
HAL Id: meteo-04196087
https://meteofrance.hal.science/meteo-04196087

Submitted on 5 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Soil Moisture Monitoring at Kilometer Scale:
Assimilation of Sentinel-1 Products in ISBA

Oscar Rojas-Munoz, Jean-Christophe Calvet, Bertrand Bonan, Nicolas
Baghdadi, Catherine Meurey, Adrien Napoly, Wigneron J.-P., Mehrez Zribi

To cite this version:
Oscar Rojas-Munoz, Jean-Christophe Calvet, Bertrand Bonan, Nicolas Baghdadi, Catherine Meurey,
et al.. Soil Moisture Monitoring at Kilometer Scale: Assimilation of Sentinel-1 Products in ISBA.
Remote Sensing, 2023, 15 (17), pp.4329. �10.3390/rs15174329�. �meteo-04196087�

https://meteofrance.hal.science/meteo-04196087
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Rojas-Munoz, O.; Calvet,

J.-C.; Bonan, B.; Baghdadi, N.;

Meurey, C.; Napoly, A.; Wigneron,

J.-P.; Zribi, M. Soil Moisture

Monitoring at Kilometer Scale:

Assimilation of Sentinel-1 Products in

ISBA. Remote Sens. 2023, 15, 4329.

https://doi.org/10.3390/rs15174329

Academic Editor: Emanuele

Mandanici

Received: 19 June 2023

Revised: 30 August 2023

Accepted: 31 August 2023

Published: 2 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Soil Moisture Monitoring at Kilometer Scale: Assimilation of
Sentinel-1 Products in ISBA
Oscar Rojas-Munoz 1 , Jean-Christophe Calvet 1,* , Bertrand Bonan 1 , Nicolas Baghdadi 2 ,
Catherine Meurey 1, Adrien Napoly 1, Jean-Pierre Wigneron 3 and Mehrez Zribi 4

1 CNRM, Université de Toulouse, Météo-France, CNRS, 31057 Toulouse, France; oscar.rojas@meteo.fr (O.R.-M.);
bertrand.bonan@meteo.fr (B.B.); adrien.napoly@meteo.fr (A.N.)

2 INRAE, UMR TETIS, Université de Montpellier, AgroParisTech, 34093 Montpellier, France;
nicolas.baghdadi@inrae.fr

3 INRAE, UMR ISPA, Université de Bordeaux, 33140 Villenave d’Ornon, France; jean-pierre.wigneron@inrae.fr
4 CESBIO (CNES/CNRS/IRD/INRAE/UPS), 31401 Toulouse, France; mehrez.zribi@ird.fr
* Correspondence: jean-christophe.calvet@meteo.fr

Abstract: Observed by satellites for more than a decade, surface soil moisture (SSM) is an essential
component of the Earth system. Today, with the Sentinel missions, SSM can be derived at a sub-
kilometer spatial resolution. In this work, aggregated 1 km × 1 km SSM observations combining
Sentinel-1 (S1) and Sentinel-2 (S2) data are assimilated for the first time into the Interactions between
Soil, Biosphere, and Atmosphere (ISBA) land surface model using the global Land Data Assimilation
System (LDAS-Monde) tool of Meteo-France. The ISBA simulations are driven by atmospheric
variables from the Application of Research to Operations at Mesoscale (AROME) numerical weather
prediction model for the period 2017–2019 for two regions in Southern France, Toulouse and Mont-
pellier, and for the Salamanca region in Spain. The S1 SSM shows a good agreement with in situ
SSM observations. The S1 SSM is assimilated either alone or together with leaf area index (LAI)
observations from the PROBA-V satellite. The assimilation of S1 SSM alone has a small impact on
the simulated root zone soil moisture. On the other hand, a marked impact of the assimilation is
observed over agricultural areas when LAI is assimilated, and the impact is larger when S1 SSM and
LAI are assimilated together.

Keywords: Sentinel-1; data assimilation; soil moisture; leaf area index

1. Introduction

Active and passive satellite-based microwave observations provide valuable tools
for monitoring soil moisture, with the potential to provide global coverage at a high spa-
tial and temporal resolution. Over the past decades, several satellite missions have been
launched (e.g., ASCAT (Advanced Scatterometer) [1] and SMOS (Soil Moisture and Ocean
Salinity) [2]), resulting in the development of a number of soil moisture products with
different temporal and accuracy characteristics. These products have low spatial resolution,
typically no better than 10 km, and are used for large-scale applications, including drought
monitoring, flood forecasting, climate monitoring, and agricultural management [3–6]. The
accuracy and reliability of satellite-based soil moisture products depend on several factors,
including the satellite sensor design, retrieval algorithms, validation techniques, and vege-
tation structure [7]. There is a need to improve the spatial resolution of satellite-derived
surface soil moisture (SSM) products and to evaluate their assimilation into land surface
models (LSMs) [8]. One way to achieve this goal is to downscale already existing low-
resolution SSM products to the kilometer scale by integrating local information from land
cover or in situ measurements through machine learning [9]. Another way is to take advan-
tage of recently developed satellite-based SSM products based on high-resolution Sentinel-1
(S1) C-band backscatter in conjunction with Sentinel-2 (S2) vegetation indices [10–13].
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LSMs are used to simulate the diurnal and seasonal cycles of energy, water, and
carbon fluxes at the soil–plant interface with the atmosphere at different spatial scales
(from 0.1 to 100 km) worldwide. LSMs are capable of simulating physical and biological
processes, such as photosynthesis and vegetation phenology, as well as soil moisture and
soil temperature, for multiple soil layers [14,15]. In LSMs, sub-grid heterogeneity can be
represented by patches, where each patch represents a different land cover type (such as
forest, grassland, or cropland) and a range of physical characteristics (such as the plant
rooting depth). The ISBA (Interactions between Soil, Biosphere, and Atmosphere) land
surface model [16] is designed to be used in a variety of applications, either coupled
with the atmosphere in climate and numerical weather prediction atmospheric models
or offline (without interactions with the atmosphere). In the most advanced versions of
ISBA, the leaf area index (LAI), a key vegetation state variable controlling carbon and water
fluxes, is computed together with photosynthesis. The “A-gs” ISBA-A-gs configuration of
ISBA [17–19], hereafter referred to as ISBA-A-gs, is used in this study. Accurate simulation
of SSM and root zone soil moisture (RZSM) in addition to LAI is critical, as these variables
control the partitioning of energy and water fluxes between the land surface and the
atmosphere [20–22]. The measurement of soil moisture is challenging, especially at regional
and global scales [23–25], leading to difficulties in evaluating RZSM.

