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ABSTRACT: Emulating numerical weather prediction (NWP) model outputs is important to

compute large datasets of weather fields in an efficient way. The purpose of the present paper

is to investigate the ability of generative adversarial networks (GAN) to emulate distributions of

multivariate outputs (10-meter wind and 2-meter temperature) of a kilometer-scale NWP model.

For that purpose, a residual GAN architecture, regularized with spectral normalization, is trained

against a kilometer-scale dataset from the AROME ensemble prediction system (AROME-EPS).

A wide range of metrics is used for quality assessment, including pixel-wise and multi-scale

earth-mover distances, spectral analysis, and correlation length scales. The use of wavelet-based

scattering coefficients as meaningful metrics is also presented. The GAN generates samples

with good distribution recovery and good skill in average spectrum reconstruction. Important

local weather patterns are reproduced with a high level of detail, while the joint generation of

multivariate samples matches the underlying AROME-EPS distribution. The different metrics

introduced describe the GAN’s behavior in a complementary manner, highlighting the need to

go beyond spectral analysis in generation quality assessment. An ablation study then shows

that removing variables from the generation process is globally beneficial, pointing at the GAN

limitations to leverage cross-variable correlations. The role of absolute positional bias in the

training process is also characterized, explaining both accelerated learning and quality-diversity

trade-off in the multivariate emulation. These results open perspectives about the use of GAN to

enrich NWP ensemble approaches, provided that the aforementioned positional bias is properly

controlled.
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1. Introduction

Having access to large sets of weather forecasts or reforecasts is of plain importance in many

applications. For instance, some fundamental and applied studies in weather science rely on large

reforecasts of events, e.g., to detect climatological trends on specific patterns such as extratropical

depressions (Pantillon et al. 2017) or heavy precipitating events (Ponzano et al. 2020). Such

reforecasts, like operational forecasts in many centers, are usually based on ensemble prediction

systems (EPSs). However, the high computing and storage costs of these systems can limit their

configuration to a few dozen of members for convection-permitting, kilometer-scale ensembles.

This is often not enough to accurately sample the future distributions of weather variables. As

a consequence, emulation of forecasts at different scales can have potential applications for both

climatological studies and operational weather forecasting.

Increasing the ensemble size without resorting to the costly option of running additional EPS

members remains an open challenge. Existing solutions mainly rely on different flavours of

neighbourhood approaches (Roberts and Lean 2008; Ebert 2008), that are based on the assumption

of locally homogeneous weather. An original approach has been proposed by Vincendon et al.

(2011) to design perturbed precipitation forecasts by applying location and intensity perturbations

to the deterministic forecast. In recent years, generative deep learning has emerged as a novel

approach that can produce accurate synthetic data, and it has recently seen a broadening use by

the NWP community. In particular, generative adversarial networks (GAN, Goodfellow et al.

(2014)) and variational auto-encoders (VAE, Kingma and Welling (2014)) have already been used

for several NWP applications (Bihlo 2020; Ravuri et al. 2021; Leinonen et al. 2021; Bhatia et al.

2021; Harris et al. 2022). Of particular interest is the recent work of Besombes et al. (2021), that

demonstrates the ability of a GAN to emulate realistic atmospheric states (accounting for several

variables at different atmospheric levels) when trained on outputs of a simple climate model at a

relatively coarse resolution (≈ 300𝑘𝑚).

Generative techniques allow sample draws from a simple, latent distribution, which are then

mapped into higher-dimensional spaces (e.g the space of NWP model outputs). VAEs have an

encoder-latent-decoder structure: their latent space is used both to embed the input samples, and

then to generate maximum-likelihood samples from a parameterized distribution. This set-up is

prone to creating noisy samples, as exemplified by Dumoulin et al. (2016), and the de-noised
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samples can be blurry (Kingma and Welling 2019). GANs on the other hand are composed of two

competing networks (named the generator and the discriminator). Once trained, the generator of a

GAN usually produces highly detailed images (Radford et al. 2015; Karras et al. 2018).

Although the performances of GANs can be appealing, it can be challenging to stably train a GAN

model (Goodfellow et al. 2014; Arjovsky et al. 2017), as they are commonly affected by several

obstacles. The first one is mode collapse, which is the concentration of the samples produced

towards a small portion of the training distribution, and in extreme cases, a single sample. This can

be the case if the generator begins to reproduce a specific subset of the training set to anomalously

sharp numerical precision (Radford et al. 2015). It is a kind of overfitting. A second difficulty is

the sudden loss of quality of the generated samples. This can be due to inefficient feature extraction

from the discriminator, or from discriminator’s overfitting (Brock et al. 2018). This polarity

between samples quality and distribution recovery has been termed the quality-diversity trade-off

(Brock et al. 2018), or more recently the perception-distortion trade-off (Blau and Michaeli 2018).

Therefore, evaluating a GAN should focus on two main aspects: the intrinsic quality of the samples,

and the recovery of the main features of the training dataset ; this requires specific metrics.

Building on the work of Besombes et al. (2021), the objective of the present article is to examine

the ability of GANs to emulate multivariate outputs of NWP models at a kilometric resolution,

close to the one studied by Ravuri et al. (2021). To the authors’ knowledge, this aspect has not been

evaluated yet, and the sensitivity of GAN training advocates for a dedicated study. Two important

questions will be addressed: are GANs effectively able to emulate multivariate outputs with a

proper representation of every spatial scale ? How can one evaluate the diversity and realism of the

outputs of a GAN trained on such data ? This is a preliminary step before using GANs to enhance

EPSs, although such a task is left for future work.

This study proposes the training of a residual, spectrally normalized Wasserstein-GAN (Miyato

et al. 2018), using kilometer-scale model outputs from the AROME Ensemble Prediction System

(AROME-EPS). The AROME-EPS dataset involves several fields exhibiting fine-scale variations,

such as 10-meter wind speed components and 2-meter temperature. To analyze what effect different

variables have on training, several configurations will be examined with distinct sets of variables.

Borrowing from weather science and computer vision, a comprehensive set of metrics is considered

to assess different aspects of the GAN’s outputs. The spatial structure of emulated fields is evaluated
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with spectral transforms, correlation length scales, and scattering coefficients. These metrics are

complemented with distributional distances, using pixel-wise Wasserstein distance (Besombes

et al. 2021) and sliced Wasserstein distance (Rabin et al. 2011; Karras et al. 2018). With this set

of metrics, a detailed view of the GAN’s capabilities and weaknesses is provided, and we assess

its sensitivity to the choice of hyperparameters and to the chosen architecture and set-up.

The outline of the paper is as follows. The dataset and choices made for the setup are detailed in

Section 2; this includes choice of data, network architecture, implementation of the GAN training

algorithm. Section 3 details the whole set of metrics to be used in evaluation, and the evaluation

strategy. Section 4 presents the main results obtained for the joint emulation of three AROME

variables with a GAN. Section 5 compares the results obtained when varying the number and nature

of the AROME variables used as predictors. Section 6 discusses the results. Section 7 provides

conclusions and opens some perspectives for future work.

2. Generating AROME forecasts with a GAN: setup choices

a. Dataset and problem formulation

The dataset used is made of forecasts from the 16-member, 1.3 km resolution AROME Ensemble

Prediction System (AROME-EPS) (Bouttier et al. 2012; Raynaud and Bouttier 2016), covering

about 17 continuous months, from 15 June 2020 up to 12 November 2021. AROME-EPS is the

ensemble version of the AROME limited-area, convection-permitting model (Seity et al. 2011),

used operationally at Météo-France. The version of AROME-EPS considered uses a 1.3 km grid

resolution, and produces outputs on a regular latitude-longitude grid at 0.025◦ resolution. Initial

conditions are built using the AROME 3D-Var analysis (Brousseau et al. 2011) and perturbations

from the AROME Ensemble Data Assimilation (Montmerle et al. 2018), while lateral boundary

conditions are given by forecasts of the global ARPEGE-EPS model (Descamps et al. 2015).

AROME-EPS also uses the stochastically-perturbed parametrisation tendencies (SPPT) scheme

(Bouttier et al. 2012) and surface perturbations (Bouttier et al. 2016).

AROME-EPS 16-member forecasts are launched daily at 21:00 UTC, and the first 24h of pre-

diction with 3-hourly outputs are used for training. The fields considered are the two horizontal

directions of wind at 10-meter height, referred to as 𝑢 (zonal component) and 𝑣 (meridian compo-
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nent), and the 2-meter temperature (𝑡2𝑚). Additionally, as will be detailed in Section 5, orography

is used in some experiments as a constant field for the GAN to generate.

In order to provide a flexible experimental setup, and to keep the training runs in reasonable

time windows, a small sub-region of the AROME domain is selected. It corresponds to the

Mediterranean coastal region and the Rhône valley (see Figure 1). The sub-domain considered

thus spans 128×128 grid points, with an approximate 330 km side size. This choice of localisation

is motivated by the variable terrain features and identifiable weather patterns known to occur in

this region. The joint presence of the French Alps and Mediterranean sea, as well as marked

episodes of strong northerly winds (mistral events) and heavy precipitating events characterized by

localized strong gradients, both made an interesting case for trials on this region. Moreover, the

high resolution of the samples allows for investigation of several scales of variability, from regional

scale down to the typical grid scale of state-of-the-art convection-permitting models.

In the baseline configuration, fields of 𝑢, 𝑣, 𝑡2𝑚 for a given lead time, date and ensemble member

are learned jointly as part of the same sample. One single day of forecasts hence yields 8×16 = 128

distinct data samples. Altogether, the usable dataset is then composed of 66048 samples. The

shape of the GAN output tensors is then 3×128×128, with 3 being the number of variables and

128×128 the domain size.

