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A B S T R A C T   

ASCAT normalized backscatter (σo
40) and slope (σ′) contain valuable information about soil moisture and vege-

tation. While σo
40 has been assimilated to constrain soil moisture, sometimes together with Leaf Area Index (LAI), 

this study is the first to assimilate σ′ directly to constrain vegetation states. Here, we assimilate σo
40 and slope σ′ 

into the ISBA-A-gs LSM using the Simplified Extended Kalman Filter (SEKF) using a Deep Neural Network (DNN) 
as the observation operator. The performances of the data assimilation (DA) and open loop (OL) are evaluated 
against in-situ soil moisture observations from the International Soil Moisture Network (ISMN), and LAI ob-
servations from the Copernicus Global Land Service (CGLS). Given an accurate and physically plausible obser-
vation operator, along with well-defined model and observation errors, the data assimilation system should yield 
improved estimates of the model states. However, results show that the DA performance is neutral compared to 
the OL in terms of the median unbiased root mean square error (ubRMSE) and Pearson correlation coefficient (ρ) 
across all validation sites. In addition, an analysis of the residuals and innovations confirms that DA had limited 
or no impact. This poor performance is perplexing. Furthermore, given the growing interest in the use of 
machine-learning-based observation operators, it is essential to understand the role that the use of the DNN may 
be playing in this poor performance. While representativeness errors and error specification play some part, it is 
demonstrated that the key factor constraining the efficacy of the SEKF is the correct estimation of the Jacobians 
that control the degree to which the observations update the states in the SEKF. It is argued that the DNN relating 
model states to satellite observations must have physically-plausible and robust Jacobians for the DNN to be 
effective in a data assimilation framework.   

1. Introduction 

Land atmosphere interactions initiated by soil moisture and modu-
lated by vegetation have a large impact on near-surface atmospheric 
circulation (Miralles et al., 2014; Koster et al., 2016). Thus land surface 
models play a crucial role in Earth system modeling and the prediction 
of climate extremes such as drought and heat waves (Berg et al., 2016). 
To improve the estimation of land surface variables (LSV) related to soil 
moisture and vegetation, there has been an increasing number of studies 

about assimilating remote sensing observations into land surface models 
(LSMs) (Mecklenburg et al., 2016; Lievens et al., 2017a; Bonan et al., 
2020). Generally, land surface assimilation systems constrain the model 
with one of two types of data: a) data products retrieved from satellites, 
such as surface soil moisture (SSM) retrieved from satellites like the 
Advanced Microwave Scanning Radiometer for Earth observation sci-
ence (AMSR-E) (Imaoka et al., 2010; Njoku et al., 2003; Reichle et al., 
2007; Draper et al., 2009, 2012), the Soil Moisture Ocean Salinity 
(SMOS) mission (Kerr et al., 2010; Ridler et al., 2014; Lievens et al., 
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2015; Martens et al., 2016) and Soil Moisture Active Passive (SMAP) 
mission (Entekhabi et al., 2010; Mladenova et al., 2020; Pinnington 
et al., 2021; Seo et al., 2021), as well as leaf area index (LAI) from 
Copernicus Global Land Service (CGLS) (Albergel et al., 2017; Bonan 
et al., 2020) or station based observations (Sabater et al., 2008; Albergel 
et al., 2010); and b) signals directly observed by satellites such as radar 
backscatter (σ) observed by Advanced SCATterometer (ASCAT) (Wagner 
et al., 1999b; Lievens et al., 2017a; Baguis et al., 2022) and Sentinel-1 
(Lievens et al., 2017b; Rains et al., 2022; Modanesi et al., 2022) or 
passive temperature brightness (Tb) from SMOS (Lannoy and Reichle, 
2016a, 2016b) or SMAP (Reichle et al., 2017a; Lievens et al., 2017b; 
Reichle et al., 2017b; Lu et al., 2020). 

Several studies demonstrated the capability of ASCAT observations 
to accurately capture the temporal dynamics of in-situ and modeled soil 
moisture observations across Europe (Albergel et al., 2009; Brocca et al., 
2010). Operational soil moisture products based on ASCAT data have 
been available at a global scale since December 2008 (Bartalis et al., 
2007), providing data with coarse spatial resolution (25/50 km) and 
nearly daily temporal resolution. One of the key advantages of ASCAT is 
the unique observation geometry, which enables measurements of the 
Earth’s surface from different incidence angles. The dependence of 
ASCAT backscatter on incidence angle is closely related to the surface 
dielectric properties and structure, i.e. the soil moisture and vegetation 
water content/biomass. ASCAT provides valuable information about 
vegetation water dynamics via normalized backscatter (σo

40), slope (σ′) 

and curvature (σ′′) derived from the Taylor expansions of backscatter to 
incidence angle (Hahn et al., 2017; Steele-Dunne et al., 2019; Shan et al., 
2022). Diurnal differences of radar backscatter were shown to reflect the 
variations in vegetation water content (Steele-Dunne et al., 2012). The 
slope has been demonstrated to be correlated with vegetation density 
(Steele-Dunne et al., 2019), plant physiological conditions (Pfeil et al., 
2020), plant phenology and water status (Petchiappan et al., 2021), and 
deep soil water availability (Shan et al., 2022). 

Many studies have assimilated ASCAT surface soil moisture products 
into LSMs to improve the estimates of surface soil moisture, root zone 
soil moisture and other hydrological variables (Brocca et al., 2010; 
Draper et al., 2011; Albergel et al., 2012; Aires et al., 2021; Seo et al., 
2021). Additionally, ASCAT products were also jointly assimilated with 
LAI observations into LSMs to improve the estimates of vegetation 
biomass (Barbu et al., 2011, 2014; Albergel et al., 2017, 2018). How-
ever, no studies concentrate on directly assimilating ASCAT normalized 
backscatter and slope. 

Directly assimilating the microwave observations, such as σ and Tb, 
to constrain the states of LSMs (Reichle et al., 2002b; Crow and Wood, 
2003; Balsamo et al., 2006; Han et al., 2014; Lievens et al., 2017a) ob-
viates the need for cumulative density function (CDF)-matching and bias 
correction (Fairbairn et al., 2017; Leroux et al., 2018) and also avoids 
potential cross-correlated errors between retrievals and model simula-
tions (Lannoy and Reichle, 2016a; Lievens et al., 2017a). Radiative 
transfer models (RTM) are commonly used as the observation operator 
to connect states with microwave observations. Lievens et al. (2017a) 
compared the assimilation of ASCAT σo and SMOS Tb into the Global 
Land Evaporation Amsterdam Model (GLEAM). They calibrated the 
Water Cloud Model (WCM, Attema and Ulaby (1978)) and L-band Mi-
crowave Emission from the Biosphere radiative transfer model (L-MEB, 
Wigneron et al. (2007)) to forward model ASCAT σo and SMOS Tb. The 
study demonstrated that assimilating ASCAT σo improves the model 
skills in surface soil moisture and land evaporation estimates. In passive 
microwave remote sensing, Lannoy and Reichle (2016a, 2016b) assim-
ilated SMOS Tb into the GEOS-5 Catchment Catchment Land Surface 
Model with the τ − ω model serving as the observation operator. The DA 
of SMOS Tb was compared to the DA of SMOS retrieval products. The 
assimilation of Tb showed larger innovations and local differences in 
performance, which were attributed to differences in how the Tb and SM 
observations were masked and to the different assumptions made in the 

retrieval model versus the forward model. A similar DA system is used 
for the SMAP Level 4 soil moisture product (Reichle et al., 2017b, 2021). 
The diagnosis of the DA system was fully examined on a global scale to 
assess the impact of assimilating SMAP Tb. In the snow assimilation 
community, Forman and Reichle (2015); Xue and Forman (2015) 
trained a machine learning model to extract information from micro-
wave observables to constrain the LSM. Then AMSR-E Tb was assimi-
lated into the Catchment model to improve the estimation of snow 
states. 