The assimilation of satellite-derived SSM data together with LAI into LSMs aims to
improve the accuracy and predictive ability of LSMs [26–28]. Kalman filtering techniques
can be used to integrate these satellite-based observations into model simulations [29–32].
In the case of ISBA-A-gs, the joint assimilation of SSM and LAI products can be performed
within the SURFEX (SURface Externalisée [33]) modeling platform, over France and on a
global scale. The Land Data Assimilation System (LDAS) integrating satellite products in
ISBA-A-gs is called LDAS-Monde [34] and produces modeled and analyzed variables (such
as SSM, RZSM, LAI, evapotranspiration, and gross primary production (GPP)). Since ISBA-
A-gs is not a crop model, it has shortcomings over agricultural areas, and the assimilation
has a marked positive impact on the simulations [34]. As a baseline, LDAS-Monde is
capable of assimilating LAI and SSM satellite products.

The objective of this paper is to (1) validate an aggregated 1 km × 1 km S1 SSM
product and (2) evaluate, for the first time, the effect of assimilating S1 SSM in ISBA-A-gs
at the kilometer scale using the LDAS-Monde tool driven by a high-resolution atmospheric
forcing. The study was carried out in two regions in France and one region in Spain where
in situ measurements of soil moisture are available. The assimilation of S1 SSM products
alone, LAI alone, and S1 SSM together with LAI was performed in order to assess the
added value of the S1 SSM assimilation.

The paper is organized as follows: Section 2 presents the ISBA model and the LDAS-
Monde tool, the satellite and in situ datasets, as well as the study areas. Section 3 describes
the methodology and the experimental design. Section 4 evaluates the S1 SSM products
using in situ measurements of SSM and presents the assimilation results. Section 5 contains
a discussion about how results can be interpreted. Section 6 provides conclusions and
highlights on future works.

2. Model and Data
2.1. The ISBA LSM

The ISBA LSM is used to simulate the interactions between land surfaces and the
lower atmosphere by resolving the energy and water balances at the surface level within
the SURFEX (SURface Externalisée) modeling platform developed by the Centre National
de Recherches Météorologiques (CNRM) (http://www.umr-cnrm.fr/surfex, accessed on
30 August 2023). Within SURFEX, ISBA generates a set of simulated variables, including
heat, carbon, water, and energy surface fluxes, either coupled to an atmospheric model or
“offline”, i.e., without coupling to the atmosphere. In this study, version 8.1 of SURFEX
was used in the offline mode. The atmospheric forcing came from the AROME-France
(Application of Research to Operations at mEsoscale) numerical weather prediction model

http://www.umr-cnrm.fr/surfex
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of Meteo-France [35], which is run operationally at a spatial resolution of 1.3 km × 1.3 km
over France [36].

Vegetation growth is represented in this study, using the ISBA-A-gs configuration [17,37].
This version of ISBA simulates the net CO2 assimilation rate (A) and stomatal conduc-
tance (gs) of vegetation at the leaf and canopy level, which allows the simulation of LAI,
respiration, and energy and water fluxes. ISBA-A-gs is able to represent the feedbacks
between LAI and soil RZSM: increasing LAI values tend to increase plant transpiration
and to reduce RZSM through root water extraction, while decreasing RZSM values reduce
photosynthesis, gs, and LAI at some stage. To better represent RZSM, the ISBA diffusion
multilayer representation of the soil [38,39] was used. Soil moisture and soil temperature
were calculated for 14 layers down to 12 m for soil temperature and 8 to 10 layers down
to 1 m and 2 m for soil moisture, depending on vegetation characteristics. In this study,
the WG2 and WG5 modeled soil moisture values were considered. They correspond to the
ISBA soil layers 2 and 5, 0.01–0.04 m and 0.2–0.4 m, respectively. They can be considered
as proxies for SSM and RZSM, respectively. The ISBA model version we used does not
include irrigation.

2.2. LDAS-Monde

Within the SURFEX modeling platform, the joint assimilation of SSM and LAI satellite-
based products is possible using the LDAS-Monde tool. LDAS-Monde assimilates satellite
products using a simplified extended Kalman filter (SEKF) technique. The variables ana-
lyzed were LAI and soil moisture at several depths (up to 1 m). Each analyzed variable
had 12 different values corresponding to 12 land surface patch classes. The patch fraction
for each model grid cell was calculated from the ECOCLIMAP-II land cover database [40],
including bare soil, rocks, permanent snow, and ice surfaces, and nine plant functional
types (needleleaf trees, evergreen broadleaf trees, deciduous broadleaf trees, C3 crops, C4
crops, C4 irrigated crops, C3 grasslands, C4 grasslands, and wetlands). The assimilation
process was performed every 24 h, and the analyzed variables were used as initial condi-
tions for the next 24 h window. Instead of calculating each variable at the beginning of
each cycle, they were adjusted based on available observations and their relative errors.
LDAS-Monde has been already used in several studies to assimilate and validate different
satellite products over different regions and at different scales (e.g., [34,41–44]). In this
study, LDAS-Monde was adapted to the kilometer scale.

2.3. S1 SSM Data

In this study, SSM products were derived from the Sentinel-1A (S1A) and Sentinel-1B
(S1B) C-band (wavelength: ~6 cm) backscatters. S1A was launched in April 2014 and S1B
was launched two years later in April 2016. Both of them provide images with a spatial
resolution of 10 m × 10 m. With two satellites in operation, the average sampling time
is six days, in both ascending and descending modes over different regions of the globe.
The obtained images were used to develop soil moisture maps, using a neural network
approach involving inversion of radar signals, S2MP (Sentinel-1/Sentinel-2 derived soil
Moisture at Plot scale), as described in [10]. The retrieval process was applied to S1
backscatter in VV polarization (vertical transmit and vertical receive), in conjunction with
NDVI (normalized difference vegetation index) time series derived from S2. It should be
noted that SSM retrievals were not produced over straw cereal crops (mainly wheat and
barley) during the spring stem elongation phase (due to the low penetration of the S1 wave
in the canopy), forests, vineyards, and orchards. Land cover maps, cropland masks, and
cropland and herbaceous vegetation masks at 100 m spatial resolution were derived for
each year from the Copernicus Global Land Service dynamic land cover map (CGLS-LC100)
(see Section 2.5). These maps were also used to aggregate SSM at 1 km × 1 km spatial
resolution. First, the SSM values at the 100 m × 100 m spatial resolution were estimated
using the grid of the land cover map, in order to avoid mixing several crop types within the
same 1 km × 1 km grid scale in the average value of the S1 radar signal and NDVI. Second,
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the obtained SSMs at the 100 m scale (only for cropland and herbaceous vegetation pixels)
were averaged within each 1 km grid cell to obtain 1 km × 1 km SSM estimates.

