performed for the LV CTM so as
to guess a proxy for the cross-covariance functions.

3.1.2 Ensemble of multivariate forecasts

Compared to the univariate experiment described in
Sect. 2.4, without a multivariate covariance model, it is not
possible to sample a multivariate ensemble. For this rea-
son, the errors for the two chemical species are assumed to
be decorrelated at the initial time t = 0, so that the error-
covariance matrix, P0, is the block diagonal

P0
=

(
P0
A 0

0 P0
B

)
, (17)

where P0
A

(
P0
B

)
is the univariate covariance associ-

ated with error in A (B). Following the ensemble gen-
eration of Sect. 2.4, the univariate covariance matri-
ces are chosen as the two VLATcov matrices P0

A =

P(V 0
A, s

0
A) and P0

B = P(V 0
B , s

0
B ). Then, an ensemble of

Ne = 6400 initial conditions (X 0
k )k∈[1,Ne] is sampled, with,

for each k, X 0
k = X 0

+
(
P0)1/2ζk , where X 0

= (A0,B0)

and
(
P0)1/2 are the block-diagonal matrix

(
P0)1/2

=

diag
(
P(V 0

A, s
0
A)1/2,P(V 0

B , s
0
B )1/2). This time, ζk is a sample

of N (0,In) with n= 2Nx . The domain is discretized into
Nx = 723 grid points.

For the simulation, the fields A0 and B0 are set to the
constants A0

= 1.2 and B0
= 0.8. The univariate parame-

ters are set to σ 0
A = 0.1 ·A0, σ 0

B = 0.1 ·B0, and s0
A = s

0
A = l

2
h

with lh = 451x ' 62 km. The reaction rates of LV are set to
(k1,k2,k3)= (0.075,0.065,0.085). The time integration fol-
lows the numerical setting used for the univariate simulation
presented in Sect. 2.4 and leads to an ensemble ofNe = 6400
multivariate forecasts.

While there is no cross-correlation at the initial condition,
the coupling provided by the LV equations should introduce
a non-zero cross-correlation between errors in A and B, and
this can be diagnosed from the computation of the ensemble
estimation of the two-point forecast-error cross-covariance
function PAB (x,y) at time t , given by

P̂AB (t,x,y)=
1

Ne− 1

Ne∑
k=1

εA,k(t,x)εB,k(t,y), (18)

with εA,k(t,x)= Ak(t,x)− Â(t,x) and εB,k(t,y)=
Bk(t,y)− B̂(t,y), where Â and B̂ are the empirical
means of the ensemble of forecasts (Ak) and (Bk), from
which an estimation of the cross-correlation functions
ρ̂AB (t,x,y) and matrix ĈAB (t) can be deduced.

Figure 4 shows the time evolution of the cross-correlation
with respect to the grid point xl = 0.5, i.e. the function
ρAB (xl, ·). As has been specified, the cross-correlation is zero
at t = 0 (Fig. 4a). Then, as expected, the cross-correlation
evolves along the time, presenting an anti-cross-correlation
at t = 0.6τadv (Fig. 4b) and then a positive one at t = 1.8τadv
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Figure 4. Evaluation of the cross-correlation model rAB (xL, ·) (bold orange line) versus the ensemble estimation of the cross-correlation
ρAB (xL, ·) (blue dashed line) with respect to the location xl = 0.5 and times t = [0.0,0.6,1.2,1.8,2.4,3.0]τadv.

(Fig. 4d). At t = 2.4τadv (Fig. 4e), the cross-correlation ap-
pears clearly asymmetric while reaching its maximum value
at a y strictly lower than xl.

3.1.3 Formulation of a proxy for the cross-correlation

Now, a proxy for the cross-correlation is introduced from the
data set of multivariate forecasts.

After a trial-and-error process, and inspired by the VLAT-
cov model in Eq. (7), the following expression,

rAB (x,y)=
1
2

(
VAB (x)

σA(x)σB (x)
+

VAB (y)
σA(y)σB (y)

)
exp

(
−||x− y||2

[
1
4 (sA(x)+sB (x)+sA(y)+sB (y))]−1

)
, (19)

as a function of the known parameters P =
(VA,VB ,VAB , sA, sB ), has been proposed as a proxy
for the cross-correlation ρAB , i.e. rAB (x,y)≈ ρAB (x,y).
It consists of an interpolation by the mean of the cross-
correlation values at location x and y, multiplied by a
Gaussian kernel, where the univariate aspect tensor has been
substituted by the mean of the aspect tensors of all chemical
species. The resulting proxy for the cross-correlation matrix
is denoted by Cproxy

AB (P).
One of the main advantages of considering a simple an-

alytic formula is that it can be extended to a problem with
more chemical species and for a domain of a higher dimen-
sion.

Note that formulation Eq. (19) is symmetric (rAB (x,y)=
rAB (y,x)), while cross-correlations are not symmetric in

general (ρAB (x,y) 6= ρAB (y,x)), but this expression lever-
ages all the parameters known at locations x and y. How-
ever, the function rAB,x(δx)= rAB (x,x+ δx) is not nec-
essarily symmetric in δx, where, in general, rAB,x(δx) 6=
rAB,x(−δx).

To assess the skill of the proxy, Fig. 4 shows the functions
rAB (xl, ·) (computed from Eq. 19 with the ensemble-
estimated parameters P̂(t)= (V̂A, V̂B , V̂AB , ŝA, ŝB )(t))
compared with the ensemble-estimated cross-correlation
ρAB (xl, ·). At a qualitative level, the functions rAB are in
accordance with the cross-correlation ρAB of reference
for all the panels. Note that, while rAB is symmetric, the
functions rAB (xl, ·) can be asymmetric as they appear in
Fig. 4c and f.

At a quantitative level, Fig. 5 shows the time evolu-

tion of the relative error ||ĈAB (t)−Cproxy
AB (P̂(t))||

||ĈAB (t)||
, where ||U|| =√

Tr(UUT) is the Frobenius matrix norm where Tr is the
trace operator, ĈAB (t) is the ensemble estimation of the
cross-correlation matrix, and Cproxy

AB (P̂(t)) is the proxy for
the cross-correlation matrix fitted with ensemble-estimated
parameters P̂(t). Two different experiments are shown de-
pending on whether the initial length scales for A and B are
equal, l0A = l

0
B = 451x ≈ 66 km (turquoise lines), or differ-

ent, l0A ≈ 66 km, but l0B = 661x ≈ 91 km (purple lines).
As the two multivariate error fields are uncorrelated at

the initial time, the true cross-correlation matrix CAB (t = 0)
is zero. However, the ensemble used in the estimation of
ĈAB (t = 0) being finite, this produces a spurious non-zero
cross-correlation leading to a non-zero matrix and to a rela-
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Figure 5. Time evolutions of the relative errors between the empiri-
cal cross-correlation matrix (EnKF) and the proxy-generated cross-
correlation matrix fitted with EnKF-diagnosed parameters for two
different settings of the initial length scales: equal length scales
with l0

A
= l0

B
= 451x ≈ 66 km (turquoise line) and different length

scales with l0
A
= 451x and l0

B
= 661x ≈ 91 km (mauve line). The

results being dominated by sampling noise for t < 0.45, they are not
retained (grey hatching) for the computation of the temporal aver-
ages (dashed segments).

tive error larger than 80 %. Then, the first instants of the sim-
ulation are dominated by the sampling noise, and they are
excluded for the analysis of the results (grey hatching). Af-
ter t ' 0.45, the experiments offer valid results and lead to
temporal averages of 23.1 % when l0A = l

0
B (turquoise dashed

line) and 31.3 % when l0A 6= l
0
B . Note that the effect of the

sampling noise can lead to an overestimation of 8 % for this
kind of experiment (Pannekoucke, 2021a).

According to our knowledge, no proxy of cross-
correlations similar to Eq. (19) has been introduced up to
now as a possible proxy of cross-correlations. As mentioned
above, rAB does not share the same property of the cross-
correlation (e.g. rAB is symmetric, while ρAB is not), and
thus there is no guarantee that a multivariate covariance
model based on the proxy rAB will lead to a true covariance
matrix: such a multivariate covariance model is symmetric
because rAB is symmetric but not necessarily positive defi-
nite, although it may not be essential for the PKF applica-
tions.

Despite the limitations of the proxy, a multivariate exten-
sion of the univariate VLATcov model is explored below,
where the cross-correlation is approximated by the proxy in
Eq. (19). This leads to a multivariate VLATcov model of pa-
rameters for fields (VAB ,VA,VB , sA, sB ), for which we can
formulate a PKF.

3.2 Formulation and simplification of the parameter
dynamics and analysis

3.2.1 PKF dynamics for the LV CTM

The computation of the PKF dynamics leverages the
SymPKF package which, applied to the dynamics Eq. (13),
provides the following system of coupled equations.

