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ARTICLE

Robust and perfectible constraints on human-
induced Arctic amplification
Hervé Douville 1✉

The Arctic near-surface warming is much faster than its global counterpart. Yet, this Arctic

amplification occurs a rate that is season, model and forcing-dependent. The present study

aims at using temperature observations and reanalyses to constrain the projections of Arctic

climate during the November-to-March season. Results show that the recently observed

four-fold warming ratio is not entirely due to a human influence, and will decrease with

increasing radiative forcings. Global versus regional temperature observations lead to com-

plementary constraints on the projections. When Arctic amplification is defined as the

additional polar warming relative to global warming, model uncertainties are narrowed by

30% after constraint. Similar results are obtained for projected changes in the Arctic sea ice

extent (40%) and when using sea ice concentration and polar temperature observations to

constrain the projected polar warming (37%), thereby confirming the key role of sea ice as a

positive but model-dependent surface feedback.
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The Arctic amplification (AA) of global warming is a well-
known feature of climate projections, documented by
several generations of models taking part in the Coupled

Model Intercomparison Project (CMIP)1–3. Early climate
projections1 highlighted some diversity in the magnitude, spatial
distribution, and seasonality of the near-surface polar warming in
the Northern Hemisphere (NH). Yet, they showed a consistent
amplification of temperature anomalies ranging typically from 1.5
to 4.5 times the global mean warming. This phenomenon was
first attributed to a positive but model-dependent sea-ice albedo
feedback. Projected changes in poleward ocean heat transport and
in cloud cover at high latitudes were also identified as potential
contributors to the enhanced Arctic warming1. These early
findings have been corroborated by both CMIP5 and CMIP6
models. Yet, the underlying mechanisms, their seasonality, and
the quantification of their relative contributions to AA have been
the subject of on-going debate, as their better understanding has
not translated into much more reliable projections from one
generation of CMIP models to the next.

Starting with CMIP5 projections, the central role of dimin-
ishing sea-ice2,3, has been challenged by the identification of other
relevant mechanisms, such as large contributions from longwave
feedbacks4,5 and changes in atmospheric and oceanic heat
transport6,7. While most feedbacks were reported to contribute to
surface warming both over land and ocean, the positive sea-ice
albedo feedback is by definition only active over the ocean and is
maximum in summer2. Yet, the sea ice retreat is not a purely
radiative feedback and is also important in winter when it is
associated with a positive lapse rate feedback (LRF) and enhanced
surface evaporation over the Arctic Ocean. The positive LRF is a
noteworthy regional exception (given the overall negative LRF at
the global scale) which is dominated by local rather than remote
drivers8. Unlike polar warming, the total uncertainty in the
CMIP5 projections of AA was shown to be dominated by model
differences (rather than scenario uncertainty or internal varia-
bility), with a gradual shift of the maximum inter-model spread
from autumn to winter across the 21st century9.

In comparison with CMIP5, the latest-generation CMIP6
models show similar performance in their representation of
Arctic sea ice10. They also lead to similar qualitative conclusions
about the winter-dominated AA and the main associated
feedbacks3,11. Yet, they still show a substantial inter-model spread
in the projected Arctic warming12. For comparable emissions
scenarios, a stronger ensemble-mean polar warming was first
attributed to a larger surface albedo feedback, combined with less-
negative cloud feedbacks. However, scaling the Arctic warming by
the concomitant global warming yields a similar degree of AA in
CMIP5 and CMIP63. A radiative kernel method highlights that
AA does not primarily arise from the surface albedo feedback but
rather from the LRF in winter13. This positive LRF is a seasonal
phenomenon, triggered by sea surface temperature changes after
sea-ice loss, and not by the degree of atmospheric stratification.
The key role of the declining sea ice cover may also explain why
the inter-model spread of AA was found to decrease with
increasing radiative forcings14. The maximum AA is found in
winter, but is sensitive to the model-dependent sea ice melting in
early summer, which gets amplified in cold months by oceanic
heat storage/release15,16. In contrast, the transition from sea ice to
sea water during the melting season is associated with a sharp
increase in thermal inertia, which slows the Arctic warming in
spring and summer17.