The generated soil moisture maps (in m3 m−3), hereafter referred to as S1 SSM, cover
three regions for a time period of three years, from January 2017 to December 2019, with two
of them situated in the southern part of France and the other one located in the western part
of Spain, as illustrated in Figure 1. The first region encompasses a rectangular area covering
the region of Toulouse and measuring 211 × 293 km. The second region, Montpellier,
has a rectangular area of 112 × 154 km. The Salamanca region in Spain covers an area of
246 × 319 km. Soil moisture measurement stations, which are presented in Section 2.4,
are available within each region. The domain coordinates of Montpellier, Toulouse, and
Salamanca are 43.254◦–44.263◦N and 2.987◦–4.379◦E, 43.245◦–45.147◦N and 0.469◦–3.112◦E,
and 40.353◦–42.567◦N and 6.790◦–3.924◦W, respectively.
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Figure 1. Salamanca, Toulouse, and Montpellier regions where S1 SSM products are available. In situ
stations (REMEDHUS, Meteopole-Flux, and SMOSMANIA) are represented by dots.

Figure 2 shows S1 SSMs for a particular day in early May 2018 at approximately
18:00 UTC for the three regions described above. Note that it was not possible to display
SSM for the three regions for the exact same day due to the temporal resolution of S1.
The Toulouse region exhibited remarkable moist conditions on 8 May 2018, especially
towards the southwest, with SSM values reaching as high as 0.28 m3m−3. Local rainfall
observations show that intense precipitation occurred in the morning of 8 May 2018.
Conversely, the Montpellier region showed a greater spatial heterogeneity in SSM values
on 3 May 2018. In the case of Salamanca, the prevailing conditions were dryer, with SSM
values ranging between 0.06 and 0.10 m3m−3. Note that the red and blue points marked on
these maps correspond to the locations of SSM in situ measurements that are described in
the following subsection.

As part of the assimilation process, it is necessary to rescale the S1 SSM products
to match the ISBA model climatology and to avoid any bias in the system associated
with model-dependent soil parameters, as described in [45,46]. To achieve this, the S1
SSM product was rescaled using the method proposed by [47], which involves a linear
transformation that aligns the modeled SSM mean and variance with the estimated mean
and variance of the observations. This linear transformation was applied on a seasonal basis
using a three-month sliding window, as seasonal variability has been shown to significantly
affect the rescaling process, as reported in [30,48,49]. In addition, a filter was applied to
exclude urban areas and soil freezing before the rescaling parameters were estimated.
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Figure 2. S1 SSM product maps for one day in May around 18:00 UTC for (a) Toulouse, (b) Montpellier,
and (c) Salamanca. SMOSMANIA and REMEDHUS stations are represented by red and blue dots,
respectively. The Meteopole-Flux station is represented by a green dot. White is used to mask
missing data.

2.4. LAI Data

The GEOV1 LAI product is distributed by the Copernicus Global Land Service (CGLS).
It is a satellite-based estimate of LAI that is derived from observations from the PROBA-V
satellite. The product is generated using a statistical algorithm [50], specifically, a neural
network trained on two other pre-existing products, and is provided globally with a spatial
resolution of 1 km × 1 km and a sampling time of 10 days.

2.5. Land Cover

The land cover data were obtained from the global CGLS dataset based on PROBA-V
observations at a spatial resolution of 100 m × 100 m. Since the S2MP inversion model is
only applicable to agricultural areas and grasslands (vineyards and orchards are excluded),
the CGLS-LC100 map was filtered to retain only the agricultural areas listed in CGLS-LC100:
cropland (map code “40”) and herbaceous vegetation (map code “30”). In CGLS-LC100,
cropland is defined as land covered with temporary crops followed by harvest and a period
of bare soil. Note that perennial woody crops are classified as the appropriate forest or
shrub land cover type. Herbaceous vegetation is defined in CGLS-LC100 as follows: “Plants
without persistent stems or shoots above ground and lacking a definite firm structure (tree
and shrub cover is less than 10%)”.

Figure 3 shows the land cover classification for the Montpellier region. This region
is mainly covered by open and closed forests, with cropland and urban areas located
mainly in the south of the Mediterranean coast. Agricultural areas can also be found in
the northeast of the region, around the city of Alès. The open forest and shrub classes may
include crop fields, vineyards, and orchards. The global irrigation map of Meier et al. [51]
shows that irrigation is common in this region.
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Figure 3. Land cover (CGLS) for (a) the Montpellier region and for (b) the Alès sub-domain (4◦–4.3◦E,
43.95◦–44.25◦N), including the city of Alès. Lands cover classes: open forest (“OF”), closed forest
(“CF”), herbaceous wetland (“HW”), permanent water bodies (“WB”), sparse vegetation (“SV”),
urban (“U”), cropland (“C”), herbaceous vegetation (“HV”), and shrubs (“S”). “OF” and “S” may
include crop fields, vineyards, and orchards. The locations of the Pezenas, La Grand Combe, and
Villevieille SMOSMANIA stations (PZN, LGC, and VLV, respectively) are shown.
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2.6. In Situ Observations

The Soil Moisture Observing System–Meteorological Automatic Network Integrated
Application (SMOSMANIA) is a network of weather stations with frequency domain re-
flectometry soil moisture sensors installed along a 400 km Mediterranean–Atlantic transect
in Southern France, providing continuous measurements of soil moisture at different soil
depths every 12 min from 2006 to the present [52]. In the two regions of France where S1
SSM products are available, there are three SMOSMANIA stations for the Toulouse region
and three for the Montpellier region, as shown in Figure 2 (red dots). SSM is measured at a
5 cm soil depth.

In addition to the SMOSMANIA stations, SSM data are available from the Meteopole-
Flux site within the Toulouse domain, as shown in Figure 2. This observatory is located
on the Meteo-France campus in the southwest of Toulouse, France (43.57◦N, 1.37◦E; 158 m
above sea level), and is designed to monitor atmospheric variables, energy, water, and
CO2 fluxes in real time, on a sub-hourly basis. Since June 2012, the Meteopole-Flux
observatory has provided several meteorological variables, including in situ observations
of soil moisture at different depths [53].

The REMEDHUS network is located in the Duero Basin in Spain, covering an area
of 35 km × 35 km between the cities of Salamanca and Valladolid, and provides hourly
observations of SSM at a 5 cm soil depth. The stations are located in the center of the
Salamanca domain where S1 SSM products are available (blue dots in Figure 2). These
instruments are located in a gently sloping hilly region at an altitude of 750–900 m above
sea level and experience a semi-arid continental Mediterranean climate, where the land is
mainly used for agricultural activities. Data from this network have been used in many
studies to validate different satellite-derived observations [54–56]. In the context of this
study, data from 19 stations were used for the period 2017–2019.

