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Abstract. Radar has consistently been proven to be the most
reliable source of information for the remote detection of hail
within storms in real time. Currently, existing hail detection
techniques have limited ability to clearly distinguish storms
that produce severe hail from those that do not. This often re-
sults in a prohibitive number of false alarms that hamper real-
time decision-making. This study utilises convolutional neu-
ral network (CNN) models trained on dual-polarisation radar
data to detect severe-hail occurrence on the ground. The mor-
phology of the storms is studied by leveraging the capabil-
ities of a CNN. Two datasets of images of 60 km× 60 km
containing 19 different radar-derived features are built. The
first is created from severe-hail cases (≥ 2 cm), and the sec-
ond is obtained from rain or small-hail cases (rain or hail
< 2 cm) selected with the help of a cell identification algo-
rithm above densely populated areas with no hail reports.
After a tuning phase on the CNN architecture and its input
size, the CNN is trained to output one probability of severe
hail on the ground per image of 30 km× 30 km. A test set of
1396 images between 2018 and 2023 demonstrates that the
CNN method outperforms state-of-the-art methods accord-
ing to various metrics. A feature importance study indicates
that existing radar-based hail proxies as input features are
beneficial to the CNN, particularly the maximum estimated
size of hail (MESH). The study demonstrates that many of
the existing hail proxies can be adjusted using a threshold
value and a threshold area to achieve better performance. Fi-

nally, the output of 10 fitted CNN models in inference mode
on a hail event is shown.

1 Introduction

Hailstorms are severe weather phenomena that pose signif-
icant risks to agriculture, infrastructure, and human safety.
Accurate detection and monitoring of hail is crucial for is-
suing timely warnings and minimising potential damage, as
well as assisting damage surveys after an event. Weather
surveillance radar systems have been proven to be valu-
able tools for detecting hail (Ryzhkov and Zrnic, 2019).
Dual-polarisation radars use horizontally and vertically po-
larised electromagnetic waves transmitted to the atmosphere
in pulses using a rotating antenna. The echoes returned from
targets such as raindrops or hailstones are analysed to com-
pute various variables within the scanned volume. These
data are used to enhance the capabilities of radar systems
in detecting and warning about the formation of hail-bearing
storms in real time.

Radar-based hail detection techniques can be divided into
two distinct groups. The first group is based on reflectivity
at horizontal polarisation (ZH). Dry hailstones typically ex-
hibit high ZH values, although they are weaker than those of
raindrops of the same size due to a higher dielectric constant
for rain (Ryzhkov and Zrnic, 2019). For a given amount of
hail contained in a unit volume of cloud, i.e. a given hail con-
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tent, the hail size distribution is shifted towards larger diame-
ters in comparison to rain. This results in higher reflectivities
for hail compared to rain. Melting hail (or hail growing in
the wet regime) is associated with even larger reflectivities
due to an increase of the dielectric constant compared to dry
hail, because of the presence of liquid water (Ryzhkov et al.,
2013b; Ryzhkov and Zrnic, 2019). By analysing ZH data, ei-
ther alone or with temperature profiles, meteorologists have
attempted to identify the presence of hail and severe hail
(≥2 cm). For example, Waldvogel et al. (1979) developed a
criterion that combines echo tops (ETs), i.e. the maximum
height at which the reflectivity reaches a certain value, and
the height of the melting layer, to compute a probability of
hail (POH). This criterion is still used in several European
countries as a proxy for hail occurrence (Delobbe and Holle-
man, 2006; Foote et al., 2005; Trefalt et al., 2023). In an ef-
fort to utilise this vertical information in storms, studies have
sought to produce proxies that integrate reflectivity over the
vertical, such as the vertically integrated liquid (VIL; Greene
and Clark, 1972; Pilorz et al., 2022) and the VIL density
(VILd; Amburn and Wolf, 1997). Since hail mainly forms
within storm updraughts and above the melting layer, rela-
tionships between vertically integrated ZH values and tem-
perature profiles have been developed for hail and severe-hail
detection (Witt et al., 1998; Trefalt et al., 2023; Murillo and
Homeyer, 2019). Among these methods, some are based on
the severe hail index (SHI) developed by Witt et al. (1998).
The SHI is derived from the weighted integral of reflectiv-
ity over the vertical, where values are weighted based on
their relative position to the hail growth zone. Several prox-
ies, such as the probability of severe hail (POSH) and the
maximum estimated size of hail (MESH), were developed
from it (Witt et al., 1998). These aforementioned methods us-
ing ZH as a main variable are still widely used operationally
in weather services, either for real-time applications (Smith
et al., 2016) or for the production of hail climatologies (Aus-
tralia: Soderholm et al., 2017; Brook et al., 2024; USA: Wang
et al., 2018; Switzerland: Nisi et al., 2020). While providing
a high probability of detection depending on the validation
methodology, these techniques are known to suffer from a
relatively high number of false alarms and moderate critical
success indices (CSIs between 0.4 and 0.6; Holleman, 2001;
Ortega, 2021; Pilorz et al., 2022).

The second group of techniques uses dual-polarisation
radar data, also called polarimetric data, which provide valu-
able information about the shape of targets and the precip-
itation type (Zrnić et al., 1993; Vivekanandan et al., 1999;
Kumjian, 2013a, b; Ryzhkov et al., 2013a; Ryzhkov and Zr-
nic, 2019). Polarimetric radars allow the computation of new
variables: the differential reflectivity (ZDR), the copolar cor-
relation coefficient (also called cross-correlation coefficient
(ρHV)), and the specific differential phase (KDP). As polari-
metric variable distributions can overlap significantly among
different precipitation types (Kumjian, 2013a), a fuzzy-logic
scheme appeared well suited to answer the problem of clas-

sification of radar echoes (Vivekanandan et al., 1999), where
hail could be detected as an independent class. A fuzzy-
logic algorithm is based on assigning each precipitation type
its own range of values for single-polarisation and dual-
polarisation variables. These ranges are determined through
simulations or physical interpretations of the radar variables
(Park et al., 2009; Ryzhkov et al., 2013b; Kumjian, 2013a).
The grade of membership to a particular type being within
the radar gate, given the value of a variable, is computed
using a membership function, typically trapezoidal. The ag-
gregation of the membership grades of each precipitation
type for each radar variable enables the determination of
the most dominant precipitation type within the radar gate
(Kumjian, 2013a). Based on this principle, a significant num-
ber of fuzzy-logic algorithms using dual-polarisation vari-
ables were developed (Vivekanandan et al., 1999; Straka
et al., 2000; Gourley et al., 2007; Al-Sakka et al., 2013;
Ryzhkov et al., 2013b; Ortega et al., 2016; Steinert et al.,
2021). For hail, due to the wide distribution of possible axis
ratios and hailstone shapes in real conditions (Giammanco
et al., 2017; Soderholm and Kumjian, 2023), there is a sig-
nificant increase in the variability of the scattering proper-
ties, particularly at C-band due to resonance scattering at
large sizes. This may prevent good discrimination between
hail and other precipitation types using a fuzzy-logic ap-
proach based solely on membership hypotheses of polari-
metric variables (Jiang et al., 2019; Shedd et al., 2021). Fur-
thermore, classes of hail within fuzzy-logic algorithms are
difficult to validate given the scarcity of hail reports avail-
able both on the ground and aloft (Al-Sakka et al., 2013;
Ortega et al., 2016). Despite these limitations, radar-based
fuzzy-logic classification remains the best method for dis-
criminating hail from other types of precipitation (Kumjian,
2013b; Ortega, 2013).

The common limitation of the aforementioned single- and
dual-polarisation hail detection techniques is the fact that
they are computed on a pixel-by-pixel or column-by-column
basis. They can be represented as functions mapped to all
radar pixels either coming from the volumetric radar data
or deduced from the vertical integration of radar variables.
These pixel-based methods do not allow the broader view
of the radar variables, their spatial structure, and the mor-
phology of the storm to be studied. Additionally, the models
are unable to accurately represent potential intricate and non-
linear relationships between model variables or radar vari-
ables and hail on the ground. To tackle these limitations,
techniques capable of (1) harnessing the morphology of spa-
tially coherent features within radar images or (2) study-
ing the intricate relationships between radar or environmen-
tal variables and ground truth were developed. In recent
years, machine-learning and deep-learning radar hail detec-
tion techniques have gained traction. In the work of Wang
et al. (2018), they developed a convolutional neural network
(CNN; Lecun et al., 1998) applied to three-dimensional re-
flectivity grids in order to detect hail. Using 70 km× 70 km
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reflectivity images at different altitudes centred on the cell
cores, they showed better discrimination of hail compared to
the POSH method, particularly reducing the number of false
alarms. In the work of Shi et al. (2020), they tracked con-
vective cells and trained a bagging class-weighted support-
vector machine (CWSVM) using single-polarisation cell-
based features and environmental information from proxim-
ity soundings. By comparing with common reflectivity-based
hail proxies, they showed better performances for their fitted
model. Finally, in the work of Ackermann et al. (2024), they
trained a neural network using the severe hail index (SHI;
Witt et al., 1998) and variables from ERA5 (Hersbach et al.,
2020) to estimate the magnitude of the damage generated by
hail on the ground. Using insurance data as ground truth, they
developed a hail damage estimate variable that showed high
accuracy on the estimation of damage and its intensity. Other
studies have employed deep-learning and machine-learning
techniques, applied exclusively to environmental variables
derived from numerical weather prediction (NWP) models,
for the purpose of analysing or forecasting hailstorm envi-
ronments (Gagne et al., 2017, 2019; Battaglioli et al., 2023).
These prior machine-learning and deep-learning studies have
demonstrated the potential of these techniques to partially ad-
dress the lack of information on hail growth processes. Con-
sequently, the consideration of hail detection as an image-
based problem where the morphology of storms can be taken
into account seems to be a promising approach to enhance
the hail detection capabilities of radar networks.

This study aims to train different CNN models for the de-
tection of severe hail (≥ 2 cm) on the ground using polari-
metric radar data. Although studies have already explored
the use of CNNs for hail occurrence detection, to the au-
thors’ knowledge, none have attempted to use radar polari-
metric variables for severe-hail detection with CNNs. How
do CNNs perform on the task of severe-hail detection when
applied to polarimetric radar data? Can CNNs outperform
existing hail proxies? Can CNNs be used to extract infor-
mation relevant to the detection of severe hail? To answer
these questions, the framework developed herein for the de-
tection of severe hail on the ground comprises the training
of CNNs to discriminate between severe-hail cases (≥ 2 cm)
and rain or small-hail cases (rain or hail below 2 cm). To this
end, a dataset comprising both types of cases is constructed,
and a comparison between state-of-the-art hail proxies and
the CNN approach is performed on a test dataset. The study
is divided into several sections. First, the data gathered for
this study and the construction of severe-hail cases and rain
or small-hail cases are presented in Sect. 2. Then, the meth-
ods explaining the features, the tuning phase to choose the
CNN’s architecture and its input size, and the metrics are de-
scribed in Sect. 3. Finally, the results presented in Sect. 4 are
divided into three parts: (1) the results of the tuning phase
(Sect. 4.1), (2) the feature selection and feature importance
studies (Sect. 4.2), and (3) a comparison with state-of-the-art
hail detection methods (Sect. 4.3). Finally, the conclusions

of this study present a summary of the contributions made to
the field of severe-hail detection and suggest potential appli-
cations for future research.