∂tA+ u∂xA=−A∂xu+ k1A− k2AB − k2VAB (20a)
∂tB + u∂xB =−B∂xu− k3B + k2AB + k2VAB (20b)

∂tVAB + u∂xVAB =−2VAB∂xu

+VAB (k1− k2B − k3+ k2A)+ k2VAB − k2VBA (20c)

∂tVA+ u∂xVA =−2VA∂xu

+ 2[VA(k1− k2B)− k2AVAB ] (20d)

∂tVB + u∂xVB =−2VB∂xu

+ 2[VB (−k3+ k2A)+ k2BVAB ] (20e)

∂t sA+ u∂xsA︸ ︷︷ ︸
TA,adv-1

= 2sA∂xu︸ ︷︷ ︸
TA,adv-2

−
2k2AVABsA

VA︸ ︷︷ ︸
TA,chem-1

+
2k2AσBs

2
A∂x ε̃A∂x ε̃B

σA︸ ︷︷ ︸
TA,chem-2

+
k2As

2
Aε̃B∂x ε̃a∂xVB

σAσB︸ ︷︷ ︸
TA,chem-3

−
k2AσBs

2
Aε̃B∂x ε̃A∂xVB

V
3
2
A︸ ︷︷ ︸

TA,chem-4

+
2k2σBs

2
Aε̃B∂x ε̃A∂xA

σA︸ ︷︷ ︸
TA,chem-5

(20f)

∂t sB + u∂xsB︸ ︷︷ ︸
TB,adv-1

= 2sB∂xu︸ ︷︷ ︸
TB,adv-2

+
2k2BVABsB

VB︸ ︷︷ ︸
TB,chem-1

−
2k2BσAs

2
B∂x ε̃A∂x ε̃B

σB︸ ︷︷ ︸
TB,chem-2

−
k2Bs

2
B ε̃A∂x ε̃B∂xVA

σAσB︸ ︷︷ ︸
TB,chem−3

+
k2BσAs

2
B ε̃A∂x ε̃B∂xVB

V
3
2
B︸ ︷︷ ︸

TB,chem-4

−
2k2s

2
B ε̃A∂x ε̃B∂xB

σB︸ ︷︷ ︸
TB,chem-5

(20g)

The overlines of the mean states A and B have been dis-
carded for the sake of simplicity. The PKF is a second-order
filter in which the variances of the fluctuations modify the
time evolution of the mean states, e.g. by the term −k2VAB
of Eq. (20a).

For the dynamics of the anisotropy in Eqs. (20f) and (20g),
the contributions due to the transport (to the chemistry) are
labelled T(·),adv-(·) (T(·),chem-(·)) for identification.

Note that the dynamics induced by the transport process
are exact, as mentioned in Sect. 2.4. In the PKF system in
Eq. (20), the dynamics of the mean concentrations A and B,
variances VA and VB , and cross-covariance VAB , Eqs. (20a)
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to (20e), are independent of the anisotropy field in Eqs. (20f)
and (20g). The reciprocal is not true: the anisotropy field
dynamics (Eqs. 20f–20g) are forced by the means, the vari-
ances, the cross-covariances, and their spatial heterogeneity.
Equations (20a) and 20b also indicate an interaction between
the cross-covariance and the mean concentrations.

The dynamics of the aspect tensors, Eqs. (20f) and (20g),
are not closed: some terms are expressed as expectations
of the normalized errors ε̃A = εA/

√
VA and ε̃B = εB/

√
VB .

These open terms cannot be directly expressed using the
available parameters, preventing the forecast of the error
statistics.

3.2.2 Closure of the PKF dynamics

A closure is proposed for the LV CTM multivariate PKF
dynamics. Note that the open terms of the PKF dynam-
ics Eq. (20) can be related to spatial derivatives of the
cross-correlation Eq. (16), e.g. ε̃A∂x ε̃B (x)= (∂xρAB ) (x,x)
or ∂x ε̃A∂x ε̃B (x)=

(
∂xyρAB

)
(x,x), leading to a closure of the

PKF dynamics when the proxy rAB Eq. (19) is used in place
of the true cross-correlation ρAB . However, numerical inves-
tigation of this closure did not lead to good results (not shown
here).

From a detailed quantification of the impact of the chem-
istry alone (see Appendix D1) and of the relative contribu-
tions comparing the importance of the advection versus the
chemistry (see Appendix D2), the result is that the advection
contributes 80 % of the anisotropy dynamics, while 20 % are
due to the chemistry. Since the advection mainly leads the
dynamics of the anisotropy, this suggests that the contribu-
tion of the chemistry in Eqs. (20f) and (20g) be removed,
which leads to a closure of the PKF dynamics in Eq. (20) as

∂tA+ u∂xA=−A∂xu+ k1A− k2AB − k2VAB , (21a)
∂tB + u∂xB =−B∂xu− k3B + k2AB + k2VAB , (21b)

∂tVAB + u∂xVAB =−2VAB∂xu

+VAB (k1− k2B − k3+ k2A)+ k2VAB − k2VBA, (21c)

∂tVA+ u∂xVA =−2VA∂xu

+ 2[VA(k1− k2B)− k2AVAB ], (21d)

∂tVB + u∂xVB =−2VB∂xu

+ 2[VB (−k3+ k2A)+ k2BVAB ], (21e)
∂t sA =−u∂xsA+ 2sA∂xu, (21f)
∂t sB =−u∂xsB + 2sB∂xu. (21g)

3.2.3 Extension of the PKF analysis step for multivariate
assimilations

For multivariate statistics, the update Eq. (8) presented in
Sect. (2) has to be modified: it can be applied to update the
univariate error statistics (mean concentrations, variances,
aspect tensors) but does not indicate how to update the cross-
covariance fields. To apply the formula Eq. (8) in multivariate

contexts, xl must refer to the observation of a species Zl at
the observation location, while x refers to any species at any
location.

For an observation at location xl of the chemical species
Zl, the cross-covariance field between two species Z1 and Z2
updates as (see Appendix F)

V a
Z1Z2

(x)= V f
Z1Z2

(x)

−

(
σ f
Z2

(x)ρf
Z2Zl,l

(x)σ f
Z1

(x)ρf
Z1Zl,l(x)

)
V f
Zl

(xl)

V f
Zl

(xl)+V o
Zl

(xl)
, (22)

where ρf
ZiZl,l

(x) is the forecast cross-correlation function be-
tween Zl and Zi at location xl, defined by

ρf
ZiZl,l(x)= E

[
εf
Zl

(xl)εf
Z1

(x)
]
/
(
σ f
Zl

(xl)σ f
Z1

(x)
)
. (23)

Note that Eq. (22) also applies when one of the two chemical
species Z1 or Z2 coincides with Zl. This leads to a new for-
mulation of the PKFO1 algorithm (given by Algorithm F1 in
Appendix F).

3.3 Numerical experiments: simple forecast and data
assimilation over several cycles

In this section, two numerical experiments, labelled FCST
and DA, are proposed to evaluate the multivariate formu-
lation of the PKF for the LV CTM. Again, a large EnKF
will be used as a reference to be compared with regarding
the error statistics produced. The first experiment, FCST, fo-
cuses on the forecast step alone. Therefore, the PKF dynam-
ics (Eq. 21) and the EnKF for equations (Eq. 13) are fore-
casted. Then, in DA, five complete data assimilation cycles
are performed to test the PKF capacity to produce multivari-
ate analysis. DA only differs from FCST by the assimilations
of observations; otherwise, the configurations are identical.
The next section details the set-up of the experiments.

3.3.1 Settings of the numerical experiments

In both experiments, the EnKF relies on 6400 members. The
total time of the simulation is tmax = 5τadv/3' 47.5 h (τadv
is the characteristic time defined in Sect. 2.4). A high reso-
lution with Nx = 723 grid points is used. The settings of the
wind field, chemical rates, initial concentrations, initial vari-
ances and cross-covariance, time scheme, and space grid are
identical to those used in Sect. 3.1.2. The initial length-scale
fields are homogeneously initialized at l0A = l

0
B = 451x.

For the data assimilation experiment, a network of four
sensors regularly spaced on the right-hand side of the do-
main is considered to generate observations of the chem-
ical species A. Every τadv/3 h, observations are generated
from an independent nature run and assimilated for both fil-
ters. The nature run is initialized with field concentrations
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A and B set respectively to 1.2+ 0.12ζA and 0.8+ 0.08ζB ,
where ζA and ζB are structured Gaussian random fields of
zero mean, standard deviation 1, and length scale 451x (i.e.
sampled from P

(
1, (451x)2) in Eq. 7). The synthetic obser-

vations are considered uncorrelated in space and time (i.e.
at a given time, R is diagonal) and generated at the analy-
sis time ta according to Aobs(xl, ta)= Af

NR(xl, ta)+ σ obsζta ,
where σ obs

= 10 % is the observations’ standard deviation,
ζta is a sample from the standard Gaussian distribution, and
Af

NR is the forecast of the nature run for location xl. The
model error is neglected in this experiment (i.e. Q= 0 in
Eq. 3b). For the PKF, the observations are assimilated using
the PKFO1 algorithm.