The SMOSMANIA [52] and REMEDHUS [57] data are available from the International
Soil Moisture network (ISMN) [58].

It must be noticed that there is a mismatch between the in situ SSM observations at a
5 cm soil depth and the smaller C-band penetration depth of 1 to 2 cm [59].

3. Method

The workflow of the proposed method is presented in Figure 4.
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were used to evaluate S1 SSM and the analyzed RZSM, respectively.
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3.1. Experimental Set Up

The numerical experiments performed in this study are summarized in Table 1. LDAS-
Monde was set up in the same configuration for the background and observation error
covariance matrices as in [34,60]. The S1 SSM observations for the three regions were
assimilated on a 6-day basis, while the LAI observations from PROBA-V were assimilated
on a 10-day basis. The LAI observations were interpolated to the ISBA 1/100◦ model grid.
While the LAI observations were assimilated directly, the S1 SSM was first rescaled to the
model climatology before assimilation, following [32,34]. An open-loop (OL) simulation
(model run without assimilation) and the analysis were then performed for each region
after initialization of the land surface variables. In this study, the LDAS-Monde system
used a 24 h window starting at 18:00 UTC and ending at 18:00 UTC the following day,
which corresponds to the available hours of S1 SSM products. The assimilation values from
the previous window formed the initial conditions for the next 24 h window, allowing fixed
estimates of background errors to be used instead of calculating them at the beginning of
each cycle. In order to run ISBA-A-gs in offline mode, several surface atmospheric variables
are required. In this work, for each day, we used hourly forecast data from AROME-France
initiated at 00:00 UTC interpolated on a regular Cartesian grid with a spatial resolution
of 1/40◦ (about 2.5 km at 45◦N) made available to the public through the Meteo-France
BDAP database (Base de Données Analysées et Prévues). The following atmospheric inputs
were used: air temperature, specific humidity, wind speed, and pressure at the lowest
vertical level (10 m above canopy), as well as incoming fluxes of shortwave and longwave
radiation and liquid and solid (snow) precipitation. The atmospheric data obtained at 1/40◦

were then reinterpolated at 1/100◦ with a bi-linear interpolation over the spatial domains
involved in this study. To achieve an equilibrium state of ISBA-A-gs and generate more
realistic initial conditions, the first year of the study period (2017) was spun up 20 times.

Table 1. Numerical experiments performed in this study for the period 2017 to 2019. All experiments
used the same ISBA model version (including multi-layer soil, photosynthesis, and interactive
vegetation) and the same AROME-France atmospheric forcing at 1/40◦, re-interpolated at 1/100◦.

Experiment Assimilated
Observations

Model
Equivalent

Control
Variables

OL n/a n/a n/a

SSM S1 SSM (rescaled) WG2 (1–4 cm) LAI,
WG2 to WG8 (0.01–1 m)

LAI PROBA-V LAI LAI LAI,
WG2 to WG8 (0.01–1 m)

SSM and LAI S1 SSM (rescaled)
and PROBA-V LAI

WG2 (1–4 cm),
LAI

LAI,
WG2 to WG8 (0.01–1 m)

n/a stands for not applicable.

3.2. Evaluation

The primary statistical value used in this study to compare in situ soil moisture
observations with satellite estimates was Pearson’s correlation coefficient (R). In addition
to the correlation, the unbiased root mean square difference (ubRMSD), was also used. Its
calculation follows:

ubRMSD =

√√√√∑n
i=1

[(
Obsi − Obs

)
−
(
Sati − Sat

)]2

n
, (1)

where n represents the number of observations of a given ground station used to validate
the satellite retrievals and Obs and Sat stand for in situ observations and satellite retrievals,
respectively. The ubRMSD is used to measure the accuracy of the satellite products. The
squared ubRMSD is the difference between the squared RMSD and the squared mean
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bias (MB). Since OL simulations are independent from the S1 SSM, they were also used in
the evaluation.

Monthly anomalies of modeled RZSM (WG5) were used to evaluate the ability of the
model to represent the interannual variability for each experiment:

yi,j,re f =
xi,j − xi,re f

xi,re f
(2)

where yi,j,ref is the relative mean difference value for a given experiment output at the grid
point where the ground station is located for the ith month and the jth year with respect to
a reference (ref ) year. The first year of the time series (2017) was used as the reference year.
The same procedure was applied to the in situ soil moisture measurements at a depth of
0.3 m.

The assimilation of S1, SSM, and LAI, was first evaluated at the local scale using in
situ RZSM observations. The comparison of in situ and simulated RZSM seasonal cycles
can be affected by confounding factors, such as representativeness errors, and preliminary
tests showed that the assimilation had little effect on the results derived from a direct
comparison of RZSM time series. Instead, we investigated the ability of the assimilation to
improve the representation of interannual variability using Equation (2).

In a second step, a regional comparison of the simulated RZSM was made for contrast-
ing soil moisture conditions, with the aim of quantifying the effect of the assimilation.

4. Results
4.1. Validation of S1 SSM

Validation of the 1 km × 1 km S1 SSM products was first carried out by conducting a
comparison with in situ SSM observations obtained from the SMOSMANIA, Meteopole-
Flux, and REMEDHUS stations located within the study regions, as shown in Figure 1.
A time series of daily SSM values at 5 cm depth, at 18:00 UTC, is presented in Figure 5,
for the La Grand Combe (LGC) SMOSMANIA station located within the Montpellier
domain (see Figure 2 for LGC location within the domain). Figure 5 also shows the S1 SSM
values corresponding to the pixel where this in situ station is located, together with the OL
simulation. The S1 SSM product matches the seasonal variability of the observed SSM, with
better agreement in wetter conditions compared to drier ones. The observed values range
between 0.005 and 0.26 m3 m−3, while the satellite product varies from 0.07 to 0.20 m3 m−3.
Notably, S1 SSM represents some of the peak SSM values quite well, especially in November
and December 2017. Table 2 shows that S1 SSM tended to perform better than the OL
simulation over LGC, for all values. S1 SSM had an ubRMSD of 0.024 m3 m−3, against
0.058 m3 m−3 for the OL simulation. On the other hand, OL WG2 correlated slightly better
with in situ SSM observations than S1 SSM.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 23 
 

 

the La Grand Combe (LGC) SMOSMANIA station located within the Montpellier domain 
(see Figure 2 for LGC location within the domain). Figure 5 also shows the S1 SSM values 
corresponding to the pixel where this in situ station is located, together with the OL sim-
ulation. The S1 SSM product matches the seasonal variability of the observed SSM, with 
better agreement in wetter conditions compared to drier ones. The observed values range 
between 0.005 and 0.26 m³ m−3, while the satellite product varies from 0.07 to 0.20 m³ m−3. 
Notably, S1 SSM represents some of the peak SSM values quite well, especially in Novem-
ber and December 2017. Table 2 shows that S1 SSM tended to perform better than the OL 
simulation over LGC, for all values. S1 SSM had an ubRMSD of 0.024 m³ m−3, against 0.058 
m³ m−3 for the OL simulation. On the other hand, OL WG2 correlated slightly better with 
in situ SSM observations than S1 SSM.  