Using a dataset from AROME-EPS increases the volume of training data, compared to using

the deterministic AROME forecasts over the same period. It is important to note that many of the

samples are indeed correlated, whether they correspond to close lead times or to different members

of a same forecast. However, for a given forecast, samples corresponding to different lead times and

different ensemble members are physically distinct, namely because of the fine-scale variability

of wind fields, and of the diurnal cycle of temperature. The ensemble-based dataset thus exhibits

an increased small-scale diversity compared to a deterministic dataset. It is thus possible to view

the ensemble as a NWP-specific data augmentation strategy, implemented upon a deterministic

forecast system on a given period. This study will thus assess to what extent a GAN can recover

this given, fixed distribution of high resolution samples enriched by the EPS.
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Fig. 1. On the left, the full AROME domain is shown, along with the 128× 128 sub-domain used for the

GAN training. Its main geographical features are represented on a topographic map (top right, with altitude in

meters). Dataset organisation with its main variability directions is shown on the bottom right. Each sample is a

3×128×128 array, corresponding to a ”volume element” of the ”dataset box” shown at the bottom right.

b. Choices for the GAN architecture

The GAN framework has been thoroughly investigated in recent years, and some guidelines have

emerged to design efficient and reliable GAN training algorithms. Let us denote with P𝑑𝑎𝑡𝑎 the

distribution of the target dataset to be emulated (in our case, AROME-EPS). The purpose of the

GAN is to provide a function 𝐺 mapping a high-dimensional, a priori defined distribution P𝑧 onto

P𝑑𝑎𝑡𝑎. P𝑧 is defined on a latent space 𝑍 taken as input to the deep network supporting 𝐺 (the

generator). Outputs from 𝐺 are then given as inputs to the discriminator network 𝐷, which tries

to distinguish between ”fake” samples outputted by 𝐺 (𝑍) and the ”real” samples 𝑋 ∼ P𝑑𝑎𝑡𝑎. The

output of 𝐷 is then a single scalar assigning a ”score” to each sample.

The objective function must ensure that outputs from 𝐷 confer high scores to the ”real” dis-

tribution while maintaining low scores on outputs from 𝐺. 𝐷 being optimized, 𝐺 then aims at
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producing samples confusing 𝐷, i.e obtaining high scores from 𝐷. An optimal training then results

in 𝐷 being unable to separate ”real” samples from ”fake” ones, though being optimally designed

to separate them. Ideally then, the distribution produced by 𝐺 completely and correctly recovers

P𝑑𝑎𝑡𝑎.

The GAN training framework exhibits convergence and stability issues. Notably, the well-known

”mode collapse” problem consists in 𝐺 concentrating the mass of P(𝐺 (𝑍)) on a small part of

the P𝑑𝑎𝑡𝑎 distribution while ”forgetting” about the rest. To tackle this phenomenon, Arjovsky

et al. (2017) emphasize the need for the discriminator to be a smooth (Lipschitz) function so that

it continuously separates ”fake” and ”real” distribution samples, and introduce the Wasserstein-

GAN framework (WGAN), noting that the discriminator is trained to assess a Wasserstein distance

between the ”fake” and ”real” distributions. Making the discriminator a Lipschitzian function of its

input samples comes down to bounding its gradient. Several formulations of the GAN’s objective

have since then implemented this regularization constraint, which effectively improved on the

original GAN formulation. The guidelines of Miyato et al. (2018), i.e. use spectrally-normalized

convolution layers, are used in this work. Spectral normalization (SN) consists in renormalizing

the weight matrices of the discriminator to bring their highest singular value to one (hence the

term ’spectral’). SN thus naturally enforces the Lipschitz constraint while being more efficient

than other techniques such as gradient clipping (Arjovsky et al. 2017), which imposes an arbitrary

upper boundary on the gradient, or gradient penalty (GP, Gulrajani et al. (2017)), which penalizes

the gradient when its norm deviates from unity.

To the author’s knowledge, this study is one of the first to propose a WGAN-SN framework

for geophysics applications. Among the studies dealing with the generation of atmospheric fields

with GAN, only Ravuri et al. (2021) use SN, while others, such as Besombes et al. (2021) and

Harris et al. (2022), keep using the WGAN-GP formulation. Miyato et al. (2018) only apply spectral

normalization on discriminator layers, but literature since then has acknowledged the positive effect

of using SN on both generator and discriminator (Brock et al. 2018). This double regularization is

implemented in the present setup.

GANs can also produce unstructured or strongly corrupted samples, depending on what features

from the dataset the discriminator is able to identify as crucial. This failure mode can happen in the

absence of mode collapse, or concomitantly to it (Brock et al. 2018; Mescheder et al. 2018). This
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makes the training of GANs difficult, even within the Wasserstein-GAN framework, and special

care has to be devoted to the networks’ hyperparameters choice.

Finally, the ”hinge-loss” objective formulation given by Lim and Ye (2017) is used, where both

𝐺 and 𝐷 are trained to minimize their loss:

L(𝐷) = E𝑋∼P𝑑𝑎𝑡𝑎 [max(0,1−𝐷 (𝑋))]

+E𝑍∼P𝑧 [max (0,1+𝐷 (𝐺 (𝑍)))]

L(𝐺) = −E𝑍∼P𝑧 [𝐷 (𝐺 (𝑍))]

These quantities are minimized through stochastic gradient descent, using an Adam Optimizer

(Kingma and Ba 2015) to adapt the weights of the two networks. Practically, expectations are

estimated by randomly drawing samples from the AROME-EPS dataset (for the P𝑑𝑎𝑡𝑎 estimator)

and from the P𝑧 distribution. The parameters of 𝐷 and 𝐺 are then updated alternatively. We set

P𝑧 to a centered, normal distribution of dimension 𝑑 = 64 with identity covariance matrix. The

choice of 𝑑 was determined by following previous literature (Besombes et al. 2021; Mustafa et al.

2019). This dimension was fixed all along the study, since Marin et al. (2021) indicate that this

parameter might not have a significant influence in the quality of generation, provided it is not too

small (typically, below 64).

A residual architecture is chosen, consisting of two residual nets directly taken from Miyato et al.

(2018), as shown in Figure 2. Starting from a 64-dimensional latent space, samples are shaped

into feature maps whose resolution gradually increases as they go throughout the generator, to be

finally outputted through a tanh layer. The discriminator follows a symmetric pattern downscale,

though being one layer deeper and involving more channels before the last dense, output layer. It

should be emphasized that, although the networks are relatively shallow, their estimated receptive

fields (i.e the size of the input region which contributes to a given output pixel) are large enough

to model long-range correlations. For example, a single residual block of the generator involves

two 3× 3 convolutions and one upsampling layer with a dilation factor of 2. This configuration

gives a maximal local receptive field of 10 pixels for each residual block. Since we stack 5 of these

blocks, the final, global receptive field spans beyond 128 pixels, which is the size of our samples.

9

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0006.1.
Brought to you by SORBONNE UNIVERSIT CADIST 1894 | Unauthenticated | Downloaded 09/20/23 12:38 PM UTC



Fig. 2. Network architectures of generator (a) and discriminator (b). Input layers are at the bottom of the

schematic and networks process tensors from bottom to top.

Therefore, the final sample is able to take into account each degree of freedom from the random

input.

Before training, the samples are re-scaled so that the global minimum and maximum values

of the dataset fit within the [−0.95,0.95] range. This is to ensure that the hyperbolic tangent

output of the generator can reach the dataset’s extremes and even go beyond these limits. The

mean, minimum, and maximum value are pre-computed over all grid points and all data samples.

Supplementary training parameters and procedures (floating precision, warm-up, initialization) are

detailed in Appendix A. These models are trained for a fixed number of 60,000 update steps, on

a cluster of 4 NVIDIA V100 GPUs with 32GB of RAM. Models are thus trained for 4 to 12h

wall-clock time, depending on the batch size. A step is equivalent to one update of both networks

after forward and backward pass. Thus, for two different batch sizes, this fixed number of steps

allows for different numbers of epochs (i.e sets of steps corresponding to 100% of the dataset seen

by both networks).

3. Evaluation metrics

a. Distributional metrics

The training is monitored thanks to three estimates of earth-mover distance (EMD, Rubner et al.

(2004)) between P𝑑𝑎𝑡𝑎 and P𝐺𝐴𝑁 =𝐺 (P𝑧). This metric allows for quantification of the proximity of
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two multidimensional distributions. The exact retrieval of the EMD is a hard problem in general,

and approximate EMD estimators converge slowly, necessitating large number of samples to be

accurate (Ramdas et al. 2015). However, when the data is univariate, one is left with:

𝑊1(P,Q) =
∫ 1

0
|𝐹−1

𝑃 (𝑡) −𝐹−1
𝑄 (𝑡) |𝑑𝑡

Where 𝐹𝑃, 𝐹𝑄 are the cumulative distribution functions associated to P and Q respectively.

Following the strategy of Besombes et al. (2021), two 1D-EMD estimates are computed: at each

test step, a random number of pixels is sampled, to evaluate the average of per-pixel, per-variable

1D-EMDs ; another average of 1D-EMDs is also evaluated on a fixed number of pixels, covering

the central 64×64 crop of the domain (and averaged over variables). These estimates are hereafter

termed 𝑊1,r (random pixels) and 𝑊1,c (central crop), and are a global measure of the quality of the

generation of marginal (per-pixel, per-variable) distributions.

A third estimate of EMD is taken from Karras et al. (2018) and termed multi-level sliced

Wasserstein distance (SWD𝑚𝑢𝑙𝑡𝑖). This estimate measures multi-dimensional EMDs of images at

different resolutions. Precisely, it decomposes the image signals on 4 different resolution levels

and generates a Laplacian pyramid: starting from the finest-grained level, each image is obtained

from the previous by Gaussian filter convolution, difference, and subsampling. One then measures

EMD on each of the levels obtained, for the joint distribution of all variables. These estimates go

from the fine-grained level (where images have 128× 128 dimensions and conserve small-scale

fluctuations) to the coarse-grained level (where images only have 16×16 dimensions and conserve

low frequency fluctuations). They are used to compare the distribution of patterns at each level.

The name ”sliced Wasserstein distance” (SWD) refers to the way the estimates of EMD on multi-

dimensional spaces are performed. This estimation procedure is unbiased (Rabin et al. 2011;

Kolouri et al. 2018), and robust as long as the number of samples is large enough. This yields

a 4-component distance (one component for each level): SWD𝑚𝑢𝑙𝑡𝑖 = (SWD128, SWD64, SWD32,

SWD16 ). Following the intuition of Rabin et al. (2011), the SWD𝑚𝑢𝑙𝑡𝑖 metric follows a kind of

’wavelet decomposition’ approach, as it measures the discrepancy between two image distributions

at several scales of fluctuations, for local neighbourhoods, merging the contributions of different

variables. A visual explanation of this metric is shown in Figure 3 and a detailed description is

given in Appendix B.
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Fig. 3. Schematics of SWD𝑚𝑢𝑙𝑡𝑖 computation. Starting from a base image (left), several levels are recursively

created via a Laplacian pyramid procedure. Random neighbourhoods are then selected (small black squares)

for each level, allowing for estimation of the EMD on these neighbourhoods for each level, thanks to the SWD

algorithm. Appendix B details this procedure.