3.3.2 Results

The results for the FCST experiment are shown in Fig. 6. The
figure presents the state vector (Fig. 6a and b) and five error
statistics (Fig. 6c–g) for the EnKF and the PKF at t = 0.5tmax
and t = tmax. The error statistics presented are, from Fig. 6c
to g, the two standard deviations, the cross-correlation field,
and the two length scales rather than the raw PKF parameters.
A horizontal grey line in each panel is here to represent the
initial setting of the corresponding quantity.

The forecasts of the means match perfectly for both meth-
ods (see Fig. 6a and b). Similarly to the univariate advec-
tion experiment (Sect. 2.4; see Fig. 2), an accumulation of
the tracers is observed in the low-wind-speed region (cen-
tre of the domain). The standard deviations (Fig. 6c–d) ob-
serve a similar behaviour, although the effects of the chem-
istry appear more clearly: the curves show some quite local-
ized deformations, especially for the standard deviation of
A (compare Fig. 2b). The cross-correlation field in Fig. 6e,
specific to the multivariate case, is predicted with great accu-
racy by the PKF dynamics. This indicates that, starting from
decorrelated error fields for A and B, the chemistry dynam-
ics have allowed non-zero cross-correlations to emerge by
coupling the chemical species in a non-linear fashion. While
less accurate than for the means, the filters coincide at esti-
mating the standard deviation and for the cross-correlation
fields. The forecasts of the length scales (Fig. 6f and g) show
a general accordance between the two methods, even though
a difference can be observed in A’s case in Fig. 6f. This gap
is due to the simplification of the anisotropy dynamics in the
PKF formulation in Eq. (21), which does not permit such be-
haviours to be represented. The equation of the anisotropy
dynamics of A in the original formulation of the PKF in
Eq. (20f) suggests an explanation of the spikes presented on
the EnKF curves in Fig. 6f which are absent for the PKF. The
terms labelled TA,chem-3 and TA,chem-4 indicate a forcing of
the spatial derivatives of the variance VA. Looking at Fig. 6c,
it appears that the variance of A presents some strong spa-
tial heterogeneity (x = 0.45 for t = 0.5tmax and x = 0.60 for
t = tmax), causing important magnitudes for ∂xVA and thus
for TA,chem-3 and TA,chem-4. This produces a local deforma-

tion on A’s length scales which is effectively observed for
the same times and locations in Fig. 6f. However, these gaps
between the EnKF and PKF curves are local and of a reason-
able magnitude: overall, the PKF forecast for the anisotropy
reproduces the EnKF results.

The outcome of the DA experiment in Fig. 7 is now
shown, where five assimilation cycles are done over the pe-
riod [0, tmax] (one assimilation after each τadv/3 time integra-
tion, with tmax = 5τadv/3). The results are presented similarly
to the FCST experiment, except that four vertical grey lines
have been added to indicate the sensor locations. Also, time
t = tmax corresponds to a time for which synthetic observa-
tions for A are generated (see Fig. 7a).

For the DA experiment (Fig. 7), the resulting means in
Fig. 7a and b are identical for the PKF and EnKF. This indi-
cates similar forecasts and analyses for both methods during
the five assimilation cycles. However, the corrections brought
by the observations are not very significant given the ne-
glected model error, the small amplitude of the forecast vari-
ance, and the observation error. This configuration implied
that the generated observations are very close to the fore-
casted concentrations, and therefore the means are not signif-
icantly different than in the FCST experiment. The impact of
the different analyses is more visible in the rest of the error
statistics. For instance, the standard deviation of species A
in Fig. 7c presents important downspikes which result from
the uncertainty reduction during the analysis. This reduction
in the uncertainty is also visible, with a reduced amplitude,
in species B in Fig. 7d, for which we do not have obser-
vations. The ability to reduce the uncertainty of B and to
correct its concentration when A is observed is the signature
of the multivariate character of the analysis. The amplitude
of the reduction in σB and correction of B is related to the
strength of the cross-correlation at the moment of assimila-
tion. The cross-correlation field in Fig. 7e is also impacted by
the observation, but it is less obvious to say in which man-
ner. Looking at Fig. 7f, an important gap between the PKF
and EnKF for the length scales of A can be observed. It has
two causes, the major one being the approximation in the
anisotropy update formula in Eq. 8c. This simplified formula
is less accurate than its second-order version in Eq. (10) from
Pannekoucke (2021a) but offers more robustness during nu-
merical simulations (see Fig. 13e from Pannekoucke, 2021a,
and the discussion in their Sect. 4.4). The second reason is
the reduction in the anisotropy dynamics to the transport pro-
cess in the PKF formulation (compare Sect. 3.2). Compared
to the FCST experiment, the assimilation of observations has
had the effect of reducing the length scales.

In both of these experiments, the PKF has shown itself able
to reproduce the results of a large ensemble Kalman filter.
Again, these qualitative results of the PKF were obtained at
a low numerical cost: the equivalent of 3 time integrations of
Eq. (13) compared to 6400 for the EnKF.

It would be interesting to assess the robustness of the re-
sults, including whether the advection terms remain domi-
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Figure 6. Results of the forecast numerical experiment. PKF error statistics (solid red lines) and EnKF-diagnosed error statistics (dashed
blue lines) at times t = [0.50,1.00]tmax. These times correspond approximately to t = 23 h 45 min and t = 47 h 40 min.

Figure 7. Results of the data assimilation numerical experiment. Nature run (dash-dotted green lines, only in panels a and b), PKF error
statistics (solid red lines), and EnKF-diagnosed error statistics (dashed blue lines) at times t = [0.50,1.00]tmax. These times correspond
approximately to t = 23 h 45 min and t = 47 h 40 min. At time t = 0.5tmax, two analysis steps have already been performed. At time t =
1.00tmax, the fifth analysis step is being realized, and the generated observations are represented by black dots in panel (a). The vertical grey
lines correspond to the sensor locations.

nant under different conditions, such as weaker winds or ac-
celerated chemistry, from a set of operational CTM predic-
tions.

4 A more realistic chemical model: the generic
reaction set (GRS) model

The simplified LV CTM has allowed for a multivariate PKF
assimilation validated in numerical experiments. To explore
the ability of the PKF to apply to a more complex chemical

scheme, an intermediate chemical model is now introduced,
the GRS (Azzi et al., 1992; Haussaire and Bocquet, 2016),
which is then used to validate the PKF forecast.

4.1 Description of the GRS model

The GRS describes the dynamics of a reduced number of
chemical species or pseudo species. Hence, six species are
considered and interact as
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ROC+hν
k1(t)
→ RP+ROC, (24a)

RP+NO
k2
→ NO2, (24b)

NO2+hν
k3(t)
→ NO+O3, (24c)

NO+O3
k4
→ NO2, (24d)

RP+RP
k5
→ RP, (24e)

RP+NO2
2·k6
→ S(N)GN, (24f)

where ROC, RP, and S(N)GN respectively mean reactive or-
ganic compound, radical pool, and stable (non-)gaseous ni-
trogen product. In this chemical model, additional processes
such as photolysis rate variation, ground deposits, or atmo-
spheric emissions of certain pollutants are represented.

The system of equations of the GRS CTM is written as

∂t [ROC] = −∂x (u · [ROC])− λ[ROC] +EROC, (25a)

∂t [RP] = −∂x (u · [RP])− λ[RP] + k1(t)[ROC]

− [RP] (k2[NO] + 2k6[NO2] + k5[RP]) , (25b)

∂t [NO] = −∂x (u · [NO])− λ[NO]

+ENO+ k3(t)[NO2]

− [NO] (k2[RP] + k4[O3]) , (25c)

∂t [NO2] = −∂x (u · [NO2])− λ[NO2] +ENO2

+ k4[NO][O3] + k2[NO][RP]
− [NO2] (k3(t)+ 2k6[RP]) , (25d)

∂t [O3] = −∂x (u · [O3])− λ[O3] + k3(t)[NO2]

− k4[NO][O3], (25e)

∂t [S(N)GN] = −∂x (u · [S(N)GN])− λ[S(N)GN]

+ 2k6[NO2][RP], (25f)

where, for a species Z, [Z](t,x) denotes the concentration
field, and for Z ∈ {ROC,NO,NO2}, EZ(x)= E0

Zµ(x) de-
notes the stationary emission field modulated by the smooth
ocean–land mask µ(x) ∈ [0,1] shown in Fig. 8b and of max-
imum emission E0

Z , whose value is given in Table 1 (right
column). The ground deposition is represented by terms in λ,
with a magnitude of 2 % d−1. Kinetic parameters and chem-
ical reaction rates are set as follows: since Eqs. (25a) and
(25c) depend on the solar radiation, k1 and k3 evolve in
time to represent the diurnal cycle, while they are related by
k1 = 0.152k3 (Fig. 8c); the other rates are constant and given
in Table 1.

4.2 The PKF for the GRS chemical transport model

In a new numerical experiment, the PKF forecasts will be
compared with those of an EnKF (of size 1600). There is no
observation assimilation in this simulation.