To sum up, there are still inconsistencies and uncertainties
regarding the drivers and magnitude of AA in global climate
models. This can be related to multiple processes but also to
possible methodological issues: AA definition, single versus
multi-model studies, idealized increased-CO2 versus scenario

experiments, choice of the emission scenario and of the radiative
kernel for feedback decomposition, focus on either annual or
seasonal means. Moreover, polar feedbacks are tightly coupled to
changes in oceanic and atmospheric energy transport, so that
their contributions to AA should not be considered in isolation18.
Clearly, our assessment of these complex and elusive feedbacks
remains limited and other, top-down rather than bottom-up,
approaches may be needed to constrain the projections in this
highly sensitive region, on the front line of global climate change.
It should be stressed here that the present study is not the first
attempt to constrain future changes in Arctic climate (see the
relevant section below), but is unique in that it aims to condition
recent and future changes on observed changes in a consistent
way and using a Bayesian statistical method that has already been
tested successfully through the use of pseudo-observations (see
Methods). Before applying this method to assess the human
contribution to the recent observed AA and to future global
projections, the CMIP6 model uncertainties in a high-emission
scenario are first quantified and briefly discussed in the light of
previously discussed regional feedbacks.

Quantifying uncertainties in CMIP6 projections of the Arctic
climate
The inter-model spread in AA has not been reduced in the latest
CMIP6 global climate projections3,18 (Fig. 1). According to the
latest assessment report delivered by the first working group of
the Intergovernmental Panel on Climate Change (IPCC AR6
WG1), “there remains substantial uncertainty in the magnitude of
projected AA, with the Arctic warming ranging from two to four
times the global average in models”. This finding is supported by
our own analysis of 36 CMIP6 models. Our baseline period for
present-day climate is the 1995–2014 period also chosen by the
AR6 WG1. The focus is on the SSP5-8.5 high-emission scenario
and on an extended winter season (ONDJFM), when the Arctic
warming is the highest in both models and observations. This
choice allows us to maximize the signal to noise ratio and, thus, to
use a single realization for each model. Similar results are
obtained with the previous-generation CMIP5 models despite
their overall lower climate sensitivity (Supplementary Fig. 1). In
line with former studies11,14, a higher degree of amplification over
the Arctic Ocean is found in the mid-21st century (Supplemen-
tary Figure 2) or in a weaker emission scenario (Supplementary
Fig. 3). This result is consistent with a previous study14 suggesting
that, unlike over Antarctica, polar amplification becomes weaker
with increasing radiative forcings over the Arctic. It is also con-
sistent with a key role of the sea ice feedback given the limited ice
volume in the Arctic compared to Antarctica. This feedback
dependency to the base state may indeed explain why AA is
decreasing with further warming and may suggest the potential
interest of using sea ice volume rather than sea ice concentration
as an observational constraint in future Arctic studies.

If one does not scale the projected climate change by the
corresponding global warming in each CMIP6 model, the inter-
model spread also includes the contrasted climate sensitivity
across the CMIP6 models which adds to the previously shown
AA uncertainty (Supplementary Fig. 4). The latitudinal dis-
tribution of this spread is consistent with the pattern of uncer-
tainties in the response of sea-ice concentration (Supplementary
Fig. 5), snow cover (Supplementary Fig. 6) and total precipitable
water (Supplementary Fig. 7), among other variables that may
contribute to the high-latitude positive feedbacks on polar
warming. Not surprisingly, the projected response of total cloud
cover (Supplementary Fig. 8) ranges from slightly negative to
clearly positive values over the Arctic across the CMIP6 multi-
model ensemble. According to these models and in line with our
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results, the Arctic will become cloudier in a warmer climate,
especially in winter when the associated positive radiative feed-
back occurs primarily in the longwave portion of the spectrum.

Several metrics19 have been used to quantify the degree of AA
in observations. Some are based upon the ratio of linear trends or
of interannual variability between polar (here north of 60°N) and
global mean near-surface air temperatures respectively (hereafter
PSAT and GSAT). Another relies on the regression between polar
and global mean warmings. Such definitions are sensitive to the
selected baseline period and cannot be easily used to provide a
continuous monitoring given the weak signal to noise ratio at the
beginning of the instrumental record or even in the mid-20th
century, thereby leading to undefined or very unstable values.
This is the reason why another simple definition20 will be also
used in the present study, where AA is estimated as the difference
between concomitant changes in PSAT and GSAT. In the

following, two regional AA metrics will be thus employed: a
“fractional” AA based on the ratio between ONDJFM changes in
PSAT and the annual mean changes in GSAT against the same
reference period, and a “differential” AA computed as the dif-
ference between ONDJFM changes in both PSAT and GSAT.