A lower bound for these distances is set by their estimate from the AROME-EPS to itself. While

the theoretical distance is 0, estimating it through finite batches from the AROME-EPS dataset

yields a positive result. This distance is estimated by a bootstrap procedure. We select several

batches of 16384 samples (with no replacement within one batch, but with replacement from one

batch to the other), and then compute the EMD estimates between pairs of these batches. The

average value of the pair-EMD series is kept as the distance estimate (see Table 1). 16384 samples

represent nearly 25% of the full dataset: we thus deem that this procedure represents correctly

the diversity of the dataset. The values obtained correspond to lower bounds for EMDs, as they

reflect the internal variability of the dataset and account for finite sampling effects. If an EMD

estimate reaches the lower-bound values, it can be said that the GAN dataset would be completely

indistinguishable from the AROME-EPS dataset regarding this estimate.
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Metric 𝑊1,𝑟 𝑊1,𝑐 SWD128 SWD64 SWD32 SWD16 SWD𝑎𝑣𝑔

Score (×10−3) 1.4/0.3 1.4/0.3 1.5/0.1 1.5/0.1 1.6/0.1 4.6/0.9 2.3/0.2

Table 1. Estimates of the EMD from the AROME-EPS dataset to itself. These are estimated from 32

independent selections of 16384-batches pairs. Shown is average/standard deviation for the series of tested pairs.

b. Power Spectral Density Error

The EMD estimates are completed with the average power spectral density (PSD) spectrogram

obtained from AROME-EPS and GAN samples, for each variable. A root mean-square error

(RMSE) is taken on the difference of spectrograms (logarithmic scale) to give each scale the same

weight. It is measured in decibels (dB) and reads:

𝑃𝑆𝐷𝑒𝑟𝑟 =

√︃〈
(10log[𝑃𝑆𝐷𝐺𝐴𝑁 ] −10log[𝑃𝑆𝐷𝐴𝑅𝑂𝑀𝐸 ])2〉

≈ 10

√√√〈(
𝑃𝑆𝐷𝐺𝐴𝑁

𝑃𝑆𝐷𝐴𝑅𝑂𝑀𝐸

−1.0
)2
〉

Where ⟨·⟩ denotes average over spectral scales. This compares the deviation of the GAN from the

AROME spectral repartition of energy. The PSD𝑒𝑟𝑟 metric is frequently used to assess the realism

of GAN predictions (Leinonen et al. 2021; Ravuri et al. 2021; Harris et al. 2022), where errors

of a few dB are usually considered as good quality. Spectrograms are computed with discrete

cosine transform (Denis et al. 2002) to avoid aliasing effects due to the non-periodicity of our

samples. While this metric provides a sound evaluation of sample quality, it does not provide a

complete view of the organization of bi-dimensional fields, or of multi-scale interactions. Namely,

Gaussian noise fields can be tuned to recover the exact 2D spectrum of any other, fixed 2D field

(Bruna and Mallat 2013). On the other hand, evaluating the diversity of samples produced by the

GAN requires metrics that can evaluate the proximity between probability distributions, rather than

between individual samples.

Going further requires to consider supplementary diagnostics in the evaluation procedure, which

are presented in the remainder of this section.
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c. Correlation lengths

The PSD metric has a known drawback: as a completely non-local metric, it cannot provide

insight into the spatial distribution of field’s variability. In other words, it is not sensitive to

complex, hierarchical textures. Accounting for local structures and cross-scale interactions is

easier with metrics involving calculation of local quantities. An example is the local correlation

length scales. The correlation length scale can be defined as the typical length scale over which a

given field is spatially correlated to itself. Large correlation lengths on a given grid point indicate

that this point is often part of long-range structures. This diagnostic is common in data assimilation

(Pannekoucke et al. 2008; Raynaud and Pannekoucke 2013), where it can be used to fit the error

covariance matrix. Correlation lengths are also related to semi-variogram scores (Olea 1994),

commonly used to evaluate the performance of meteorological models. According to Weaver and

Mirouze (2013), this length scale can be given as:

𝐿𝑐𝑜𝑟𝑟 =

√︄
−2

Tr[𝑔𝑥𝑦]

Where 𝑔𝑥𝑦 = −E
[
𝜕𝑥𝑋𝜕𝑦𝑋

]
is the mean local metric tensor obtained from the normalized field

𝑋 and Tr[·] represents the trace operator. The 𝜕𝑥𝑋 (resp. 𝜕𝑦𝑋) notation corresponds to the spatial

gradient of 𝑋 in the zonal (resp. meridian) direction. These gradients are estimated from the

grid data using finite differences ; the expectation of 𝜕𝑥𝑋𝜕𝑦𝑋 is then taken over the samples of a

given dataset. The resulting 𝑔𝑥𝑦 tensor can be evaluated on each grid point and for each variable,

yielding maps of 𝐿𝑐𝑜𝑟𝑟 for each variable. The trace operator makes 𝐿𝑐𝑜𝑟𝑟 an isotropic quantity ;

further manipulation of the 𝑔𝑥𝑦 tensor can provide insights about local anisotropy (Pannekoucke

et al. 2008) but we chose to keep the simpler 𝐿𝑐𝑜𝑟𝑟 quantity as an indicator of structure sizes.

d. Second-order scattering coefficients

Here we present Scattering Coefficient approaches (Andén and Mallat 2014; Bruna and Mallat

2013; Cheng et al. 2020), and show how they can be used to extract useful information from

our meteorological dataset. Scattering Coefficients are derived from recursive wavelet filtering

of the fields. They have already been applied to meteorological information classification with

satisfactory results, e.g in Garcia et al. (2015). The calculation of first and second-order scattering
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coefficients is detailed in Appendix B. Let 𝜆1 and 𝜆2 denote scales with 𝜆1 < 𝜆2. The scales

considered can go from 2 grid points (circa 2.5 km) to 64 grid points (circa 160 km), and wavelet

filters 𝜓 for first and second-order coefficients have different orientations 𝜃1, 𝜃2.

The convolution of a field 𝑋 with𝜓𝜆1,𝜃1 , followed by modulus, yields a set of first-order scattering

maps 𝑀1(𝜆1) and resulting first-order coefficients:

𝑀1(𝜆1, 𝜃1) = |𝑋★𝜓𝜆1,𝜃1 |, 𝑆1(𝜆1) = ⟨𝑀1(𝜆1, 𝜃1)⟩

where ⟨·⟩ denotes spatial averaging and dependence to 𝜃1 is omitted.

First-order scattering coefficients 𝑆1(𝜆1) relate to the intensity of signal energy at scale 𝜆1. As

indicated by Cheng et al. (2020), they play a similar role to spectral decomposition.

Convolving again with 𝜓𝜆2,𝜃2 and taking modulus yields second-order maps and coefficients:

𝑀2(𝜆1,𝜆2, 𝜃1, 𝜃2) = |𝑀1(𝜆1, 𝜃1)★𝜓𝜆2,𝜃2 |

𝑆2(𝜆1,𝜆2) = ⟨𝑀2(𝜆1,𝜆2, 𝜃1, 𝜃2)⟩

Second-order coefficients 𝑆2(𝜆1,𝜆2) with 𝜆2 > 𝜆1 measure the energy at 𝜆2 of a signal which

has already been filtered to show variations of scale 𝜆1 only. This accounts for the organisation

of patterns of typical scale 𝜆1 on a larger scale 𝜆2. They give an average effect of multi-scale

interactions.

Figure 4 shows the chain of transforms: starting from a full AROME image, successive scattering

steps are applied. Regions with sharp wind gradients are highlighted by the first pass of wavelet

at scale 𝜆1 = 2 pixels. The second-order pass enhances clusters of such regions at scale 𝜆2 = 4

pixels. Such clusters contribute significantly to the 𝑆2 coefficient (e.g, the top right and center

left green frames). Regions with sharp variations organisation at larger scales (central green

frame) contribute to a lesser extent, while quasi-uniform regions are smoothed out, and have only

negligible contribution (white, bottom left frame).

Scattering coefficients can be used to measure the ”sparsity” of a signal. A sparse signal

will concentrate small-scale variations on localized points, and exhibit large-scale organisation of
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Fig. 4. Transformation chain for scattering coefficients. The base (left) image represents wind speed for an

AROME-EPS field. The center image represents a first-order, small-scale scattering map, and the right image is

a second-order, medium scale scattering map. Regions of interest are framed: regions having an important 𝑆2

contribution in green, and a region with a negligible 𝑆2 contribution in white. Spatial subsampling is due to the

wavelet decomposition algorithm (Andreux et al. (2018)).

these local variations. Cheng and Ménard (2021) introduced the following quantity as a sparsity

estimator:

𝑠21(𝜆1,𝜆2) =
〈
𝑆2(𝜆1,𝜆2)
𝑆1(𝜆1)

〉
𝜃1,𝜃2

A high value of 𝑠21 for a given scale pair 𝜆1,𝜆2 indicates that a significant quantity of signal

information lies in the second-order coefficient: the organisation of the 𝜆1 map is important to

account for the image global structure, and the field is rather ”sparse”. On the contrary, a field

exhibiting a uniform 𝜆1 map would have a low 𝑠21 for 𝜆2 > 𝜆1 (since only few regions would

exhibit variations at scale 𝜆2). Typically, Gaussian noise maps are not ”sparse”: most of the

information they contain can be extracted from their spectrum, or almost equivalently from their

𝑆1 coefficients. In Appendix B we show that a Gaussian noise field with the exact spectrum of

AROME-EPS samples exhibits lower 𝑠21 than AROME-EPS samples.

Averaging over orientation reduces the number of coefficients at the expense of orientation-

related information. To obtain information about fields anisotropy, Cheng and Ménard (2021)

proposed a ”shape” estimator:
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𝑠22(𝜆1,𝜆2) =
〈
𝑆2(𝜆1,𝜆2)𝜃1=𝜃2

𝑆2(𝜆1,𝜆2)𝜃1⊥𝜃2

〉
𝜃1

The 𝑠22 estimator helps determining in what directions multi-scale interaction is most likely to

happen, regardless of the initial orientation of patterns (represented by 𝜃1). They interpret large

𝑠22 as a marker for filaments (with 𝜃2 = 𝜃1 directions producing higher 𝑆2 values), while lower

𝑠22 indicates the presence of more ”roundish” shapes (with 𝜃1 ⊥ 𝜃2 directions producing higher

values). Again, this measure goes beyond radially-averaged spectra, as a Gaussian field with the

spectrum of AROME-EPS shows lower 𝑠22.