Table 1. GRS settings.

k3(t) 0.624 exp
(
−
|(t≡24)−12|3

100

)
k1(t) 0.00152k3(t)

k2 12.3 E0
ROC 0.0235

k4 0.275 E0
NO 0.243

k5 10.2 E0
NO2

0.027
k6 0.12 λ 0.02 d−1

In the k3 definition, the symbol ≡ corresponds to the modulo operator. Emission
rates (ppbC d−1) for ROC or (ppb d−1) for NOx and the kinetic rates
(ppb−1 min−1), except for k3 and k1 (min−1).

Given the complexity of the set of Eq. (25) and the
increased number of species in comparison to the LV
CTM in Eq. (13), the equations of the PKF dynamics
for the GRS CTM are not presented in this article but
can be found in additional material (https://github.com/
opannekoucke/pkf-multivariate, last access: 9 June 2023). In
this context, the PKF system describes the dynamics of 33
prognostic parameters: 6 mean fields, 6 univariate variance
fields, 6 anisotropy fields, and 15 cross-covariance fields
(corresponding to the number of pairs of chemical species).
In terms of complexity, the PKF dynamics for the GRS CTM
are similar to the simplified LV CTM: the transport part is
the same, while the chemical part presents the same kinds of
interactions between the chemical species. However, the sta-
tionary heterogeneous emissions, not present in the LV CTM,
imply a forcing in the dynamics of the mean concentrations
in the GRS CTM but without an effect on the uncertainty be-
cause the emissions are not stochastic here. Note that uncer-
tainties in emission inventories can be introduced in a PKF
formulation, e.g. as a source term in the variance dynamics,
and are related to the specification of boundary conditions in
a PKF (Sabathier et al., 2023). Similarly to the LV CTM, the
dynamics of the anisotropy are closed by removing the terms
due to the chemistry. Hence, later, the dynamics of anisotropy
in the GRS CTM are only due to the transport.

4.3 Numerical experiment: forecast

For the settings of this numerical experiment, the resolution
of the grid has been reduced to Nx = 241 grid points and the
time step to 1t = 10−4 h to support the stiffness of the GRS
equations. Some parameters remain unchanged: RK4 tempo-
ral scheme, finite differences to approximate spatial deriva-
tives, choice of the wind field (Fig. 8a). The forecast starts at
t0 = 00 h (midnight) and ends at t = t0+ 72 h.

Realistic heterogeneous initial concentration fields are
constructed as follows. First, starting from zero concentra-
tions, a chemical equilibrium state is computed from a 4-
week time integration of a 0D version of Eq. (25) where
the transport has been switched off, while the concentrations
are forced by their respective emissions EO(·). The resulting
concentrations are denoted by [Z]4 weeks

0D . Then, 1D concen-
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Figure 8. Settings of the GRS CTM, with the pre-defined heterogeneous and stationary wind field (a) and emission inventory mask (b) and
with the diurnal cycle of the photolysis rate k3 (min−1) (c) as they are used for the simulation.

tration fields are constructed, defined as constant and equal
for each species to the final value of the 0D integration. The
resulting homogeneous concentration fields are then inde-
pendently perturbed to produce heterogeneous concentration
fields, more realistic than the homogeneous concentrations:
for any species Z of the six chemical species, the resulting
1D perturbed field [Z]0(x)= [Z]4 weeks

0D (1+0.15e(x)), where
e = P1/2ζ with P, is a homogeneous Gaussian correlation
version of Eq. (7) with variance 1 and constant length scale
lh = 121x, and ζ is a sample of Gaussian random vector
N (0,INx ). These perturbed 1D fields of concentrations cor-
respond to the initial condition at t0 = 00 h of the GRS-CTM
simulations.

The initial condition for the PKF is set as follows. The
mean state is given by the six 1D fields [Z]0(x). The mul-
tivariate initial uncertainty is set as univariate (no cross-
correlation) with a magnitude of σ 0(Z)= 0.15[Z]4 weeks

0D for
each of the six species, with univariate homogeneous Gaus-
sian correlation of length scale 151x (60 km), and the length
scales are identical for all the species.

For the validation, an ensemble of 1600 initial conditions
has been populated, consistently from the PKF initial con-
ditions, by adding univariate perturbations to the GRS-CTM
initial condition. For each member k of the ensemble and
each field Z that is to be perturbed, [Z]0k(x)= [Z]0(x)+
0.15[Z]4 weeks

0D ek(x)), where ek = P1/2ζk with P is a homoge-
neous version of Eq. (7) with variance 1 and constant length
scale lh = 151x and ζ is a sample of a Gaussian random
vector N (0,INx ).

Figure 9 shows the statistics produced by the PKF and
EnKF experiments at two instants: t = 00 h + 60 h and t =
00 h + 66 h. These times correspond to 12:00 and 18:00 of
day 2. Each row features the uncertainty for a species Z
with respectively the mean, the standard deviation, the length
scale, and a selection of four cross-correlation functions with
NO2, ρNO2

Z ; this is the auto-correlation when Z is NO2 it-
self. The choice of NO2 for the cross-correlation is arbitrary,
and other cross-correlations present the same behaviour (not
shown).

Regarding the behaviour of the error statistics, the impact
of the chemistry appears: the chemical reactions led to non-

zero cross-correlations visible in the right column (except
Fig. 9p, which corresponds to auto-correlations).

The impact of chemistry leads to non-zero cross-
correlations between all pairs of species (Fig. 9, right col-
umn, except the auto-correlation in Fig. 9p). Also, the small-
scale spatial variation, which was originally only present in
the means, has been transferred to the standard-deviation
fields, except for ROC. The effect of the transport is also
present: it produces spatial heterogeneities in the means (left
column), standard deviations (second column), and length
scales (third column).

Compared to the EnKF, the PKF offers a high-quality fore-
cast at a very low computational cost. The means (left col-
umn) are in perfect accordance in both methods. Slight dif-
ferences can be observed regarding the standard-deviation
fields (second column) but, as established in Sect. 2.4 (see
Appendix A), the EnKF diagnoses are biased by the nu-
merical model error that is significant when using the low-
resolution grid (Nx = 241 grid points in this simulation).
The same argument applies to the length scales (third col-
umn), although they may also be governed by some un-
derlying chemical dynamics similar to those described for
Fig. 6f in Sect. 3.3.2). Since the PKF formulation considered
here is closed by removing the contribution of the chem-
istry to the length-scale dynamics (following the simplifi-
cation discussed in Sect. 3.2.2), the length-scale dynamics
are the same for all the species. Moreover, starting from the
same initial constant length-scale field lh, the length-scale
fields predicted by the PKF are the same for all the species.
Nevertheless, this does not prevent the PKF from estimat-
ing the auto-correlation and cross-correlation functions (right
column). The last column presents an important result: the
cross-correlation function estimations by the proxy are in
great accordance with the EnKF. The proxy reproduces the
variety of cross-correlation functions such as negative cor-
relations, small amplitudes, and asymmetric structures. De-
spite differences in length-scale estimations, the proxy shows
itself to be robust and delivers satisfying modelled cross-
correlation functions (at a qualitative level). This has been
observed for other cross-correlation functions (not shown
here). This demonstrates the capacity of the PKF to forecast
the cross-covariance fields.
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Figure 9. Multivariate forecast statistics for the GRS CTM, PKF outputs (coloured lines), and ensemble estimations from Ne = 1600
forecasts (black dashed lines) for times t = 00 h+{60,66} h. As we consider a simulation that starts at midnight of day 0, t = 00 h+ 60 h
(slight transparency on the curves) corresponds to midday of day 2 and t = 00 h+ 66 h (no transparency) to 18:00 of day 2. From left to
right, the columns correspond to the forecasts of the mean concentration, the standard deviation, the length scales (normalized by 1x), and
the correlation functions (auto and cross) with NO2 at locations x = [0.1,0.36,0.63,0.9]D for each of the six species (rows).

Note that the specific behaviour of the ROC error variance
can be understood from the PKF equations for the GRS
CTM (not detailed here but available on the github reposi-
tory; see https://github.com/opannekoucke/pkf-multivariate/
blob/master/notebooks/annexe_notebooks/computing_grs_

dynamics_with_sympkf.ipynb last access: 9 June 2023),
where the dynamics of VROC, which read as

∂tVROC+ u∂xVROC =−2VROC∂xu− 2λVROC, (26)

are only governed by decay (term in λ) and transport (terms
in u) and are not coupled with any means – while a coupling
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with the means is present for other chemical species. Again,
this illustrates the ability of the PKF to explain the physics of
uncertainties.

5 Summary and conclusions

This work explored a multivariate formulation of the PKF for
atmospheric chemistry needs, when the PKF is formulated
from the variance and the anisotropy tensor.

While a significant portion of the air quality uncertainty
is due to meteorology (e.g. the uncertainty in the wind used
for the transport), the present work focuses on the situation
where the uncertainty in chemical variables is due solely to
chemistry as it evolves during a given meteorological situa-
tion.