2 Data

2.1 Radar

This study uses data from C-band radars within metropoli-
tan France (Fig. 1). It did not include S-band and X-band
radars. Only the cases where the two nearest radars were C-
band radars were considered in this study. The volume cov-
erage pattern (VCP) of each radar consists of super-cycles of
15 min in which five to seven elevation angles are scanned,
depending on the radar (Table 1). Each 15 min super-cycle
contains three 5 min subcycles with the three lowest eleva-
tion angles remaining the same and the three upper eleva-
tion angles changing every 5 min. The maximum range of the
radars is 250 km. The raw volumetric radar data, with a range
resolution of 240 m and an azimuthal sampling of 0.5°, are
processed through a polarimetric processing chain (Figueras
i Ventura et al., 2012). Non-meteorological echoes are re-
moved, partial beam blockage is corrected, and ZH and ZDR
are corrected for attenuation (Gourley et al., 2007; Figueras i
Ventura et al., 2012; Figureas i Ventura and Tabary, 2013).
Volumetric radar data are not corrected for advection be-
tween successive elevation angles. Radar data were collected
for severe-hail cases (see Sect. 2.3) and for rain or small-hail
cases (see Sect. 2.4) to provide the radar images fed to the
deep-learning framework. Polarimetric radar variables con-
sidered in this study are ZH, ZDR, KDP, and ρHV.

In addition to the corrected polarimetric radar variables
available in the polar radar geometry, three-dimensional
Cartesian grids are generated for the study. The inter-
polation algorithm implemented within the Python ARM
Radar Toolkit (Helmus and Collis, 2016) is used to gen-
erate the grids. Derived two-dimensional fields from the
three-dimensional grids are then used as input features to
the CNN. The algorithm produces the grids with a speci-
fied resolution of 250 m× 250 m× 500 m on a domain of
60 km× 60 km× 15 km by interpolating values from the two
nearest radars around each case. The value of each grid point
is determined by interpolating from the collected radar points
within a given radius of influence (ROI). The ROI increases
proportionally with distance to the radar, and the ROI value
for each grid point in the target Cartesian grid is determined
by the nearest radar. In order to identify the nearest radar
points within the specified ROI of a given grid point, a K-
dimensional tree algorithm is employed. The value of the
grid point is calculated by summing the collected values,
with each value weighted by an inverse distance weighting
function defined by Barnes (1964). The three-dimensional
grid is generated for ZH, ZDR, KDP, and ρHV.
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Figure 1. Hail reports between 2018 and August 2023 from ESWD
(grey-blue), from the hailpad network of ANELFA (orange), and
from the mobile application of Météo-France (small grey dots).

Table 1. Example of a 15 min super-cycle for the radar of Toulouse.
The 90° elevation angle is used for ZDR calibration.

Subcycle Elevation angles

0 min 90° 8.5° 5.5° 2.5° 1.5° 0.8°
5 min 10.5° 7.5° 4.5° 2.5° 1.5° 0.8°
10 min 9.5° 6.5° 3.5 ° 2.5° 1.5° 0.8°

To account for the low vertical sampling resolution of the
French radars and to avoid discontinuities in the resulting 3D
fields, both above the radar and at long range, a minimum
radius of influence of ROImin = 2000 m was defined above
each radar. This minimum ROI resulted in a smoothing of
the fields. A nearest-neighbour interpolation scheme was also
tested (not shown) but produced strong artefacts within the
3D fields such as holes and stripes, preventing its use. As
a result, the Barnes interpolation with a minimum ROI of
2000 m was kept.

2.2 Hail reports

This study utilises various sources of hail reports, either as
ground truth for severe-hail cases or to assist in constructing
the rain or small-hail cases.

The European Severe Weather Database (ESWD; Dotzek
et al., 2009), an initiative of the European Severe Storms Lab-
oratory (ESSL), is the primary source of severe-hail reports
used in this study. Severe weather phenomena are reported
by volunteer observers, weather services, or individuals and

are quality-controlled by the ESSL into four levels of qual-
ity: QC0, QC0+, QC1, and QC2 (Groenemeijer and Kühne,
2014). To localise and estimate the maximum hail size, im-
ages from social media or local newspapers are frequently
used. From January 2018 to August 2023, the ESWD col-
lected 3348 reports in France with a maximum hail size in-
formation above 2 cm (Fig. 1).

The study also collected 1509 hailpad reports between
2018 and 2022, purchased from the Association Nationale
d’Étude et de Lutte contre les Fléaux Atmosphériques
(ANELFA; Dessens et al., 2007). Its network of hailpads
covers most of the south-west of France (Fig. 1). A hailpad
consists of a 30 cm× 50 cm× 7 cm layer of polyester placed
on the ground or mounted on a pole. Hail reports are gener-
ated from photographs of hailpads after hailstorms and are
processed by ANELFA using computer vision techniques to
infer hail characteristics. There is only one report per day per
hailpad, and each report is accompanied by an estimated time
of hailfall by the observer. Numerous quantities are available
in the reports, such as maximum diameter or hail size dis-
tribution. The main challenge with hailpad data is the small
sampling area of the pad, which prevents accurate measure-
ment of maximum hailstone size, as the largest hailstone can
easily be missed (Smith and Waldvogel, 1989).

Hail reports were also collected through the crowdsourc-
ing feature of Météo-France’s mobile application between
2018 and August 2023. The application allows users to report
weather events such as snow, strong winds, and hail, which
are then located using GPS technology embedded in mobile
phones. Since 2014, users have been able to add informa-
tion about the size of the hailstones and include a picture.
The hail size categories available are (a) lower than 0.5 cm,
(b) 0.5 cm to 1.0 cm, (c) 1.0 cm to 2.0 cm, and (d) greater than
2.0 cm. A large quantity of hail is reported between 2018 and
August 2023 (137 108 reports). However, the database may
contain a significant misrepresentation of hail occurrence due
to the lack of systematic quality controls. Observers may re-
port hail despite the absence of reflectivity data indicating
precipitation, or there may be potential errors in space and
time caused by people reporting hail after it has fallen.

2.3 Severe-hail cases

Severe-hail cases (≥ 2 cm) were created above the ESWD
severe-hail reports only. Due to the potential of system-
atic underestimation of the maximum diameter in hailpad
data and considerable uncertainty associated with the crowd-
sourcing database, these reports were not employed in the
creation of severe-hail cases. Nevertheless, they remain a
valuable resource for the development of a database of rain
or small-hail cases (see Sect. 2.4).

Although the ESWD management team applies quality
checks to its reports, errors in the hailfall time or report lo-
calisation may still occur. To reduce their impact, the hailfall
time was adjusted by examining the reflectivities from the
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Figure 2. Time series of the 1169 filtered ESWD severe-hail reports (≥ 2 cm) used in this study.

nearest radar within a time range of ± 30 min. If needed, the
report time was shifted to the time when a storm cell passed
over the report. If multiple cells were observed over the re-
port within the time range, the time of the closest cell to the
reported time was retained. If no cell was clearly visible at
different elevation angles within that time frame, the report
was discarded. A significant proportion of reports produced
by the same storm at the same time remain in the database. It
artificially increases the number of independent storm cells
that produced severe hail. To avoid duplicating severe-hail
cases centred on ESWD reports that are really close to each
other, a density-based clustering algorithm (DBSCAN; Es-
ter et al., 1996) is applied to find reports within 10 km of
each other every 5 min. The report that is the closest to the
barycentre of collected reports is kept. The total number of
severe-hail reports used for training decreased from 3348 to
1169. Figure 2 shows their distribution over time. The 1169
severe-hail reports from the ESWD are considered the only
trustable source of severe-hail reports for the remainder of
the study. Radar data will be gathered above them to consti-
tute the severe-hail cases of the study.

2.4 Rain or small-hail cases

Rain or small-hail cases are created as situations that pro-
duced either rain or small hail below 2 cm. In order for the
CNN to accurately distinguish between radar images that re-
sult in severe hail and those that do not, it is crucial that the
training set includes instances where severe hail did not oc-
cur on the ground. Rain or small-hail cases are built to in-
clude storms that may be conducive to hail formation but did
not produce severe hail at the ground. The identification of
such storms is necessary for the validation of severe-hail de-
tection algorithms. They are considered edge cases and often
produce many false alarms with current hail detection meth-
ods, making it difficult for forecasters to distinguish between
severe-hail storms and rain or small-hail storms.

The creation of rain or small-hail cases is divided into four
distinct phases. The first phase involves the presentation of

the cell identification algorithm. The second phase entails the
implementation of a consistency check to filter the collabora-
tive reports using the cell identification algorithm. The third
phase encompasses the successive steps to identify the time
and locations of the rain or small-hail cases. The final phase
comprises a filter to exclude mild-precipitation cases from
the dataset.

First, the cell identification algorithm is derived from the
methodology proposed by Morel and Sénési (2002) and sub-
sequently applied to the national reflectivity composite prod-
uct, whereby the lowest available and valid reflectivity mea-
surement from all the radars is selected (Caumont et al.,
2021). The product is available every 5 min at a 1 km hor-
izontal resolution. The cell identification algorithm defines
cells as a contiguous set of pixels above a certain reflectiv-
ity threshold. Cell objects with four different thresholds are
defined: 36, 42, 48, and 56 dBZ. Cell splits and merges are
managed by comparing cell overlaps between consecutive
images, taking into account cell motion (Morel and Sénési,
2002).