There are few studies directly assimilating ASCAT observables into 
LSMs. The WCM was used as the observation operator to reconcile the 
information in ASCAT normalized backscatter with the states in LSM 
Global Land Evaporation Amsterdam Model (GLEAM) by Lievens et al. 
(2017a) and a hydrological model SCHEME Baguis et al. (2022). Shan 
et al. (2022) proposed to train a Deep Neural Network (DNN) as the 
observation operator for ASCAT normalized backscatter and slope. The 
machine-learning based observation operator directly links land surface 
variables to the ASCAT observables. It is not a simple emulation of an 
RTM because an RTM requires parameters (e.g. surface roughness, 
vegetation structure, vegetation water content) which are not simulated 
by the ISBA. The data-driven method is able to connect the states which 
can be modeled by ISBA to those that are observed with ASCAT. 
Therefore it enables assimilation of the ASCAT observables without 
explicitly modeling the VWC. The normalized sensitivity coefficient 
(NSC) was examined to ensure the physical plausibility of the model. 
Corchia et al. (2023) also assimilated ASCAT normalized backscatter 
into ISBA by using a neural network as the observation operator. Their 
observation operator is trained on surface soil moisture and surface soil 
temperature from ISBA, and LAI observations from the PROBA-V satel-
lite. Their results show an overall improvement compared to the open- 
loop simulation, evaluated against PROBA-V LAI observations and in- 
situ soil moisture observations. 

The current study is the first to explore the joint assimilation of 
ASCAT normalized backscatter and slope. The premise of joint assimi-
lation of ASCAT normalized backscatter and slope is to simutaneously 
constrain the soil and vegetation dynamics in the LSM. Previous work 
achieved this by assimilating retrieved surface soil moisture products 
and LAI products (Sabater et al., 2007; Barbu et al., 2011, 2014; Albergel 
et al., 2017, 2018, 2019, 2020). They showed that assimilating the 
vegetation products together with soil moisture observations improves 
the estimate of land surface variables like evapotranspiration, SSM, LAI 
and CO2 fluxes (Sabater et al., 2007; Barbu et al., 2011, 2014), hydro-
logical variables (Fairbairn et al., 2017), and other variables (Albergel 
et al., 2019). This can lead to improved ability to monitor and forecast 
drought (Barbu et al., 2014; Albergel et al., 2018), and constrain the 
phenological cycle in the land surface model (Barbu et al., 2011). 
Analogous to VOD, dynamics in ASCAT slope have been shown to reflect 
changes in biomass (Steele-Dunne et al., 2019), phenology (Pfeil et al., 
2020) and water status (Shan et al., 2022; Petchiappan et al., 2021). One 
advantage of using ASCAT slope rather than VOD is that it is directly 
calculated from observations, thereby eliminating the need for as-
sumptions or ancillary data. Several studies have demonstrated the 
assimilation of VOD along with SSM and other observations (Mucia 
et al., 2022; Kumar et al., 2020) improves the estimation of various land 
surface variables such as evapotranspiration (Kumar et al., 2020), soil 
moisture and GPP (Mucia et al., 2022). Thus, joint assimilation ASCAT 
normalized backscatter and slope should be expected to improve esti-
mation of land surface (soil and vegetation) states. 

This study builds on Shan et al. (2022) by integrating the DNN into 
the Météo-France’s modeling platform SURFEX/LDAS Monde data 
assimilation framework (Albergel et al., 2017). Following the SURFEX 
assimilation methodology, ASCAT observables are directly assimilated 
into the LSM ISBA, using the observation operator developed by Shan 
et al. (2022). This study is conducted in western Europe using ASCAT 
data from 2017 to 2019, at ASCAT grid points (GPIs) containing Inter-
national Soil Moisture Network (ISMN) stations. Our hypothesis is that 
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the joint assimilation of normalized backscatter and slope will improve 
surface and root zone soil moisture as well as vegetation states such as 
LAI, if a) the Jacobians of the observation operator is physically plau-
sible; b) the model and observation uncertainties are reasonable and fit 
for the data assimilation system. The parameter settings and imple-
mentation follow previous SURFEX/LDAS Monde studies such as 
Albergel et al. (2017), Barbu et al. (2014) and Barbu et al. (2011). 
Following the approach of Reichle et al. (2017b), Kolassa et al. (2017) 
and Daley (1992), diagnostics based on innovations and residuals are 
used to assess whether the DA system is optimal and the model and 
observation errors are well-specified. The DA performance is evaluated 
against in-situ observations of soil moisture and independent LAI data 
from remote sensing. The DA results are compared to the LSM open loop 
(OL) to test the hypothesis that joint assimilation leads to improved skill. 

2. Data and methodology 

2.1. Data 

2.1.1. ASCAT normalized backscatter and slope 
ASCAT normalized backscatter and slope come from a second order 

polynomial which describes the ASCAT backscatter dependence on the 
incidence angle: 

σo(θ) = σo(θr)+ σ′(θr)(θ − θr)+
1
2
σ′′(θr)(θ − θr)

2
, [dB] (1)  

where the zeroth order term σo(θr) is the normalized backscatter at a 
reference angle (40◦), and the 1st and 2nd order coefficient σ′(θr) and 

σ′′(θr) are so-called slope and curvature (Hahn et al., 2017). Given the 
values of slope and curvature, measured backscatter at any incidence 
angle can be extrapolated to the reference angle by: 

σo(θr) = σo(θ) − σ′(θr)(θ − θr) −
1
2
σ′′(θr)(θ − θr)

2 (2) 

Each ASCAT instrument has two sets of three side-looking antennas 
(oriented at 45◦ (fore), 90◦ (mid) and 135◦ (aft) to the satellite track) 
each illuminating a 550 km wide swath on either side of the satellite 
track. Together, these provide so-called backscatter triplets [σf , σmid, σa] 
(Fore, Mid and Aft beam) at the incidence angles [θf , θmid, θa] (same 
angle 34–65◦ for Fore and Aft beam, 25–55◦ for Mid beam). Thus two 
local slope estimates are produced as: 

σ′
(

θmid − θa/f

2

)

=
σo

mid(θmid) − σo
a/f

(
θa/f

)

θmid − θa/f
, [dB/deg] (3) 

Then, slope and curvature values on day d are estimated using all 
local values distributed over the entire incidence angle range within a 
42-day window centered at d (Hahn et al., 2017). The value of λ is 
chosen to balance the bias and variance of estimates. The performance 
and robustness of the kernel smoother was tested in Hahn et al. (2017). 