 
Figure 5. Hourly time series of surface soil moisture at the LGC station from in situ measurements, 
S1 SSM, and OL WG2 simulations (red, blue, and orange lines, respectively) at 18:00 UTC. 

Table 2. Correlation coefficient (R), root mean square difference (RMSD), unbiased RMSD 
(ubRMSD), and mean bias (MB) between OL simulations, S1 SSM products, and in situ observations 
at the LGC SMOSMANIA station, from 2017 to 2019, at 18:00 UTC. 

Comparison R ubRMSD (m³ m−3) RMSD (m³ m−3) MB (m³ m−3) Number 
OL vs. in situ 0.87 0.043 0.165 0.159 165 

S1 SSM vs. in situ 0.85 0.024 0.028 -0.013 163 
S1 SSM vs. OL 0.71 0.058 0.156 -0.145 164 

To better assess the accuracy of the S1 SSM product, a seasonal statistical analysis 
was performed to compare it with the observed SSM at LGC. The scatter plots and corre-
lation coefficients between the two datasets for each season are presented in Figure 6, with 
winter, spring, and fall showing high correlation coefficient values (R = 0.92, 0.88, and 0.91, 
respectively). Overall, a good correlation was observed between the datasets for all sea-
sons, except for summer, for which the lowest correlation coefficient was obtained (R = 
0.62). 

Figure 5. Hourly time series of surface soil moisture at the LGC station from in situ measurements,
S1 SSM, and OL WG2 simulations (red, blue, and orange lines, respectively) at 18:00 UTC.



Remote Sens. 2023, 15, 4329 9 of 21

Table 2. Correlation coefficient (R), root mean square difference (RMSD), unbiased RMSD (ubRMSD),
and mean bias (MB) between OL simulations, S1 SSM products, and in situ observations at the LGC
SMOSMANIA station, from 2017 to 2019, at 18:00 UTC.

Comparison R ubRMSD (m3 m−3) RMSD (m3 m−3) MB (m3 m−3) Number

OL vs. in situ 0.87 0.043 0.165 0.159 165
S1 SSM vs. in situ 0.85 0.024 0.028 −0.013 163

S1 SSM vs. OL 0.71 0.058 0.156 −0.145 164

To better assess the accuracy of the S1 SSM product, a seasonal statistical analysis was
performed to compare it with the observed SSM at LGC. The scatter plots and correlation
coefficients between the two datasets for each season are presented in Figure 6, with
winter, spring, and fall showing high correlation coefficient values (R = 0.92, 0.88, and 0.91,
respectively). Overall, a good correlation was observed between the datasets for all seasons,
except for summer, for which the lowest correlation coefficient was obtained (R = 0.62).
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Figure 6. SMOSMANIA versus S1 SSM products for the LGC station for (a) winter (December,
January, and February), (b) spring (March, April, and May), (c) summer (June, July, and August), and
(d) fall (September, October, and November), at 18:00 UTC. The best linear fit as well as the correlation
coefficient between the two datasets are presented in each sub-plot. RMSD, MB, and ubRMSD values
are in m3m−3. Freezing cases were sorted out by excluding data for which soil temperature at 5 cm
depth was below 4 ◦C.

The statistical distribution of the correlation coefficients between the S1 SSM products
and the observed SSM is shown in Figure S1 for all seasons and over the three years, for all
SMOSMANIA (Toulouse and Montpellier Regions) and REMEDHUS (Salamanca Region)
stations. A seasonal variation of R can be observed across stations for all regions. A lower
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correlation between the satellite products and the observed SSM was obtained during the
summer season, which supports the results presented in Figure 5 for this season. In general,
SMOSMANIA stations showed higher correlation coefficients than REMEDHUS, especially
in spring and fall. However, one of the SMOSMANIA stations (LHS) showed a negative
correlation in summer. The correlation values showed greater variability over the four
seasons in the Salamanca region, which is partly due to the higher number of stations in
this region. In addition, some of the stations in Salamanca showed no correlation between
observed and satellite-derived SSM products. These stations are located in an agricultural
area where irrigation may be used. One consequence of irrigation is that the SSM increases
regardless of precipitation events. The S1 SSM may be sensitive to irrigation, while in situ
observations are not affected by irrigation.

Considering the entire study period (see “All” box plots in Figure S1), a good agree-
ment was observed for SMOSMANIA and REMEDHUS, with mean correlation coefficients
of 0.63 and 0.51, respectively. This indicates that S1 SSM is able to capture the characteristics
of in situ measurements. When the analysis was performed for the S1 SSM products at
06:00 UTC, the statistics between these products and the in situ measurements showed a
reduced accuracy.

The correlation coefficient and unbiased root mean square difference (ubRMSD,
Equation (1)) values between the SMOSMANIA, Meteopole-Flux, and REMEDHUS sta-
tions and the S1 SSM products for the whole study period are listed in the Supplementary
Materials (Table S1). It is shown that good correlation coefficients were obtained for most of
the stations (F-test p-value < 0.01), with the exception of Las Brozas in the Salamanca region,
which showed a poor value of 0.09 and a p-value = 0.1. For all the other stations, p-values
lower than 0.01 were obtained, indicating that the correlation was significant. Regarding
the ubRMSD, typical values ranging from 0.030 to 0.120 m3 m−3 were found for all stations.
The availability of S1 SSM products is better for Salamanca than for the two regions in
France, leading to a larger number of observations for Salamanca, ranging from 180 to 361.
Note that a better correlation of OL WG2 with in situ SSM observations was systematically
observed for all stations (Table S2). Among the 26 stations considered in Table S2, OL WG2
R-values less than 0.6 were observed for only 4 REMEDHUS stations: El Coto, Las Brozas,
Las Tres Rayas, and Las Victorias (R = 0.44, 0.54, 0.59, and 0.58, respectively). S1 SSM
presented smaller ubRMSD values than OL WG2 for only six stations: LGC, Carretoro, El
Coto, El Tomillar, Las Victorias, and Paredinas.