Secondly, the cell identification algorithm facilitates the
filtration of crowdsourced hail reports from the Météo-
France application. To correct for possible biases of report-
ing, a consistency check was carried out on the crowdsourced
hail reports. Cell objects of 42 dBZ from the cell identifica-
tion algorithm were collected within a time period of−120 to
+30 min around each report. If the distance between the re-
port and the nearest 42 dBZ cell within that period was more
than 15 km, the report was discarded. The 42 dBZ reflec-
tivity threshold was chosen because small and melting hail
above 5 mm is hardly reported at reflectivity values lower
than 45 dBZ (Ryzhkov and Zrnic, 2019). The selected time
interval is needed to consider potential delays between the
reported time and the actual hailfall time. A delay of 2 h prior
to the reported time was deemed adequate to account for this.
Finally, a distance of 15 km between a report and the nearest
42 dBZ contour was chosen to represent the median commut-
ing distance travelled by the rural French population each day
(INSEE, 2023). Using that consistency check, the quantity of
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Figure 3. Construction of the rain or small-hail cases on the 4 June 2022 at 16:50 (UTC) during a convective outbreak where hail was
reported. Green dots represent hail reports (ESWD + mobile application + ANELFA) within a time interval of ±1 h. Green squares are
“forbidden” areas around hail reports (120 km× 120 km) where rain or small-hail cases cannot be created at 16:50 (UTC). The orange and
red colours represent the 42 and 56 dBZ cell cumulative contours within a time interval of ± 1 h. Grey dots represent the reports from the
application that are not hail reports within a time interval of± 1 h. Light and dark turquoise show populated areas with more than 50 and 100
people per square kilometre, respectively. Black triangles represent negative (rain or small-hail) cases created at the mentioned timestamp.
They represent the intersection of reflectivity contours and areas of more than 100 people per square kilometre outside forbidden areas. Some
of them are discarded based on further filtering explained in Sect. 2.4.

reports decreased from 137 108 to 62 854, still covering 45 %
of the days within the study. Furthermore, only 28 % of the
remaining 62 854 reports contain hail size information, and
about 1.1 % is severe hail (≥ 2 cm). Because of the database’s
size, manual filtering was not possible within the scope of
this work. Therefore, the final quality of the collaborative re-
ports remains uncertain. As a result, it is only used to assist
the construction of the rain or small-hail database.

Thirdly, once crowdsourced reports were filtered, rain and
small-hail cases were searched every 20 min during hail sea-
sons (March–September) between 2018 and August 2023. A
number of measures were implemented to prevent the in-
clusion of irrelevant cases where hail was deemed unlikely
and to ensure the integrity of the rain or small-hail database,
which shall not include severe-hail cases. An initial filtering
was applied every 20 min using cell objects, where the fol-
lowing locations were kept:

– locations below cell objects that had a maximum ZH
above 45 dBZ;

– locations at the intersection between cell objects and a
highly populated area of at least 100 people per square
kilometre, as in Kopp et al. (2024);

– locations within working hours (07:00–22:00 UTC);

– locations outside “forbidden” areas, defined as squares
of 120 km× 120 km around all available hail reports

within a time interval of± 1 h. (The hail reports consid-
ered here are a combination of raw severe-hail reports
from the ESWD (3348), hailpad measurements from
ANELFA (1509), and filtered collaborative reports
from the Météo-France mobile application (62 854)).

An example of the rain or small-hail reports produced by
such filters applied to a convective outbreak on 4 June 2022
at 16:50 (UTC) is shown in Fig. 3. Using a filter that com-
bines all available hail reports to exclude “forbidden” areas
where rain or small-hail cases cannot be created was con-
sidered the best option, given the significant uncertainty in
the size and hailfall time in the hailpad measurements and in
the overall robustness of the collaborative reports. However,
a risk remains that avoiding such forbidden areas around hail
reports may result in the withdrawal of several small-hail
cases (< 2 cm). The filtering assumed that all missed severe
hail by ESWD was correctly observed in highly populated
areas within working hours by other databases, even with a
wrongly observed hail size, as it attracts more attention from
both the media and the public (Punge and Kunz, 2016). This
hypothesis is contingent upon the presence of a sufficient
number of individuals capable of recording hail. It can be
demonstrated that a non-negligible number of non-hail ob-
servations are produced by the mobile application within the
French territory every 2 h (Fig. 3), reducing the risk of miss-
ing severe hail. These steps serve to ensure that rain or small-
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hail cases are not contaminated by severe hail, which is of
the utmost importance for the relevance of the method and
the interpretation of its results.

Finally, in order to reduce the number of cases that pro-
duced moderate ZH values, an additional filter was applied.
Since mild precipitation events are climatologically predom-
inant compared to severe and extreme precipitation events,
they can populate most of the rain or small-hail cases, even
if a minimum threshold of 45 dBZ was set. In order to pre-
vent the CNN from learning with a disproportionate number
of mild cases, a filter was applied to cases that had cell ob-
jects with a maximum ZH below 56 dBZ. These cases were
divided into two categories: those produced by cells with a
maximum ZH (1) between 45 and 48 dBZ and (2) between
48 and 56 dBZ. The cases with the largest cell area per bin
of 0.2 dBZ for each category were then retained. This was
done to ensure that rain or small-hail cases were produced
by large enough storms where hail is plausible, as severe hail
is mainly produced in supercell and multicell convective sys-
tems (see Appendix B). In the event that cases were situated
at a distance of less than 15 km from one another, only the
case produced by the cell exhibiting the highest reflectivity
was included. In the event that they originated from the same
cell, one was selected at random. This methodology ensured
that rain or small-hail cases were extracted from independent
stages of a storm’s life cycle.

After these different steps of filtering, the rain or small-
hail database contained 2605 cases during hail seasons be-
tween 2018 and August 2023. Cell objects formed by the cell
identification algorithm were also gathered for the severe-
hail cases. The fitted probability density functions (PDFs)
of max(ZH) within the cell and the cell area above 56 dBZ
are compared in Fig. 4. Despite the efforts to gather intense
storms in the rain or small-hail dataset, Fig. 4 shows only
a partial overlap between the distributions on both datasets,
indicating that the biggest cases in terms of maximum re-
flectivity and cell area were mostly produced by severe hail
storms. This behaviour may be a consequence of the storm
modes embedded in each dataset, where severe hail is nearly
systematically produced by large, intense, and highly organ-
ised systems such as supercells (see Appendix B).

It is crucial to acknowledge that it was not feasible to en-
sure that small hail was included in the rain or small-hail
dataset. Indeed, small hail is less likely to be reported by
observers, and a significant degree of uncertainty contam-
inates the existing databases that have the capacity to re-
port it (Météo-France crowdsourcing application, ANELFA
hailpads). Consequently, it is assumed that by selecting the
strongest storm cases outside areas where hail was reported,
using the aforementioned filters, it was possible to include
potential instances of small hail. In the most unfavourable
scenario, the rain or small-hail database is populated with in-
stances of rain or heavy rain only, which still contributes to
the generation of false alarms in existing severe-hail detec-
tion algorithms.

Figure 4. Fitted probability density functions (PDFs) for storm cell
objects identified above severe-hail and rain or small-hail cases.
(a) PDFs of the maximum reflectivity (max(ZH)) within storm
cells. (b) PDFs of the area for storm cells with the 56 dBZ threshold.

2.5 Reference hail proxies

This section presents the existing radar-based hail proxies
that are compared with the CNN approach. They are sepa-
rated into three different kinds.

The first hail proxy being compared is the output of an up-
dated version of the fuzzy-logic hydrometeor classification
algorithm from Al-Sakka et al. (2013), which is available at
S-, C-, and X-bands. The original version of the algorithm
discriminates between six different hydrometeor classes us-
ing dual-polarisation radar variables and temperature: bio-
logical scatters or ground clutter (BS-GC), rain (RA), wet
snow (WS), dry snow (DS), icy particles (IC), and hail (HA).
A revised version enables the classification of hail into three
distinct categories: small hail (SH; < 0.5 cm), medium hail
(MH; 0.5 to 2 cm), and large hail (LH; > 2 cm). Details on
the updated version can be found in Appendix C. It is called
A13 hereafter.

The second family of hail proxies uses the severe hail in-
dex (SHI) developed by Witt et al. (1998) to produce two
proxies capable of detecting hail: the probability of severe
hail (POSH; Witt et al., 1998) and the maximum estimated
size of hail (MESH; Witt et al., 1998; Murillo and Home-
yer, 2019). The SHI is calculated by the weighted sum of 3D
reflectivities over the vertical, based on the position of radar
gates to the hail growth zone (0 and−20°C; Witt et al., 1998)
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as follows:

SHI= 0.1

Ht∫
H0

WT (H)ĖdH, (1)

with

Ė = 5× 10−6
× 100.084ZHW(ZH) (2)

WT (H)=


0 for H ≤H0
H−H0
H−20−H0

for H0 <H <H−20

1 for H ≥H−20

(3)

W(ZH)=


0 for ZH ≤ ZL
ZH−ZL
ZU−ZL

for ZL < ZH < ZU

1 for ZH ≥ ZU

, (4)

where SHI is in J m−1 s−1, H is the altitude, Ht is the al-
titude of the top of the storm, H0 and H−20 are the alti-
tudes of the 0°C isotherm and −20°C isotherm, respectively,
ZL =40 dBZ and ZU =50 dBZ, and Ė is the hail kinetic en-
ergy. The POSH and MESH relationships, derived from the
SHI, are defined as follows:

POSH= 29ln
SHI
WT
+ 50,with WT= 57.5H0− 121 (5)

MESH= 2.54×
√

SHI (6)

MESH75 = 15.096×SHI0.206 (7)

MESH95 = 22.157×SHI0.212, (8)

with WT being a warning threshold calibrated for POSH
to produce the best critical success index (CSI) for the
US S-band radars (Witt et al., 1998), MESH coming from
Witt et al. (1998), and MESH75 and MESH95 coming from
Murillo and Homeyer (2019). The variables are calculated
based on the three-dimensional reflectivity grid, and the 0
and −20°C altitudes are extracted from the nearest forecast
hour within the AROME model (Brousseau et al., 2016).
The AROME model provides hourly forecasts with a hor-
izontal resolution of 0.01°. The isotherms are regridded
to the 250 km× 250 km horizontal resolution of the three-
dimensional grid and interpolated in time to the time of the
severe-hail and rain or small-hail cases.

The third family of hail proxies compared in this study
are based on echo tops, i.e. the maximum altitude at which
a reflectivity threshold is reached. The probabilities of hail
(POHs) from Delobbe and Holleman (2006) and Foote et al.
(2005) are compared in this study and are constructed as fol-

lows:

POHDelobbe = 0.319+ 0.1331H (9)

POHFoote =−1.20231+ 1.00184

1H − 0.170181H 2
+ 0.010861H 3, (10)

where 1H is the difference between the echo top at 45 dBZ
(ET45) and H0 in kilometres. Echo tops are computed using
the three-dimensional reflectivity grid (see Sect. 2.1).

Finally, the maximum reflectivity over the vertical Zmax
H

(see Sect. 3.1) is added as a comparison baseline to all the
methods compared in this study.

3 Methods

This section outlines the experimental design used to evalu-
ate the performance of the CNNs. To align with machine-
learning terminology, the term “radar variable” has been
replaced with “feature”. A feature represents a 2D radar-
derived variable that is fed to the CNN.

3.1 Input features

For each severe-hail case and rain or small-hail case, two dif-
ferent sets of inputs are generated: (1) 2D features obtained
from the 3D grid and (2) 2D features extracted directly from
the volumetric radar data. Both groups are fed into the CNN.
The input features are summarised in Table 2. They are pro-
duced using the nearest radar time step from the time men-
tioned in each case.