Figure 2a shows a scatterplot of the differential AA in indivi-
dual CMIP6 models against the corresponding projected annual
mean global warming at the end of the 21st century relative to the
1995–2014 baseline period. Global warming accounts for only
two-thirds of the total spread in this AA metric among the
CMIP6 ensemble. This result highlights a notable contribution of
regional rather than global feedbacks. This is further supported by
Fig. 2b, c, showing a stronger correlation between AA and
ONDJFM anomalies in NH sea ice extent and NH total pre-
cipitable water respectively, than with global warming. In con-
trast, there is no obvious link between AA and projected polar

Fig. 1 Ratio of ONDJFM near-surface temperature anomalies to global warming (K per K) in the SSP5-8.5 high-emission scenario. Four multi-model
ensemble statistics are shown: the ensemble mean anomalies (top left panel), the standard deviation as a measure of inter-model spread (top right panel),
as well as the 10% and 90% local percentiles (bottom panels). All stereopolar maps are based on a set of thirty-six CMIP6 models with available monthly
mean tas outputs. All anomalies are estimated as the differences between the 2081–2100 and 1995–2014 climatologies and scaled by the corresponding
global warming.
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changes in total cloud cover (Fig. 2d). This finding is not sur-
prising given the other more important regional feedbacks
assessed in former studies and the fact that cloud radiative
feedbacks do not only depend on changes in TCC, but also on
possible changes in cloud elevation, vertical extent and radiative
properties which are beyond the scope of the present study.

Supplementary Fig. 9 repeats the same analysis as in Fig. 2 but
for polar warming rather than AA (i.e., without substracting the
GSAT from the PSAT anomalies). The linear fit between PSAT
and GSAT anomalies shows a best guess of 2.6 K per 1 K of global
warming at the end of the 21st century, which is much lower than
the recent amplification reported in the instrumental record. The
inter-model spread in PSAT anomalies is accounted for at 84% by
uncertainties in the projected global warming. Yet, and in line
with our previous results, the correlation is even higher when
considering NH sea ice extent or total precipitable water
anomalies. This again highlights that AA is modulated by
regional feedbacks and is generally stronger in models that pro-
ject a large reduction in sea ice extent and a large percentage
increase in tropospheric humidity. One key question is therefore
to compare the effect of different observational constraints, not
only on different manifestations of Arctic climate change (to
check whether they lead to consistent results about the regional
sensitivity of CMIP6 models), but also on polar warming (to

check whether some variables may be more efficient than GSAT
to constrain this specific metric).

Constraining and attributing recent changes in Arctic
warming
Beyond climate models, AA was also unveiled by paleoclimate
reconstructions21,22, instrumental and satellite records23–25, as
well as state-of-the-art atmospheric reanalyses25,26. An early
observational study23 based on a 125-year instrumental record
did not support the simulated AA of global warming, but high-
lighted that the Arctic climate variability is dominated by multi-
decadal fluctuations which may obscure long-term changes. The
key role of sea-ice internal multi-decadal variability could not be
conclusively identified, but was highlighted by several subsequent
studies27,28.

In the early 21st century, a study25 based on the ERA-Interim
reanalysis found a two-fold ratio between the Arctic and global
near-surface warming over the 1989–2008 period, leading to
further investigation about the role of changes in sea ice, atmo-
spheric and oceanic circulation, cloud cover and atmospheric
water vapor25. As in models, the observed Arctic warming was
shown to be strongest at the surface and primarily consistent with
the concomitant sea-ice retreat. No strong evidence was found for

Fig. 2 Scatterplots of the differential AA (i.e., ONDJFM PSAT minus GSAT anomalies) versus other metrics across CMIP6 models. a Global warming
(GSAT anomalies in K), b ONDJFM sea ice extent anomalies (in millions of km²), c ONDJFM Total Precipitable Water anomalies (in %) north of 60°N, and
d ONDJFM Total Cloud Cover anomalies (in %) north of 60°N. All anomalies are estimated over 2080–2099 versus the 1995–2014 baseline period. All
models are not available for all metrics. Red error bars denote ±1 standard deviation of interannual variability, while R² denotes the squared correlation
between the two variables shown in each panel.
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a substantial radiative impact of changes in cloud cover (despite a
recent increase in Arctic cloudiness29), but an increase in atmo-
spheric water vapor content was reported and may have con-
tributed to enhance the Arctic warming during summer and early
autumn. More recently26, a much stronger four-fold AA was
reported over 1979–2021 from multiple temperature datasets
including the state-of-the-art ERA5 reanalysis30,31. Such a
warming ratio is extremely rare in the CMIP5 and
CMIP6 simulations, thereby suggesting that it is either an
extremely unlikely event or that AA is systematically under-
estimated by climate models26. This result advocates for a better
understanding and consideration of internal climate variability
when constraining the Arctic climate projections with the
observed trends32.