2.1.2. Validation data 
The open loop (OL) and data assimilation (DA) simulations are 

compared to the in-situ soil moisture measurements of the International 
Soil Moisture Network (ISMN; Dorigo et al. (2011, 2013)) at locations 
illustrated in Fig. 1. ISMN stations were excluded if the percentage of 
effective time series was <85%. In addition, following Corchia et al. 
(2023), observations were not assimilated if the SURFEX model in-
dicates the presence of snow or frozen soil based on the initial values of 
the ice in the second layer (WGI2). The dominant vegetation types at 
ISMN stations are illustrated in Fig. 1. The ISMN soil moisture mea-
surements are quality controlled, and stations with a data record of less 
than one year are removed. The relationship between ISMN observa-
tions at specific depth and the ISBA simulated soil moisture in various 

Fig. 1. The main land cover types and fraction of France based on ECOCLIMAP II. (a) the dominant vegetation types of the 0.25◦ × 0.25◦ GPIs which contain the 
ISMN stations; (b) the vegetation fraction of the dominant vegetation types of each GPI. The GPI in Ireland is not included in later calculation of performance metrics 
due to the short ISMN data record. 
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layers is shown in Table S1. Root zone soil moisture (RZSM) is calculated 
as the soil moisture in a layer from 0.1 to 0.4 m because 20 of the 22 
ISMN stations have measurements at 0.2 m and 0.4 m. In this study, 
surface soil moisture (SSM) is defined as soil moisture from 0 to 0.1 m 
measured at the ISMN station or simulated by the land surface model. A 
summary of the ISMN stations is provided in Table S3. 

The LAI 1 km version 2 products from the Copernicus Global Land 
Service (CGLS) (Verger et al., 2014) are used as the independent eval-
uation data. Following Albergel et al. (2017), the 1 km resolution ob-
servations are interpolated to the 0.25◦ model grid points, as long as 
50% of the observation grid points are observed. LAI observations have a 
temporal frequency of about 10 days. LAI from ISBA simulations (both 
OL and DA) are evaluated against the CGLS LAI on days when the CGLS 
LAI is available. 

2.2. Methodology 

2.2.1. ISBA-A-gs model 
This study uses the CO2-responsive version of ISBA-A-gs (In-

teractions between Soil, Biosphere and Atmosphere (Noilhan and 
Planton, 1989; Noilhan and Mahfouf, 1996), here referred as ISBA) 
within the SURFEX platform (version 8.1) (Masson et al., 2013; Albergel 
et al., 2017, 2018). Simulations of dynamics of plant physiological states 
in land-atmospheric interactions are run with the “NIT” plant biomass 
monitoring option (Calvet et al., 1998, 2004, 2007). The current ISBA 
model utilizes Jacob’s biochemical A-gs model (Jacobs et al., 1996) to 
simulate the dynamics of photosynthetic processes responding to 
changing atmospheric conditions (Albergel et al., 2017). A multi-layer 
diffusion scheme is used to simulate the dynamics of soil water and 
temperature (Albergel et al., 2017; Leroux et al., 2018). The ISBA pa-
rameters are defined for 19 generic land surface patches as described in 
Table S2. 

The model was forced by the latest ERA5 (ECMWF Reanalysis v5) 
atmospheric reanalysis from ECWMF (Hersbach et al., 2020) from 1996 
to 2019. The meteorological forcing data are available on a 0.25◦ ×

0.25◦ grid, and include rainfall rate, 2 m air temperature, 2 m specific 
humidity, wind speed, wind direction, surface pressure, downward 
direct shortwave radiation, downward diffuse radiation, downward long 
wave radiation, snowfall rate and CO2 concentration. All ERA5 atmo-
spheric variables were interpolated using bilinear interpolation to match 
the grid points of ISBA, because the center points of ERA5 grid points are 
different compared to the center points of ISBA simulations or ASCAT 
data. The model was initiated by spinning up with 20 repetitions using 
the 1996 forcing data. The open-loop simulation was obtained using the 
ERA5 forcing data from 1997 to 2019. Then the data assimilation 
scheme is run from 1 Jan 2017 to 31 Dec 2019. 

2.2.2. Simplified extended Kalman filter 
The Simplified Extended Kalman Filter (SEKF) is used to assimilate 

the ASCAT observables into the LSM ISBA-A-gs. The update equation of 
SEKF for a single GPI follows: 

x̃a
k = x̃f

k + K̃k
(
yo

k − H
(
xf

k

) )
(4)  

where subscripts a, f , o indicate the analysis, forecast and observation, 
respectively. The term ̃xk represents the control vector or state vector of 
dimension (nbp, nbv) computed at time step k, in which nbp indicates the 
number of patches ISBA-A-gs simulates and nbv is the number of states. 
The term x represents the state vector aggregated over different patches 
which contains LAI, WG2, WG3, WG4, WG5, WG6, WG7, WG8 as 
described in Table S2. yo denotes the observation vector of dimension 
nbo. H denotes the non-linear observation operator, i.e. the DNN, which 
utilizes the input state vector aggregated over different patches within 
one GPI as well as diagnostic variables. Following Shan et al. (2022), the 
relevant diagnostic variables are net radiation (RN), vegetation inter-
ception reservoir water storage (WR), plant transpiration (LETR), gross 

primary production (GPP) and stomatal conductance (XRS) (See 
Table S1). The DNN is trained and tested using data from 2007 to 2016. 
Jackknife cross-validation is used to choose the best model which 
minimized RMSE among those submodels according to their perfor-
mances on the testing dataset. Then the DNN is independently validated 
from 2017 to 2019 following Shan et al. (2022). The input data of DNN 
comes from the OL experiment of ISBA from 2007 to 2019. Input land 
surface variables include the soil moisture in different layers and 
vegetation-related variables (See Table S1). The DNN is trained inde-
pendently per GPI to account for the heterogeneity of ASCAT footprints 
which contain combinations of different patches. The structure of the 
DNN is tuned by Bayesian optimization (Snoek et al., 2012), including 
the number of layers, the number of neurons of each layer, batch size, 
the choice of activation function and learning rate. More details can be 
found in Shan et al. (2022). 

The Kalman gain K̃k is computed at time k as follows: 

K̃k =

⎛

⎜
⎜
⎝

Kk,[1]
Kk,[2]
…

Kk,[12]

⎞

⎟
⎟
⎠ = B̃J̃

T
k

(
J̃kB̃J̃

T
k + R

)− 1 (5)  

where Kk,[p] satisfies the update equation for x[p]: 

xa
k,[p] = xf

k,[p] +Kk,[p]
(
yo

k − H
(
xf

k

) )
(6)  

and J̃ is the Jacobian values of the model (Mk,[p]) and the linearized 
observation operator (Hk,[p]) at time step k for patch p, which follows: 

J̃ =

⎛

⎜
⎜
⎝

Jk,[1]
Jk,[2]
…

Jk,[12]

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

Hk,[1]Mk,[1]
Hk,[2]Mk,[2]

…
Hk,[12]Mk,[2]

⎞

⎟
⎟
⎠ (7)  

and B̃ is a block diagonal matrix which is “patch-dependently” defined 
as: 

B̃ =

⎛

⎜
⎜
⎝

Bk,[1] 0 … 0
0 Bk,[2] … 0
⋮ ⋱ ⋮
0 … 0 Bk,[12]

⎞

⎟
⎟
⎠ (8) 

Here, the background error matrix is defined as “patch-dependent” 
because the model uncertainty for LAI is calculated based on the value of 
LAI in the different patches. The values of Bk,[p], p = 1, …,12 are defined 
following Mahfouf et al. (2009), Draper et al. (2011), and Albergel et al. 
(2017). The background errors of soil moisture are assumed to be pro-
portional to the dynamic range (the difference between the volumetric 
field capacity wfc and the wilting point wwilt), which is determined by the 
soil texture (Noilhan and Mahfouf, 1996). In this study, the perturbation 
applied on the states of soil moisture in the calculation of the Jacobian 
matrix were assigned as 1 × 10− 4 ×

(
wfc − wwilt

)
following Albergel et al. 