The 3D grids are used to generate a number of storm and
hail proxies, which are known for their ability to help in the
detection of hail. First, the ZDR column is calculated from
the 3D grid to account for potential hail formation processes
above the freezing level, as it indicates regions with high con-
centrations of supercooled water and graupel, which are es-
sential for hail growth (Kumjian, 2013b; Kuster et al., 2019).
The ZDR column height was calculated using the 3D Carte-
sian polarimetric grid, with candidate pixels that met the fol-
lowing criteria: ZH ≥ 25 dBZ and ZDR ≥ 2 dB. The height of
a column of adjacent candidate pixels is computed as theZDR
column height. A criterion was applied to ensure the conti-
nuity of the column above and below H0 in the event that
500 m portions of the column were missing in the middle of
two candidate pixels over the vertical. Other 2D input fea-
tures derived from 3D grids include vertically integrated liq-
uid (VIL; Greene and Clark, 1972), ET45, and H0. Further-
more, polarimetric features at an altitude of 2 km are incor-
porated to account for hail-related signatures at low altitudes
below the altitude of freezing. The 2 km height was selected
as a compromise to achieve optimal 3D radar coverage while
remaining below the freezing level in the majority of cases.
It is notable that low ZDR values may be indicative of dry
spherical hail. High ZDR and KDP may suggest the presence

Atmos. Meas. Tech., 17, 6707–6734, 2024 https://doi.org/10.5194/amt-17-6707-2024



V. Forcadell et al.: Severe-hail detection with C-band dual-polarisation radars 6715

Table 2. Input features to the CNN divided into three categories: polarimetry, storm proxy, and hail proxy.

Group Abbreviation Unit Description

Zmax
H dBZ maximum ZH over elevations
Z∗DR dB collocated ZDR with Zmax

H
K∗DP ° km−1 collocated KDP with Zmax

H

Polarimetry
ρ∗HV collocated ρHV with Zmax

H
Z2000

H dBZ ZH at 2000 m
Z2000

DR dB ZDR at 2000 m
K2000

DP ° km−1 KDP at 2000 m
ρ2000

HV ρHV at 2000 m

Storm proxy
ZDR column km ZDR column height
VIL kg km−2 vertically integrated liquid
ET45 m echo top at 45 dBZ

Environment H0 m altitude of freezing

POHDelobbe % probability of hail from Delobbe and Holleman (2006)
POHFoote % probability of hail from Foote et al. (2005)
POSH % probability of severe hail from Witt et al. (1998)

Hail proxy
MESH mm maximum estimated size of hail from Witt et al. (1998)
MESH75 mm 75th percentile maximum estimated size of hail from Murillo

and Homeyer (2019)
MESH95 mm 95th percentile maximum estimated size of hail from Murillo

and Homeyer (2019)
A13 updated hydrometeor classification from Al-Sakka et al. (2013)

of either rain or a mixture of rain and melting hail (Ryzhkov
and Zrnic, 2019). The features at 2 km include Z2000

H , Z2000
DR ,

K2000
DP , and ρ2000

HV . Finally, a series of hail proxies were sub-
jected to testing as input features, with the objective of deter-
mining the extent to which they might provide additional in-
formation within the framework of a CNN: MESH, MESH75,
MESH95, POSH, POHFoote, and POHDelobbe.

The utilisation of 3D interpolation may result in the loss
of information present in the original volumetric fields, as it
reduces the small-scale variations and the original resolution
of the fields (Fig. 5). In order to more accurately represent
the native resolution of volumetric radar data, 2D features
derived from volumetric radar data are incorporated in ad-
dition to those derived from the 3D grid. Nearest-neighbour
interpolation is employed on the volumetric data at every ele-
vation angle in order to match the horizontal resolution of the
3D grid (250 km× 250 km). This interpolation is different
from the 3D interpolation scheme in Sect. 2.1. It is performed
separately for each case and for the two nearest radars inde-
pendently. In order to account for the low vertical sampling
of French radars and the frequent partial beam blockage at
low elevations, 2D features are created from the interpolated
elevations. The initial feature to be considered is the maxi-
mum ZH value over the vertical (Zmax

H ). The other ones are
called “collocated” polarimetric features, named Z∗DR, K∗DP,
and ρ∗HV. They are selected where Zmax

H is reached over the
elevations. As hail is always detected in areas of high ZH
(Kumjian, 2013a; Ryzhkov and Zrnic, 2019), it appears ap-

propriate to examine the polarimetric signatures where re-
flectivity is the highest. One disadvantage of this approach is
that the resulting collocated features (2D images) may con-
tain pixels located at different altitudes, which makes it chal-
lenging to interpret their values. To eliminate collocated po-
larimetric features produced at very high altitudes and low
Zmax

H values, only collocated values where Zmax
H was above

30 dBZ were retained. A sample of all input features for a
case that resulted in severe hail on the ground is shown in
Fig. 5.

For each case, either severe hail or rain or small hail, two
samples were created, each containing 2D features. One sam-
ple was created for the nearest radar, and the other was cre-
ated for the second-nearest radar. Both samples share iden-
tical 2D features that originate from the 3D grid. However,
they differ in their Zmax

H and collocated features, as they were
produced independently for each radar. This process helped
to augment the dataset, which is considered crucial, particu-
larly given the scarcity of severe-hail reports.

A total of 7523 radar samples were produced. Among
them, 2335 were created from the 1169 severe-hail cases, and
5188 were created from the rain or small-hail cases. A total of
3 severe-hail samples and 22 rain or small-hail samples were
removed from the dataset due to issues with interpolation,
primarily arising from the second-nearest radar. Figure 6 il-
lustrates the distributions of maximum values within samples
for a selection of features. It should be noted that the distri-
bution of the maximum reflectivity values within the images
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Figure 5. Input features defined in Table 2 for a case producing severe hail on the ground. Image size is 60 km× 60 km, and the severe-hail
report is located at the centre of the image.

may differ from the distributions obtained with the cell iden-
tification algorithm (Fig. 4), as the reflectivity values do not
originate from the same methodology. In the context of this
study, distributions of the maximum of input features, includ-
ing VIL, ET45, MESH proxies, and POSH, exhibit a certain
separation between cases of severe hail and those of rain or
small hail (Fig. 6). This may provide insight into the discrim-
inative power of these features for severe-hail detection.

To analyse the polarimetric variables, the bivariate distri-
butions of Zmax

H and Z∗DR are presented in Fig. 7. The dis-
tribution of values for severe-hail cases exhibits a high den-
sity of values with Zmax

H above 50 dBZ and Z∗DR ≈ 0 dBZ,
in accordance with the expected behaviour of spherical hail-
stones (Kumjian, 2013a). For rain and small-hail cases, Z∗DR
increases with Zmax

H , as the database may be populated by
storms producing either rain or small melting hail that has
higher ZDR values compared to larger hail due to a higher
dielectric constant for water (Kumjian, 2013a; Ryzhkov and
Zrnic, 2019).

3.2 Tuning architecture and input size

Two distinct types of CNN architecture are evaluated to iden-
tify the optimal architecture and input size. The first type of
architecture is a feed-forward CNN, which draws inspiration
from the AlexNet architecture (Krizhevsky et al., 2017). Two
models were created from it: SmallConvNet and ConvNet.
The former comprises only one convolutional layer, while the
latter is a deeper architecture with three convolutional layers
(Fig. 8). The second kind of architecture tested in this study
is residual network architecture (ResNet; He et al., 2015).
The 18-layer variant of ResNet is used and includes 18 lay-
ers of convolutions with skipped connections that increase
the accuracy of the network (He et al., 2015). Four input
sizes are tested with the different models using a centred
crop around the case location: 5 km× 5 km, 15 km× 15 km,
30 km× 30 km, and 50 km× 50 km. Every combination of
model and input size is trained, and the combination that
yields the best performance is selected for the remainder of
the study. The training for the tuning phase is performed
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Figure 6. Distributions of the maximum value over 60 km× 60 km images for most of the input features in the severe-hail dataset and the
rain or small-hail dataset.

Figure 7. Bivariate distributions of Zmax
H and Z∗DR within

60 km× 60 km images for the severe-hail dataset and the rain or
small-hail dataset. Contours represent the frequency of values per
two-dimensional bin.

using all the variables listed in Table 2 as input features to
the CNNs.

The choice of hyperparameters can influence the learn-
ing phase and the final performance of a fitted model. How-
ever, in order to focus solely on the choice of the model and

the impact of input size on the performance, the models are
trained with fixed hyperparameters. Stochastic gradient de-
scent (SGD) is used with a learning rate of lr= e−4, a weight
decay of wd = e− 3, and a momentum of m= 0.9. The loss
function is the binary cross entropy (BCE), the training mini-
batch size is bs= 64, and the maximum number of epochs is
nepochs = 300. Additional regularisation is achieved through
the incorporation of batch normalisation layers within the
models. The selection of hyperparameters is highly empiri-
cal and dependent on the specific problem being solved, as
well as the quality and quantity of data used for training.
The aforementioned hyperparameters are selected in order to
ensure that the model’s loss decreases monotonically during
training towards convergence.

During the tuning phase, all possible combinations of
models and input sizes are trained under identical conditions.
The whole dataset containing severe-hail and rain or small-
hail samples (7523) is separated between a training dataset,
a validation dataset, and a test dataset. The different splits
are presented in Table 3. The training and validation datasets
are employed during the tuning phase, while the test dataset
is reserved for subsequent performance analysis. To ensure
independence between the datasets, samples are grouped by
date. This guarantees that each date is only present in one
dataset. Furthermore, an additional precaution is taken to en-
sure that the proportion of severe-hail and rain or small-hail
cases remains the same in all three datasets. In order to ad-
dress the imbalance of the dataset during training, the minor-
ity class (i.e. severe hail) is oversampled using weighted ran-
dom sampling. This process artificially increases the number
of severe-hail cases seen by the CNN at each training itera-
tion. Finally, early stopping enables the model to halt training
when the validation loss fails to decrease after 20 consecutive
epochs.
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Figure 8. Two types of feed-forward CNN architecture tested in this study: SmallConvNet and ConvNet. Convolutional layers are denoted
as “Conv” (yellow boxes); pooling layers are denoted as “Max. pool” and “Adapt. avg. pool” for max pooling and adaptive average pooling,
respectively (red boxes); fully connected layers of perceptrons are denoted as “Dense” (green boxes), with “p” for padding and “s” for stride.
The number of filters per layer is shown below boxes. The kernel size is shown by multiplicative terms. All activation functions are ReLU.
A batch normalisation layer is added after each convolutional layer for regularisation (hidden). The output of the network is a real number,
which is subsequently passed to a sigmoid function to produce a probability of severe hail on the ground within the image, denoted as
P ∈ [0,1].

Table 3. Number of samples in the training, validation, and test
datasets for the tuning phase in Sect. 3.2.