Our analysis is based on the KCC statistical package33,34 and
on the combined use of GSAT and PSAT reconstructions (see
Methods). This Bayesian technique allows us to derive a posterior
distribution of the projected anomalies from the prior distribu-
tion derived from the raw model outputs. Doing so, it takes
account of both internal variability and observational uncertain-
ties to constrain recent and future simulated climate changes in a
consistent way. Besides the HadCRUT5 gridded dataset at a
relatively coarse spatial resolution (5° by 5°), the ERA5 reanalysis
has been also used to provide alternative regional constraints, but
with no estimate of observational errors. This may be partly
justified by the improved quality of ERA5 in the Arctic compared
to previous global atmospheric reanalyses31. Similarly, our
reconstructions of total precipitable water and total cloud cover
north of 60°N have been derived from ERA5 and should be
considered cautiously given the evolution of the global observing
system since 1959. Finally, the Arctic sea ice extent was also
estimated from the ERA5 sea ice concentration outputs but was
prescribed in ERA5 and originates from observations30.

Figure 3a shows a scatterplot of recent changes in ONDJFM
PSAT versus recent changes in annual mean GSAT across ten
CMIP6 models and in HadCRUT5 observations. This subset of
models has been selected because it also provides historical

simulations driven by individual radiative forcings (Fig. 3b).
Despite a wider definition of the Arctic domain (north of 60°N
compared to 66.5°N in a previous study26), our results support an
observed four-fold ratio between the Arctic and the globe
respectively (cf. the black cross in Fig. 3a). Yet, such a high value
is outside the range of simulated values found in CMIP6 models
and of the related 90% confidence interval of the prior joint
distribution (blue ellipse fitted on raw model outputs). All CMIP6
models seem to underestimate the observed Arctic amplification
factor, but part of this underestimation may be due to internal
variability which contributes to the overlap between the blue and
black ellipses in Fig. 3a. In the end, the uncertainty in the forced
response of the CMIP6 models (red ellipse) is much less than in
the prior distribution (blue ellipse). Yet, our constrained estimate
of the polar warming amplification factor (around 3) is not much
different from the unconstrained estimate. This value is higher
than the 2.6 ratio found at the end of the 21st century (Supple-
mentary Fig. 9a), which is fully consistent with the fact that the
Arctic feedbacks are time-evolving and forcing-dependent18.
Some feedbacks may be for instance sensitive to the base state and
thus to potential biases in climate models. Such a link can be
obscured by a few outliers, but is clear in the case of the cloud
response (Supplementary Fig. 10). Some CMIP6 models show a
stronger than observed Arctic cloudiness29 which is then so close
to 100% that it cannot increase across the 21st century. This result
highlights the need to further improve climate models and/or to
constrain their projections with reliable observations, but over a
long enough period to account for a possible time-dependence of
the Arctic feedbacks.

The KCC method also allows us to constrain and attribute
simulated changes in PSAT since 1850 (Fig. 3b). Not surprisingly,
the results show that the simulated changes cannot be explained
by natural forcings (cf. the timeseries shown in blue) and are thus
mostly due to human activities (cf. other colors). Yet, the polar
warming induced by the greenhouse gas (GHG) emissions has
been parly offset by anthropogenic aerosols across the 20th
century. Both unconstrained effects however appear to be
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Fig. 3 GSAT-dependence and attribution of recent observed changes in ONDJFM PSAT. a Scatterplot of recent changes in ONDJFM PSAT (K) versus
annual mean GSAT (K). Recent changes are simply estimated as the difference between the 2001–2020 and 1981–2000 climatologies, respectively.
Individual CMIP6 models are shown as cyan crosses while the ensemble mean and ensemble spread (5–95% confidence interval) of their prior and posterior
joint distributions are shown as crosses and ellipses in blue and red respectively. The red solid line shows the linear regression fit of the posterior joint
distribution. Observed changes and related uncertainties are shown in black. The gray dotted lines denote four illustrative amplification rates ranging from
2 to 5 K per 1 K of global warming; b Constrained (solid lines) and unconstrained (dashed lines) timeseries of the ensemble-mean PSAT response to natural
(NAT, with no significant change between the constrained and unconstrained timeseries), greenhouse-gas (GHG), other-anthropogenic (OA), and
anthropogenic (ANT=GHG+OA) forcings over the period 1850–2020. Black crosses denote the median HadCRUT5 anomalies across the 200 available
members.
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overestimated compared to the KCC results. This may arise from
several forcing and/or model deficiencies, such as a missing
warming effect due to the deposition of black carbon aerosols on
sea-ice. Interestingly, the constrained ensemble mean polar
warming due to all anthropogenic forcings (red solid line) is more
gradual than in the raw model outputs (red dashed line). This
seems realistic given the steady increase in GHG concentrations
and their overall dominant effect on near-surface temperatures.
The observed increase in PSAT (black crosses) is mostly attri-
butable to the GHG emissions but is only partly captured by the
ensemble mean CMIP6 historical simulations. The apparent
mismatch between the observed and forced component of the
polar warming, especially in the mid-twentieth century, suggests a
potential strong influence of internal climate variability, in line
with former studies highlighting the key influence of the ocean
multi-decadal variability in the Pacific and/or North Atlantic
oceans27,28.