(2017), and 0.001 × LAI for LAI. For volumetric surface soil moisture, a 
mean standard deviation (SD) error of 0.04 m3m− 3 is prescribed. For soil 
moisture in deeper layers, SD error of 0.02 m3m− 3 is used following 
Mahfouf et al. (2009), Draper et al. (2011), Barbu et al. (2011), and 
Barbu et al. (2014). The observation error for σo

40 is set as 0.33 dB 
following Lievens et al. (2017a) and 0.005 dB/deg. for σ′ following 
Wagner et al. (1999a) and Hahn et al. (2017). 

The control vector evolution from time k to the end of the 12 h 
assimilation window (k + 1) follows: 

x̃f
k+1,[p] = M k,[p]

[
x̃a

k,[p]

]
= M̃k,[p]x̃a

k,[p] (9)  

where M k,[p] denotes the LSM ISBA-A-gs at time k at patch p. The term 
M̃k,[p] is the linearization of M k,[p] at patch p. For σo

40, the assimilation is 
done every 24 h at 10 am. For σ′, daily values are assimilated per 24 h. 
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By definition, the Kalman gain in Eqs. 4 and 7 would be optimal if the 
modeling process in Eq. (9) is linear, and the model and observation 
noises are zero mean and uncorrelated white noise with correctly 
specified covariance B̃ and R respectively (Reichle et al., 2017b). In this 
case, the SEKF estimates would provide the best least-squared estimates 
of the updated states given the value of the OL results, observations, 
model errors and observation errors (Kailath, 1968). Section 2.2.3 in-
troduces the diagnostics used to determine the degree to which these 
assumptions are valid, and therefore whether the DA system is optimal. 

2.2.3. Performance metrics and diagnostics 
The performance of the DA and OL are evaluated using unbiased root 

mean square error (ubRMSE, (Entekhabi et al., 2014)), bias and the 
Pearson correlation coefficient (ρ) against the ISMN observations and 
CGLS LAI observations. Additionally, the normalized information 
contribution (NIC, Albergel et al. (2018)) is used on ubRMSE and ρ to 
quantify the relative improvement or degradation of DA compared to OL 
estimates of states. The NIC is calculated for ubRMSE and ρ as follows. 
These metrics provide a measure of the percentage change (negative NIC 
for ubRMSE or positive NIC for ρ) or degradation (positive NIC for 
ubRMSE or negative NIC for ρ) in ubRMSE and ρ achieved by the DA 
system compared to the OL estimates. 

NICubRMSE =
ubRMSEDA − ubRMSEOL

ubRMSEOL
× 100 (10)  

NICρ =
ρDA − ρOL

1 − ρOL
× 100 (11) 

The evaluation of ISBA simulations against ISMN measurements 
follows the best practices outlined by Gruber et al. (2020) and used by e. 
g. Barbu et al. (2014); Lannoy and Reichle (2016a, 2016b), Lievens et al. 
(2017a). If a GPI contains a single ISMN station, the in-situ soil moisture 
measurements from the ISMN station are directly compared to the ISBA 
simulations (open loop and data assimilation experiments). For grid 
points containing multiple ISMN stations, the soil moisture measure-
ments from all ISMN sites are weighted and averaged, taking into ac-
count the land cover at the ISMN site and the fractional cover of that 
type ISBA within the GPI. 

The impact of data assimilation can be analyzed and diagnosed in the 
observation space. All diagnostics are summarized in Table 1 along with 
the corresponding hypothesis and references. In an optimally calibrated 
and linear system that satisfies the assumptions outlined in section 2.2.2, 
the innovations (observation-minus-forecast, O–F) are zero-mean white 
noise. This reflects an unbiased analysis that effectivelty extracts all 
information from the observations (Daley, 1992). To test this hypothe-
sis, the time series mean and lagged autocorrelation of the innovations 
are calculated. Autocorrelations at lags from 1 to 10 days are considered. 
Specifically, Daley (1992) demonstrates that the autocorrelation at a lag 
of 1 day (Ck

k+1) reflects the optimality of the Kalman gain. The optimality 
of the Kalman gain is achieved when the model and observation oper-
ator are linear and there is no misspecification of the forecast (or model) 
and observation errors (Daley, 1992). Consider the lagged innovation 

covariance matrix Ck
k+1 at time step k defined as eq. (2.12) in Daley 

(1992), 

Cn
n+1 = J̃k

[
B̃ J̃T

− K̃k
(
J̃kB̃ J̃

T
k +ℛ

) ]
(12)  

where K̃ is the estimated Kalman gain from 7, B̃ and ℛ are the correctly 
specified model and observation errors, respectively. If the DA system is 
optimal, then the estimated Kalman gain is equal to the optimal Kalman 

gain, i.e. K̃ k = B̃ J̃T[J̃kB̃ J̃
T
k + ℛ

]− 1. 
If the lagged innovation covariance is close to zero, it indicates that 

the Kalman gain matrix is optimal (Kailath, 1968; Daley, 1992) and the 
DA system extracts most of the available information from the obser-
vations. Conversely, the observations are not used efficiently if the 
lagged autocorrelation values are large. 

Moreover, if the model errors and observation errors are uncorre-
lated and normally distributed, the standard deviation of the in-
novations should be equal to the sum of the covariance of the model 
forecast and observation errors with correctly specified model and 
observation error (Reichle et al., 2002a; Desroziers et al., 2005; Barbu 
et al., 2011; Reichle et al., 2017b). That is, 

E
[(

yo
k − H

(
xf

k

) )(
yo

k − H
(
xf

k

) )T
]
= R+ J̃kB̃J̃

T
k (13) 

The term on the left hand side represents the actual errors encoun-
tered in the DA systems while the right hand side contains the pre-
scribed, assumed errors. Thus, the time series standard deviation values 
of the normalized innovations (normalized observation-minus-forecast 
or normalized O–F) are computed as: 

std(normalized innovations) = std

⎛

⎜
⎝

yo
k − H

(
xf

k

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R + J̃kB̃J̃
T
k

√

⎞

⎟
⎠ (14) 

Values of this standard deviation greater than one indicate that the 
DA system underestimates the actual errors (observation error and 
forecast error), and values less than one indicate that the actual errors 
are overestimated. Note that the diagnostic only addresses the total error 
and does not distinguish between observation and forecast errors. 

Another useful diagnostic is the residual (Observation-minus-anal-
ysis, or O-A), which is defined as the difference between the observation 
and the observation equivalent predicted from the updated states. In a 
well-calibrated system, the time series mean values of the residuals 
should be zero. The time series standard deviations of residuals should 
be smaller than the time series standard deviations of innovations, 
which would reflect a reduction of uncertainty in the estimated obser-
vation equivalent in the observation space (Reichle et al., 2017b). 

The analysis impact is also assessed using the absolute value of the 
ratio of the residuals to the innovations, i.e. ∣(O − A)/(O − F)∣ (Kolassa 
et al., 2017). The absolute values of residuals should be smaller than the 
innovations. This means that the observation equivalent(ya) of the 
analysis (xa) should be closer to the true observation yo compared to the 
observation equivalent (yf ) of the forecast (xf ) (Kolassa et al., 2017). 

Table 1 
Summary of diagnostics along with the corresponding hypothesis and references.  