A simplified univariate chemical transport model was in-
troduced in a 1D periodical domain with a heterogeneous
wind field and conservative dynamics, illustrating the impact
of the transport on the error statistics, and in particular the
evolution of the variance and of the anisotropy (length scale)
due to the wind heterogeneity. Compared with an estimation
from a large ensemble of 6400 forecasts, the PKF has proven
to be able to reproduce the variance and the anisotropy and
also able to provide a proxy for the correlation functions.
The PKF prediction has been obtained at a lower numeri-
cal cost compared with the cost of the ensemble. In addi-
tion, the PKF has been shown to be less sensitive to a dis-
persive model error encountered for this simulation that re-
quired computation of the ensemble at a high resolution to
mitigate the effect of the dispersive term on the ensemble
estimation. This simplified model proposed a proxy for mul-
tivariate covariance to approximate cross-covariances, which
extends the univariate covariance model parameterized from
variance and anisotropy, but the resulting multivariate covari-
ance is symmetric with no guarantee of positiveness.

Then a simplified multivariate chemical transport model
was introduced to tackle multivariate error statistics. Based
on Lotka–Volterra (LV) dynamics, this test bed reproduces
non-linear coupling between chemical species and the trans-
port due to the wind, as it can be observed in a real chemical
transport model. Then a multivariate PKF formulation was
proposed, which made a closure issue related to the chemical
part appear, but not to the transport, and concerns the dynam-
ics of the anisotropy. A detailed analysis of the effect of the
chemistry on the dynamics of the anisotropy led to an analyt-
ical solution of the multivariate evolution of the uncertainty
in a 1D harmonic oscillator, which helps to understand the
transfer of uncertainty from one species to another.

The PKF has permitted the understanding of the uncer-
tainty dynamics: it offered equations that described the time
evolutions of variances, cross-covariances, and anisotropies.
The impacts of the advection and the chemistry have been
clearly identified in the dynamics of the error statistics, al-
lowing for a better comprehension of the overall problem.

Since the relative contribution of the transport was larger
than the one of the chemistry in the trend of the anisotropy,
a closed form has been considered by removing the terms
related to the chemistry in the dynamics of the anisotropy.

Despite this approximation, a validation test bed using
an ensemble method showed that the PKF dynamics are
able to predict the uncertainty dynamics for two chemical
schemes based on LV. Moreover, a multivariate formulation
of the PKF analysis step has been introduced, given by Al-
gorithm F1, and several assimilation cycles have been con-
ducted for the LV chemical scheme, showing that a multi-
variate PKF assimilation is possible, which is promising.

A final multivariate example, focused on the forecast step,
was introduced to evaluate the potential of the multivariate
PKF formulation to a larger system. In this case, the chemical
scheme (GRS) describes the interaction of six species. Again,
this example has shown the ability of the PKF to reproduce
the EnKF error statistics.

To go further, it will be interesting to see whether the ad-
vection terms remain dominant under different conditions
like weaker wind or accelerated chemistry from an ensemble
of forecasts of operational CTMs, where isotropic and homo-
geneous correlations are often considered in variational data
assimilation.

In addition, since we have focused on the uncertainty due
to chemistry, it would be interesting to address the part of the
uncertainty due to meteorology. For a CTM like MOCAGE,
this could be done by considering an ensemble of weather
forecasts with each member used as a forcing for a single
CTM forecast. However, this solution would lead to multi-
ple CTM forecasts, which would be expensive. Therefore,
from the perspective of using a PKF (applied to a CTM), a
less expensive solution would be to consider a single PKF
forecast where the wind is uncertain (stochastic advection
wind), with the wind uncertainty characterized by the vari-
ance and the anisotropy tensor estimated from the weather
forecast ensemble. The challenge will be to find an appropri-
ate closure for the unknown terms in the dynamics, includ-
ing the cross-correlation between the wind error and chemi-
cal species, with the help of this contribution to multivariate
statistics.

This work is a milestone in the development of a multivari-
ate assimilation based on the PKF and applied to air quality
and is an important step in extending the univariate PKF im-
plementation to complex operational CTMs like the opera-
tional transport model MOCAGE at Météo-France. The work
also highlights a drawback of the PKF: the cost of the current
multivariate PKF formulation scales as the square of number
of chemical species, which appears to be a limitation, at least
if all the chemical species are considered in the multivariate
uncertainty prediction. Hence, it would be interesting to test
a PKF formulation on a reduced chemical scheme of interest
for the data assimilation.

Moreover, while this contribution focused on air quality,
it contributes to improving our understanding of multivariate
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statistics, e.g. with the analytical solution of the 1D harmonic
oscillator. It would be interesting to extend this multivari-
ate PKF formulation to other geophysical applications, e.g.
numerical weather prediction, with particular attention paid
to the extension of the multivariate cross-covariance proxy
to the 2D or 3D domains. Compared with air quality where
the chemical reactions are point-wise, geophysical equations
make local interactions appear that have to be studied in
view of the PKF approach, e.g. the geostrophic balance in
the barotropic model.

Appendix A: Limits of the numerical validation of the
PKF in the presence of model error

The exploration of the uncertainty dynamics from numerical
experiments, as made here to validate the PKF from an en-
semble method, faces some limits. Figure 2 has shown a gap
between the PKF and EnKF regarding the forecast of the er-
ror statistics (standard deviation in Fig. 2b and length scales
in Fig. 2c). We now justify this observation, relating it to a
model error.

As the problem is discretized for numerical simulations,
the actual equation that is simulated is not exactly Eq. (9a)
but rather an implicit modified equation induced by the use of
finite differences for the spatial and temporal discretizations.
Focusing on the spatial discretization, the modified equation
is written as

∂tX =−u∂xX −X ∂xu−
1x2

6
u∂3
xX

−
1x2

6
X ∂3

xu+O(1x3), (A1)

which shows additional dispersive terms not present in the
initial dynamics (Eq. 9a). Note that Eq. (A1) is not the full
modified equation of the discretized model: in particular,
it does not represent the effect of the RK4 time scheme,
but the error associated with the fourth-order time scheme
should be negligible compared with the spatial numerical er-
ror (second-order). Hence, Eq. (A1) should be close to the
true modified equation, and the presence of additional pro-
cesses may explain the significant differences observed in
Fig. 2b and c: the dispersive term −1x

2

6 u∂3
xX contributes

to reducing the speed of the transport to a value lower than u,
while the term−1x

2

6 X ∂3
xu implies a local exponential grow-

ing (damping) of X (t,x), where ∂3
xu is negative (positive).

This exponential evolution only contributes to the magnitude
of the forecast error: i.e. it modifies the variance field, but
it has no influence on the length scale (Pannekoucke et al.,
2018). At the opposite end, the dispersive term influences
both the variance and the length scale, as can be observed
in Fig. 2c: the EnKF curves appear slightly late behind the
PKF ones (the wind transports the curves toward the right),
presenting a negative shift in the amplitude.

This can be understood as follows. Since Eq. (A1) is linear,
it is the dynamics of the mean and of the errors in the numer-
ical experiment. However, the typical scales of the mean and
of the error are different: in this simulation, the spatial scale
of the mean state is large, of order D, while the spatial scale
of the errors is of order lh ≈D/16, where 16≈ 241/15; this
implies that the magnitude of the negative phase shift due to
the dispersive term is larger for the error than for the mean
(see e.g. Korteweg–de Vries (KdV) Eq. 1.19 in Whitham,
1999, p. 9).

This justifies why the dispersion does not affect the pre-
diction of the mean state – the estimation for the means co-
inciding for the two methods in Fig. 2a –, while it acts on
the EnKF predictions of the variance and of the length scale,
related to the error dynamics. In this simulation, the PKF in
Eq. (10) is not influenced by the dispersion because the spa-
tial scale of the variance and of the length-scale fields is large
(order of D). This points out the sensitivity of the EnKF to
numerical model error.

Since the magnitude of the dispersive term scales as
O(1x2), a simulation at high resolution could damp this term
and would lead to attributing the gap observed in Fig. 2 to the
model error.

This is demonstrated by comparing the PKF statistics to
a high-resolution forecast of the EnKF with a grid of 3
times the original resolution, i.e. Nx = 3× 241= 723 grid
points. To be consistent with the initial low-resolution exper-
iment, the initial length scale of the high resolution is set to
l0h = 3× 151x = 451x ' 62.2 km. The time step has been
adapted in consequence to match the CFL condition. The re-
sults of this new simulation, in Fig. A1, show that predict-
ing the ensemble at high resolution leads to the same vari-
ance (Fig. A1b) and length-scale (Fig. A1c) fields as the
ones predicted by the PKF, while the latter is computed at
low resolution. A PKF at high resolution has been computed
(not shown here) and has been found to be equivalent to
the PKF computed at low resolution, with a relative error at
the end of the forecast window of lower than 0.2 % for the
mean, 0.3 % for the standard deviation, and 0.05 % for the
length scale, where the relative error of fields has been com-
puted as ||PKFLR−PKFHR||/||PKFHR||, with the L2 func-

tional norm defined for a function f as ||f || =
√∫

f 2(x)dx
. This demonstrates the quality of the forecasted error statis-
tics for the PKF, even at a low resolution. Figure B1 also
shows the correlation functions computed from the high-
resolution EnKF forecast. The correlation functions repre-
sented are in better accordance with the PKF-modelled cor-
relation functions than for the low-resolution ensemble fore-
cast: see e.g. Fig. B1d to f. This shows that the PKF is little
subject to numerical model error as the error-statistic fore-
casts directly result from their time integration. Compared
to previous studies that focused only on the comparison of
variance and anisotropy error statistics, here we have shown
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Figure A1. Same experiment as Fig. 2 except that the EnKF forecast has been simulated using a higher grid definition (Nx = 723) to reduce
numerical model error.

the ability to reproduce complex heterogeneous correlation
functions using the PKF formulation in the 1D domain.