Both 𝑠21 and 𝑠22 estimators provide a set of coefficients (one for each 𝜆1,𝜆2 couple with 𝜆1 < 𝜆2).

One can estimate the discrepancy between the GAN and AROME-EPS data, for both the 𝑠21 and

𝑠22 distributions, as a measure of good reproduction of atmospheric structures. The sets of average

𝑠21 and 𝑠22 can be used to calculate RMSE distances between AROME-EPS and the GAN, yielding

two new metrics per variable. These distances are evaluated during training with 16384 batches,

and serve as quality estimators, similarly to PSD errors.

e. Complementary metrics

Cross-variable correlations will be assessed using bi-dimensional histograms, similarly to those

used by Gagne II et al. (2020). For a given pair of variables and a given dataset, these histograms

provide the empirical density function for the values taken by the pair of variables. Ideally, the

densities outputted by the GAN should overlap the densities extracted from the AROME-EPS.

This is a graphical illustration of the precision-recall metrics used, e.g., in Kynkäänniemi et al.

(2019). Among others, this enables the identification of systematic biases in the GAN-produced

distribution.

Finally, maps of 10𝑡ℎ and 90𝑡ℎ percentiles and inter-percentile range will be examined, in order

to focus on the representation of distribution tails.

The whole set of metrics used is summarized in Table 2, detailing attributes for each. As

explained above, the metrics are used to measure either diversity or quality. They make use

of several types of information: pixel-wise information does not take any spatial correlation into

account, neighbourhood information represents the aggregation of information over a limited range

of pixels, and finally non-local information aggregates information over the full sample scale, either
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by Fourier transform, or random sampling of neighbourhoods. Finally, metrics measure different

features of the signal, notably scale-by-scale information, multi-scale organisation, positional

information (when the metric is plotted on a map) or anisotropy.

Metric W1,𝑟/𝑐 SWD𝑚𝑢𝑙𝑡𝑖 2D histograms Quantiles PSD𝑒𝑟𝑟 𝑠21 𝑠22 𝐿𝑐𝑜𝑟𝑟

Definition EMD pixels EMD patterns Cross-var corr. Spectral err. Sparsity est. Shape est. Corr. length

Purpose Diversity ✓ ✓ ✓ ✓ × × × ×

Avg. Quality × × × × ✓ ✓ ✓ ✓

Inform. used Pixel-wise ✓ × ✓ ✓ × × × ×

Neighbourhood × ✓ × × × ✓ ✓ ✓

Non-local × ✓ ✓ × ✓ ✓ ✓ ×

Measures Per-scale info. × ✓ × × ✓ × × ×

Multi-scale org. × × × × × ✓ ✓ ×

Positional info. ✓ × × ✓ × × × ✓

Anisotropy × × × × × × ✓ ×

Table 2. Summary of the metrics used in the text. Checkmarks indicate which attributes a given metric

possesses, crosses indicate the absence of such attribute.

f. Evaluation strategy

We chose not to a priori separate the dataset between training, validation and testing data.

Though it is similar to the methodology of Besombes et al. (2021), this is arguably not a common

practice in machine learning. It nevertheless makes sense in our setup, for the following reasons:

• The generator is unconditional and never takes any other inputs than latent vectors. Its ability

to generate good-quality, high-resolution samples and a correct distribution once trained only

depends on the mapping it makes between the Gaussian latent distribution and the distribution

of samples in the ’physical space’.

• The aim of this study is to assess what features of the data distribution the GAN is able to

produce. Comparing the output distribution of the GAN to the training distribution thus

avoids to take into account the necessary distribution shift that occurs when splitting the

dataset between train, test and validation.

• Detecting mode-collapse, or more generally the loss of diversity, can be done through the

combined use of EMD distances, since these metrics provide large scores to distributions with
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too low spread. Cross-variable correlations can also help detecting biased or non-overlapping

distributions.

• Loss of quality can be examined through average PSD error, average correlation length scales

estimation and average scattering coefficient errors, each metric having its own scope.

To compare different hyperparameter sets, we focus exclusively on EMD distances and PSD

error. Once a satisfactory set is selected, we examine the samples produced by the GAN with the

other metrics.

To be consistent with the lower bound estimation procedures detailed in Subsection 3a, each

metric is applied to 16384 random samples from the AROME-EPS dataset and to the same number

of random GAN outputs. Especially for SWD𝑚𝑢𝑙𝑡𝑖 distances, this rather large number of samples

reduces the estimator’s variance, as it done in Odena et al. (2017) and Karras et al. (2018).

4. Results

a. Training stability and convergence

Even with widely used regularization strategies, training a GAN requires careful tuning of

parameters to ensure local convergence.

Initializing with a learning rate 𝑙𝑟0 = 4× 10−3 and using exponential learning-rate decays (𝑙𝑟 =

𝑙𝑟0 · 𝛾𝑡 with 𝑡 the number of epochs and 𝛾 = 0.9) avoids mode collapse and produces realistic-

looking samples for all batch sizes except the largest (512). Setting different learning rates or

different decay rates 𝛾 for 𝐷 and 𝐺 was detrimental to quality and convergence, even from a mere

visual perspective. In agreement with Mescheder et al. (2018), removing learning rate decay had

terrible results on performance, leading to severe mode collapse and forcing each pixel to the global

dataset average value (close to 0). Keeping 𝛾 = 0.9, we select the best performing configuration

among several batch sizes and learning rates according to estimates of 𝑊1,𝑟/𝑐, SWD𝑚𝑢𝑙𝑡𝑖 and PSD

errors, keeping the rest of metrics for post-training evaluation. The configuration with a batch size

(BS) of 32 and 𝑙𝑟0 = 4×10−3 is selected, as it globally has the lowest distributional distances and

PSD errors simultaneously. Details of the hyperparameters selection are shown in Appendix C.

Table 3 shows the scores obtained at the end of the run (i.e. when the loss curve plateaus). Figure

5 compares the average spectrum produced by the GAN to the AROME-EPS spectrum, showing
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Metric 𝑊1,𝑟 𝑊1,𝑐 PSD𝑢 PSD𝑣 PSD𝑡2𝑚 SWD128 SWD64 SWD32 SWD16 𝑠21,𝑢 𝑠21,𝑣 𝑠21,𝑡2𝑚 𝑠22,𝑢 𝑠22,𝑣 𝑠22,𝑡2𝑚

Unit/Scale ×10−3 dB ×10−3 ×10−3 ×10−2

Score 13 12 8.1 8.9 11 5.7 7.3 12 39 5.0 3.8 5.6 4.7 4.6 1.7

Table 3. Scores obtained with the different metrics used by the best-performing configuration of hyper-

parameters: PSD errors, SWD estimates, and RMSE of Scattering estimators with respect to AROME. Each

configuration was run 3 times to account for training variability ; the scores presented are the best obtained

among these runs. Appendix B (especially Figures B1 and B2) provides means to interpret the absolute values

hereby provided.

Fig. 5. Typical GAN PSD spectrograms (red line) obtained for the best configuration (𝐵𝑆 = 32, 𝑙𝑟0 = 4×10−3),

for each variable. Black dots indicate the average AROME-EPS spectrum.

good agreement and low error (below or around 1 dB for each variable), for all scales. Even

the sharp variations of temperature spectra (mostly due to topographic variations) are correctly

reconstructed despite slightly higher PSD errors. Notably, for the smallest scales, no significant

drop of PSD can be observed, meaning that even large wave numbers are given a correct amount

of energy.

One noticeable feature of Table 3 is the large difference observed from one SWD component

to another: they improve as the component’s scale decreases. Such behaviour was observed with

several hyperparameter configurations. Small-scale components such as SWD128 and SWD64 get

the lowest (i.e best) scores: small-scale distributions of local patterns are hence more correctly

fitted, at least by the best configurations. On the other hand, even these configurations have sensibly

higher SWD32 and SWD16 values. The floor values given in Table 1 are indeed larger for SWD16

than for other SWD components, indicating a larger intrinsic variability of the dataset for these

20

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0006.1.
Brought to you by SORBONNE UNIVERSIT CADIST 1894 | Unauthenticated | Downloaded 09/20/23 12:38 PM UTC



scales. However, the gap between the scores of the GAN capabilities and the AROME lower bound

is larger for SWD32 and SWD16: this observation might then indicate a poorer fit of large-scale

pattern diversity. This result was observed for all hyperparameter configurations (cf. Appendix

C). It is then reasonable to think this is related to the network architecture or to the training set-up.

In the remainder of this section, we provide an in-depth analysis of the GAN performances using

the set of metrics previously introduced.

b. Validation of results

1) Visual examination

As a first step, the quality of the GAN generations can be assessed subjectively. Some samples

are presented on Figures 6 and 7 for visual comparison.

First, the resolution of GAN-produced samples appears to be correct when compared to AROME-

EPS outputs. As can be seen especially on temperature maps, fine-grained mountainous regions are

correctly generated by the GAN, with a visible cooling with altitude. More detailed comparisons

can be made with the help of the geographical features given on Figure 1. Lengthy wind structures

are preferentially created over sea, while they are more granular over land. Specific weather

patterns are also present in the GAN’s samples, such as strong northerly wind running down the

Rhone Valley, an event locally known as ’mistral’. Figure 7 also shows that the GAN is capable of

producing consistent wind direction and speed at the highest detail level. The wind map especially

confirms the ability of the GAN to generate not only events such as mistral, but also a rather large

diversity of wind patterns. Qualitatively speaking, our GAN is thus arguably devoid of mode-

collapse. What is more, Appendix D shows that the GAN does not simply memorize exact samples

from the dataset but indeed produces unseen, distinct data samples.

On the other hand, the GAN often produces blurry wind patterns over sea, while AROME-EPS

samples are significantly more structured. The clear wind fronts present in the AROME-EPS

dataset also appear in the GAN’s samples, but, except for the mistral case, they lack a long-range

consistency and the ’filamentary’ aspect of AROME-EPS wind.
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Fig. 6. Left column: a random AROME-EPS sample. Right columns: random samples from the GAN.