Constraining future changes in Arctic climate
As discussed earlier, AA was found in both paleo- and 21st
century climate simulations, thereby suggesting that ice-core-
based reconstructions may provide quantitative insights on future
climate changes21,22. Yet, it may be inappropriate to simply scale
an observational estimate of past temperature changes to predict
the future climate sensitivity35. Moreover, the documented
dependence of both Arctic and tropical feedbacks on control
climate18 may challenge the feasibility of constraining climate
projections with paleo data.

A possible alternative to narrow model uncertainties in climate
projections is to use the so-called “emergent constraint” (EC)
technique36,37. This empirical statistical method consists of
linking future climate changes to observable metrics that can be
more or less accurately simulated by CMIP-class models. The
relevance of these metrics is usually supported by the existence of
a correlation with the projected future climate response across an
ensemble of models. ECs are generally applied in a simple
regression framework, where the ensemble is used to define a
predictive relationship that can be combined with observations to
produce an estimate of constrained projections. While this
method has drawn a growing interest and has been applied to
multiple variables, there are so far only few studies related to the
Arctic32,38,39. They all rely on observed trends (in Arctic sea ice or
near-surface temperature) rather than on model biases. This
strategy is consistent with our results that show no apparent link
between sea ice sensitivity and sea ice mean state across the
CMIP6 models (Supplementary Fig. 11).

Interestingly, a recent EC study40 was aimed at constraining
the large CMIP6 scatter in AA with a broad set of recent
observations co-located to model data. The results suggested that
the lower thermodynamic structure of the atmosphere is more
realistically depicted in climate models with limited AA (weakly
positive polar LRF) in the recent past. In contrast, remote influ-
ences that can shape the warming structure in the free tropo-
sphere are more realistically captured by models with a strong AA
(strongly positive Arctic LRF). The two contrasted findings
highlight the difficulty to define and combine relevant ECs based
on present-day climate. A former CMIP6 study39 found that the
projected Arctic warming is positively correlated with the simu-
lated global warming trend from 1981 to 2011 across the multi-
model ensemble. Given this simple EC, the concomitant observed
global warming suggests a weaker Arctic warming compared to
the CMIP6 median projection. This study supports our choice to
focus on recent temperature changes rather than on mean cli-
mate, but the KCC method will take advantage of the full his-
torical record to constrain the projections.

Moreover, there is increasing evidence that most ECs that have
been proposed to constrain CMIP5 projections are generally less
efficient when applied to CMIP6 models37. This spurious beha-
vior can arise from model interdependency37,38 through common
structural model assumptions and can lead to overconfident
constrained projections. Our KCC technique does not build on
empirical linear regression schemes and has been tested suc-
cessfully in a perfect model framework33. It has been already
applied at both global33 and local scales34. Beyond temperature,
KCC has been also used to constrain other variables, such as
global total precipitable water41 or global land surface relative
humidity42, leading to consistent results for both CMIP6 and
CMIP5 models.

Here, the method is first applied to 36 CMIP6 models under
the SSP5-8.5 high-emission scenario. In line with the limited
GSAT influence on our differential AA index (Fig. 2a), the KCC
results show the added value of using both global and regional
HadCRUT5 observations for constraining this metric (Fig. 4) and
the corresponding Arctic warming (Supplementary Fig. 12).
Using first only observations of global mean surface temperature
(GMST, combination of SAT over land and sea ice and of sea
surface temperature over the ocean), KCC leads to a narrowing
and downward shift of the AA projections (Fig. 4b), in line with
the well-known33 overestimation of global warming by some
CMIP6 models (Fig. 4a). In contrast, the regional constraint of
PSAT does not much change the ensemble mean projection but
mainly narrows the plausible range of projected AA. The
obtained reduction of the 90% confidence interval for the AA
index projected at the end of the century is however slightly
weaker (~23%) than when applying the GMST constraint (~26%).
Finally, and not surprisingly, the combination of both, global and
regional, observational constraints within KCC leads to an even
stronger narrowing of model uncertainty (30%) and suggests that
the most extreme CMIP6 responses are not compatible with the
HadCRUT5 observations.

