

A step further in the assimilation of IASI and CrIS radiances for O₃ and CO in operations

Vincent GUIDARD – vincent.guidard@meteo.fr Olivier COOPMANN

CNRM, Météo-France and CNRS

CUL

Illustration of the MOCAGE global model at 0.5° (GLOB05) and regional model at 0.1° (MACC01) and representation of the 60 hybrid pressure levels. [by Vittorioso, 2023]

MOCAGE CTM :

- Main processes
 - → Sources
 - → Transformations
 - → Transport
 - → Sinks
- Chemical schemes
 - → REPROBUS (stratosphere) [Lefevre et al., 1994]
 - → RACM (troposphere) [Stockwell et al., 1997]
- MOCAGE simulations
 - → 118 gaseous species
 - → 434 chemical reactions
 - \rightarrow primary aerosols
 - \rightarrow secondary inorganic aerosols

Modelling

- Improved horizontal and vertical resolution (0.5 degree on global domain, 60 vert. levels up to 0.1 hPa)
- Process improvement
- Use of new emission inventories

Data assimilation

- Assimilation of conventional or remote sensing observations
- What does MOCAGE currently assimilate in the global domain?
 - → AOD MODIS (L2)
 - → AOD VIIRS (L2)
 - \rightarrow SO₂ TROPOMI (L2) + monitoring SO₂ IASI (L2)

Objective

• Assimilate IR radiances (L1) for ozone (O3) and carbon monoxide (CO) field enhancement in MOCAGE CTM

IASI and CrIS

IASI and CrIS are hyperspectral infrared sounders :

- IASI and CrIS are respectively on board the polar satellites (Metop-B and C) and (NOAA-20 and 21)
- IASI is sensitive in the infrared between 645 and 2760 cm⁻¹ (8461 channels) with a spectral resolution of 0.5 cm⁻¹
- CrIS-FSR is sensitive in the infrared between 650–1095, 1210–1750 and 2155-2550 cm⁻¹ (2211 channels) with a spectral resolution of 0.625 cm⁻¹

Jacobians

- Represents the sensitivity of observations to a geophysical parameter in the atmosphere, here O₃ and CO
- Normalized Jacobians = Jacobians * 10 % of the O₃ or CO concentration (unit is K)

Period	Model	Instruments	Channels	Bias correction	Control variable	Tskin retrieved	B errors	R errors	Thinning
May 23 ∇ Apr 24	MOCAGE Global (0,5°)	IASI + CrIS	$\begin{array}{l} \text{IASI O}_3 \ (15) \\ \text{IASI T}_{\text{skin}} \ (1) \\ \text{CrIS O}_3 \ (35) \\ \text{CrIS CO} \ (5) \\ \text{CrIS T}_{\text{skin}} \ (1) \end{array}$	NO	O ₃ CO T _{skin}	YES	Estimated background error covariance matrix	Diagnosed observation error covariance matrix	0.5 deg Sea Clear sky
									CINIS 🔬

Liberté Égalité Fraternité FRANCE

CIRM

Improvement in the background error description

- Previously: error standard deviations estimated from 30% of each model profile (O₃ and CO)
- Now: Calculation of the background error covariance matrix (including error correlations) using the NMC method (forecast difference 36h-12h over one year of data)

Égalité Fraternité

Two-step method

- First round of assimilation using unitary matrix (R = 1) or estimated error variances (std O-B)
- Calculation of the observation error covariance matrix (including error correlations) diagnosed using the method of [Desroziers et al., 2005]

Forecast scores – ozone sondes

Average profiles O_3 – May 2023 \rightarrow April 2024

Globe

Europe

South Pole

Forecast scores – ozone sondes

RMSE profiles O_3 – May 2023 \rightarrow April 2024

Forecast scores – OMI

RMSE and CRMSE O_3 tc (DU) – May 2023 \rightarrow April 2024

Forecast scores – OMI

Correlation O₃tc (DU) – May 2023 → April 2024

Correlation – Ref (top) – Assim (bottom)

Egaiste Fraternité

'CNRM

RMSE O₃ profiles – May 2023 → April 2024

RMSE CO profiles – May 2023 → April 2024

Timeseries O_3 South Pole – May 2023 \rightarrow April 2024

RMSE O₃ Tropics – May 2023 → April 2024

Conclusions :

- Assimilation of IASI and CrIS in MOCAGE with full **R** and **B** matrices
- Significant improvement in ozone and CO fields (despite only 5 assimilated channels fro CO)
- This configuration will be transferred to operations in November 2024

Future prospects :

- Request for a broader list of O_3 and CO channels for IASI and CrIS for operational use
- Add variational bias correction of observations in 3D-Var MOCAGE
- Extend the assimilation to the regional domain over Europe
- Explore the combined assimilation of radiance and geophysical products (UV and visible)