Diagnostics Ideal 
values 

Hypothesis References 

mean(innovations) 0 The innovations are zero-mean white noise Kailath (1968), Daley (1992), Reichle et al. (2017b) 
mean(residuals) 0 The system is well-calibrated Reichle et al. (2017b) 
std(innovations) - std.(residuals) > 0 The DA reduces the uncertainty 

Reichle et al. (2017b) 
Autocorrelation of innovations lagged on 

different days 
0 The innovations are zero-mean white noise and the 

Kalman gain is optimal 
Daley (1992), Reichle et al. (2017b) 

std(normalized innovations) 1 The actual errors are well prescribed Reichle et al. (2002a), Desroziers et al. (2005), Barbu et al. 
(2011), Reichle et al. (2017b) 

mean∣O − A/O − F∣ < 1 The DA system is effective 
Kolassa et al. (2017)  
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Thus the mean ratio of ∣(O − A)/(O − F)∣ should be smaller than 1. In the 
scalar case, this ratio is equal to 1 - K̃k where K̃k is the Kalman gain. 
Values smaller than 1 indicate that the DA system is effective. 

3. Results 

3.1. Performance 

3.1.1. Performance across all GPIs 
In Fig. 2, scatter plots of ubRMSE, bias and ρ are shown to evaluate 

the performances of the DA and OL experiments against the in-situ ISMN 
soil moisture and CGLS LAI observations. Summary statistics are re-
ported in Table 2. 

Regarding LAI, the median value of ubRMSE from the OL across GPIs 
is 0.58 m2m− 2. The spatially median value of NIC of ubRMSE for LAI is 
2.2%. While the positive NIC values indicate that the DA is making the 
LAI estimate worse, the magnitude of the degradation is so small that the 
impact is effectively neutral. For bias, the median value across GPIs is −
0.23 m2m− 2 for the OL and − 0.30 m2m− 2 for the DA. The magnitude of 
the bias is slightly changed but all GPIs are centered around the 1:1 line. 
This is because SEKF is bias-blind data assimilation algorithm, so that 

SEKF only reduces the random noise in states rather than correcting the 
bias (Dee, 2005). For ρ, most agricultural GPIs fall below the 1:1 line in 
the scatter plots. Fig. 2 (c) shows that DA reduces the ρ of LAI for most 
GPIs. Fig. 3 (a) provides some insight as to why. The estimated LAI from 
the OL does not capture the seasonal cycle observed by the CGLS LAI. 
While DA clearly impacts the estimated LAI, it does not lead to an 
improvement with respect to the independent observations. 

For SSM (WG3), the median values across all GPIs of ubRMSE from 
the OL is 0.04 m3m− 3. In general, the DA updates are neutral on agri-
cultural and grassland GPIs, and the median value across all GPIs of NIC 
is too small (− 0.22%) so that the updates have nearly zero effects. The 
median values across GPIs of bias from the OL and DA are −
0.081 m3m− 3 and − 0.082 m3m− 3, respectively. Bias barely changes 
because SEKF does not correct bias. However, the potential for 
improvement may be limited by the already excellent performance of 
the OL simulations, with ubRMSEs values generally below 0.05 m3m− 3. 
For RZSM (WG4&WG5), the median values of ubRMSE OL across GPIs is 
0.029 m3m− 3. The median values across GPIs of bias from the OL and 
DA are − 0.084 m3m− 3 and − 0.085 m3m− 3, respectively. The DA does 
not change the bias compared to ISMN measurements. The DA makes 
limited improvements in terms of ubRMSE and ρ. 

Fig. 2. Scatter plot of the ubRMSE, bias and Pearson correlation coefficient for LAI, SSM (WG3, 0.04 m - 0.1 m soil moisture), RZSM (WG4&WG5, 0.1 m - 0.4 m) for 
OL and DA(σo

40, σ′) evaluated against in-situ ISMN observations and Copernicus LAI observations from 2017 to 2019. Agricultural GPIs are marked as ‘x’, grasslands 
GPIs as’+’ and other GPIs as triangles. The absence of some stations of RZSM is due to the lack of sensors at some depths in the ISMN at some stations. 

X. Shan et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 308 (2024) 114167

7

3.1.2. States at agricultural GPIs 
Fig. 3 shows the time series of DA, OL and observations of LAI, SSM 

(WG3), RZSM (WG4 & WG5), WG6, WG7, and WG8 averaged over the 
agricultural GPIs in southwestern France (The Saint Felix de Lauragais, 
Lahas, Condom and Savenes stations from the SMOSMANIA network). 
Their geographical proximity allows us to average their statistics. Both 
the OL and DA estimates of LAI are higher than the CGLS LAI observa-
tions. The assimilation lowers the LAI values during the spring of 2017 
and summer of 2019. The assimilation of σo

40 results in negative in-
crements of LAI from Jan to April in 2017 and from March to July 2019. 
During these periods, the ratios of residual to innovation of σo

40 are 
reduced (Fig. 4 (a)). In May 2017, the update of LAI is primarily due to 
the assimilation of σ′. The residual/innovation of σ′ is less than unity 
during this period (Fig. 4 (b)). The DA draws the LAI towards the CGLS 
LAI by the negative innovations of σ′ (Fig. 4 (b)) with positive J(σ′, LAI) 
(Fig. 9 (j)). 

From Fig. 3, DA has little to no effect on SSM (WG3) and RZSM 
(WG4&WG5) at these stations. The ubRMSE of the OL is already small, 
so the SSM (WG3) cannot be improved much. The OL cannot be 
improved much. The difference between both OL and DA results and the 
in situ observations could partly be explained by representativeness 
error due to the mismatch in scales between the in situ, point-scale 
observations and the OL and DA estimates which are at 0.25◦

× 0.25◦ . 
This mismatch results in large bias between ISBA simulations and ISMN 
measurements and the SEKF does not correct this bias. Note that the DA 
creates wetter estimates of the RZSM (WG4&WG5) compared to the OL 
in Sep 2019. This is attributed to the negative J(σo

40, RZSM) (Fig. 9 (c)) 
and negative innovations of σo

40 shown in Fig. 4 (a). 
It is noticeable that both of the OL and DA simulations of SSM and 

RZSM (WG4 & WG5) have a different dynamic range compared to ISMN 
in-situ measurements. This systematic bias is due to the fact that soil 
moisture data from different sources (LSM simulations, satellite re-
trievals, ground measurements) exhibit different climatologies though 
they contain consistent information about soil water dynamics (Reichle 
and Koster, 2004). Therefore, ubRMSE is used as the performance metric 
to reflect the root mean square error of time series anomalies that are 
computed by removing the mean (Entekhabi et al., 2014). This is also 
used in previous studies when evaluating the DA results against in-situ 
measurements (Barbu et al., 2014; Albergel et al., 2017, 2018; Lannoy 

and Reichle, 2016b,a; Lievens et al., 2017a, 2017b). Meanwhile, we 
separated ISMN in-situ measurements into a twin axis in Fig. 3. This is to 
emphasize that the dynamics between ISBA and ISMN data are compa-
rable, and the differences in ranges of ISBA simulations and ISMN 
measurements are primarily related to different climatologies. However, 
it is essential to pay attention to the representativeness error in the 
dynamics, because ground-based measurements are sparse and not 
necessarily representative of large-scale soil moisture simulations 
(Reichle et al., 2004). 

WG6, WG7 and WG8 are pushed towards drier estimates from 
October 2018 to May 2019. This starts from October 16, 2018, after 
which Fig. 4 (a) shows that residual/innovation of σo

40 reaches a local 
minimum. A similar situation occurs on Jan 27 2019, when the updates 
of WG6, WG7 and WG8 are driven by the assimilation of σo

40. In this case, 
DA reduces the ratio of residual to innovations of σo

40 more than σ′. Note 
that soil moisture in deeper layers have larger increments from October 
2018 to May 2019. This is due to the larger sensitivities of the obser-
vations to deeper WGs as shown in Fig. 8 (b), (e), (c) and (f). 