4.2. Assimilation

The effect of the assimilation was shown for the Montpellier region. In this region, the
summer of 2019 experienced a pronounced drought [61], while the summer of 2018 was
relatively wet and the summer of 2017 was moderately dry [62]. When using Equation (2),
2017 was used as the reference year. The effect of the assimilation on the simulated RZSM
was more apparent when contrasting years, such as 2018 and 2019, were considered.

4.2.1. Local Comparison

Following the validation of the S1 SSM products against in situ measurements, the in-
fluence of assimilating the S1 SSM products alone, together with LAI, and assimilating LAI
alone on the simulated 0.01–0.04 m SSM and 0.2–0.4 m RZSM (WG2 and WG5, respectively)
was investigated.

The impact of the assimilation was first evaluated on WG2 for the three assimilation
experiments by comparing them with the OL outputs for the three study regions. Very little
or no impact on the simulated WG2 was found (with respect to the score values presented
in Table S2). A larger impact of assimilation was observed on WG5. To better visualize the
impact of the assimilation experiments on WG5, a relative local mean value was calculated
for each analysis as well as for the in situ measurements for each of the stations in the
Montpellier region using Equation (2).
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Figure 7 illustrates the relationship between the relative mean local interannual dif-
ferences (Equation (2)) of the observed RZSM from SMOSMANIA and those from the OL
and analysis simulations for the Montpellier region. In 2018, the in situ measurements
showed wetter conditions compared to 2017, as the relative differences were greater than 0,
while 2019 was drier. The interannual variability was well represented in both the model
and the analysis at the 0.3 m soil depth. There was a difference in scale for the relative
differences coming from the model and the in situ measurements. This difference was
due to the spatial and temporal resolution of the two sources of information. The joint
assimilation of SSM and LAI satellite products led to a slightly better correlation with
respect to the OL (R = 0.70 and 0.66, respectively). The values of the RMSD and the MB
scores were improved.
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Figure 7. Monthly (January to December) mean relative difference values of the observed soil
moisture at 0.30 m soil depth vs. (a) open-loop WG5 simulations and (b) analyzed WG5 from the
joint assimilation of SSM and LAI for the three SMOSMANIA stations of the Montpellier region. The
year of reference to estimate these relative values was 2017. The 2018 and 2019 relative differences are
represented by blue dots and red crosses, respectively.

4.2.2. Regional Comparison

Particular attention was given to the contrasting summers of 2018 and 2019 in the
Montpellier region. Figure 8 shows a comparison of the RZSM simulations (WG5) between
July 2019 and July 2018. The difference between the averaged open-loop simulations
shows that July 2019 was mostly dryer than July 2018, with certain areas showing a more
pronounced difference, especially in the northwest, where some CFs are located (Figure 3).
Figure 9 shows the annual evolution from 2018 to 2019 of the mean differences in July
between the analyzed WG5 and the OL WG5 simulations. The red (blue) color indicates
that the analysis added (removed) more water to the root zone in 2019 than in 2018. The S1
SSM assimilation had little effect on this year-to-year WG5 difference, except for a localized
increase in added water in the Alès cropland area sub-domain (box in Figure 9) in the
northeast of the domain. In contrast, the assimilation of LAI had a much greater impact on
the changes in WG5, with a tendency to increase WG5 more in 2019 in most of the region,
especially in the southeastern part. When S1 SSM and LAI were assimilated together
(Figure 9c), the impact appeared to be similar to that when LAI was assimilated alone, but
it was amplified in the cropland area in the northeast of the domain. Note that Figure 9c
corresponds to the difference between Figure 8a,b.
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Figure 9. Year-to-year evolution from 2018 to 2019 over the Montpellier domain of the mean dif-
ferences in July between analyzed and open-loop WG5 when (a) S1 SSM was assimilated alone,
(b) PROBA-V LAI was assimilated alone, and (c) S1 SSM and PROBA-V LAI were jointly assimilated.
Boxes correspond to the Alès sub-domain area shown in Figures 3 and 10. Figure 9c corresponds to
the difference between Figure 8a,b. The red (blue) color indicates that the analysis added (removed)
water to the root zone more in 2019 than in 2018 in response to the assimilation.

To further investigate the impact of assimilation, a closer examination of the Alès sub-
domain, marked by blue rectangles in Figure 9 (4–4.3◦E, 43.95–44.25◦N), was performed and
is shown in Figure 10. Figure 10 includes the irrigation zones obtained from Meier et al. [51]
at kilometer resolution for this region. Figure 10 shows that the impact of assimilation
varied between different analyses and that the assimilation of S1 SSM alone resulted in
moderate changes in the July 2019 WG5 analysis in some areas compared to July 2018. The
impact of LAI assimilation on WG5 was more pronounced and different when LAI was
jointly assimilated together with S1 SSM. Figure 10 also shows that LAI was reduced by
the assimilation. Similar results were obtained over the Toulouse and Salamanca regions
(see the Supplementary Materials).
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Figure 10. Year-to-year evolution from 2018 to 2019 over the Alès sub-domain of the mean differences
in July between (a–c) analyzed and open-loop WG5 and (e–g) LAI, when (a,e) S1 SSM was assimilated
alone, (b,f) PROBA-V LAI was assimilated alone, and (c,g) SSM and LAI were jointly assimilated,
compared with (d) the spatial distribution of irrigation from Meier et al. [51]. The red (blue) color
indicates that the analysis added (removed) water to the root zone and increased (decreased) LAI
more in 2019 than in 2018 in response to the assimilation.

5. Discussion
5.1. Does S1 SSM Perform Better than Other SSM Products?

The results in Table S1 are consistent with similar studies comparing satellite-derived
products with ground-based measurements (e.g., [63–67]). Table 3 summarizes the S1 SSM
validation results of this study and compares them with results from El Hajj et al. [66]
and Portal et al. [67]. The latter results include Advanced Scatterometer (ASCAT), Soil
Moisture Active and Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS), and SMOS
INRAE-CESBIO (SMOS-IC) products.