Appendix B: Validation of correlation functions in
univariate situations

Figure B1 compares the correlation functions at position
xl = 0.5, estimated from the ensemble for the EnKF and
modelled from the predicted parameters for the PKF when
using Eq. (7), at different times. At a qualitative level, the
PKF is able to approximate the correlation functions, the lat-
ter being only known to within a sampling noise because of
the ensemble estimation which is assumed to be low due to
the ensemble size. In particular, the PKF is able to repro-
duce the large (small) spread of the symmetric correlations
present in Fig. B1a (Fig. B1b). However, the PKF is also able
to represent the anisotropy of the correlations, such as the one
shown e.g. in Fig. B1e, where the correlation function at that
time appears broader in its right-hand part (corresponding to
x larger than xl) than in its left-hand part (corresponding to
x smaller than xl).

Appendix C: Lotka–Volterra chemical model

We consider four chemical species A,B,X, and Y governed
by the chemical reactions

X+A
k1
→ 2A, (C1)

A+B
k2
→ 2B, (C2)

B
k3
→ Y. (C3)

The kinetics of the reaction, deduced from the mass action
law for reaction rates, are written as

d[A]
dt
= k1[X][A] − k2[A][B], (C4a)

d[B]
dt
= k2[A][B] − k3[B], (C4b)

where [·] denotes the concentration. When the concentrations
of X and Y are constant, the system simplifies as

d[A]
dt
= k1[A] − k2[A][B], (C5a)

d[B]
dt
= k2[A][B] − k3[B], (C5b)

which is a Lotka–Volterra system.

Appendix D: Contribution of the chemistry to the
uncertainty dynamics in the LV CTM

This section contributes to evaluating the impact of chemistry
on the dynamics of uncertainty with respect to the effect due
to advection, leading to a closure for the PKF applied to the
multivariate LV CTM.

D1 Impact of the chemistry alone on the dynamics of
the anisotropies for homogeneous statistical initial
conditions

Regarding the dynamics of the anisotropy fields presented
in the prognostic equations (Eqs. 20f–20g), the part due to
transport in T (·)

adv-(·) is already well understood, as it comes
down to the univariate case presented in Sect. 2.4. However,
the role of the chemistry in T (·)

chem-(·) is unclear at this time.
The transport process is removed to focus on the dynamics
of the anisotropy due to the chemistry.

In the PKF dynamics in Eq. (20), when there is no trans-
port and when the variance fields are homogeneous at the ini-
tial condition, the homogeneity is preserved during the time
evolution. Hence, the spatial derivatives of the variance and
of the cross-variance fields are null, which leads to simplifi-
cation of the dynamics of the anisotropy (Eqs. 20f–20g) as

∂t sA =
2k2AsA

σA

(
σBsA∂x ε̃A∂x ε̃B −

VAB

σA

)
, (D1a)

∂t sB =
2k2BsB

σB

(
VAB

σB
− σAsB∂x ε̃A∂x ε̃B

)
. (D1b)
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Figure B1. Correlation functions at location xl = 0.5 and times t = [0.0,0.6,1.2,1.8,2.4,3.0]τadv, computed with PKF correlation model
fitted with a low-resolution (Nx = 241) PKF forecast for error statistics (red lines) and diagnosed on the low-resolution (Nx = 241) ensemble
(cyan dash-dotted lines) and high-resolution (Nx = 723) ensemble (blue dashed lines), of ensemble size Ne = 6400.

To focus on the contribution of the chemistry to the dy-
namics of the anisotropies, an ensemble of Ne = 1600 high-
resolution forecasts is performed (Nx = 723) with only the
chemistry part. Hence, the transport terms are set to zero
in Eq. (13). Two numerical experiments are conducted: first,
the initial length scales are equal for both species, with l0A =
l0B = 451x ' 62 km (results are shown in Fig. D1), and are
then different with l0A = 451x and l0B = 661x ' 91 km (re-
sults in Fig. D2). The initial conditions for the concentrations
and the multivariate statistics are chosen to be homogeneous
over the domain in both cases. Therefore, only the time series
of the spatial average are shown for the variance, the cross-
correlation, the length scale, and the open term ∂x ε̃A∂x ε̃B ,
which is estimated from the ensemble by

̂∂x ε̃A∂x ε̃B =
1
Ne

Ne∑
k=1

∂x ε̃A,k∂x ε̃B,k, (D2)

where ε̃A,k = εA,k/V̂A and ε̃B,k = εB,k/V̂B .
In the first experiment, Fig. D1, the magnitude of the er-

ror, given by the standard deviations in Fig. D1a, oscillates
with a phase shift where the magnitude of the error in A ad-
vances the one of B. The cross-correlation in Fig. D1c and
the unclosed term ∂x ε̃A∂x ε̃B in Fig. D1g oscillate in a sim-
ilar way. In this experiment, where the initial length scales
are identical for A and B, there is no time evolution of the
length scales, except the fluctuations that are due to the sam-
pling noise (see Fig. D1e). The second experiment, Fig. D2,

shows roughly the same picture, except that, this time, with
initial length scales of different values, oscillations appear
(Fig. D2e). Since, a priori, it is not easy to track the reason
for the change in behaviour observed in the length-scale dy-
namics, an analytical investigation of the harmonic oscillator
(HO),

∂tA(t,x)=−kB(t,x), (D3a)
∂tB(t,x)= kA(t,x), (D3b)

is introduced, with k = k2. The comparison with HO is rele-
vant since it is an example of analytical multivariate dynam-
ics and also because it mimics the periodic oscillations of
LV, explaining the numerical results. For HO, it is possible
to calculate the time evolution of the statistics analytically
(see Appendix E for details), which is written as

VA(t)= cos(kt)2V 0
A+ sin(kt)2V 0

B , (D4a)

VB (t)= sin(kt)2V 0
A+ cos(kt)2V 0

B , (D4b)

VAB (t)= cos(kt) sin(kt)
(
V 0
A−V

0
B

)
, (D4c)

sA(t)= VA(t)

[
cos(kt)2V

0
A

s0
A

+ sin(kt)2V
0
B

s0
B

]−1

, (D4d)

sB (t)= VB (t)

[
sin(kt)2V

0
A

s0
A

+ cos(kt)2V
0
B

s0
B

]−1

, (D4e)
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Figure D1. Time series of the spatial average of the error statistics from the ensemble forecast with Ne = 1600 for Lotka–Volterra (LV, left
column) and harmonic oscillator analytical solutions (HO, right column). Equal initial length scales: l0

A
= l0

B
= 451x.

Figure D2. Time series of the spatial average of the error statistics from the ensemble forecast with Ne = 1600 for LV (left column) and HO
analytical solutions (right column). Different initial length scales: l0

A
= 451x and l0

B
= 661x.

∂x ε̃A∂x ε̃B (t)=
cos(kt) sin(kt)
σA(t)σB (t)

[
V 0
A

s0
A

−
V 0
B

s0
B

]
. (D4f)

Numerical results computed for the HO are represented in
Fig. D1 and Fig. D2 and show some of the behaviour encoun-
tered for the non-linear LV equations. For instance, the oscil-
lations of the variance are visible. Moreover, the length scales
oscillate depending on the initial condition: when the initial
length scales are equal, there is no oscillation (see Fig. D1f)
that appears from the analytical computation of sA and sB ; in
contrast, for different values of the initial length scales, oscil-

lations appear (see Fig. D2f). These different behaviours of
the anisotropy based on the initial settings of the length scales
are explained by the analytical solutions of the error statistics
for the harmonic oscillator. For instance, when plugging the
identical initial condition for the length scales s0

A = s
0
B and

the analytical solution of VA(t) (Eq. D4a) into the right-hand
side of Eq. (D4d), it simplifies to sA(t)= s0

A. The same result
applies for sB (t). This simplification no longer holds when
C 6= s0

B , leading to non-constant length scales which are ef-
fectively observed.
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Figure D3. Numerical results for the case l0
A
= l0

B
= 451x. Time evolution for the relative contribution by term (process) computed from

Eq. (D6) (Eq. D7) involved in the anisotropy dynamics for species A and B in panels (a) and (b) (panels c and d).