3.2. Data assimilation diagnostics 

3.2.1. Innovations and residuals 
Fig. 5 (a-b) and (e-f) show the time series mean and standard devi-

ation of innovations (observation-minus-forecast, O–F). The median 
and standard deviation across all GPIs are reported in Table 3. The time 
series mean values of innovations are typically small and range from 
− 0.17 dB to 0.25 dB for σo

40 and from − 0.0025 dB/deg. to 0.0028 dB/ 
deg. for σ′. Overall, the median values across GPIs are 0.018 dB for σo

40, 
and 0.00055 dB/deg. for σ′. For most GPIs, there is small positive bias of 
σo

40 and σ′, with fewer stations exhibiting negative mean innovations 
values. Small values of the time series mean of innovations suggest that 
the assimilation system is nearly bias-free. For residuals, the time mean 
values of residuals range from − 0.15 dB to 0.25 dB for σo

40 and from 
− 0.0023 dB/deg. to 0.0026 dB/deg. for σ′. Generally there is small 
positive bias of 0.031 dB for σo

40 and 0.00041 dB/deg. for σ′. The time 
mean values of residuals have smaller median values across GPIs and 
range compared to the innovations. 

The time series standard deviation of innovations range from 0.17 dB 
to 0.52 dB for σo

40 and from 0.0032 dB/deg. to 0.0076 dB/deg. for σ′. The 
median value across GPIs is 0.29 dB for σo

40 and 0.0047 dB/deg. for σ′. 
High values are found in GPIs containing REMEDHUS stations in Spain, 
where the main land cover type is agricultural. This may also be related 
to the fact that the subsurface scattering effects may be present in GPIs 
containing REMEDHUS stations (Wagner et al., 2022). The standard 
deviation of innovations of σ′ are also higher in GPIs in southwestern 
France. At these GPIs, σo

40 and σ′ typically exhibit strong variability as 
shown in Fig. S1 (c) and (d). The median value across GPIs of the time 
series standard deviation of residuals is 0.27 dB and 0.0047 dB/deg. for 
σo

40 and σ′, respectively, which is smaller than the innovations. This 
reduction represents the impact of the ASCAT observations on the DA 
system, i.e. a decrease in the uncertainties following the assimilation of 
ASCAT σo

40 and σ′. However, the fact that these reductions are generally 
small across all GPIs suggests that the DA framework is too conservative 
in updating the states in observation space. 

3.2.2. Prescribed errors and the impact of DA 
Fig. 6 (a-b) shows the standard deviation of the normalized in-

novations which measures the consistency between prescribed errors 
and the actual errors in the data assimilation system (Reichle et al., 
2017b). Overall, the median values across GPIs of the metric are smaller 
than 1 with values of 0.83 for σo

40 and 0.87 for σ′). This suggests that, in 
general, the magnitudes of pre-assumed model and observation errors 
tend to overestimate the magnitudes of prescribed model errors. This 

Table 2 
Statistics of performances of OL and DA averaged across all GPIs, grassland GPIs 
and Agriculture GPIs.   

all GPIs Grassland Agriculture 

LAI 
OL ubRMSE (m2m− 2) 0.58 0.6 0.58 
DA ubRMSE (m2m− 2) 0.58 0.66 0.59 
NIC ubRMSE 2.2 6.5 0.81 
OL ρ 0.81 0.78 0.81 
DA ρ 0.76 0.78 0.72 
NIC ρ − 6.5 − 3.6 − 10  

SSM (WG3) 
OL ubRMSE (m3m− 3) 0.04 0.04 0.035 
DA ubRMSE (m3m− 3) 0.04 0.04 0.036 
NIC ubRMSE − 0.22 0.8 0.82 
OL ρ 0.85 0.87 0.83 
DA ρ 0.85 0.87 0.83 
NIC ρ 0.027 − 0.069 − 0.38  

RZSM (WG4&WG5) 
OL ubRMSE (m3m− 3) 0.029 0.028 0.036 
DA ubRMSE (m3m− 3) 0.03 0.027 0.034 
NIC ubRMSE − 0.51 − 0.74 − 1.9 
OL ρ 0.87 0.88 0.86 
DA ρ 0.87 0.89 0.86 
NIC ρ 0.3 0.41 1.5  
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metric varies considerably, particularly with land cover type. Specif-
ically, agricultural GPIs have larger values of the metric compared to 
grassland GPIs. In grassland GPIs, the median values across GPIs are 
0.68 for σo

40 and 0.7 for σ′, indicating that the prescribed model and 
observation errors overestimate one or both of the actual errors. In 
contrast, on agricultural GPIs, the spatial median value is 1 for σo

40 and 
0.78 for σ′, suggesting that overestimation is less of an issue in agricul-
tural GPIs. 

Additionally, note that the spatial standard deviation of the metric is 
larger for σ′ than for σo

40. This difference could be partially due to the use 
of spatially constant observation errors for σo

40 and σ′. This does not 
capture any spatial variability in observation error due to e.g. hetero-
geneity, land cover type, etc. As a result, the degree of overestimation 
varies across different GPIs. 

Fig. 6 (c-d) show the mean values of ∣O− A
O− F∣ for σo

40 and σ′. This 

quantifies the impact of data assimilation by assessing the correction of 
observation equivalents from the forecast to the true observations. 
Values range from 0.75 to 0.99 for σo

40 and 0.58 to 0.99 for σ′. Overall, 
the median values across GPIs of ∣O− A

O− F∣ are 0.92 for σo
40 and 0.86 for σ′. 

Values of the metric are smaller than 1, indicating that the data assim-
ilation is effective in improving the observation equivalents. However, 
the values are relatively close to unity. This suggests that the analysis 
assigns similar weights to the observations and ISBA model (Kolassa 
et al., 2017). The metric varies across the GPIs. In particular, the ratios 
are generally smaller for agricultural GPIs compared to grassland GPIs 
for σo

40 and σ′ as shown in Table 3. This suggests that DA is much more 
effective in agricultural GPIs. This may be due to the more dynamic soil 
moisture and LAI cycles of crops compared to grass, reflected by the 
larger standard deviations of σo

40 and σ′ shown in Fig. S1 (c) and (d). 

Fig. 3. Time series of LAI, WG3 (0.04 m - 0.1 m soil moisture), root zone soil moisture (RZSM, 0.1 m - 0.4 m) for observation, OL and DA(σo
40, σ′) from 2017 to 2019, 

averaged on agri GPIs in southwestern France (GPIs containing ISMN stations: Saint Felix de Lauragais, Lahas, Condom and Savenes in SMOSMANIA network). 
Simply averaging all agricultural GPIs might suffer from different weather conditions which shapes different time series behaviours in soil moisture curves. 
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3.2.3. Optimality of the DA system 
Fig. 7 shows autocorrelations of innovations for σo