The station-averaged R and ubRMSD values we obtained over Southern France, 0.60
and 0.062 m3 m−3, respectively, are consistent with the results of El Hajj et al. [66] for S1
SSM products at 1 km resolution over this area (0.59 and 0.056 m3 m−3, respectively). A
key finding of El Hajj et al. [66] is that the values of these scores are not much affected by
spatial resolution, for spatial resolutions ranging from 1 km to 25 km. For the Salamanca
region, the S1 SSM R score was not as good, R = 0.48, but the accuracy was similar,
with a ubRMSD value of 0.053 m3 m−3. The lower score may be due to the fact that
some REMEDHUS stations are irrigated from time to time, as reported by ISMN (https:
//ismn.earth/en/news/, accessed on 30 August 2023), or that irrigation is dominant in
the 1 km × 1 km grid cell while absent over the station. A temporal discontinuity in the in
situ SSM was observed during the summer of 2018, triggering a decrease in SSM values.
Visual inspection of the Google map image covering the Las Brozas station and of the soil
moisture observations from this station showed that surface runoff from a nearby irrigated
field can occur. Portal et al. [67] used only selected REMEDHUS stations.

https://ismn.earth/en/news/
https://ismn.earth/en/news/
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Table 3. Comparison of the performance of S1 SSM with other satellite SSM products over Southern
France and the Salamanca region. Average correlation coefficient (R), unbiased root mean square
difference (ubRMSD), and number of locations are indicated. El Hajj et al. [66] used SMOSMANIA
stations together with additional soil moisture measurements in the region of Montpellier.

SSM Product, Spatial
Resolution, Reference Region, Soil Moisture Network, Period Average R Average ubRMSD

(m3 m−3)
Number of

Stations

S1, 1 km, this study Toulouse, SMOSMANIA, 2017–2019 0.57 0.072 4
S1, 1 km, this study Montpellier, SMOSMANIA, 2017–2019 0.64 0.05 3
S1, 1 km, this study Salamanca, REMEDHUS, 2017–2019 0.48 0.053 19

S1, 1 km, [66] Southern France (SMOSMANIA and
Montpellier), 2016–2017 0.59 0.056 8

SMAP-S1, 1 km, [66] Southern France (SMOSMANIA and
Montpellier), 2016–2017 0.48 0.043 8

SMAP-S1, 1 km, [67] Salamanca, REMEDHUS (rainfed crops only),
2015–2017 0.86 0.04 7

ASCAT, 25 km, [66] Southern France (SMOSMANIA and
Montpellier), 2016–2017 0.49 0.062 8

SMOS-IC, 25 km, [66] Southern France (SMOSMANIA and
Montpellier), 2016–2017 0.57 0.053 8

SMOS, 25 km, [67] Salamanca, REMEDHUS, 2015–2017 0.65 0.062 6

SMAP, 36 km, [66] Southern France (SMOSMANIA and
Montpellier), 2016–2017 0.69 0.047 8

SMAP, 36 km, [67] Salamanca, REMEDHUS, 2015–2017 0.7 0.058 6

5.2. Why Is a Synergy of S1 SSM with LAI Observed in the Assimilation?

Previous results based only on the assimilation of low-resolution SSM products have
shown that the assimilation of SSM in ISBA has a limited impact on RZSM. The LAI
assimilation has a much larger impact. The reason for this is that the sensitivity of SSM
to small perturbations in the model soil moisture profile is greatly reduced below the
depth of 0.1 m, while the sensitivity of LAI peaks for the 0.2–0.4 m soil layer, i.e., for
WG5 [34,68]. Under dry conditions, RZSM is somewhat decoupled from SSM [69], but not
from LAI. Figures 9 and 10 show that the assimilation of S1 SSM alone can induce limited
changes in RZSM and in LAI and that these changes vary from place to place. However,
the assimilation of SSM products alone is not sufficient to significantly improve ISBA
outputs. Errors in the ISBA soil and vegetation parameters, land cover, and topography
affect the SSM simulations. The impact of SSM products alone is reduced by the use of the
seasonal linear rescaling applied to the assimilated product, which results in the loss of
part of the original information contained in the SSM product. Therefore, the assimilation
of SSM products must be combined with other relevant satellite-based products, such
as LAI, to improve the accuracy of LSM outputs. It was checked that this conclusion
is valid for all seasons. The larger impact of the joint assimilation of S1 SSM and LAI
products can be explained by (1) the direct link of S1 SSM with soil moisture of the more
superficial soil layers, (2) the indirect effect of LAI on SSM and RZSM through its influence
on evapotranspiration, (3) the indirect effect of SSM on LAI, and (4) the direct effect of LAI
assimilation on RZSM. This finding is consistent with previous studies (e.g., [8,70]) and
confirms the importance of considering these two variables to disentangle the complex
land–atmosphere interactions. Most of the areas with positive LAI differences in response
to the assimilation (Figure 10g,f) correspond to closed forests, as seen in Figure 3. Over
urban areas, these differences are very small. Conversely, other areas showed a decrease in
simulated LAI in response to assimilation. Negative LAI changes were mostly observed
over agricultural areas.

Figure 11 shows the relationship between the LAI differences and WG5 differences
displayed in Figure 10 for the three experiments. When SSM was assimilated alone, no clear
relationship between the LAI differences and WG5 differences was observed, but increases
in WG5 in July 2019 with respect to July 2018 tended to trigger an increase in LAI (R = 0.22).
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When LAI was assimilated alone, changes in LAI were negatively correlated with changes
in WG5 (R = −0.82). This can be explained by the reduced evapotranspiration caused by
lower LAI values. The addition of S1 SSM in the assimilation changed this relationship
in the agricultural areas, with a greater variety of WG5 difference values, either negative
or positive. The largest WG5 differences could be related to increased irrigation during
summer 2019 to counteract the drought that occurred. The irrigation map in Figure 10d
presents similarities with the increased addition of water. However, detecting irrigation
from S1 data is challenging [71,72] because (1) the C-band signal from the soil is attenuated
by well-developed vegetation and (2) the S1 sampling time is not sufficient. Moreover,
errors in the land cover map used in the retrieval process may propagate to the SSM values,
especially in heterogeneous landscapes.
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in July between analyzed and open-loop LAI vs. the mean differences in July between analyzed and
open-loop WG5 between (a) S1 SSM assimilated alone, (b) PROBA-V LAI assimilated alone, and
(c) SSM and LAI jointly assimilated.

5.3. Can Geology and Land Use Affect the Assimilation?

Land use is a critical factor that can significantly affect the accuracy of satellite product
assimilation in land surface models [56]. The accuracy of assimilation results largely
depends on the similarity between land surface characteristics, satellite observations, and
the land cover database used in LSMs. Several studies have investigated the influence of
land use on the assimilation of satellite products in LSMs. For example, Draper et al. [73]
found that the accuracy of soil moisture assimilation was higher in cropland than that in
forested areas due to the higher sensitivity of the radar signal to soil moisture in cropland.
In this study, the ECOCLIMAP-II land cover map was used in the model simulations, which
differs slightly from the CGLS-LC100 map shown in Figure 3. The LAI—and indirectly
SSM—contributions in this specific case could be related to the percentage of forest present
in these areas in the ECOCLIMAP-II database, which is less than 50%, indicating the use of
other land uses in the ISBA model.