Training Validation Test

Severe hail (1) 1476 413 446
Rain or small hail (0) 3100 1138 950

Total 4576 1551 1396
(61 %) (21 %) (19 %)

3.3 Scores

The performance of the models is evaluated using a scor-
ing methodology. For the CNNs, the output provides one
probability of severe hail at the ground, denoted as P , for
each image. The image is predicted as producing severe hail
(yCNN

pred = 1) or rain or small hail (yCNN
pred = 0) on the ground

given a discrimination threshold α:

yCNN
pred =

{
1(severe hail) if P ≥ α

0(rain or small hail) otherwise,
(11)

with α ∈ [0,1].
The reference hail proxies (see Sect. 2.5) produce either a

gridded probability or a gridded hail size as output (Fig. 5).

In order to facilitate comparison with the output of CNNs,
it is necessary to reduce the proxies to a single value per
image. Two thresholds can be used simultaneously to deter-
mine whether the image is associated with severe hail on the
ground: a threshold for feature values X, designated βX, and
a discrimination threshold for the area AX covered by the
resulting field, designated βAX . If the area of pixels above
βX exceeds βAX , the hail proxy predicts severe hail on the
ground within the image as follows:

y
proxy
pred =

{
1(severe hail) if X ≥ βX and AX ≥ βAX
0(rain or small hail) otherwise.

(12)

For example, if βX = 50% and βAX = 10km2 for POSH, the
prediction for the image will be severe hail if the area of
POSH above 50 % in the image exceeds 10 km2. This evalu-
ation method allows for the study of the trade-off between a
threshold on the hail proxies and the area they cover, with
the objective of detecting severe hail. The various feature
threshold values βX tested in this study for the hail prox-
ies are presented in Table 5. For A13, three different feature
threshold values are employed. These are (i) pixels with a

class above or equal to the small-hail class (βX
4
= (≥ SH)),

(ii) pixels with a class above or equal to the medium-hail

class (βX
4
= (≥MH)), and (iii) pixels with a class above or
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Table 4. Contingency table.

Prediction

Severe hail Rain of small hail

Observation severe hail true positive (TP) false negative (FN)
rain or small hail false positive (FP) true negative (TN)

equal to the large-hail class (βX
4
= (≥ LH)). This approach

enables the determination of the performance for different
hail class as thresholds.

The performance metrics for the predictions are defined
through the use of a contingency table (Table 4). The fol-
lowing metrics are employed in order to compute the per-
formance of a model: the probability of detection (POD),
also known as the recall; the probability of false detection
(POFD), also known as the false alarm rate; the Peirce skill
score (PSS); the critical success index (CSI); the Heidke skill
score (HSS); and the precision, also known as the success ra-
tio. They are defined as follows:

POD= recall=
TP

TP+FN
(13)

POFD=
FP

TN+FP
(14)

PSS= POD−POFD (15)

CSI=
TP

TP+FN+FP
(16)

HSS= 2×
TP×TN−FP×FN

(TP+FN)× (FN+TN)+ (TP+FP)× (FN+TN)
(17)

precision=
TP

TP+FP
. (18)

The precision captures how often it turns out to be cor-
rect when a model makes a positive prediction (Kelleher
et al., 2020). The PSS shows the trade-off between POD
and POFD. The global performance of models is evaluated
by calculating the receiver operating characteristic (ROC)
curves and the precision–recall curves, which illustrate the
trade-off between metrics at different discrimination thresh-
olds. Each variant of the hail proxies with a given βX value
is considered a classifier. The performance of a classifier is
evaluated by calculating the metrics for each possible dis-
crimination area (βAX ). For the CNN, each point on the
curves shows the local performance for a given discrimina-
tion threshold α. For hail proxies, each point on the curves
shows the local performance for a given βX and a given βAX .
The areas under the curve for the ROC curve (AUC-ROC)
and the precision–recall curve (AUC-Pr.Re.) are computed
and used as representative metrics of the global performance
of a model. If all the predictions are wrong, the AUC is 0.0;
if they are right, the AUC is 1.0. In the context of a bal-

Table 5. Interval of feature threshold values (βX) tested to assess
the performance of hail proxies. For example, if βX = 25mm for
MESH, the performance of a model where MESH ≥ 25mm is as-
sessed for different areas covered by the resulting field. Increments
tested along the βX intervals are denoted as inc.

POSH MESH
A13POHDelobbe MESH75

POHDelobbe MESH95

βX [1, 100] % [1, 60] mm {SH, MH, LH}
inc. 1 % 1 mm

anced dataset, an AUC of 0.5 indicates that the model’s per-
formance is equivalent to that of a random function.

4 Results

4.1 Tuning phase

The results of the tuning phase are summarised by the learn-
ing curves of the different models (Fig. 9) and the ROC and
precision–recall curves, which assess the performance on the
validation split (Fig. 10). Models trained with an input size of
50 km× 50 km were tested but not included in the results, as
they did not demonstrate any improvement in performance.

The evolution of the training loss in Fig. 9 shows a global
monotonic decrease for each model and input size, imply-
ing that some information within the features is learned by
the models. However, this information may be irrelevant for
severe-hail detection if the fitted models do not generalise
well to unseen examples. Different behaviours are seen for
certain input sizes and model architecture. Simple models
such as the SmallConvNet lag behind in terms of minimum
loss achieved on both the training and validation sets. Small-
ConvNet struggles to learn as much as the other models and
reacts on average more incorrectly when presented with the
validation set, especially for small input sizes (Fig. 10). This
may be a classic case of underfitting, where a model is too
simple to learn highly abstract features in the data. In addi-
tion to underfitting, small input sizes appear to be detrimental
to the performance of CNNs, regardless of the model used.
Although this was expected, it shows that the models trained
with 5 km× 5 km input features are likely to miss important
information in the vicinity of the storm cores that can be at-
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tributed to larger-scale phenomena within the storms (hook
echo, updraught region, downdraught region). The decline in
performance with decreasing input size is evident in Fig. 10.

Two models, ConvNet and ResNet18, appear to achieve
equivalent performance on the validation set, despite
ResNet18 containing a significantly greater number of pa-
rameters (Fig. 9). The models in question are deeper than
SmallConvNet, which increases their likelihood of identify-
ing information at varying levels of abstraction within the
data, thereby enhancing their performance. The fact that
ResNet18 achieves performance levels comparable to those
of ConvNet on the validation set, despite being more com-
plex, suggests that the size of the validation dataset may be
insufficient for it to enhance its prediction.

Although a monotonic decrease is observed for the train-
ing loss across epochs, oscillations in the validation loss
are evident for ConvNet and ResNet18 after the 50th epoch
(Fig. 9). This behaviour is observed when a minor adjustment
to the weights and biases during training results in a signif-
icant change to the value of the validation loss. This phe-
nomenon is likely attributable to the relatively limited size
of the validation dataset, which may prompt abrupt changes
in model behaviour when parameters are updated. A direct
consequence is that the models are learning additional in-
formation that may be derived from noise within the input
features rather than severe hail. Although the complexity of
the ConvNet and ResNet18 networks may appear to be their
strength, in certain situations this may outweigh the benefits,
as they are more likely to learn useless information due to
their multiple layers and connections, thus overfitting. The
observation that simpler models, such as SmallConvNet, do
not exhibit the same degree of oscillation in the validation
loss suggests that the issue may lie in the complexity of the
model (Fig. 9). Nevertheless, there are methods to mitigate
the adverse effects of overfitting on small datasets. One such
method is cross-validation, which entails training an ensem-
ble of models on distinct training and validation sets and sub-
sequently averaging the predictions of all models to obtain
the final output on the test set (Kelleher et al., 2020).

Consequently, SmallConvNet exhibited suboptimal per-
formance relative to deeper models, and complexity can im-
pede generalisation when utilising limited datasets. There-
fore, ConvNet with an input size of 30 km× 30 km is deemed
an optimal compromise for the remainder of the study. Cross-
validation will be employed to mitigate the risk of overfitting.

4.2 Feature selection and feature importance

Prior to comparing the selected CNNs with hail proxies, it is
necessary to explore the features. This involves the removal
of highly correlated features in order to limit them to a subset
of the most useful ones and the determination of the impor-
tance of each feature in the final prediction of the CNNs.

Feature selection is performed by exploring the correla-
tions between the 19 input features listed in Table 2. A ran-

dom sample of 1 million pixels from the entire dataset was
employed to compute the Spearman correlation coefficient
between each variable. The resulting coefficient matrix is
presented in Fig. 11.

It is anticipated that high positive correlations will be ob-
served between features that are based on the same under-
lying variable. MESH, MESH75, and MESH95 demonstrate
perfect Spearman correlations (1.00) due to their underlying
monotonic relationship with the SHI (see Eq. 5). The same
rationale can be applied to the high positive correlations ob-
served between ET45, POHDelobbe, and POHFoote, although
the correlation seems higher between ET45 and POHDelobbe
(0.98) due to the latter’s direct linear relationship with ET45
(Eq. 9). A strong positive correlation is observed between
MESH variants and ET45 (≈ 0.93), despite the fact that they
were not produced using the same methodology. The rela-
tionship between the echo tops and the integral of weighted
reflectivities used in MESH may provide an explanation for
this behaviour. Higher echo tops indicate a greater volume
of ZH ≥ 45dBZ above the −20°C altitude, which carries the
most weight in the construction of the SHI (Witt et al., 1998).
Moderate positive correlations are observed between Zmax

H ,
VIL, and all the hail proxies presented in Table 5, which is
consistent with expectations, given their dependence on ZH.
The correlation between hail proxies and ρHV at an altitude
of 2 km is moderately negative (≈−0.60). This correlation is
likely influenced by the effect of hail or a mixture of rain and
hail on the reduction of ρHV values at low levels (Kumjian,
2013a; Ryzhkov and Zrnic, 2019).

Once the correlations between variables have been estab-
lished, a feature importance study can be conducted. The
withdrawn variables are the following: MESH, MESH95,
POHDelobbe, and POHFoote. In order to prevent overfitting and
to account for any potential variability in the results, the fea-
ture importance is computed by cross-validation of the per-
formance of 10 ConvNet models trained on a 30 km× 30 km
input size. A total of 10 distinct combinations of training and
validation sets are generated through the application of boot-
strapping to the train and validation sets employed during the
tuning phase (Table 3). In order to ensure the independence
of the sets, the same precautions as in the tuning phase are
taken. Following training, the performance of the 10 fitted
models is assessed on the test dataset. One variant with un-
perturbed input is trained for each of the 10 combinations and
serves as a baseline. Feature importance is then computed for
each model by sequentially perturbing features using random
permutations within mini-batches. If a particular feature is
important to the model, its random permutation should result
in decreased performance compared to the baseline model.
The greater the decrease in performance, the more important
the feature is for the model to detect severe hail. The perfor-
mance decrease is calculated by measuring the reduction in
AUC for both the ROC curve and the precision–recall curve.
Figure 12 illustrates the average and the uncertainty of fea-
ture importance for each input feature.
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Figure 9. Learning curves with the evolution of the train loss (a) and the validation loss (b) for the models trained during the tuning phase.
The retained model is highlighted by the solid black line. The curves are smoothed with a sliding window of three epochs.