The AROME-EPS samples are provided for visual comparison only, as there is no one-to-one correspondence

between the AROME-EPS samples and the GAN samples.

2) EMD maps

Pixel-wise maps of EMD for chosen iterations indicate which regions provide the largest diver-

gence. Figure 8 shows a comparison between the original dataset variance for each variable, and
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Fig. 7. Wind speed and superimposed wind direction. From left to right: AROME-EPS, random samples

from the GAN. Arrows are regularly spaced, with length proportional to intensity. The GAN produces diverse

and consistent situations for the wind, but lacks the detailed structure of the AROME data, especially over sea.

two maps of pixel-wise EMD at two different steps of training. Regions with highest variance

are globally less easily learnt by the GAN than their low-variance counterparts, especially at the

beginning of training. The land-sea mask is well visible here, as can be expected from physical

arguments. Indeed, wind variability over sea is higher: it depends more on the global weather

situation (e.g., presence of fronts) and is not forced by the topography. It coincides with long-range

structures with a broad range of directions and intensities. This is not the case over land, where

surface plays a major role in reducing the range of correlations. The northerly mistral path is

clearly highlighted, as well as the easternmost and westernmost wind variability poles (roughly

corresponding to ’tramontane’ wind episodes in the west). On the other hand, sea temperature is

relatively stable because of the water thermal inertia while the diurnal cycle is far more pronounced

over land. Especially, temperatures of mountainous summits are difficult to reproduce, because

cold extremes of the distribution are susceptible to occur there.

This implies variance-related error is probably a strong learning signal for the GAN, especially at

the beginning of the process. It is consistent with the observations made in the previous subsection

about position-related distributions being the easiest to fit.
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Fig. 8. AROME-EPS per-variable variance maps (top, normalized between 0 and 1) and the pixel-wise EMD

maps for two different training steps (middle, bottom). The values of EMD (estimated with 16384 samples)

are shown on a common logarithmic scale to emphasize spatial variations and training progression. Regions

of higher variance (circled in black in top row) exhibit higher error than others at the beginning of the training

(middle row); lower variance regions have lower error (green circling in top row); this difference tends to vanish

near training end (bottom row).
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3) Correlation length scales

The average spectrum of our dataset is almost perfectly fit by our GAN, but it does not take much

time for a human observer to distinguish between AROME-EPS and GAN samples. To further

analyze the spatial structures of AROME and GAN fields, maps of correlation lengths 𝐿𝑐𝑜𝑟𝑟 are

shown on Figure 9. These maps show a correct reconstruction of length scales on land, where the

location of high and low correlation areas is accurate, and the length scale magnitude order is right.

On the contrary, length scales over sea are noisy and exhibit artifacts (checkerboard patterns and

border effects), showing a clear gap of quality with respect to land. Note that these artifacts only

appear while inspecting this specific metric, while they are either difficult or impossible to spot

on individual samples. As will be discussed in Section 6, this is linked to positional information

given by specific land patterns. As this information vanishes over sea, non-optimized gradients

may show up on this subdomain.

4) Second-order scattering metrics

The 𝑠21 and 𝑠22 coefficients are plotted in Figure 10. One can thus compare the distributions of

these estimators for GAN samples with the ones of AROME-EPS. At least for small scales, the

AROME-EPS dataset is significantly sparser than its GAN counterpart (higher 𝑠21). Moreover,

AROME-EPS presents sensibly higher 𝑠22, indicating it contains more anisotropic, ’filamentary’

structures than the GAN samples. The 𝑠22 ’shape’ estimators are rather better fitted by the GAN than

the sparsity 𝑠21 estimators. These observations are consistent with visual inspection of samples.

While average spectrograms are nearly indistinguishable for this run, most 𝑠21 estimators differ

significantly. Indeed, the average coefficients are at least one standard deviation away from one

another for small 𝜆1. This difference weakens with larger 𝜆1, showing that large-scale organisation

is better recovered by the GAN.

Both 𝑠21 and 𝑠22 distances decrease with training, and this is consistent with the rising quality

of GAN outputs (not shown). However, the training dynamics is different from one variable to

another. While the sparsity 𝑠21 distance for 𝑡2𝑚 is higher than for 𝑢 and 𝑣, the 𝑠22 distance is lower

for 𝑡2𝑚 than for the wind variables. Globally, this indicates that both 𝑠21 and 𝑠22 are reasonable

estimators to describe the GANs performance to reproduce the AROME-EPS field’s structures.
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Fig. 9. Correlation length maps for AROME-EPS (top), the GAN (middle) and the AROME-EPS / GAN

difference (bottom), for each variable separately. Color scales (in kilometers) are different for each variable but

common between AROME-EPS and the GAN.

5) Bivariate histograms

Figure 11 shows bivariate histograms of AROME-EPS and GAN samples. A first observation

is that the mean and variance of all variables are adequately captured by the GAN. The GAN
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Fig. 10. Scattering 𝑠21 (top panels) and 𝑠22 (bottom panels) estimators for 𝑢, 𝑣, 𝑡2𝑚. Scales considered go from

𝜆1 = 2 grid points (5.2km) to 𝜆1 = 8 grid points (20.8 km) and 𝜆2 goes up to 16 grid points (41.6 km). Dashed

lines represent average quantities, shades represent ± standard deviations.

also surprisingly extrapolates beyond AROME-EPS’s data, putting significant probability mass

on regions closer to the dataset extremes. Meanwhile, it withdraws mass on other parts of the

AROME-EPS distribution. Nevertheless, the logarithmic density scale of the histogram shows

that the main modes of the distributions overlap, strengthening the assessment of a correct, global

behavior.

6) Percentiles and Inter-Percentiles range

To complete the overview of generation performance, a comparison of percentiles is performed

over 66048 samples (so the exact size of the dataset to avoid sampling-related bias). The quantities

considered are the 90th and 10th percentiles (𝑄90,𝑄10), as well as the 10-90 inter-percentile range

(Δ𝑄). Figure 12 compares the GAN and AROME-EPS statistics. The maximum percentile error

of the GAN is limited, but can go up to 3−4𝑚 𝑠−1 for wind data and 4 K for temperature.

Some regions also show a larger inter-percentiles range for the GAN, mostly over land for wind,

and over sea for 𝑡2𝑚. Others show a narrower range, mostly the Rhône Valley for 𝑢 and the
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Fig. 11. Bivariate histograms representing the cross-variable correlations. Axes represent the values taken by

each variable (on the common, normalized scale used for the training). Contours represent the density of data

points for each value, in logarithmic scale: full, colorized contours account for the AROME-EPS distribution

; greyscale contour lines account for the GAN distribution with identical levels to AROME-EPS. Histograms

are computed from 16384 samples for each dataset, each pixel of which is one datapoint (2.7×105 data points

altogether). Note the parts where the GAN extrapolates beyond AROME-EPS (red circling) and the parts where

it does not recover AROME-EPS (green circling).

mountains for 𝑡2𝑚. The inter-percentile range of the GAN is closer to the one of AROME for

temperature than for wind components, where it can be as large as 100%. This supports the fact

that the GAN is probably influenced by the positional nature of temperature data.

The average bias of the GAN over all grid points is close to zero for all variables and statistics,

except for 𝑄10 on 𝑡2𝑚. Localized, stronger biases exist however, and they depend on the location

as well as on the variable considered. This further supports that the GAN fits the distribution of

values, including relatively extreme ones, in an unbiased manner, but can locally exhibit strong

deviations from the AROME-EPS distribution, as shown in cross-variable sections.

As a partial conclusion for this section, it has been shown that the GAN has achieved very

good quality in terms of sample realism and diversity, power spectrum reproduction, and joint

distribution recovery. Moreover, the GAN can generate thousands of samples in a time range of

seconds (inference time is around 60s for 16384 samples), making the approach interesting in an
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Fig. 12. Difference of percentiles (top, middle) and relative inter-percentile range (bottom) for each variable.

Subscript 𝐴 denotes AROME-EPS while subscript 𝐺 denotes GAN. Red nuances positive bias of the GAN with

respect to AROME-EPS, blue ones denote negative bias.

ensemble generation framework. Finally, the set of metrics used has been shown to provide a

detailed, complementary view of the GAN’s capabilities and weaknesses.
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Configuration Baseline Config. 1 Config. 2 Config. 3

Generated Variables (𝑢, 𝑣, 𝑡2𝑚 ) (𝑢, 𝑣) 𝑡2𝑚 𝑡2𝑚, orog

𝐵𝑆/𝑙𝑟0 32,4× 10−3 32,4× 10−4 32,2× 10−3 32, 2× 10−3

Table 4. Summary of the hyperparameters selected for the multivariate experiments.

5. Multivariate configurations: a comparison

The impact of multivariate generation on training has now to be estimated, in order to assess

whether adding variables helps the GAN to identify useful correlations, or just makes the task more

difficult. The experiment is conducted with 4 different configurations (summed up in table 4):

1. Baseline configuration using (𝑢, 𝑣, 𝑡2𝑚) as generated fields.

2. Config. 1: Removing the 𝑡2𝑚 field and keeping only the generation of the (𝑢, 𝑣) couple.

3. Config. 2: Removing the (𝑢, 𝑣) couple and keeping the generation of 𝑡2𝑚 field.

4. Config. 3: Adding the generation of orography to Config. 2. The constant field of orography

is generated by the GAN and also taken into account by the discriminator. This is done to test

whether explicitly adding an information related to position adds value for the generation of

temperature (which is more correlated to position than the wind).

For each configuration, the best hyperparameters are selected, within the previously used param-

eter range for 𝑙𝑟0 and 𝐵𝑆. This assessment is made on averaging 3 runs’ scores with on-the-fly

validation metrics (𝑊1,𝑟/𝑐 and SWD𝑚𝑢𝑙𝑡𝑖) on 4096-sample batches, completed by visual inspection

of samples. This allows for a fast and reliable selection of hyperparameters, which are summed

up in Table 4. Once these are selected, evaluation is performed on another set of 3 runs for each

selected configuration. This final evaluation is performed with batches of 16384 samples, and all

the previously described metrics are used to yield the most extensive evaluation. The results are

reported in Tables 5 and 6.