Not surprisingly given our differential AA definition, similar
results are obtained when focusing on PSAT projections (Sup-
plementary Fig. 12) since GSAT and PSAT are not independent
metrics. Moreover, our conclusions are qualitatively similar when
using ERA5 rather than HadCRUT5 as an observational con-
straint of projected changes in PSAT (Supplementary Fig. 13),
although the narrowing of model uncertainty is here slightly
stronger given the assumption of no observational error (since the
ERA5 reanalysis only provides one reconstruction of historical
temperatures). The results are also not much sensitive to the
choice of the prior distribution (CMIP5 instead of CMIP6),
although the narrowing of model uncertainty is then less
noticeable given the lower unconstrained inter-model spread
across the CMIP5 models (Supplementary Fig. 14). Whatever the
prior distribution is, KCC suggests that the constrained ensemble-
mean PSAT warming relative to 1995–2014 is in 2100 slightly
above 10 K.

Discussion and conclusions
KCC and ERA5 can be also used to constrain other projected
changes in the Arctic climate. It is for instance possible to narrow
uncertainties in the projected ONDJFM sea ice extent with an
overall reduction of 5–95% confidence interval by 40% at the end
of the century (Supplementary Fig. 15). Note that the ERA5 sea
ice concentration, that has been here used as an observational
constraint, was derived from satellite data since ERA5 is a global
atmospheric reanalysis driven by observed oceanic bounday
conditions30. Similarly, ERA5 can be used to constrain the
average total precipitation water (Supplementary Fig. 16) or total
cloud cover (Supplementary Fig. 17) projected north of 60°N. The
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KCC results should be here considered with more caution since
ERA5 has been shown to exhibit spurious global trends in tro-
pospheric humidity given the gradual evolution of the assimilated
data38. Yet, they are physically consistent with those obtained for
PSAT and the northern hemisphere sea ice extent. GMST obser-
vations lead to lower the upper bound of the projected Arctic
warming and, consistently, have similar effects on the projected
high-latitude total precipitable water and cloud cover. In contrast,
our regional ERA5 constraints lead to exclude the lower bound
values of the CMIP6 ensemble. This is also consistent with the
opposite effects on the projected sea ice extent. This robust finding
confirms that regional climate change does not scale accurately
with global warming across different models43, and that local
observations are also important to constrain regional climate
change34,44. The results also suggest that more reliable recon-
structions of atmospheric humidity and cloudiness would be very
useful to better constrain the projections.

Finally, and given the partial redundancy between global and
regional temperature variations, we can use the ERA5 sea ice
extent rather than GMST to constrain the surface polar warming
(Supplementary Fig. 18). Results are then fully consistent with
our previous attempt to constrain PSAT (Supplementary Fig. 12).
Yet, the double constraint based on both ERA5 sea ice extent and

ERA5 PSAT leads to a slightly greater narrowing (by 37% instead
of 34%) of the 5–95% confidence interval, still without a major
change in the ensemble mean response. This result emphasizes
the added value of reliable gridded observations for constraining
climate change projections at the regional scale. Note that no
ERA5 uncertainty, only internal variability, is here accounted for
in KCC. Results are however not much sensitive if a 20% random
mesurement error is introduced in the ERA5 timeseries. Clearly,
KCC is a robust method for constraining both past and future
climate change, and will provide even more tightly constrained
projections as soon as we can use more reliable observations or
longer timeseries. It could be thus used in a semi-operational
context where climate projections are constrained on a regular
basis (every year), using best quality-checked and updated
datatsets.

Methods
Two simple regional AA metrics are considered in the present study. The fractional
AA index simply writes as the following ratio:

ΔPSAT=ΔGSAT

where ΔPSAT denotes the seasonal (here ONDJFM) mean increase in near-surface
warming north of 60°N (PSAT) and ΔGSAT denotes the annual mean global
warming relative to the same reference period (i.e., 1979–1998 in Fig. 3).
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Fig. 4 Constrained versus unconstrained changes in GSAT and ONDJFM AA. Mean (solid lines) and 5–95% confidence interval (shading) of the prior
(unconstrained) and posterior (constrained) distributions of the annual mean GSAT (K) and differential ONDJFM AA (K) forced response to both natural
and anthropogenic radiative forcings in historical simulations and SSP5-8.5 projections from 36 CMIP6 models: a HadCRUT5 GMST constraint on GSAT;
b HadCRUT5 GMST constraint on AA; c HadCRUT5 AA constraint on AA; d HadCRUT5 GMST and AA constraints on AA. After the constraint, the 5–95%
confidence interval at the end of the 21st century is reduced by 32%, 26%, 23%, and 30% in (a, b, c, and d), respectively. Note that these percentages are
minimum values since KCC leads to even more confident projections during the early to mid-21st century. The median values of the observed anomalies
are show as black (gray) filled circles when they are (not) used for constraining the models’ response.
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Such a definition is not suitable for constraining AA over the full historical
period (given the limited changes in GSAT in the early instrumental record), so
that an alternative differential AA index is defined as:

ΔPSAT � ΔGSAT

where both ΔPSAT and ΔGSAT denote ONDJFM changes in PSAT and GSAT
relative to a common reference period (1995–2014 in Figs. 2, 4).