The Montpellier region is characterized as a very contrasted area in terms of land use,
as shown in Figure 3. The size of the Alès sub-domain (0.3◦ × 0.3◦) would correspond to
the size of a low-resolution SSM pixel. Figure 10 illustrates the large sub-pixel variability
that would be lost at low spatial resolution. Another characteristic of the Montpellier region
is the presence of karst areas in the northwest of the domain (Larzac and Cévennes) and
flood irrigation for rice production in the southeast of the domain (Camargue). Karstic
areas tend to trigger anomalous C-band backscatter signals [74,75], and irrigation is not
represented by the ISBA model version we used. In Section 4.1, it was shown that the OL
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WG2 tends to perform better than the S1 SSM, with better R and ubRMSD score values.
Therefore, we can use OL WG2 as a benchmark for S1 SSM over non-irrigated areas (OL
does not represent irrigation). Figure 12 shows S1 SSM vs. OL WG2 R and ubRMSD maps
showing specific problems with the S1 SSM over the karst areas. These maps also show
a discrepancy between OL and S1 over the flood-irrigated Camargue area caused by the
non-implementation of irrigation in the model version we used. Figure 12c,d also shows
the impact of the joint assimilation of S1 SSM and LAI (“SSM and LAI” experiment in
Table 2) on the R and ubRMSD score values.
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Figure 12. S1 SSM vs. OL WG2 over the Montpellier domain: (a) correlation coefficient, (b) ubRMSE,
(c) difference between correlation of S1 SSM vs. SSM and LAI analysis WG2 and correlation of S1
SSM vs. OL WG2, and (d) difference between ubRMSD of S1 SSM vs. SSM and LAI analysis WG2
and ubRMSD of S1 SSM vs. OL WG2. The karst area of Larzac and Cevennes and the flood irrigated
area of Camargue are shown (“1” and “2”, respectively).

Overall, the assimilation had a neutral or negative effect on R and ubRMSD over the
karst area. On the other hand, over the Camargue, the consistency between the S1 SSM and
the modeled WG2 was improved by the assimilation, with an increase in R (up to 0.05) and
a decrease in ubRMSD (down to −0.003). This shows that the assimilation is able to correct
the model deficiencies to some extent. To evaluate the difference of the analysis with respect
to the OL, with and without assimilation of S1 SSM and PROBA-V LAI, Figure 13 presents
the equivalent of Figure 12c,d for the “SSM” and “LAI” experiments (Figure 13a,b and
Figure 13c,d, respectively). As far as the correlation difference is concerned, it seems that
Figure 12c is more similar to Figure 13a (“SSM”) than to Figure 13c (“LAI”). The opposite
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can be observed for the ubRMSD difference, Figure 12d having more similarities with
Figure 13d (“LAI”) than with Figure 13b (“SSM”). Over the Camargue, the improvement in
consistency between the S1 SSM and the modeled WG2 was limited to a few grid cells in
the “LAI” and “SSM” experiments. The more extensive improvement obtained with the
“SSM and LAI” experiment over the Camargue demonstrates the synergy between S1 SSM
and LAI observations in the assimilation over intensively irrigated areas.
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Figure 13. Impact of SSM assimilation alone (a,b) and LAI assimilation alone (c,d): (a,c) difference
between correlation of S1 SSM vs. SSM and LAI analysis WG2 and correlation of S1 SSM vs. OL WG2;
(b,d) difference between ubRMSD of S1 SSM vs. SSM and LAI analysis WG2 and ubRMSD of S1 SSM
vs. OL WG2. The karst area of Larzac and Cevennes and the flood irrigated area of Camargue are
shown (“1” and “2”, respectively).

For the other two regions, the same study case as for Montpellier was performed for
July 2018 and July 2019. For the Toulouse region, July 2019 was also drier than July 2018.
As for Montpellier, the assimilation of S1 SSM alone did not have much impact on WG5.
The assimilation of LAI and LAI together with S1 SSM had more impact with respect to OL,
especially in agricultural areas. This can be explained by a possible irrigation relationship,
as observed in the Montpellier region, and more accurate S1 SSM retrievals in agricultural
areas [71]. Similar results were observed over Salamanca. Assimilation results for Toulouse
and Salamanca regions can be found in the Supplementary Materials of this paper.
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6. Conclusions

This study investigated the benefits of assimilating satellite-derived soil moisture
(SSM) products from the Sentinel-1 (S1) satellite in the ISBA land surface model at a spatial
resolution of 1 km, from 2017 to 2019, using the LDAS-Monde tool, for two regions in
Southern France and one in Spain. The validation of the S1 SSM was carried out by
comparing it with in situ measurements of soil moisture at a depth of 5 cm from the
SMOSMANIA network and Meteopole-Flux in France and the REMEDHUS network in
Spain. The results showed a good agreement between the two datasets for most of the
stations at 18:00 UTC, with some difficulties during summer due to irrigation processes in
Spain, as the REMEDHUS stations are located in semi-arid croplands. The SSM simulations
were generally more precise than the S1 SSM observations, and the ISBA simulations
could be used together with in situ observations to validate the S1 SSM. Three different
experiments were carried out to study the influence of the assimilation of S1 SSM and
PROBA-V LAI, alone and together, on the simulated soil moisture at the 0.01–0.04 m
(WG2) and 0.20–0.40 m (WG5) soil layers. It was shown that the S1 SSM assimilation alone
had little effect on the soil moisture at both depths, across all seasons. In contrast, there
was a more pronounced effect on soil moisture in the root zone (WG5) for the other two
experiments. Over agricultural areas, the effect of the three experiments on WG5 differed,
and the assimilation of S1 SSM had a greater impact on the analysis results. Similar results
were observed for the three regions considered in this study. Since the impact of S1 SSM was
particularly visible over agricultural areas, this shows that S1 SSM observations can help to
detect and monitor drought impacts on agriculture. The observed synergies between S1
SSM and satellite-derived LAI suggest that high-resolution SSM products have added value
in a data assimilation context. This was particularly true over irrigated areas, as irrigation
was not represented in the ISBA simulations. This finding contrasts with previous results
based on low-resolution SSM products. Future work will focus on the assimilation of S1
backscatter, as it provides information from both SSM and LAI [12].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15174329/s1, Figure S1 for the comparison of S1 SSM with in
situ observations; Figure S2, Figure S3, and Figure S4 for the modeling results over the Toulouse
region; Figure S5, Figure S6, and Figure S7 for the modeling results over the Salamanca region.
Tables S1 and S2 are for the comparison of S1 SSM and OL WG2 with in situ observations. Reference [51]
is cited in the supplementary materials.
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