Tables 5 and 6 show that a general effect of reducing the number of generated variables is an

increasing performance on most metrics related to spatial consistency (PSD, correlation lengths,

scattering metrics). Another interesting pattern is that scores of Config. 3 (𝑡2𝑚 and orography) are

generally worse than those of Config. 2 (𝑡2𝑚 only), and sometimes even than Baseline. Adding

orography information thus seems to have a mixed effect. On the one hand, it degrades the
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Metric 𝑊1,𝑟 𝑊1,𝑐 PSD𝑢 PSD𝑣 PSD𝑡2𝑚 SWD128 SWD64 SWD32 SWD16 𝑠21,𝑢 𝑠21,𝑣 𝑠21,𝑡2𝑚 𝑠22,𝑢 𝑠22,𝑣 𝑠22,𝑡2𝑚

Unit/Scale ×10−3 ×10−1 dB ×10−3 ×10−3 ×10−2

Baseline 13 12 8.1 8.9 11 5.7 7.3 12 39 5.0 3.8 5.6 4.7 4.6 1.7

Config. 1 14 12 7.4 7.9 NA 21 20 22 59 1.6 0.8 NA 2.7 2.7 NA

Config. 2 11 11 NA NA 7.4 6.6 10 10 30 NA NA 0.5 NA NA 0.7

Config. 3 11 10 NA NA 13 7.8 10 12 19 NA NA 3.2 NA NA 1.2

Table 5. Global score card to compare multivariate experiments. Reported scores correspond to the average

best score obtained after training saturation for the 3 runs. For all metrics considered, lower is better. Better

scores with respect to baseline are shown in bold black, while worse scores are in italic. NA: ”not attributed”, is

used when the metric is not applicable to the configuration.

MAE(𝐿𝑐𝑜𝑟𝑟,𝑢) MAE(𝐿𝑐𝑜𝑟𝑟,𝑣) MAE(𝐿𝑐𝑜𝑟𝑟,𝑡2𝑚 )

Baseline 2.4 km 2.2 km 11.7 km

Config. 1 1.8 km 1.6 km NA

Config. 2 NA NA 13.6 km

Config. 3 NA NA 15.2 km

Table 6. Mean absolute error for correlation length maps. Reported scores correspond to the best average

score obtained after training saturation for the 3 runs. For all metrics considered, lower is better. Better scores

with respect to baseline are shown in bold black, while worst scores are in italic. NA: ”not attributed” is used

when the metric is not applicable to the configuration.

synthesis of temperature spatial structures, as emphasized by PSD error, correlation length error

and scattering metrics. On the other hand, 𝑊1,𝑟/𝑐 scores, as well as the SWD16 scores, are sensibly

improved when orography is added. Removing temperature and orography and keeping wind

variables has an opposite effect. Indeed, Config. 1 shows improved spectral, scattering and

correlation lengths metrics, while 𝑊1,𝑟/𝑐 scores slightly degrade and SWD𝑚𝑢𝑙𝑡𝑖 scores dramatically

degrade. This shows a lack of ability of the GAN to capture the diversity of patterns in the

dataset, while improving the quality of individual samples. The largest distributional discrepancy

of Config. 1 even hints at some form of mode collapse.

Altogether, the quality of samples also improves when comparing Config. 1 and 2 to Baseline

(Figure 13). This is consistent with the majority of metrics involving spatial consistency. Especially

scattering metrics show a drastic improvement when reducing the number of variables. The GAN

is therefore much more able to identify and generate multi-scale organisation in the samples, albeit
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at the expense of pattern diversity. This points at the GAN using cross-variable correlations to

improve the diversity of samples, rather than their quality.

6. Learning absolute grid-point position: analysis and consequences

The above experimental results give a set of observations that can be exploited to diagnose the

strengths and flaws of the training design and their interaction with neural network architecture.

Let us summarize some of them:

1. The error signal at the beginning of the training is strongly correlated to the pixel-wise variance

of the dataset (Section 4).

2. Large-scale EMD are far worse than small-scale EMD in all configurations (Sections 4 and

5).

3. Performance for correlation length scales is far better on land than over the sea (Section 4).

Given that learning is performed on a fixed spatial domain, it is very likely that the main source

of information for learning in our setup is the implicit encoding of absolute grid-point position.

This phenomenon is already acknowledged in literature for convolutional networks (Alsallakh et al.

2021; Zhang 2019), and has been extensively studied in the case of GANs by Xu et al. (2020). It is

usually explained by the use of padding in convolutional layers: adding rows and columns of zeros

in the intermediate layers allows the network to detect the boundaries of the feature maps, and thus

implicitly infer the position of each pixel.

The present setup goes a step further by adding variables that are more or less directly correlated

to surface state, and thus to absolute grid-point position. Temperature’s variability is mostly

position-related over land, as it is obviously the case for orography and also, although moderately,

for 10-m wind. Over sea, this position-related information fades out, while transient features,

such as wind fronts, are prominent: the bias is weaker and the GAN struggles generating correct

correlation structures.

This positional bias probably plays a key role of dedicating most of the networks’ power to extract

and fit position-related features. Hence, this analysis is a plausible explanation for another set of

observations:
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Fig. 13. Comparison of random samples from the GAN when shifting the training configuration. One random

AROME-EPS sample is left for comparison. The most successful configurations for Config. 1 (wind variables

only) and Config. 2 (temperature only) are shown. In both configurations, most quality-related metrics do

increase. The organisation of long-range structures is enhanced in both Config. 1 and Config. 2, with fronts

more visible and showing better long-range structuring. Value scale here is voluntarily left free, to enable

visual-only comparison.
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1. Right from the Baseline configuration (where no explicit position is given to the network), the

reconstruction of temperature correlation with altitude is very accurate. In this case, learning

position-related features with fine-grained spatial detail is largely helpful.

2. Adding orography as a constant field to generate is largely detrimental to the sample quality,

according to the scores used, but improves the largest scales of multi-scale SWD (Section 5).

Positional information at large scales gives information on the overall structure of the field,

and is then most useful to generate the right distribution of patterns. Conversely, reinforcing

this bias through orography accelerates position-based overfitting.

3. The GAN is not able to use cross-variable correlations to improve individual sample quality,

but maintains more diversity (Section 5): the added information of each variable in the

Baseline configuration is likely redundant if it is only position-related. This prevents the GAN

to improve by using the less redundant, transient features which differentiate the 3 variables.

4. The GAN trades off diversity for quality in the wind-only configuration (Section 5). This

configuration is the one where positional information has least weight. It is thus probable

that reducing the positional bias makes the GAN focus on transient features quality that

play a larger role in discrimination, while relaxing the diversity constraint and narrowing the

distribution of patterns. This is likely guided by large-scale pattern detection being harder

without positional bias, as evocated in point 2.

These explanations imply that the setup is prone to overfitting, and that, contrary to the common

assumption, increasing batch size will degrade the performance of the GAN. We thus conduct a

final analysis using different initial learning rates and batch sizes (𝐵𝑆 ∈ {32, 64, 128, 256, 512},
𝑙𝑟0 ∈ {4× 10−4,2× 10−3,4× 10−3}). Using the Baseline configuration, we train the GAN from

scratch for each pair of learning rate and batch size, up to loss saturation. We first observe that

loss saturation occurs earlier with increasing batch size (cf Appendix C), underpinning the above

hypothesis. Figure 14 shows the relative degradation/improvement of metrics with respect to the

𝐵𝑆 = 32 configuration for each learning rate. Once saturated, 𝑊1,𝑐 only slightly increases with

batch size, at all learning rates. On the other hand, quality metrics such as PSD and 𝑠21/𝑠22

errors drastically degrade when batch size increases (up to ×5/×10 degradation for PSD). SWD𝑎𝑣𝑔
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Fig. 14. Relative evolution of different scores with respect to their value at the 𝐵𝑆 = 32 configuration, for

different, decreasing learning rates.

follows a path in between. The effect is less pronounced with diminishing learning rates, but it was

observed that smaller learning rates degrade scores globally (cf. Appendix C).

Reproducing pixel-wise, variable-wise distributions is thus rather an ”easy” mode of convergence,

achievable for most GAN configurations. Increasing batch size then likely strengthens the position-

learning dynamics. The GAN rapidly memorizes position-related features and more or less forgets

about the transient structures, which are smoothed out by large batches.

This set of explanations is consistent with the hypothesis of absolute grid-point position learning.

It also echoes ’classical’ quality-diversity trade-offs encountered in GANs (Radford et al. 2015;

Zhang et al. 2019; Brock et al. 2018) and the general perception-distortion trade-off of generative

models (Blau and Michaeli 2018) ; in our case, the trade-off is balanced by the variables fed to

the GAN, and the amount of positional information they contain. Learning on a fixed domain is a

crucial component of the present setup, which explains both the good quality of individual samples

and grid-point distributions, as well as the scale-dependent diversity fit.

Whether such positional bias should be learnt is an open question in general. As was shown

by temperature correlation with altitude, this is very helpful in weather-related tasks, where many

features depend on the absolute position. The way it is added in the training process, through

architectural features and the data itself, can thus be clearly framed and controlled with a priori
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heuristics. As an example, the positional bias could be strongly attenuated with variables that are

much less dependent on absolute position (e.g, temperature at 850 hPa). This could also be the

case if the networks were trained on random domain patches while conditioning both networks

through orography. In this case, the task is strictly more difficult as the diversity of the dataset

increases. We performed some preliminary experiments in this randomized setup: while it seems

that one indeed gets rid of positional bias (notably, increasing batch size improves SWD𝑚𝑢𝑙𝑡𝑖 and

PSD errors), this remains to be detailed and confirmed in future work.

It is also possible that more sophisticated architectures such as ProGAN (Karras et al. 2018) and

StyleGAN (Karras et al. 2019, 2020), which explicitly handle scale-dependent pattern generation

and disentangle features, perform notably better on the same setup.

7. Conclusion and perspectives

In this paper, meaningful metrics have been developed and applied to assess the ability of a

GAN to emulate outputs of the kilometer-scale AROME-EPS weather forecasting system. From

the above evaluation, the following conclusions can be drawn:

1. Multiple metrics, borrowed either from weather science or computer vision, are necessary to

diagnose the ability of a GAN to consistently generate weather states. Namely, going beyond

a mere spectral analysis to describe the quality of generated samples proved useful. Multi-

scale SWD was successful in characterizing the diversity evolution with scale ; scattering

coefficient were used to assess the consistency of structures, while the local correlation length

scales enabled a position-wise analysis of correlation reconstruction.