Figure 10. ROC curves (a) and precision–recall curves (b) for the models trained during the tuning phase. The retained model is highlighted
by the solid black line.

A low feature importance does not necessarily indicate
that the feature is useless for severe-hail detection. On the
one hand, it may indicate that the feature plays a less impor-
tant role in the output of the CNN. On the other hand, it could
suggest that the majority of the information that the CNN re-
quires to make its decision is already embedded in other fea-
tures. The feature importance study only demonstrates the
importance of a feature within the context of a CNN devel-
oped for severe-hail detection.

The performance decline resulting from the perturbation
of MESH75 is the most pronounced among all variables.
MESH was specifically developed for the detection of se-
vere hail at S-band. Consequently, despite the potential of
higher reflectivity values at S-band than at C-band (Ryzhkov
and Zrnic, 2019), it is anticipated that MESH facilitates the

identification of areas with severe hail. Due to its capacity
to account for the vertical reflectivity profile within the hail
growth zone, MESH may be less sensitive to the effects of
low vertical sampling than echo tops and may be better at
summarising information at mid-levels and upper levels that
are useful to quantify the severity of hail on the ground.

Three additional features appear to be important for the
CNN: Zmax

H , ρ2000
HV , and ET45. This is not unexpected given

that ZH is sensitive to the particle size distribution and that
high ZH values above 70 dBZ are typically associated with
large and giant hail (≥ 5 cm; Ryzhkov and Zrnic, 2019). The
importance of Zmax

H may be attributed to the better represen-
tation of small-scale variations of the field in comparison to
2D features extracted from the 3D grid. This may also ex-
plain the enhanced importance of Zmax

H relative to VIL, de-
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Figure 11. Spearman correlation matrix for the 19 input features computed on a subset of 1 million pixels from the entire dataset. Warm
colours correspond to positive Spearman correlation coefficients and cold colours to negative ones.

spite the latter having stronger correlation coefficients with
hail proxies (Fig. 11). As a feature that may be negatively
correlated to the presence of hail in the low levels, ρ2000

HV is
of significant importance for the CNN to make its prediction.
This negative correlation of ρ2000

HV with various hail proxies
indicates a decrease in ρHV in the presence of hail that is
expected, particularly in the presence of melting hail or hail
growing in the wet regime (Ryzhkov and Zrnic, 2019). Fi-
nally, it can be seen that ET45 is of some importance. Al-
though affected by vertical sampling (Delobbe and Holle-
man, 2006), echo tops can contain useful information about
storm height and remain relevant as a storm proxy, as more
intense storms are expected to produce stronger echoes at
high altitudes (Trefalt et al., 2023).

The average importance of the remaining features is sit-
uated within their respective uncertainty intervals. For in-
stance, ZDR columns appear to be relatively inconsequential
in the context of this study. However, this feature is not ad-
equately represented by examining data at the time of the

hailfall, as ZDR columns are expected to be visible prior to
hailstones falling on the ground (Kuster et al., 2019). It may
prove advantageous to use ZDR columns in the context of
storm cell tracking and the study of the life cycle of storms,
as it has been observed to be effective in the short-term fore-
cast of severe weather (Kuster et al., 2019). The relatively
low importance of polarimetric collocated variables (Z∗DR,
K∗DP, ρ∗HV) may be explained by two factors. Firstly, as col-
located polarimetric variables may originate from different
heights, they may insufficiently characterise the presence of
hail, and important information may be lost. Secondly, this
may simply reflect the fact that the value of these variables
contributes little to the prediction compared to other, more
significant variables such as MESH75 and Zmax

H .
Following the completion of a feature importance study,

it is standard practice to train a model again using the most
important features in order to validate its performance on un-
seen data. However, due to the unavailability of more severe-
hail reports within the French territory, it was not possible
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to retrain the models. Consequently, the feature importance
study was limited solely to interpretation purposes.

4.3 Comparison with state of the art

The performance of the 10 ConvNet fitted models is com-
pared to the hail proxies on the test set. The results are sum-
marised in Fig. 13 as ROC and precision–recall curves. Ta-
ble 6 summarises the global metrics with the feature thresh-
old values and threshold areas leading to the best perfor-
mance.

Overall, high AUC values are observed for all the hail
proxies except A13 and POSH (Table 6). This demonstrates
their capacity to optimise their performance if the threshold
value above which they produce severe hail (βX) is meticu-
lously selected. It is in accordance with several studies that
have emphasised the significance of calibration in order to
optimise the performance of existing hail proxies (Murillo
and Homeyer, 2019; Ortega, 2021; Brook et al., 2024; Kopp
et al., 2024). The validation framework developed in this
study permits the further investigation of the performance
of hail proxies by incorporating an additional discrimination
threshold on the area covered by the feature (βAX ).

The best performance for severe-hail detection overall is
reached by the ConvNet model, with an average AUC-ROC
of 0.979 and an average AUC-Pr.Re of 0.961 (Table 6). It also
reaches the best performance in CSI and HSS, with 0.803
and 0.837, respectively. The low variance around mean val-
ues demonstrates a consistent behaviour among the models
trained using cross-validation. Furthermore, the results indi-
cate that the network generalises well when applied to un-
seen data within the test dataset. ConvNet exhibits the op-
timal trade-off between POD and POFD among all models.
Table 7 shows a confusion matrix for different variants of
ConvNet and hail proxies. The number of false alarms for
the best ConvNet, i.e. the ConvNet with the highest AUC-
ROC at a discrimination probability of α = 0.12, is the low-
est among all methods (61 in total – Table 7). The results
demonstrate that a shallow CNN architecture is capable of
identifying relevant features indicative of severe hail on the
ground.

According to Table 6, the second-best methods for detect-
ing severe hail on the test set are the hail proxies MESH95
and MESH75. The performance in terms of PSS for the
MESH95 is the best for βX = 33mm and βAX = 23km2. For
MESH75, the best PSS is at βX = 22mm and βAX = 25km2.
This is consistent with the findings of the feature importance
study (Sect. 4.2), which identified MESH variables as the
most crucial variables for ConvNet to detect severe hail on
the ground. The feature thresholds in Table 6 are also in ac-
cordance with what can be found in other studies (Murillo
and Homeyer, 2019; Ortega, 2021; Brook et al., 2024). When
employed either independently or as an input feature to a
CNN framework, the results on the test set demonstrate that

MESH remains effective for the discrimination of severe hail
on the ground, even at C-band.

The POSH and the fuzzy-logic algorithm (A13) appear to
be less effective when compared to other methods, as evi-
denced in Table 6. In the case of POSH, the application of
the warning threshold (WT) in Eq. (5) may be considered a
potential explanation for the decrease in performance. The
denser vertical sampling, higher ZH, and lower attenuation
of US S-band radars compared to French C-band radars re-
sult in SHI values that may be smaller than the ones expected
at S-band. Consequently, the WT fitted to the S-band radars
may remove a significant proportion of pixels with low SHI
values in this study. This can be verified in Fig. 5, where the
POSH values cover a smaller area than other hail proxies.
One potential solution would be to modify the fit of POSH
in order to adapt it to the French radar network. The perfor-
mance of the fuzzy-logic algorithm (A13) varies significantly
depending on the hail class used as a feature threshold (i.e.
≥SH, ≥MH, ≥LH), as evidenced in Table 6. In essence,
the performance of the algorithm declines significantly as the
threshold for hail class is increased, as the model with small
hail as a threshold is the best among all other hail classes
(A13small, Table 6). This may indicate a propensity of the
fuzzy-logic scheme to model severe hail as small hail (SH
– < 0.5 cm) rather than large hail (LH – ≥ 2 cm). This may
demonstrate that an improvement is possible in the design
of the bi-dimensional membership functions of hail classes
within A13 (see Appendix C), as the small-hail and medium-
hail class may in reality represent larger hail sizes than those
indicated.

The variation in the local performance of hail proxies
for different pairs (βX, βAX ) is also investigated in order
to demonstrate the potential for compromise in operational
use. The variations in performance are presented in the form
of PSS matrices in Fig. 14. The PSS matrix indicates that
the local performance for a given feature threshold (βX) can
be modified by adjusting the discrimination area (βAX ). The
PSS values demonstrate that the local performance of hail
proxies can be markedly improved by implementing an op-
timised pair (βX,βAX ). In fact, Fig. 14 indicates that the
thresholds yielding the highest PSS for the hail proxies are
not exclusive and lie within a broad range of potential fea-
ture thresholds and discrimination areas.

To investigate further the consequences of the threshold
selection in terms of false alarms, two pair variants are eval-
uated for two of the most effective hail proxies: POHDelobbe
and MESH95. The pairs are the following:

1. the (βX, βAX ) pair that produced the highest PSS among
all thresholds

2. and the pairs

– (βX = 50%, βAX = 1km) for POHDelobbe

– (βX = 30mm, βAX = 1km) for MESH75.
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Figure 12. Feature importance results on the test set. Each bar corresponds to the average decrease in performance among 10 ConvNet models
fitted on different combinations of training and validation sets. Uncertainty is shown as error bars of ±σ . Ref. stands for the unperturbed
model.

Figure 13. ROC curves and precision recall curves for models applied to the test set. The average curve obtained from the 10 fitted ConvNet
models is shown as a solid black line along with the uncertainty interval (±σ , shaded area). Coloured curves show the hail proxies with
the βX value that produced the highest AUC-ROC. The dashed grey line corresponds to the best variant of A13 with severe hail detected
when the hail size is equal to or above the small-hail class (SH). Each point in the solid black line corresponds to a discrimination threshold
α ∈ [0,1]. Each point within the coloured curves and the dashed grey line corresponds to a discrimination area βAX in km2.

The latter pair variant was considered a baseline model for
both proxies, where 30 km× 30 km images are classified as
producing severe hail if an area of at least 1 km is found
within POHDelobbe ≥ 50% and MESH95 ≥ 30mm, respec-
tively. The results of this local performance analysis are
given as a confusion matrix in Table 7. The confusion matrix
indicates a significant increase in the number of false alarms
when a small area of 1 km is used to trigger the severe-hail
detection for the hail proxies, in comparison to their opti-
mal variant. The number of false alarms increases from 68 to

364 (+435%) for MESH95 and from 80 to 552 (+590%) for
POHDelobbe. Although anticipated, the results demonstrate
that incorporating fairness into the prediction of existing hail
proxies by considering both a threshold value and the area
they cover is more effective than a simple verification that
would rely on the nearest hail proxy pixel within a certain
radius around a location.