40 and σ′ at lags 
from 1 to 10 days. Autocorrelation values are significantly >0 at the 5% 
significance level, though they decrease as the lag increases. Overall, the 
large autocorrelation values suggest that the innovations are not white 
noise. This suggests suboptimal performance of the DA system (Daley, 
1992), so that the DA system is not making optimal use of the ASCAT 
observations. The lagged autocorrelation values are larger on grassland 
GPIs than other GPIs. This suggests, consistent with the previous para-
graph, that the DA system is more suboptimal for grasslands than other 
cover types. The autocorrelation for a lag of 1 day (Ck

k+1) depends on the 

deviations between the optimal weight K̃ and the estimated weight K̃ 
(Daley, 1992). The statistics of Ck

k+1 are also reported in Table 3. The 
median value across GPIs of Ck

k+1 is large with the value of 0.37 for σo
40 

and 0.83 for σ′. This shows that the system is more suboptimal for σ′ 

compared to σo
40. In our DA system, both model and observation errors 

deviate from the actual errors as shown in Fig. 6. The overestimation of 

the term ̃JkB̃J̃
T
k + R leads to positive Cn

n+1 values in Fig. 7. This is one of 
the reasons why the DA system is suboptimal. However, particular 
attention needs to be paid to the interpretation of innovation correlation 

pattern in our DA system. The nonlinearity of the DNN should be 
considered, as it might contribute to the uncertainty during the assim-
ilation process. Uncertainty associated with DNN’s ability to capture the 
relationship between ASCAT observations and model states, might lead 
to the suboptimality of the DA system through their impact on eq. (25) in 
Kailath (1968). Additionally, σ′ is estimated by combining all local slope 
measurements using an Epanechnikov kernel with a half-width of 42 
days, which may introduce autocorrelation of the innovation of σ′ 

(Melzer, 2013; Hahn et al., 2017). 

4. Discussion 

The limited effect of DA may be connected to inconsistency between 
the Jacobians relating the ASCAT observables to soil moisture in the 
different layers. The soil moisture in the various layers are highly 
correlated, so it is reasonable to expect that the Jacobians (or the NSCs) 
for the different layers would be similar, at least in sign. Fig. 8 shows the 
NSC of ASCAT σo

40 and σ′ to RZSM (WG4&WG5) and soil moisture in the 
other layers. NSC(σo

40, WG3) exhibits the expected behaviour, i.e. a 
positive value in winter. In summer, NSC(σo

40, WG3) fluctuates around 
zero, suggesting σo

40 loses sensitivity to WG3 because of the presence of 

Fig. 4. Time series plot innovations (blue line), residuals (green line) and the ration of residuals (grey line) of a) σo
40 and b) σ′ from 2017 to 2019, averaged on agri 

GPIs containing ISMN stations: Saint Felix de Lauragais, Lahas, Condom and Savenes in SMOSMANIA network. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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vegetation. However, this is not the case for the soil moisture in deeper 
layers. NSC(σo

40, WG6) oscillates more than the NSCs for shallower 
layers during the fall and winter in 2017 and the fall in 2019. This is not 
plausible because WG6 is a damped and delayed with respect to WG3- 
WG5. This suggests that the DNN may arbitrarily choose among the 
soil moisture layers during the training process to fit the observed σo

40. 
From Fig. 3 it is clear that the soil moisture series in adjacent layers 

(WG6, WG7 and WG8) are highly-correlated. Meanwhile, Fig. 8 shows 
that the normalized sensitivity coefficients for each observation (σo

40 or 
σ′) with respect to WG5, WG6 and WG7 vary considerably and often in 

opposite directions. These layers are sufficiently deep that their soil 
moisture content should not have any influence on ASCAT σo

40. However, 
Fig. 8 shows that the DNN-estimated σo

40 varies with WG7, and to a lesser 
degree with WG6. Collectively, these figures suggest that the DNN is 
overfitting using WG6 and WG7. Therefore, the DNN has been trained to 
use WG6 and WG7 to adjust σo

40, resulting in non-zero Jacobian terms for 
σo

40 and the deep soil moisture states (WG6 and WG7). When these Ja-
cobians are subsequently used in the SEKF, they introduce spurious 
sensitivity to deep soil moisture and therefore poor DA performance. 

The divergent sensitivities have a direct impact on the the robustness 
of the Jacobian matrix (J) in the SEKF update eq. 4. Fig. 9 shows the J 
terms aggregated over patches in eq. (7) from 2017 to 2018. Note that 
here J represents the product of the linearization of ISBA and the Ja-
cobian of the DNN. It is noticeable that the J(σo

40, WGs) and J(σ′, WGs) 
diverge. The J(σo

40, WGs) values are positive in spring and become 
negative in summer and autumn. For σ′, J is quite consistent for SSM 
(WG3) and RZSM (WG4&WG5) but diverges for WG6, WG7 and WG8. 
The magnitude of the J matrix of WG6, WG7 and WG8 are the largest 
among the soil moisture. This partly explains why increments on WG6, 
WG7 and WG8 are so large compared to those in the layers closer to the 
surface. 

Results from Fig. 6 suggested that the (total) observation and model 
errors were overestimated, something which would limit the efficacy of 
assimilation. Rather than reducing the prescribed model errors, which 
are consistent with those in previous SURFEX studies, we reduced the 
observation errors assumed for the ASCAT observables to investigate if 
this rendered the DA system more optimal. For the same four agricul-
tural GPIs considered in Fig. 3, the DA experiments were repeated 
assuming observation errors of 0.15 dB for σo

40 and 0.002 dB/deg. for σ′. 
The performance metrics and DA diagnostics are reported in Table S4 
and S5. The mean values of ∣O− A

O− F∣ are reduced, indicating that the DA 
system tends to follow the observation more than the LSM. The Ck

k+1 
values of innovations are also reduced. So, reducing the observation 
errors results in a less sub-optimal DA system. However, while the 
magnitudes of the NIC values increase, the sign of the NIC values do not 
change on most cases. GPIs at which DA improved state estimates show a 
stronger improvement. However, GPIs where DA proved detrimental 
have a worse performance when the observation error is reduced. 
Despite the tighter constraints imposed by the observations, the sign of 
the increments did not change. Instead, it appears that the Jacobians of 
the observation operator, which establish the link between the land 
surface variables and the ASCAT observations, had a larger impact on 
the DA system. While the observation error controls the magnitude of 
the increments, the Jacobian terms determine the sign of the increments, 
as shown in Figs. 8 and 9. 

Shan et al. (2022) showed that the DNN could provide excellent 
predictions of the ASCAT observables. Also, when averaged in time and 
across many GPIs (Shan et al., 2022), the NSCs were physically plausible 
and provided insight into the drivers of dynamics in the ASCAT ob-
servables. However, results in Fig. 9 here show that for a single GPI, at a 
single time step, the robustness and physical plausibility of the Jacobian 
may be limited. One key difference with respect to other studies is that 
we train a DNN for each GPI to account for mixing within the ASCAT 
footprint, rather than training a generic DNN per cover type. This re-
duces the amount of training data which, in turn, influences the 
robustness. Another potential difference is the complexity of the DNN, 
specifically the size of the input and output sets. Corchia et al. (2023) 
predict backscatter only, and account for the vegetation effects a priori 
by training the neural network with LAI from satellite observations. In 
contrast, we train the DNN to predict both backscatter and slope 
simultaneously and provide a large set of LSVs from the ISBA as input. 
These methodological differences may increase the complexity of the 
DNN, influencing the robustness of the Jacobians and hence the efficacy 
of assimilation. The third difference is the less direct relationship be-
tween the land surface model states and the observations, particularly 

Fig. 5. Diagnostics of DA(σo
40, σ′) from 2017 to 2019. Different rows show mean 

values of innovations and residuals, standard deviations of innovations and 
residuals, as well as the difference between std. of innovations and std. of re-
siduals. Different rows show different observations (σo

40 and σ′). Agricultural 
GPIs are marked as ‘x’, grasslands GPIs as’+’ and other GPIs as triangles. 
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between LSM states and ASCAT slope. While these indirect relationships 
are not problematic for predicting the observations, the absence of the 
expected improvement over the OL in our DA results suggests that they 
may be problematic in the DA framework. This study is therefore not a 
comparison of DA approaches. It is a study on the implications of 
including an observation operator based on machine learning in a DA 
framework. This is important due to the growing interest in using data- 
driven methods in data assimilation (Forman and Xue, 2016; Xue et al., 
2018; Shamambo, 2020; de Roos et al., 2023; Corchia et al., 2023). 