2. A residual GAN architecture is plainly able to generate multivariate distributions of NWP

models at kilometer scale. In particular, it can reproduce detailed textures as well as long-

range events with a good diversity. State-of-the-art regularization techniques and networks are

necessary for this task, and their training parameters must be carefully set to avoid divergence.

3. A study on multivariate generation was performed to probe the effects of adding and removing

variables to the training setup. An important phenomenon happening in our GAN was

characterized: the positional bias, induced both by padding and surface variables such as

2-meter temperature, is a prominent drive of the learning process. This is a double-edged
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sword: it enables fast convergence and emulation of crucial features such as temperature

correlation with altitude, while it degrades the ability of the GAN to generate high-quality

transient structures and accelerates the occurrence of overfitting. This seems to be part of the

wider quality-diversity trade-off, whose major component in the present case is given by the

specific weather variables used.

Precipitation has not been addressed in this work, because of the extremely skewed nature of its

distribution, specifically the overwhelming class of zero-precipitation days. Resampling techniques

(Sha et al. 2020; Ravuri et al. 2021) would arguably tackle this point, but the relatively small size

of the database discouraged us to go further in this direction on a first trial. This is a natural path

for future work.

Another promising path is the generation of states based on the current weather situation. This

framework has been used by many downscaling studies (Leinonen et al. 2021; Harris et al. 2022)

that take low-resolution data as inputs to generate ensembles of high-resolution outputs. One

could then ask whether a GAN framework could be used to increase the size of operational

ensemble forecasts, at a minimal computing cost. Open challenges would then be the precise way

to condition the GAN with ensemble outputs at the same resolution, as well as the ability to control

GAN-produced outliers. We believe the results showed in this study are encouraging enough to go

further in this direction.

Finally, a largely unexplored path is the production of temporal sequences of forecasts at the

lead times usually covered by the operational NWP models (up to 48-72h). While it remains open

whether the GAN framework is adapted to such a task, this would be a necessary step in order to

use data-driven, high-resolution, real-time ensemble emulation.
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APPENDIX A

Implementation details

The implementation of our GAN makes use of several techniques, acknowledged to either

facilitate convergence or accelerate computing. Here are reported the ones that were helpful. The

code is written with PyTorch (Paszke et al. 2019), using the multi-GPU Horovod API (Sergeev and

Balso 2018).

1. The residual blocks we use follow usual guidelines of literature (Miyato et al. (2018), Besombes

et al. (2021), Ravuri et al. (2021)). The main block consists of two stacked 3×3 convolutions

followed with LeakyReLU and BatchNorm, with a bilinear upscale/downscale layer. Either a

1×1 convolution or a direct sum is used as residual shortcut.

2. We use Automatic Mixed Precision (AMP), casting most operations to half-precision. This

leads to a dramatic acceleration of training and slashes memory consumption, keeping all runs

below 12 hours and leaving space for later development of architectures. Unfortunately, this

also comes with stability issues: some of the runs produced NaNs at their very beginning, with

specific hyperparameter configurations being completely hampered by AMP while running

smoothly with simple precision.
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3. It was found that the discriminator’s gradients or the failed cases were violently oscillating

at the beginning of training. We then introduced a small warm-up procedure where the

discriminator was updated several times for one update of the Generator. Choosing a update

ratio of 5 as in Gulrajani et al. (2017), on the single first generator step considerably reduced

the oscillations of gradients and made training stable for most of the 180 runs conducted for

this study.

4. Initialization of the neural networks weights has been shown an important factor for training

convergence (Bengio and Glorot (2010)). Here we keep the default random initialization for

all linear layers, while using Orthogonal Initialization for all convolutional layers. Besides

generally having a beneficial impact on training (Saxe et al. (2014)), this naturally helps

the Spectral Normalization regularization we adopted by starting with already spectrally-

normalized (random) weights.

APPENDIX B

Detailed description of metrics

a. Pixel-wise earth mover distance

For a distribution with only one degree of freedom, Wasserstein (earth mover) distance amounts

to comparing cumulative distribution functions through the integral:

𝑊1 =

∫
|𝐹P(𝑥) −𝐹Q(𝑥) |𝑑𝑥

Being given two series of 𝑁 sorted samples 𝑆𝑝 and 𝑆𝑞 drawn from P and Q respectively,

computing this integral comes down to averaging the difference of sorted values:

𝑊1 ≈
1
𝑁

∑︁
𝑖

|𝑆𝑝,𝑖 − 𝑆𝑞,𝑖 |

The computing complexity is essentially due to sort (O(𝑁 log𝑁)). The absolute value of 𝑊1

depends on the unit of the data, hence on the normalization process. To give a view of what

absolute values mean in our case, figure B1 presents two pixels with different 𝑊1 distances and
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Fig. B1. Correspondence between Wasserstein distance estimation and distributional fit for two grid points

in the best-performing configuration. Left: grid point with poor fit, right: correctly fitted grid-point. Each

distribution is estimated from 16384 samples.

gives a correspondence to the shape of GAN and AROME-EPS distributions. Poor distributional

fit (misplaced density, poor reconstruction of bimodal data) is characterized by a rather high 𝑊1

value, while a good fit (correct spread and tails, bimodality captured) shows lower 𝑊1. This

can be compared to the averaged 𝑊1,𝑟/𝑐 obtained by the best-performing configuration (around

12−13×10−3).

b. Sliced Wasserstein distance

Here we draw extensively from two works from Rabin et al. (2011) and Karras et al. (2018). The

Wasserstein distance is known to be an informative metrics for distributions (Arjovsky et al. 2017),

yet is computationally intractable and exhibits large variance in high-dimensional spaces (Ramdas

et al. 2015). Monte-Carlo approximation of such a distance is defined in Rabin et al. (2011), and is
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an unbiased and robust way to cope with the burden of 𝑊1 estimation in high-dimensional spaces

(Kolouri et al. 2018).

For multi-level estimation, we first decompose the original field into a laplacian pyramid, from

finest to coarsest scales. The process then consists in selecting a batch of random neighbourhoods

of 7×7 pixels, and normalizing each variable of the samples with respect to batch and spatial mean

and standard deviation. The distributions of neighbourhoods from the GAN and from AROME-

EPS samples are finally compared with the help of SWD. Since neighbourhoods include several

pixels, they have several degrees of freedom: SWD is thus a way to estimate the multidimensional

EMD on these neighbourhoods. We use the parameters of Karras et al. (2018) without modification,

with 512 unit directions for SWD and 128 random neighbourhoods for each level.

c. Scattering coefficients

Obtaining scattering coefficients consists in successive convolutions with wavelet filter banks

{𝜓𝜆}𝜆∈{20,...,2𝐽 }. The 𝜆 index corresponds to the discrete scale of the filter bank, i.e the number of

pixels in the filter’s bandwidth. The largest scale probed, denoted by index 𝐽, typically corresponds

to a half of the spatial extent of the field. In order to treat 2-dimensional fields, angular dependency

is added to the family of wavelets 𝜓, so 𝜆 indexes both scale and direction 𝜃 within the [0, 𝜋8 , . . .
7𝜋
8 ]

discrete interval: 𝜆 = (2 𝑗 , 𝜃). We consider the common family of complex Morlet wavelets,

satisfying stability and invertibility constraints (Mallat 2012), and we use the Python package

Kymatio developed by Andreux et al. (2018).

The convolution of a field 𝑋 with this wavelet family yields a set of first-order scattering maps

𝑀1(𝜆1):

𝑀1(𝜆1) = |𝑋★𝜓𝜆1 |

The convolution on a given 𝜆1 identifies structures of typical length scales 𝜆1. The modulus then

provides robustness of the transform to local deformations: slightly deformed patterns at the scale

of 𝜆1 produce close values of |𝑥 ★𝜓𝜆1 |. Combining convolution and modulus yields first-order

scattering images. These images themselves exhibit specific structures that vary on several (larger)

scales: second-order maps can also be extracted at scale 𝜆2 > 𝜆1:
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𝑀2(𝜆1,𝜆2) = | |𝑋★𝜓𝜆1 |★𝜓𝜆2 |

These second-order maps represent the organisation of 𝜆1 structures at the scale 𝜆2. Maps can

then be spatially averaged to produce global, translation invariant coefficients. Namely:

𝑆1(𝜆1) = ⟨𝑀1(𝜆1)⟩𝑠𝑝𝑎𝑐𝑒
𝑆2(𝜆1,𝜆2) = ⟨𝑀2(𝜆1,𝜆2)⟩𝑠𝑝𝑎𝑐𝑒

(where ⟨·⟩𝑠𝑝𝑎𝑐𝑒 denotes spatial-averaging). As emphasized by Cheng et al. (2020), 𝑆1 coefficients

are similar to spectral density as they decompose the signal scale by scale, and then average over

spatial dimension. Second-order scattering coefficients probe the organisation of each scale.

As a reminder, the summary statistics we use are drawn from Cheng and Ménard (2021). They

compare the amount of information stored in different scattering coefficients. Signal ’sparsity’ is

probed through an orientation-averaged comparison between second and first-order coefficients:

𝑠21(𝜆1,𝜆2) =
〈
𝑆2(𝜆1,𝜆2)
𝑆1(𝜆1)

〉
𝜃1,𝜃2

While distinction between roundish and filamentary shapes (accounting for anisotropy) is better

probed with a ratio of colinear versus orthogonal orientations for second-order coefficients:

𝑠22(𝜆1,𝜆2) =
〈
𝑆2(𝜆1,𝜆2)𝜃1=𝜃2

𝑆2(𝜆1,𝜆2)𝜃1⊥𝜃2

〉
𝜃1

To illustrate our claims, we take a subset of 256 AROME samples of wind speed, and we generate

Gaussian noise fields from the exact same spectrum. The created Gaussian maps have little multi-

scale organisation, and AROME samples are thus ”sparser” than their Gaussian counterparts.

Figure B2 shows that while spectra are well-aligned, there is a significant difference in field’s

structure, as shown by the 𝑠21 coefficient discrepancy. AROME is also slightly less isotropic, as

shown by its higher 𝑠22 for the smallest 𝜆1. This correlates well with the visual examination of

samples.
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Fig. B2. Comparison of Gaussian noise and AROME wind speed with respect to scattering estimators 𝑠21 and

𝑠22 (top), and to power spectral density (bottom). Samples are shown to provide visual assessment. Dashed lines

correspond to average quantities, while shades correspond to ± standard deviation. The scales shown go from 2

to 16 grid points.