Additionally, the ROC curves (Fig. 13) indicate that the
majority of the hail proxies compared in this study can be
considered to have equivalent skill for severe-hail detec-
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Table 6. Performance on the test set. Methods are compared using their five best variants producing the highest area under the ROC curve
(AUC-ROC). The precision–recall AUC (AUC-Pr.Re.), the CSI, the HSS, the best average threshold value (βX), and the best discrimination
area (βAX ) are shown. Values are shown as “mean (±SD)”. AUC values are multiplied by 100 for readability. Results for all the variants of
A13 are shown directly instead of their average. They correspond to the performance of the A13 hail size output above or equal to (1) small
hail (A13small), (2) medium hail (A13medium), and (3) large hail (A13large). The ∗ symbol denotes the average performance of the five best
variants (i.e. best βX) of each algorithm.

AUC-ROC (×100) AUC-Pr.Re. (×100) βX βAX (km2) CSI HSS

A13large 78.18 70.59 0.0625 0.484 0.473
A13medium 91.01 85.51 15 0.654 0.687
A13small 92.69 86.65 64 0.681 0.711
Zmax∗

H 92.70 (±0.14) 87.55 (±0.32) 55 (±1.41) 31 (±6.5) 0.684 (±0.008) 0.711 (±0.011)
POSH∗ 92.82 (±0.29) 90.05 (±0.16) 3 (±1.4 %) 7.6 (±0.8) 0.682 (±0.003) 0.721 (±0.005)
POH∗Delobbe 95.76 (±0.05) 92.42 (±0.45) 62 (±5 %) 30 (±5) 0.748 (±0.016) 0.783 (±0.018)
POH∗Foote 95.80 (±0.01) 92.35 (±0.47) 26 (±18 %) 31 (±5) 0.743 (±0.018) 0.777 (±0.005)
MESH∗ 96.31 (±0.13) 92.96 (±0.16) 5 (±1.4 mm) 30 (±8) 0.761 (±0.011) 0.796 (±0.012)
MESH∗75 96.41 (±0.08) 93.10 (±0.23) 20 (±1.4 mm) 29 (±4) 0.762 (±0.008) 0.798 (±0.009)
MESH∗95 96.45 (±0.03) 93.25 (±0.13) 31 (±1.4 mm) 26 (±2) 0.767 (±0.004) 0.803 (±0.004)

ConvNet∗ 97.87 (±0.16) 96.14 (±0.25) not applicable not applicable 0.803 (±0.012) 0.837 (±0.013)

Table 7. Confusion matrix for three different methods on the test set: POHDelobbe, MESH95, and ConvNet. Each confusion matrix cell in
(b) contains performance of different models that are specified in (a). The different variants proposed are explained in Sect. 4.3.

tion on the test set if the threshold value is optimised. This
demonstrates that the proper tuning of an operationally de-
ployed hail detection technique can result in a satisfactory
level of severe-hail detection, in accordance with other stud-
ies (Ortega, 2021; Brook et al., 2024; Ackermann et al.,
2024; Kopp et al., 2024). This interpretation as well as the
threshold values may change according to the specificities of
each national radar network, particularly for different radar
bands and scanning strategies where more vertical sampling
is available.

Finally, the inference of the ensemble of the 10 ConvNet
models is assessed on a hail event that occurred on 11 July
2023 between 17:00 and 19:00 (UTC). The situation is ex-
tracted from the test dataset. The results are presented in
Fig. 15. The average probability of severe hail at the ground
predicted by the 10 models is denoted as P . The computation
is performed on images with dimensions of 30 km× 30 km
around cell centroids every 5 min. Cell centroids are ob-
tained using the cell identification algorithm tobac (see Ap-
pendix A). Throughout the hail event and the life cycle of

different cells, the ConvNet models demonstrate a consistent
behaviour. The cells responsible for the severe-hail reports
are accurately identified, exhibiting a high probability of se-
vere hail (large circle). One particular cell appears to have
reached a mature stage, capable of producing severe hail on
the ground for about 1.5 h, which is consistent with the char-
acteristics of long-lasting, highly organised convective sys-
tems such as multicell or supercell systems. A notable pro-
portion of cells exhibiting high reflectivity (≥ 60 dBZ) are
not identified as producing severe hail on the ground by the
ConvNet models (P < 0.4; grey lines without circles in Fig.
15). Although severe-hail reports may be subject to reporting
bias, this could highlight the potential of CNNs to capture
relevant information within the morphology of storms and
use it to discriminate severe hail storms from other storms.
The main advantage of performing the inference with an en-
semble of ConvNet models is the computation of uncertainty
intervals. The uncertainty appears to increase when the pre-
dicted probability of severe hail decreases (reduced circle ra-
dius, brighter colour), indicating a decline in prediction con-
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sistency when the ConvNet models encounter an edge case,
i.e. where rain or small hail below 2 cm might be produced.
A small oscillation in the average probability and uncertainty
is visible every 5 min within the north-eastern cell in Fig. 15,
probably due to the different vertical sampling at each time
step implemented in the VCPs (Table 1) that have an impact
on important features of the CNN. However, a more compre-
hensive analysis of the inference on unseen events is neces-
sary to gain a deeper understanding of the underlying causes
of error in the prediction.

5 Conclusions

This study demonstrated the development and validation of
a convolutional neural network (CNN) for the detection of
severe hail (≥ 2 cm) on the ground. The framework for CNN
validation, comprising a heavily filtered severe-hail dataset
and a rain or small-hail dataset, enabled an extensive com-
parison of existing radar-based hail proxies on the severe-
hail detection problem. The conclusions of this work are as
follows:

1. A shallow CNN architecture, named ConvNet, was con-
structed and selected from among three different types
of CNN architecture. It demonstrated superior perfor-
mance for severe-hail detection within radar images
compared to existing hail proxies on a test dataset
comprising 1396 radar images with dimensions of
30 km× 30 km, which included severe hail and rain or
small hail between 2018 and 2023. This was achieved
while utilising the radar information of a unique time
step.

2. A feature importance study demonstrated that incorpo-
rating hail proxies, such as MESH, as input features to
ConvNet enhanced its prediction. Other important fea-
tures were Zmax

H , ET45, and ρ2000 m
HV .

3. A comparison with existing hail proxies led to the
conclusion that three hail proxies (MESH, POSH, and
POH) can be considered equivalent for severe-hail de-
tection on the test dataset if their performance is as-
sessed using a tuned threshold value and a tuned dis-
crimination area. Furthermore, the number of false
alarms can also be drastically reduced if a threshold
value and a discrimination area are chosen accordingly.

4. The study showed an example of application in real
time, where the ConvNet’s inference was contingent
upon the detection of cell centroids via a cell identifi-
cation and tracking algorithm. Its performance seemed
to align with observed hail during an event within a
large geographical domain. However, a more compre-
hensive performance validation across future events re-
mains necessary.

The hail proxies examined in this study demonstrate satis-
factory performance on the severe-hail detection task when
their parameters are optimised. The optimised parameters,
particularly the feature threshold values βX, align with those
of previous studies (Murillo and Homeyer, 2019; Ortega,
2021). All existing hail proxies, with the exception of two,
performed similarly on the test dataset. While their optimal
local performance may be achieved through the use of vary-
ing threshold values and discrimination areas, it appeared
that storm proxies such as echo tops for POH proxies or un-
derlying weighted integrated reflectivity values for MESH
proxies demonstrated relevance in capturing crucial infor-
mation about the presence of hail aloft. This relevance ap-
pears to be well suited to the challenging issue of severe-
hail detection on the ground, based on the results of this
study. The POSH exhibits suboptimal performance, likely
due to the presence of a warning threshold that eliminates
low SHI values at C-band, owing to the low vertical sam-
pling of French radars. The fuzzy-logic algorithm developed
at Météo-France (A13), with capabilities for severe-hail de-
tection, encounters challenges due to the small- and medium-
hail classes below 2 cm, which may represent larger hail sizes
in reality.

The feature importance study yielded insights into the
decision-making process of ConvNet. The MESH proxies
were identified as valuable input features, in addition to
Zmax

H , ρ2000
HV , and ET45. This aligns with the strong perfor-

mance of MESH proxies for severe-hail detection (Table 6).
The majority of the most significant variables are based on
reflectivity, indicating that storm proxies based on this vari-
able remain a valuable tool for the detection of severe hail on
the ground.

One limitation of the current study is that only one time
step is used to perform a prediction associated with a report
and to compare the CNNs with hail proxies. The life cycle of
the storm is not taken into account when performing a severe-
hail prediction. This ultimately decreases the importance of
input features that have a forecasting potential of storm sever-
ity, such asZDR columns, in this study. Nevertheless, the per-
formance of the aforementioned methods on the test set was
generally satisfactory, suggesting that the reported time of
the hailfall may be sufficient for the detection of severe hail
in this study. However, even after heavy filtering, uncertainty
may remain regarding the location and time of severe hail.
This uncertainty may compromise the generalisation of the
CNN on cases that were not included in the training data if
a significant proportion of the severe-hail cases on which it
was trained were misplaced in space and time or if there was
a systematic error in time and location. However, this uncer-
tainty was, as much as possible, taken into account by manu-
ally repositioning in time severe-hail cases in the vicinity of
a visible storm. Additionally, the construction of images of
30 km× 30 km around the reports allows for a more compre-
hensive view of the storms, thereby reducing the impact of
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Figure 14. Peirce skill score (PSS) matrix for hail proxies with varying feature thresholds (βX) and discrimination areas (βAX ).

Figure 15. Predictions of 10 ConvNet models on 11 July 2023 between 17:00 and 19:00 (UTC). The maximum over 2 h of the national
reflectivity composite is shown in the background (orange). Grey lines represent the cell tracks detected with the tobac cell-tracking algorithm
(Appendix A). Green triangles represent severe-hail reports (≥ 2 cm) from ESWD within the 2 h. Circles represent the cell centroids every
5 min. Their average probability of severe hail P (circle size) and its affiliated uncertainty σ (blue scale) are computed with the predictions
of 10 ConvNet models applied to 30 km× 30 km images around centroids. Cell tracks without circles (pure grey lines) contain cell centroids
with P < 0.4.
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potential errors in the reports’ location on the performance
of the CNN.

The translation of the developed CNN into operations is
contingent upon the implementation of a cell-tracking algo-
rithm. As the CNN was trained with radar images of storms,
the storms must be identified prior to applying the CNN. The
potential volatility in cell tracking due to the high sensitiv-
ity of such techniques to their input parameters can increase
the inference time of the approach, depending on the num-
ber of cells identified every 5 min. In order to detect severe
hail, it is recommended to examine cells that have produced
reflectivities of at least 45 dBZ. The cell identification algo-
rithm and the production of input features for the CNN may
require a greater investment of computational time and re-
sources than existing hail proxies. The necessary 3D inter-
polation can be particularly costly. However, this additional
computational time can be offset in real time by the cell iden-
tification algorithm. The input features can be generated for
a 30 km× 30 km area centred on cell centroids, which signif-
icantly reduces the computational time required for the pro-
cessing of volumetric radar data into 3D grids in compari-
son to producing them for the entire national territory, even
in areas where there are no reflectivity data that suggest the
presence of hail. Furthermore, limiting the inference to useful
domains around cell centroids allows for the parallelisation
of data processing and inference, which may be crucial for
reducing the lag time for real-time applications.

