

Volcanic SO₂ plume forecasting : a comparative assessment of satellite data assimilation and source inversion procedures

Mickael Bacles¹, Abhinna K. Behera², Vincent Guidard¹ and Marie Boichu³

¹CNRM, Université de Toulouse, Météo France, CNRS, Toulouse, France ²GRASP SAS, Lille 59800 ³Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, F-59000 Lille, France

mickael.bacles@meteo.fr

2024 Eumetsat Conference, Würzburg, October 2nd

Introduction

Motivation: Large quantities of SO2 and ash are released during eruptions, threatening aviation safety. The aim of VAAC is to forecast the transport of volcanic plumes in near-real time.

How to simulate volcanic SO₂: Assimilate satellite observations or estimate volcanic emissions by using source inversion method

Goal: Compare the obtained results by these 2 methods and combine them.

Simulations with different scenarii for SO_2 release

Source inversion in CHIMERE CTM	Volcanic SO ₂ in MOCAGE CTM			
Linear combination between observations and CHIMERE : $d \neq G$ m hourly emission profiles SO2 total columns from TROPOMI and OMPS		- 0.5° global domain - 60 levels from surface to 0.1 hPa - Hourly meteorological forcings from ERA5 - Hourly 3D-VAR		
	SO	2 emission	Assimilation	
 Each element of m must be positive Second order Tikhonov side constraint 		6	No	
			Yes (TROPOMI)	
More details in Boichu et al. (2013, 2014, 2015)	Yes	8	Yes (TROPOMI)	

The assimilation system in MOCAGE

- H is the obervation operator allowing to convert model data into the observations space.

- **B** and R are the background and the observation error covariance matrices **defined by the users**.

- y is the observations
- x is the model data
- x_{b} is the background (model data before assimilation)

Definition of the background error covariance matrix B

Assimilation of columns between the ground and 10 hPa. To avoid modifying SO₂ concentration elsewhere than in the plume, we chose to use a background error variance (σ_b^2) depending on longitude, latitude and altitude. These values form the diagonal of the background error covariance matrix B.

 σ_{b} = 1e-8 ppv if the concentration at a location and at an altitude above 1000m is above a threshold. Different threshold (given in the table) are used to compute the B matrix. Elsewhere, σ_{b} = 1e-29 ppv.

Experiment name	Assimilation	Used threshold	SO2 emission
Emis	No		Yes
Assim_1e-9	Yes	1e-9 ppv	No
Assim_1e-8	Yes	1e-8 ppv	No
Assim_5e-8	Yes	5e-8 ppv	No
Assim_1e-9+Emis	Yes	1e-9 ppv	Yes

Ambrym eruption

Location 168.1167°E / 16.25°S Eruption from 14th to 17th December 2018

2024 Eumetsat Conference, October 2nd

Used background error variance

On 17th December 2018 at 3 UTC, $\sigma_b = 1e-8$ ppv where there is a blue, a green or a red point in the scatterplots. Assimilation corrects concentration at these location.

Use of differents 3D B matrix for the assimilation

High SO₂ total columns in Emis experiment are not observed by TROPOMI and OMI. Plume is narrower with the decrease of the threshold use to compute σ_b . The shape of the plume is consistent with observations in Assim_1e-9 experiment

Use of differents 3D B matrix for the assimilation

- SO₂ concentration is smaller without the use of the estimated SO₂ emission by inverse modeling.

- The plume is larger in size with the use of smaller threshold to compute B matrix.

- The plume whose shape is close to Emis experiment is obtained by using the 1e-9 ppv threshold to compute B matrix.

Combination of SO2 emission and data assimilation

The size of the plume is slighty taller with the use of an estimated emission and with the data assimilation.

When observations are assimilated, SO₂ total columns value are similar between Emis and Assim_1e-9+Emis experiments. Before assimilation, SO₂ total columns are larger in Assim_1e-9+Emis experiment.

Combination of SO2 emission and data assimilation

The SO₂ concentration decreases in Assim_1e-9+Emis experiment compared to the Emis Experiment.

The SO₂ vertical distribution are consistent between experiments.

Impact on forecasts

- Larger plume and stronger SO₂ total columns are modelled when forecasts are initialized by Emis and Assim_1e-9+Emis analysis.

- For D2 and D3 forecasts, no plume stronger than 1 DU is simulated. For D1 forecast, no plume stronger than 1 DU is modelled in Assim_1e-9 experiment.

Take home messages

- For the Ambrym eruption, we compare the simulation of the volcanic SO₂ using TROPOMI data assimilation and using a SO₂ emissions estimated by inverse modelling. We test different σ_b values for the assimilation. The σ_b are 1e-8 ppv where the simulation with the estimated SO₂ emissions reach 1e-9, 1e-8 or 5e-8 ppv.

- More this threshold is high, more the plume is small in size. The use of 1e-9 ppv threshold allows to simulate a plume which the shape is closer to the observations. Without data assimilation, SO₂ total columns are too large compared to the observations

- Combine inversion source and data assimilation leads to a weaker and a narrower plume compared to the simulation with the use of SO₂ emission.

- Plume is larger both in size and in values when forecasts are initialized by a simulation using source emission or both source emission and data assimilation.

- Work on R and B matrices and on the correlations
- Validation of our experiments with others observations
- Assimilation of other instruments

Thank you for your listening Mickael Bacles¹, Abhinna K. Behera², Vincent Guidard¹ and Marie Boichu³

¹CNRM, Université de Toulouse, Météo France, CNRS, Toulouse, France ²GRASP SAS, Lille 59800 ³Univ. Lille, CNRS, UMR 8518 – LOA – Laboratoire d'Optique Atmosphérique, F-59000 Lille, France

mickael.bacles@meteo.fr

2024 Eumetsat Conference, Würzburg, October 2nd

Emission estimated by CHIMERE source inversion procedures

Assimilation of TROPOMI with averaging kernels

In Assim experiment, σ_{b} = 1e-8 ppv between 1.6 and 11.5 km of height

Assimilation of TROPOMI with averaging kernels

Vertical cut at 15.5°S