Figure D4. Numerical results for the cases l0
A
= 451x and l0

B
= 661x. Time evolution for the relative contribution by term (process)

computed from Eq. D6 (Eq. D7) involved in the anisotropy dynamics for species A and B in panels (a) and (b) (panels c and d).

Note that, for equal initial length scales, the anisotropy
appears to be stationary (see Fig. D1e), which suggests a
closure for the open term ∂x ε̃A∂x ε̃B : since the anisotropy is
equal and constant, sA(t)= sB (t)= sA(t)+sB (t)

2 = s0
A = s

0
B =

s0
A+s

0
B

2 ; then, from the stationarity of the anisotropy, ∂t sA =
∂t sB = 0, the right-hand side of Eq. (D1) leads to the expres-
sion

∂x ε̃A∂x ε̃B =
VAB (x)

σA(x)σB (x)
2

sA(x)+ sB (x)
. (D5)

This closure indicates that the term ∂x ε̃A∂x ε̃B is proportional
to the cross-correlation in this particular case. This is con-
firmed in Fig. D1, where ∂x ε̃A∂x ε̃B in Fig. D1g appears to
evolve as the cross-correlation in Fig. D1c. For this specific
case, Eq. (D5) also applies for the error statistics of the har-
monic oscillator: using s0

A = s
0
B and the time evolution of the

cross-covariance VAB (Eq. D4c) allows us to solve for the
open term in Eq. (D4f), obtaining the same expression as in
Eq. (D5).

The time evolution of the HO error statistics makes an
alternate transfer of the error statistics appear between the
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two componentsA and B, which qualitatively reproduces the
evolution observed in the LV dynamics. The transfer of un-
certainty from one component to the other is provided by the
cross-covariance VAB when the error variance is different for
each of the two species.

D2 Detailed contribution of each process to the
dynamics of the anisotropy

The following section aims at identifying the dominant terms
or processes in the dynamics of the anisotropy (Eqs. 20f and
20g).

Two different evaluations are performed. The first one
evaluates the relative contributionWZ,j of the term TZ,j with
respect to all other terms in the dynamics of the anisotropy
of Z, which reads as

WZ,j (t)=
||TZ,j (t)||1∑
k||TZ,k(t)||1

, (D6)

where ||v||1 = 1
Nx

∑
j=1,...,Nx |vj | is the L1 norm on the dis-

cretized domain [0,D). The second one evaluates the relative
contribution of each physical processes in the dynamics of
the anisotropy e.g. the relative contribution of the advection
in the dynamics of the anisotropy of Z, WZ,adv, reads as

WZ,adv(t)=

||
∑2
k=1TZ,adv−k(t)||1

||
∑2
k=1TZ,adv−k(t)||1+ ||

∑5
k=1TZ,chem−k(t)||1

, (D7)

from which the relative contribution of the chemistry is writ-
ten as WZ,chem(t)= 1−WZ,adv(t). Note that the normaliza-
tion is different between Eqs. (D6) and (D7).

The computation of these relative contributions will rely
on ensemble of forecasts. They will be used to diagnose a
posteriori the PKF parameters (A,B,VA,VB ,VAB , sA, sB ) as
well as the three open terms (∂x ε̃A∂x ε̃B , ε̃A∂x ε̃B , ε̃B∂x ε̃A)
to then reconstruct all the terms in the anisotropy dynamics
(Eqs. 20f–20g).

The quantifications of the relative contribution by term and
by process will be performed for equal and different initial
length scales for A and B, as they lead to different dynamics
for the anisotropy. Thus, two ensembles are forecasted, with
initial length scales set to l0A = l

0
B = 451x in the first, and

l0A = 451x and l0B = 661x in the second. A high-resolution
grid is considered (Nx = 723) to reduce numerical model er-
ror; the time step has been adapted in consequence to match
the CFL. The other settings and the numerical configuration
for this experiment are unchanged from previous ensemble
forecast performed in Sect. 3.1.2.

The results of the relative contributions presented in
Fig. D3 (Fig. D4) for the equal (different) length-scale con-
figurations are now discussed. Regarding the relative con-
tribution by process experiment, the comparison between
Fig. D3c (Fig. D3d) and Fig. D4c (Fig. D4d) indicates

that, when the initial length scales are different, l0A 6= l
0
B ,

the chemistry has a more significant role (Wchem is about
21 %) compared to when the length scales are equal (Wchem
is about 10 %) in the dynamics of the anisotropies. That dif-
ference was expected following the results obtained in Ap-
pendix D1. Now focusing on the relative contribution by term
in Fig. D3a and b and Fig. D4a and b, it is noticeable that
only the two terms WZ

chem-1 and WZ
chem-2 have a significant

role in the dynamics. The rest of the chemistry-related terms’
magnitudes are negligible. For equal initial length scales, as
the chemistry-related part of the anisotropy dynamics can
be neglected compared to the advection part (Fig. D3c, d)
and as this part is mainly driven by WZ

chem-1 and WZ
chem-2

(Fig. D3a, b), this means an approximate compensation of
the two terms. Eventually, this approximation simplifies to
Eq. (D5), which is in accordance with the previous results of
Appendix D1. However, this approximation becomes invalid
in the heterogeneous case: the terms WZ

chem-1 and WZ
chem-2

no longer compensate each other as the gap between their
corresponding curves increases in Fig. D4c and d. In some
other numerical trials (not shown here), this approximation
was used regardless of the length scales’ initial configura-
tion, and the remaining open terms were set to zero. These
trials produced incoherent forecasts for the anisotropy, point-
ing out the incapacity of the approximation in capturing the
true complexity of the unknown terms. Subsequently, this ap-
proximation is no longer retained.

Appendix E: Dynamics of the error statistics for the
harmonic oscillator

The harmonic oscillator equations are written as

∂tA=−kB, (E1a)
∂tB = kA, (E1b)

with A= A(t,x) and B = B(t,x) being functions of time
and 1D space. As this problem is linear, the dynamic is iden-
tical for the errors:

∂tεA =−kεB , (E2a)
∂tεB = kεA. (E2b)

Their analytical solution is given by

εA(t,x)= cos(kt)εA(0,x)− sin(kt)εB (0,x), (E3a)
εB (t,x)= sin(kt)εA(0,x)+ cos(kt)εB (0,x). (E3b)

At the initial time, we consider the case where the errors
are uncorrelated V 0

AB = E
[
ε0
Aε

0
B

]
= 0 and where the vari-

ance and length-scale fields are homogeneous, i.e. ∂xV 0
A =

∂xV
0
B = ∂xg

0
A = ∂xg

0
B = 0, where the superscript ·0 is a

shorthand for ascribing the fields an initial time.
From the analytical solution for the errors in Eq. (E3), we

deduce solutions for the error statistics.

VA(t,x)= E
[
(εA(t,x))2

]
(E4a)
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= cos2(kt)E
[
ε2
A

]
(0,x)

− 2cos(kt) sin(kt)E [εAεB ] (0,x)

+ sin2(kt)E
[
ε2
B

]
(0,x) (E4b)

= cos2(kt)V 0
A− 2cos(kt) sin(kt)V 0

AB︸︷︷︸
=0

+ sin2(kt)V 0
B (E4c)

= cos2(kt)V 0
A+ sin2(kt)V 0

B (E4d)

Following the same process, we deduce that
VB (t,x)= sin2(kt)V 0

A+ cos2(kt)V 0
B and VAB (t,x)=

cos(kt) sin(kt)(V 0
A−V

0
B ). We can now determine the

dynamics of the metric tensor:

gA(t,x)= E

[(
∂x

(
εA
√
VA

))2
]

(t,x) (E5a)

= E

( ∂xεA√
VA
−
εA∂xVA

2V 3/2
A

)2
 (t,x). (E5b)

As we consider homogeneous fields, we have ∂xVA = 0, sim-
plifying the expression to

gA(t,x)=
1
VA

E
[
(∂xεA)2

]
(t,x) (E6a)

=
1

VA(t,x)
E
[

cos2(kt)
(
∂xε

0
A

)2

−2cos(kt) sin(kt)∂xε0
A∂xε

0
B

+sin2(kt)
(
∂xε

0
B

)2
]

(x). (E6b)

Then, at t = 0, E
[(
∂xε

0
A

)2] simplifies to V 0
Ag

0
A and

E
[(
∂xε

0
B

)2]
= V 0

Bg
0
B . The independence of ε0

A and ε0
B also

implies that E
[
∂xε

0
A∂xε

0
B

]
= 0. Finally, we obtain

gA(t,x)=
1

VA(t,x)

[
cos2(kt)V 0

Ag
0
A+ sin2(kt)V 0

Bg
0
B

]
. (E7)

We can also deduce an analytical solution for the term
E
[
∂x ε̃A∂x ε̃B

]
, which reads, under assumption of homogene-

ity, as

E
[
∂x ε̃A∂x ε̃B

]
(t,x)=

E
[(
∂x

εA
√
VA

)
∂x

(
εB
√
VB

)]
(t,x) (E8a)

=
1

(
√
VA
√
VB )(t,x)

E [∂xεA∂xεB ] (t,x) (E8b)

=
1

σA(t)σB (t)
E
[

cos(kt) sin(kt)
((
∂xε

0
A

)2
−

(
∂xε

0
B

)2
)

+∂xε
0
A∂xε

0
B

(
cos2(kt)− sin2(kt)

)]
(t,x) (E8c)

=
1

σA(t)σB (t)cos(kt) sin(kt)

E
[(
∂xε

0
A

)2
]

︸ ︷︷ ︸
V 0
Ag

0
B

−E
[(
∂xε

0
B

)2
]

︸ ︷︷ ︸
V 0
Bg

0
B



+E
[
∂xε

0
A∂xε

0
B

]
︸ ︷︷ ︸

=0

(
cos2(kt)− sin2(kt)

) (t,x) (E8d)

=
cos(kt) sin(kt)
(σAσB )(t,x)

(
V 0
Ag

0
B −V

0
Bg

0
B

)
. (E8e)

Note that we could have derived analytical solutions in
the case of heterogeneous initial fields, but for the sake of
simplicity we chose to consider only the homogeneous case.
However, obtaining the analytical solution when the initial
error fields are correlated seems more difficult.