Regarding the two CMIP generations of global climate models, we use all models
that provide monthly mean near-surface air temperature outputs (named tas in the
CMIP archives) for one realization (run 1) of both historical simulation
(1850–2014 for CMIP6, 1850–2005 for CMIP5) and the corresponding high-
emission scenario (2015–2100 for CMIP6, 2006–2100 for CMIP5). The list of
available CMIP6 models reads as follows (36 models): ACCESS-CM2, ACCESS-
ESM-1–5, BCC-CSM2-MR, CanESM5, CAS-ESM2-0, CESM2-WACCM, CMCC-
CM2-SR5, CMCC-ESM2, CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1,
EC-Earth3, EC-Earth3-CC, EC-Earth3-Veg, EC-Earth3-Veg-LR, FGOALS-f3-L,
FGOALS-g3, FIO-ESM-2-0, GFDL-CM4, GFDL-ESM4, GISS-E2-1-G, HadGEM3-
GC31-LL, HadGEM3-GC31-MM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR,
KACE-1-0, MCM-UA-1-0, MIROC-ES2L, MIROC6, MPI-ESM1-2-HR, MPI-
ESM1-2-LR, MRI-ESM2-0, NorESM2-LM, NorESM2-MM, and UKESM1-0-
LL.The list of available CMIP5 models is slightly shorter (28 models): bcc-csm1-1-
m, BNU-ESM, CanESM2, CCSM4, CESM1-CAM5, CMCC-CM, CMCC-CMS,
CNRM-CM5, CSIRO-Mk3-6-0, FIO-ESM, GISS-E2-H, GISS-E2-H-CC, GISS-E2-
R, GISS-E2-R-CC, HadGEM2-ES, inmcm4, IPSL-CM5A-LR, IPSL-CM5A-MR,
IPSL-CM5B-LR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-LR,
MPI-ESM-MR, MRI-CGCM3, MRI-ESM1, NorESM1-M, NorESM1-ME.

The observational constraint method, called Kriging for Climate Change (KCC),
has been previously applied to global and local warming31,32, and can be easily
applied to other climate variables38,39 as long as their internal variability can be
fitted with a simple mix of auto-regressive processes (Supplementary Fig. 19). KCC
consists of three consecutive steps. First, the forced response of each climate model
is estimated over the whole simulated period (here 1850–2099), using a spline
smoothing with 6 degrees of freedom, and the response to specific individual
forcings is also estimated for the attribution component of the study. Second, these
forced responses sampled from the available climate models (CMIP5 or CMIP6)
are used to build a prior of the real-world forced response. Finally, KCC allows us
to derive a posterior distribution of the past and/or future forced responses con-
ditional on the selected observations. The method can be summarized using the
following equation:

y ¼ Hx þ ε ð1Þ
where y represents the observed timeseries (a long vector including observed
changes in both GSAT and PSAT, here ONDJM anomalies relative to a common
1995–2014 baseline period from year 1850 to 2020 of the corresponding early
winter season), x is the forced model response (a long vector of the corresponding
simulated timeseries, here smooth ONDJFM anomalies relative to the same
1995–2014 baseline period as for observations from year 1850 to 2099 of the
corresponding early winter season), H is an observational operator (matrix), ε is the
random noise associated with internal variability and measurement errors (again a
long vector providing a time-varying error estimate for GSAT and PSAT if
available, as is the case with HadCRUT5 observations), and ε ~N(0, Σy), where N
stands for the multivariate Gaussian distribution. Note that there is no theroretical
motivation and not enough fully-independent CMIP6 models to assume a non-
Gaussian distribution. Raw model outputs are thus used to construct the prior on x
as: π(x)=N(μx, Σx). Then the posterior distribution given observations y can be
derived as p(x |y)=N(μp, Σp). More details about the KCC method can be found in
the related original studies and the R scripts and related data file of the current
application are available from https://doi.org/10.5281/zenodo.8004439.

Interestingly, KCC can be used exactly in the same way to constrain historical
and projected changes, but also historical changes driven by all or individual
radiative forcings as concatenated in the x vector (e.g., anthropogenic greenhouse
gases or natural radiative forcings only). By experiment design, the responses to
individual forcings are considered to be additive (without interaction between
different forcings or with internal climate variability) and so are the KCC-derived
constraints on the model responses to individual forcings given the use of a gen-
eralized additive model (GAM) when estimating the prior model distributions.