Efforts were made to construct the input features in a way
that would minimise the impact of attenuation and resolu-
tion decline with range. The use of 3D interpolated grid and
volumetric radar data from the two nearest radars enabled the
model to be less sensitive to these factors. However, it should
be noted that extreme attenuation may not always be taken
into account in situations at the border of the French national
domain. This may have an impact on the predictability of
ConvNet. The use of radar data from neighbouring countries
(Germany, Switzerland, Italy, Belgium, Spain) may help to
decrease the impact of attenuation in these critical regions.

Despite the implementation of precautionary measures in
this study, the challenge of developing effective solutions for
severe-hail detection in France persists due to the scarcity of
data, particularly severe-hail reports. The results were anal-
ysed on a test dataset of 1396 radar images. While a con-
sistent behaviour was visible in the metrics and in a broader
hail event, further validation will be crucial for the CNN to
validate its global performance and assess its generalisation
to unseen cases. Furthermore, the specificities of the French
radar network have an impact on the importance of vari-
ables and the output of the CNN in this study, particularly
the radar band and the low vertical sampling. It is strongly
advised that such deep-learning methods be developed and
tested on the specific characteristics of different national data
and severe-hail report databases in order to validate the ef-
fectiveness of CNNs in detecting severe hail on the ground.
The incorporation of radar data and hail reports from neigh-

bouring countries could significantly enhance the relevance
of deep-learning methods for a common hail warning system
in real time.

This study establishes the foundation for the use of convo-
lutional neural networks (CNNs) to study the morphology of
storms and extract relevant information for the detection of
severe hail. The interpretability of such methods is a crucial
aspect. Ongoing work includes the implementation of attri-
bution methods that will facilitate the interpretation of the
prediction of the CNN. Attribution methods for neural net-
works, such as saliency maps, Sobol attribution, and Grad-
CAM (Fel et al., 2022), are currently being explored in order
to gain insight into the decision-making process of the CNN.
Future work will probably involve the gathering of more data
and the increase in the number of features, particularly po-
larimetric features above the melting layer. Based on the re-
sults of this study, deep-learning techniques may have the
potential to answer a bigger problem: hail size estimation.
Ongoing work also entails the development of a framework
for the testing of such methods on the hail size estimation
problem.

Appendix A: Cell identification algorithm for inference

An advanced cell-tracking algorithm was employed on a sin-
gle event to illustrate the inference process for the meth-
ods developed herein (Fig. 15). The use of a different cell-
tracking algorithm for inference is necessary because the for-
mer algorithm (i.e. the algorithm presented in Sect. 2.4) is
not always able to accurately locate cell centroids. In the first
cell-tracking algorithm, centroids are defined as the geomet-
ric mean within the contours and are not weighted by the
reflectivity values within the cell. As a result, centroids may
not be within the cell core but far away from it, preventing
continuous tracking of cells every 5 min. The more sophis-
ticated cell-tracking algorithm for inference is based on the
open-source Python package tobac (Heikenfeld et al., 2019).
It comprises a toolbox where cell-tracking and segmenta-
tion algorithms can be applied using different parameters. In
this study, the cell-tracking feature is employed exclusively
within the inference process. Cells are identified within the
national composite reflectivity as one or more contiguous re-
gions of reflectivity values that meet or exceed a threshold.
The thresholds used in this study are 36, 42, and 48 dBZ. Ad-
ditional parameters are used to set a minimum cell size per
threshold: 30, 10, and 2 km2, respectively. As multiple reflec-
tivity thresholds are specified, the centroid of each 42 dBZ
cell that exists within a 36 dBZ region supersedes and re-
places the centroid detected for the encompassing 36 dBZ
cell, as explained in Heikenfeld et al. (2019). The centroids
are identified by calculating a weighted mean of reflectivity
values within the cells. The combination of different thresh-
olds allows for the detection of cell centroids for cells at their
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initial or decay stage, as well as the identification of cell cores
during the mature stage.

Appendix B: Storm mode assessment

In order to gain further insight into the database, a storm
mode assessment was conducted. The storms responsible
for the production of severe-hail cases and rain or small-
hail cases were categorised into four distinct modes: super-
cell, multicell, isolated cell, and unknown. However, it was
deemed impractical to label the storms that produced all the
reports presented above. Indeed, a certain proportion of the
cases were isolated, and manually labelling them would have
required too much time. As a result, only the clusters com-
prising at least two cases were labelled. For the severe-hail
cases, all were kept. For the rain or small-hail cases, only
the most severe with a cell producing a maxZH ≥ 56dBZ
were kept. This likely introduces a bias towards more se-
vere storm modes and provides an inaccurate representation
of the occurrence of certain storm modes, particularly iso-
lated cells. Nevertheless, it was deemed necessary to exam-
ine the data, despite the potential for inaccuracy, in order to
ascertain whether a discernible signal existed with regard to
specific storm modes in relation to storms accompanied by
severe hail.

The clusters of cases were created using a spatio-temporal
DBSCAN algorithm (ST-DBSCAN; Birant and Kut, 2007).
The severe-hail cases are clustered with δx = 15km and
δt = 10min. The rain or small-hail cases are clustered with
δx = 30km and δt = 60min. A higher spatio-temporal tol-
erance was selected for the rain or small-hail cases, as they
are geographically scarcer than the severe-hail cases. The na-
tional composite reflectivity product (Caumont et al., 2021)
and the cells detected by the first cell identification algorithm
(Morel and Sénési, 2002) are gathered around ±90km be-
fore and after the first and the last case of the cluster, respec-
tively. All the data are superimposed in a visualisation tool
that enables navigation through time during the life cycle of
the storm, facilitating the identification of relevant signatures
for labelling. The labelling was performed independently by
two meteorologists, and the results were cross-validated.

For supercells, typical signatures in the reflectivity com-
posite were searched for: a hook echo, a cell splitting, and/or
a deviation of the cells to the right (or to the left) of the main
flux (Markowski and Richardson, 2011; Houze, 2014). In the
event that a clear line of cells was discernible, the cluster was
designated as being part of a multicell system. Conversely, if
a cell exhibited a brief lifespan and was isolated from any
broader convective system, it was classified as an isolated
cell. In the absence of any of the aforementioned criteria or
in the event that a determination was precluded due to the
passage of multiple cells above the cluster in a brief period
of time, the cluster was designated as unknown.

Table B1. Storm mode on 224 severe-hail cases (≥ 2cm) and 113
rain or small-hail cases below 2 cm.

Severe Rain or
hail (≥ 2cm) small hail (< 2cm)

Supercell 69.9 % 3.4 %
Multicell 19.3 % 86.6 %
Isolated cell 4.4 % 4.3 %
Unknown 6.4 % 5.7 %

Total 224 113

A total of 224 severe-hail clusters and 113 rain or small-
hail clusters were labelled. The results are presented in Ta-
ble B1. Supercells produce 69.9 % of the severe hail on
the ground within this study. This shows the predominance
of supercells in the production of severe weather compared
to other storm modes, which is in accordance with previ-
ous studies (Markowski and Richardson, 2011). The rain or
small-hail dataset is mainly populated by multicell convec-
tive systems (86 %), while only 3.4 % were produced by su-
percells.

The conclusions in this section remain highly dependent
on the data used and the portion of cases selected to perform
the storm mode assessment.

Appendix C: Updated fuzzy-logic algorithm in C-band
from Al-Sakka et al. (2013)

The fuzzy-logic algorithm for hydrometeor classification
(A13) currently operational at Météo-France corresponds to
an updated version of the algorithm developed from Al-
Sakka et al. (2013), with three new hail classes. The update
was performed to tackle the lack of robustness in the mem-
bership functions for hail in the original study (see conclu-
sions of Al-Sakka et al., 2013). The following classes are
now computed: (1) rain (RA), (2) wet snow (WS), (3) dry
snow (DS), (4) ice (IC), (5) small hail (SH; < 0.5 cm), (6)
medium hail (MH; 0.5 to 2 cm), and (7) large hail (LH; >
2 cm). The three hail classes replace the former single hail
class (HA) of Al-Sakka et al. (2013).

The fuzzy-logic scheme is based on radar variables ZH,
ZDR, ρHV, and KDP. The bright-band (BB) location is also
used and produced using the method presented by Tabary
et al. (2006), which is based on the cross-correlation coef-
ficient ρHV at high elevations. Finally, the temperature T
is used to discriminate regions where certain hydrometeor
types are not allowed. Temperature is deduced from the near-
est NWP-derived sounding from the ARPEGE global model
(Bouyssel et al., 2022) at the radar location.

The principle of the fuzzy-logic algorithm relies on the
computation of a weight for each hydrometeor class. The
hydrometeor class having the highest weight becomes the
hydrometeor class of the radar gate. The weight is com-
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Figure C1. One-dimensional membership functions of the up-
dated fuzzy-logic classification algorithm at Météo-France (A13).
(a) F i(ZH), (b) F i(T ), and (c) F i(BB). F i(BB) is shown with an
altitude of freezing of HT=0°C = 2000 m a.s.l. (metres above sea
level) computed by the AROME model and a melting layer bottom
of MLB= 1800 m a.s.l. computed using the BB location algorithm
of Tabary et al. (2006).

puted thanks to membership functions (one-dimensional and
two-dimensional) built on a priori knowledge of the single-
polarisation and dual-polarisation signatures for the hydrom-
eteor classes. The weight is defined as follows:

WF
i = F

i(ZH)F
i(T )F i(BB)

[
F i(ZH,ZDR)

+F i(ZH,KCP)+F
i(ZH,ρHV)

]
, (C1)

where i stands for the hydrometeor type, and F represents the
membership grade (between 0 and 1) coming from both one-
dimensional and two-dimensional membership functions.

The one-dimensional membership functions F i(ZH),
F i(T ), and F i(BB) for all hydrometeor types are presented
in Fig. C1. As they are multiplicative terms in the weight, the
presence of certain hydrometeor types is heavily driven by
the reflectivity, the temperature profile at the radar site, and
the position of the radar gate to the BB.

The two-dimensional membership functions
F i(ZH,ZDR), F i(ZH,KDP), and F i(ZH,ρHV) for hail
depending on the relative position to the BB are presented
in Fig. C2. For other hydrometeor classes, refer to Al-Sakka
et al. (2013). To simplify the visualisation, only regions
with a membership grade superior to 0.7 were kept, but
membership grade values exist outside the intervals shown
in Fig. C2.
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Figure C2. Two-dimensional membership functions of the updated fuzzy-logic classification algorithm at Météo-France (A13) with small
hail (SH), medium hail (MH), and large hail (LH). The position relative to the BB is specified as under (−), within (∼), and above (+).
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