Appendix F: Cross-covariance analysis formula
demonstration

By introducing the true state and the error fields X a
= X t

+

εa,X f
= X t

+ εf, and Yo(xl)= X t(xl)+ εo(xl), the analysis
Eq. (8a) becomes

εa(x)= εf(x)+ σ f(x)ρf
xl

(x)
σ f(xl)

V f(xl)+V o(xl)(
εo(xl)− εf(xl)

)
, (F1)

which can be adapted to the multivariate case:

εa
Z1

(x)= εf
Z1

(x)+ σ f
Z1

(x)ρf
Z1Zl,l

(x)
σ f
Zl

(xl)

V f
Zl

(xl)+V o
Zl

(xl)(
εo
Zl

(xl)− εf
Zl

(xl)
)
, (F2)

where Zl is the chemical species that is observed,
Z1 can be any chemical species, and ρf

Z1Zl,l
(x)=

E
[
εf
Zl

(xl)εf
Z1

(x)
]
/
(
σ f
Zl

(xl)σ f
Z1

(x)
)

is the forecast cross-
correlation function between Zl and Z1 at location xl. Writ-
ing the same equation for another chemical Z2,

εa
Z2

(x)= εf
Z2

(x)+ σ f
Z2

(x)ρf
Z2Zl,l

(x)
σ f
Zl

(xl)

V f
Zl

(xl)+V o
Zl

(xl)(
εo
Zl

(xl)− εf
Zl

(xl)
)
, (F3)

and using the definition of the analysis-error covariance field
V a
Z1Z2

(x)= E
[
εa
Z1

(x)εa
Z2

(x)
]

leads to
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V a
Z1Z2

(x)= E
[
εf
Z1

(x)εf
Z2

(x)
]

︸ ︷︷ ︸
=V f

Z1Z2
(x)

+
σ f
Zl

(xl)

V f
Zl

(xl)+V o
Zl

(xl)

E
[(
σ f
Z2

(x)ρf
Z2Zl,l

(x)εf
Z1

(x)+ σ f
Z1

(x)ρf
Z1Zl,l

(x)εf
Z2

(x)
)

(
εo
Zl

(xl)− εf
Zl

(xl)
)]

+

(
σ f
Zl

(xl)
)2

(
V f
Zl

(xl)+V o
Zl

(xl)
)2

σ f
Z1

(x)ρf
Z1Zl,l

(x)σ f
Z2

(x)ρf
Z2Zl,l

(x)

E
[(
εo
Zl

(xl)− εf
Zl

(xl)
)2
]
. (F4a)

Then, using the definition of the cross-correlation func-
tion E

[
εf
Zl

(xl)εf
Z1

(x)
]
= σ f

Zl
(xl)σ f

Z1
(x)ρf

Z1Zl,l
(x), the inde-

pendence between the forecast and observation errors
E
[
εf
Zl

(xl)εoZ1
(xl)

]
= 0, and the definitions of the observation

error variance V o
Zl

(xl)= E
[(
εoZl

(xl)
)2
]

and forecast error

V f
Zl

(xl)= E
[(
εf
Zl

(xl)
)2
]

, we obtain

V a
Z1Z2

(x)= V f
Z1Z2

(x)−
σ f
Zl

(xl)

V f
Zl

(xl)+V o
Zl

(xl)(
σ f
Z2

(x)ρf
Z2Zl,l

(x)σ f
Zl

(xl)σ f
Z1

(x)ρf
Z1Zl,l(x)

+σ f
Z1

(x)ρf
Z1Zl,l

(x)σ f
Zl

(xl)σ f
Z2

(x)ρf
Z2Zl,l(x)

)
+

V f
Zl

(xl)(
V f
Zl

(xl)+V o
Zl

(xl)
)2

σ f
Z1

(x)ρf
Z1Zl,l

(x)σ f
Z2

(x)ρf
Z2Zl,l

(x)(
V o
Zl

(xl)+V f
Zl

(xl)
)

(F4b)

= V f
Z1Z2

(x)−
V f
Zl

(xl)

V f
Zl

(xl)+V o
Zl

(xl)

2
(
σ f
Z2

(x)ρf
Z2Zl,l

(x)σ f
Z1

(x)ρf
Z1Zl,l(x)

)
+

V f
Zl

(xl)

V f
Zl

(xl)+V o
Zl

(xl)
σ f
Z1

(x)ρf
Z1Zl,l

(x)σ f
Z2

(x)ρf
Z2Zl,l

(x) (F4c)

= V f
Z1Z2

(x)−
(
σ f
Z2

(x)ρf
Z2Zl,l

(x)σ f
Z1

(x)ρf
Z1Zl,l(x)

)
V f
Zl

(xl)

V f
Zl

(xl)+V o
Zl

(xl)
. (F4d)

The update of the variance in the multivariate situation
leads to a new version of the PKFO1 as detailed in Algo-
rithm F1.

Algorithm F1 Sequential process building the analysis state
and its error covariance matrix for the first-order PKF
(PKFO1) with a pseudo-multivariate covariance model.

Require: Univariate fields of X f
Z
,sf
Z

and V f
Z

for all species Z.
Cross-covariance field V f

Z1Z2
of all pairs of species Z1 and Z2.

Variance V o
Zl,l

of the species Zl and locations xl of the p ob-
servations to assimilate.

1: for each observation l do
2: 0 – Initialization of the intermediate quantities
3: Yo

Zl,l
= Yo

Zl
(xl), X f

Zl,l
= X f

Zl
(xl)

4: V f
Zl,l
= V f

Zl,xl
, V o
Zl,l
= V o

Zl,xl
5:
6: 1 – Computation of the analysis univariate statistics
7: for each species Z do
8: (a) Set the correlation function (auto or cross)
9: ρZZl,l(x)= ρ(V f

ZlZ
,V f
Zl
,V f
Z
,sf
Zl
,sf
Z

)(xl,x)
10:
11: (b) Computation of the analysis state and its univariate

error statistics

12: X a
Z,x = X f

Z,x+σ
f
Z,xρZZl,l(x)

σ f
Zl,l

V f
Zl,l
+V o

Zl,l

(
Yo
Zl,l
−X f

Zl,l

)
,

13: V a
Z,x = V

f
Z,x

(
1−

[
ρZZl,l(x)

]2 V f
Zl,l

V f
Zl,l
+V o

Zl,l

)
14: sa

Z,x =
V a
Z,x

V f
Z,x

sf
Z,x

15: end for
16:
17: 2 – Computation of the analysis multivariate statistics
18: for each pair of species (Zi ,Zj , with i < j ) do
19: (a) Set the cross-correlation functions
20: ρZiZl,l(x)= ρ(V f

ZlZi
,V f
Zl
,V f
Zi
,sf
Zl
,sf
Zi

)(xl,x)

21: ρZjZl,l(x)= ρ(V f
ZlZj

,V f
Zl
,V f
Zj
,sf
Zl
,sf
Zj

)(xl,x)
22:
23: (b) Compute the Zi Zj analysis cross-covariance field
24: V a

ZiZj
(x)= V f

ZiZj
(x)−(

σ f
Zj

(x)ρZjZl,l(x)σ f
Zi

(x)ρZiZl,l(x)
) V f

Zl
(xl)

V f
Zl

(xl)+V o
Zl

(xl)

25: end for
26:
27: 3 – Update of the forecast state and its error statistics
28: for each species Z do
29: X f

Z,x← X a
Z,x

30: V f
Z,x← V a

Z,x

31: sf
Z,x← sa

Z,x
32: end for
33:
34: for each pair of species (Zi ,Zj ) do
35: V f

ZiZj
(x)← V a

ZiZj
(x)

36: end for
37: end for
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