Results presented here suggest that successful use of ML-derived 
observation operators in assimilation hinges not just on good agree-
ment between predicted and true observables, but also on the correct 
and robust estimation of the Jacobians. In cases like ours, where training 
data are limited, robustness of the Jacobian should be included as a 
criteria for selecting the optimal DNN (or other ML) model to map the 
LSVs to the observables. However, it is not trivial to achieve physical 
consistency in the sensitivities of the DNN to land surface variables. 
Future work is needed to examine the consistency of the DNN under 

Table 3 
Statistics of diagnostics of DA averaged across all GPIs, grassland GPIs and Agriculture GPIs.   

All GPIs Grasslands Agriculture 

median std median std median std 

σo
40 [dB] 

mean(innovations) 0.018 0.097 0.073 0.087 0.02 0.066 
mean(residuals) 0.031 0.09 0.076 0.086 0.038 0.059 
std(innovations) 0.29 0.092 0.23 0.048 0.39 0.077 
std(residuals) 0.27 0.061 0.23 0.043 0.33 0.042 
std(norm innovations) 0.83 0.18 0.68 0.13 1 0.12 
mean∣O − A/O − F∣ 0.92 0.07 0.98 0.026 0.86 0.07 
Ck

k+1 of innovations 0.37 0.067 0.33 0.054 0.36 0.086  

σ′ [dB/deg] 
mean(innovations) 0.00055 0.0011 0.00039 0.00078 0.00079 0.0012 
mean(residuals) 0.00041 0.001 0.00035 0.00074 0.00065 0.0011 
std(innovations) 0.0047 0.0014 0.0037 0.0009 0.0053 0.0013 
std(residuals) 0.0041 0.0012 0.0035 0.0008 0.004 0.0015 
std(norm innovations) 0.86 0.26 0.7 0.17 0.78 0.3 
mean∣O − A/O − F∣ 0.86 0.11 0.93 0.057 0.8 0.13 
Ck

k+1 of of innovations 0.81 0.17 0.89 0.11 0.64 0.21  

Fig. 6. Diagnostics of DA(σo
40, σ′) from 2017 to 2019. Different rows show the standard deviation of normalized innovations and the time series mean values of ∣O− A

O− F∣. 
Different rows show different observations (σo

40 and σ′). Agricultural GPIs are marked as ‘x’, grasslands GPIs as’+’ and other GPIs as triangles. 
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different set of inputs and reduce the uncertainty of the DNN. Addi-
tionally, it is recommended to carefully quantify the observation error, 
particularly that of the slope, for future assimilation. 

5. Conclusions 

ASCAT normalized backscatter and slope were assimilated into the 
ISBA LSM to constrain soil water and vegetation dynamics. The ISBA 
LSM simulates surface fluxes of water, carbon and energy at the sub-grid 
(patch) level and aggregates the results to the grid scale. Here, ASCAT 
grid level observations were assimilated to produce the updated vari-
ables for grid points containing ISMN stations. Following Albergel et al. 
(2017), Barbu et al. (2014) and Barbu et al. (2011), SEKF was used as the 
DA algorithm. A DNN trained, tested and validated by Shan et al. (2022) 
was used as the observation operator linking model states with the 
ASCAT observations. The DA and OL were evaluated against ISMN in- 
situ station-based soil moisture observations and Copernicus LAI ob-
servations to test whether assimilating ASCAT observables helps to 
constrain the estimates of soil moisture and LAI. Results showed that, in 
general, the DA has a detrimental effect on the domain median values of 
ubRMSE and ρ of LAI and neutral effects on SSM (WG3) and RZSM 
(WG4&WG5). For deeper layers (WG6, WG7 and WG8), large updates 
are introduced by the assimilation. This is due to the large magnitudes of 
the Jacobians relating the ASCAT observables to soil moisture in deep 
layers. 

Diagnostics were also analyzed to assess the Gaussianity of in-
novations and the optimality of the DA system, as well as the prescribed 
observation and model error. The time series mean of innovations of σo

40 

and σ′ are within a reasonable range and are small, showing that our DA 
system reduces the uncertainties of the states in a long time period. The 
reduction in the standard deviation of residuals compared to the in-

Fig. 7. Boxplots of autocorrelation of the innovations of (a) σo
40 and (b) σ′ at 

lags of different days. Agricultural GPIs are marked as red, grasslands GPIs as 
yellow and other GPIs as grey. The box extends from the lower to upper quartile 
values of the data, with a line at the median. The lower whisker is at the lowest 
datum above Q1–1.5*(Q3-Q1), and the upper whisker at the highest datum 
below Q3 + 1.5*(Q3-Q1), where Q1 and Q3 are the first and third quartiles. 
Outliers are indicated as grey dots. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 8. Time series plot of NSC of ASCAT σo
40 and σ′ to soil moisture in each layers in independent validation years (2017, 2018 and 2019) and training years 

(2007–2016) averaged on agri GPIs containing ISMN stations: Saint Felix de Lauragais, Lahas, Condom and Savenes in SMOSMANIA network). 
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novations demonstrates the decrease in uncertainties following the 
assimilation of ASCAT σo

40 and σ′ into the DA system. The analysis of 
normalized innovations and ∣O − A/O − F∣ indicated that the model and 
observation errors are overestimated and this mis-specification is more 
problematic in grassland compared to agricultural areas. In other words, 
our prescribed observation error is more confident in agricultural GPIs. 
This could be related to the larger dynamic range of the ASCAT ob-
servables in agricultures GPIs shown in Fig. S1. Further, large values of 
lagged autocorrelation of the innovations indicate that the DA system is 
suboptimal and the information in ASCAT observables are not effec-
tively used. Potential causes include the misspecification of the forecast 
and observation error, and the consistency of DNN sensitivities and 
predictions. 

We investigated potential explanations for the limited positive 
impact of the DA. A second DA experiment was conducted with lower 
observation errors on agricultural GPIs. The comparison showed that the 
DA experiment with reduced observation errors does not perform better 
than the prescribed observation error, though the reduced observation 
errors reduces the suboptimality of the DA system. This indicated that 
the inconsistent sensitivities of the Deep Neural Network (DNN) used in 
the observation operator may have a greater influence on the updates 
than the model and observation errors themselves. 

With the growing utilization of machine-learning-based observation 
operators in land data assimilation systems, this study underscores the 
importance of addressing the robustness of the machine learning (ML) 
methods. A key result of this study is that successful ML training does not 
ensure successful DA, as the terms of the Jacobian may include spurious 
effects due to overfitting if too many predictors (inputs) are used in the 
DNN. Therefore, the robustness of ML-based methods plays a vital role in 
ensuring the physical plausibility of land-atmosphere mechanisms 
learned by the data-driven approaches, particularly in terms of the 
sensitivities of remote sensing observables to land surface variables. 
Furthermore, this is essential to ensure transferability of machine 
learning algorithms as observation operators for assimilating similar 
remote sensing data into LSMs. 
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