To provide estimates of absolute values for RMSE on scattering coefficients and SWD𝑚𝑢𝑙𝑡𝑖, Table

B1 summarizes the scores obtained by the Gaussian field maps and the Baseline configuration. Note

that since the samples are normalized before applying the RMSE, all variables share a common

scale of values. This table shows that the GAN performs sensibly better than a Gaussian field in

any configuration, and that a Gaussian field does not recover the correct distribution of patterns as

measured by SWD𝑚𝑢𝑙𝑡𝑖.

APPENDIX C
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Metric SWD128 SWD64 SWD32 SWD16 𝑠21,𝑎𝑣𝑔 𝑠22,𝑎𝑣𝑔

Unit/Scale ×10−3 ×10−3 ×10−2

Lower bound (AROME vs AROME) 1.5 1.5 1.6 4.6 0.0 0.0

Gaussian field 53 60 49 316 9.0 9.7

Baseline 5.7 7.3 12 39 4.8 3.7

Table B1. Comparison between scores against AROME-EPS dataset for Gaussian field and the Baseline GAN

configuration. Scattering estimators have been averaged over all three variables for Baseline configuration.

Hyperparameter search

Experiments were carried out on 5 different batch sizes (𝐵𝑆 ∈ {32, 64, 128, 256, 512}) and 3

different initial learning rates (𝑙𝑟0 ∈ {4×10−4, 2×10−3, 4×10−3}). Each configuration was run 3

times to account for training variablity.

For all configurations, the discriminator loss curves exhibit a deep trough followed by a slower

ascent, up to a value below 2.0, after which the loss plateaus ; meanwhile, the generator loss

produces bumps after an abrupt decrease, before oscillating around 0.0 when the 𝐷 loss reaches

its maximum level. Figure C1 exposes some examples of this behaviour. The converged regime

corresponds to situations where 𝐷 is unable to separate the AROME-EPS and the GAN samples:

it is likely to indicate convergence of the algorithm on a local minimum. Using 𝐵𝑆 ≥ 256 provokes

rapid saturation of the losses, indicating early stagnation of learning. Reducing the learning rate

attenuates this effect and lengthens the ascent part. The 𝐵𝑆 = 32 experiment did not reach the

plateau for any of the learning rates but the highest, indicating that batch size and learning rate

both control the learning speed. Another direct effect of batch size increase is the reduction of loss

oscillations.

At the point where the 𝐷 loss reaches saturation, training is completed for most runs, as our

control metrics often saturate (not shown). In some cases, some components of SWD𝑚𝑢𝑙𝑡𝑖 tend to

slighlty increase after the plateau, indicating possible overfitting. A score card for all the tested

hyperparameter configurations can then be drawn. For each configuration, the best (i.e lowest)

score obtained is selected, for all metrics, after 𝐷 loss saturation when it happens, or the best score

altogether. Results are reported in Table C1.

Trying to select the best-performing configuration from this table, one can rule out the 𝐵𝑆 = 512

configurations, mainly because of high PSD errors. This corresponds to a very low visual quality

of samples (blurry images with checkerboard artifacts). Small batch sizes seem to perform better
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Fig. C1. Typical patterns observed in training. The network losses (blue: discriminator, red: generator) are

represented along with the number of steps, for different batch sizes and initial learning rates. Discriminator

losses tend to converge near 2.0 (blue lines), while generator losses oscillate around 0.0 (red lines).

than others, especially with respect to EMD and SWD metrics, even if they do not always perform

best on PSD errors. Moreover, the score spread for each configuration is rather wide and it is not

rare that different configurations produce scores on overlapping ranges. Altogether, 𝑙𝑟0 = 4×10−3

seems to perform better than any other, with the 𝐵𝑆 = 32 configuration scoring best on a wide

range of metrics.

Only the most successful configurations of Table C1 are kept to get a view of their EMD-scattering

scores and check their ranking. These observations are summed up in Table C2. The ranking

slightly changes: while increasing batch size degrades the scores similarly to previous experiments,

intermediate learning rate of 2×10−3 produce the best scores obtained. All experiments that are

not reported in Table C2 show worse scores than the ones shown.

APPENDIX D

Does the GAN copy the dataset?
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BS, 𝑙𝑟0 𝑊1,𝑟 𝑊1,𝑐 PSD𝑢 PSD𝑣 PSD𝑡2𝑚 SWD128 SWD64 SWD32 SWD16 SWD𝑎𝑣𝑔

Unit/Scale ×103 ×10−1 dB ×103 ×103

32, 4× 10−3 13/12/13 12/12/12 8.1/7.4/9.7 8.9/8.1/9.8 11/10/11 5.7/5.1/6.2 7.3/6.5/7.7 12/10/15 39/34/48 18/17/21

64, 4× 10−3 14/13/16 13/12/15 8.2/7.9/8.3 8.3/8.2/8.5 11/9.4/12 5.8/5.1/6.1 8.0/6.5/9.7 12/10/16 51/38/70 21/16/27

128, 4× 10−3 19/16/21 17/15/19 11/8.7/14 16/9.3/28 19/12/31 13/8.9/19 20/12/30 27/18/40 77/71/87 37/30/43

256, 4× 10−3 14/11/19 12/9.3/13.8 17/20/23 23/12/28 23/10/30 11/7.5/14 7.2/5.7/9.9 10/6.5/17 50/31/78 20/15/43

512, 4× 10−3 23/21/28 21/18/26 91/56/110 113/78/134 133/125/148 65/57/79 39/32/51 35/17/68 78/60/102 55/46/71

32, 2× 10−3 17/14/18 15/13/17 11/7.9/15 10/8.4/12 11/9.3/12 7.4/6.4/8.8 7.8/7.4/8.2 13/12/15 59/45/76 24/20/28

64, 2× 10−3 20/20/20 18/18/19 9.5/8.4/11 10/9.1/10 9.6/9.4/11 16/11/21 21/18/25 27/23/28 79/70/91 40/38/42

128, 2× 10−3 20/18/22 18/16/21 9.7/8.8/11 11/10/13 11/11/12 9.7/6.3/14 14/9.3/20 20/15/24 79/68/99 33/26/42

256, 2× 10−3 20/19/21 19/18/19 8.6/8.1/8.9 13/11/15 13/12/15 13/9.8/18 25/18/36 34/26/43 84/75/92 42/34/48

512, 2× 10−3 18/13/20 16/12/20 43/30/54 59/40/72 62/45/81 28/19/39 18/14/20 23/8/31 70/42/99 35/27/44

32, 4× 10−4 19/17/21 17/15/19 11/10/12 13/11/17 13/11/14 6.6/4.9/8.6 6.9/6.5/7.5 12/11/12 57/43/77 22/18/25

64, 4× 10−4 16/13/18 14/11/16 8.9/7.8/10 12/6.8/18 13/8.5/19 12/6.7/22 17/6.2/29 21/9.1/32 75/48/93 33/20/43

128, 4× 10−4 17/17/17 16/16/16 10/8.8/12 11/10/12 13/9.7/17 14/8.7/20 24/15/32 29/21/36 82/82/83 39/33/45

256, 4× 10−4 21/13/27 21/13/27 11/11/11 14/11/16 21/14/28 44/28/56 59/40/83 71/43/100 111/53/158 72/47/100

512, 4× 10−4 19/18/21 18/17/19 17/11/23 25/18/30 30/23/35 40/16/73 59/32/100 69/41/110 103/98/109 68/50/96

Table C1. Scores obtained by each configuration for our metrics panel. Reported scores correspond to the best

score obtained after training saturation for the 3 runs, in the order average/best/worst. For all metrics considered,

lower is better. For a given configuration and and a given run, all ”best scores after saturation” do not necessarily

correspond to the same step for all metrics. Overall best scores in bold black, worst scores in italic.

Estimator 𝑠21,𝑢 𝑠21,𝑣 𝑠21,𝑡2𝑚 𝑠22,𝑢 𝑠22,𝑣 𝑠22,𝑡2𝑚

Scale ×103 ×102

32, 4× 10−3 5.0 3.8 5.6 4.7 4.6 1.7

64, 4× 10−3 5.0 4.3 5.0 5.4 4.8 2.6

256, 4× 10−3 5.0 4.7 6.8 7.7 5.5 5.2

32, 2× 10−3 2.7 1.9 4.0 3.4 2.4 1.3

64, 2× 10−3 3.4 1.8 3.4 4.4 3.9 1.5

Table C2. Scattering RMSE estimators, for each variable and average over the 3 runs. Best results in bold.

Shown are only the most successful configurations as results from Table C1. The score ranking previously

obtained with PSD and SWD slightly changes with this metric.

An important consistency check consists in verifying that the GAN does not memorize the

training samples, and is able to generate sufficiently different samples. To examine this aspect,

we use the Mean Square Error (MSE) and look for the pair of GAN and AROME-EPS samples

with the lowest global (i.e including all variables and grid points) MSE distance, across both

GAN-generated and AROME-EPS datasets. Such samples are shown on Figure D1, and exhibit

noticeable visual difference. The distribution of global MSE distance of this specific GAN sample

46

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0006.1.
Brought to you by SORBONNE UNIVERSIT CADIST 1894 | Unauthenticated | Downloaded 09/20/23 12:38 PM UTC



Fig. D1. Comparing the MSE-nearest samples in the GAN and AROME-EPS datasets. These samples clearly

differ from each other. In the bottom row plot, the pixel-wise absolute distance is compared to the pixel-wise

standard deviation of the AROME-EPS sample. The global MSE related to this sample is reported at the bottom.

Fig. D2. Visualizing the distribution of MSE distance from AROME-EPS to the GAN sample of Figure D1.

The red dot denotes the distance to the nearest AROME-EPS sample. The distribution is broad and its peak is of

the order of magnitude of the normalized dataset variance.

with the whole AROME-EPS dataset is also plotted. As can be seen on Figure D2, this distribution

peaks at about 0.1, which is approximately the variance of the normalized AROME-EPS dataset.

The MSE-minimum is thus sensibly distinct from any AROME sample, while being at a consistent

average MSE distance from the whole dataset, further confirming the absence of mode collapse.
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