In the following, we assess the forced response of Arctic climate (e.g., spatially
averaged near-surface temperature north of 60°N or integrated Northern Hemi-
sphere sea-ice extent), as well as the response to specific subsets of radiative for-
cings (attribution to GHG versus natural or all forcings respectively). These forced
responses are then constrained by the historical observed global warming (https://
www.metoffice.gov.uk/hadobs/hadcrut5/) and/or by ERA5 reanalyses (https://
www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5).

We thus consider a very long CMIP6 vector consisting of four successive
components:

x ¼ ðGall ;Rall ;Rghg ;REnatÞ ð2Þ
where each element is an entire 1850–2099 timeseries of the forced response, G and
R stand for global mean surface temperature and a regional variable, respectively.
“all”, “ghg” or “nat” are the subsets of external forcings considered. Similarly, we

define an observed vector made of two components:

y ¼ ðGobs;RobsÞ ð3Þ
i.e., only observed timeseries are used in y. The length of these timeseries depends
on the selected dataset: 1850–2020 for HadCRUT5 and 1950–2020 for ERA5 (we
have noticed that ERA5 has been recently updated from 1940 onwards, but we feel
that the 1940s will not provide a notable additional constraint within KCC given
the limited GHG influence in the mid-20th century). Note the HadCRUT5 dataset
merges near-surface air temperature over land and sea ice, but sea surface tem-
perature over the free ocean. This blended global mean surface temperature
(GMST) is compared with the global mean near-surface air temperature (GSAT)
from climate models. This approximation was discussed in details in former
studies31,32 and does not represent as a major issue compared to the other sources
of uncertainty considered in the present study. The limited number of near-surface
observations over sea ice and the coarse resolution (5° by 5°) of HadCRUT5 are,
however, an incentive to also estimate the observed Arctic warming or other recent
changes in the Arctic climate using ERA5 at a much higher resolution (here 0.5°
by 0.5°).

All attribution or projection diagnoses presented below can be derived from the
posterior distribution p(x | y). μx and Σx are estimated as the sample mean and
covariance matrix of the forced responses. Σy requires a statistical modeling of
internal variability (Supplementary Fig. 19) and can also account for measurement
errors (if available). The intrinsic variance of the selected global and Arctic climate
indices is derived from observations after subtracting the multi-model mean esti-
mate of the forced response from HadCRUT5 and ERA5 data respectively. We also
assume a dependence between the global and regional variability, by accounting for
the correlation between the two residuals in Σy. The assessment of measurement
uncertainty in near-surface temperature is based on the HadCRUT5 ensemble (200
members) for both GMST and PSAT. In contrast, no observational error is
accounted for when using ERA5 as an alternative or additional observational
constraint.

To sum up, there are multiple advantages of the KCC method compared to more
empirical (non-bayesian) statistical methods which have been proposed so far and,
in a few cases, applied to the projections of Arctic climate change. On the meth-
odological side, KCC does not rely on empirical relationships between observable
and future climate properties (based on a limited number of not fully independent
models), but relies on a more straightforward use of the full instrumental record to
constrain both past and future climate changes in a consistent way. So doing, it
accounts for both model and observational uncertainties and only assumes a
Gaussian fit for both the prior and posterior distributions of simulated changes. It
is thus not much sensitive to the choice of the prior distribution (i.e., CMIP model
generation), at least much less than overfitted emergent constraints based on linear
regressions in which potential outliers may have a spurious effect on the con-
strained distribution. Although the method does not need a full understanding of
the dominant physical processes (which is a prerequisite for the use of more
empirical emergent constraints), the limited number of observational constraints
however raises the issue of selecting the most relevant observations in order to
obtain a maximum narrowing of the posterior confidence interval (cf. the final
discussion on using sea ise observations since 1950 compared to global mean
surface temperature since 1850 and the corresponding Supplementary
Information).

Data availability
CMIP5 and CMIP6 data are available on the ESGF archive at https://esgf-node.llnl.
gov/,HadCRUT5 and ERA5 data can be uploaded from https://www.metoffice.gov.uk/
hadobs/hadcrut5/and https://climate.copernicus.eu/climate-reanalysis, respectively.

Code availability
The full KCC statistical package is freely accessible at https://gitlab.com/saidqasmi/KCC
or under a GNU General Public License, version 3 (GPLv3), at https://doi.org/10.5281/
zenodo.5233947.

The additional related R scripts which have been used to plot Fig. 3 and 4 are available
at https://doi.org/10.5281/zenodo.8004439. The other figures are not specific to KCC and
can be easily reproduced with your favorite graphic tools.
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