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Water vapor transport has been highlighted as a critical process in Arctic snowpacks,

shaping the snow cover structure in terms of density, thermal conductivity, and

temperature profile among others. Here, we present an attempt to describe the

thermally-induced vertical diffusion of water vapor in the snow cover and its effects of the

snowpack structure using the SNOWPACK model. Convection, that may also constitute

a significant part of vapor transport, is not addressed. Assuming saturated conditions

at the upper boundary of the snowpack and as initial condition, the vapor flux between

snow layers is expressed by a 1-dimensional transient diffusion equation, which is solved

with a finite difference routine. The implications on the snowpack of this vertical diffusive

flux, are analyzed using metrics such as the cumulative density change due to diffusive

vapor transport, the degree of over- or undersaturation, the instantaneous snow density

change rate, and the percentage of snow density change. We present results for four

different regions sampling the space of natural snow cover variability: Alpine, Subarctic,

Arctic, and Antarctic sea ice. The largest impact of diffusive water vapor transport is

observed in snow on sea ice in the Weddell Sea and the shallow Arctic snowpack. The

simulations show significant density reductions upon inclusion of diffusive water vapor

transport: cumulative density changes from diffusive vapor transport can reach −62 and

−66 kg m−3 for the bottom layer in the shallow Arctic snowpack and snow on sea ice,

respectively. For comparison, in deeper snow covers, they rarely exceed −40 kg m−3.

This leads to changes in density for shallow snowpacks at the soil-snow interface in the

range of −5 to −21%. Mirroring the density decease at depth is a thicker deposition

layer above it with increase in density around 7.5%. Similarly, for the sea ice, the density

decreased at the sea ice-snow interface by−20%.We acknowledge that vapor transport

by diffusion may in some snow covers—such as in thin tundra snow—be small compared

to convective transport, which will have to be addressed in future work.

Keywords: diffusive water vapor flux, phase change, snowpack model, snow on sea ice, snow metamorphism,

mass transfer coefficient
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1. INTRODUCTION

As a crucial player in snowmetamorphism, water vapor transport
has been proven to be a very significant process in shaping
the snowpack structure (Sturm and Benson, 1997; Pfeffer and
Mrugala, 2002). It is important for issues such as snowpack
stability and avalanches (Pfeffer and Mrugala, 2002; Woo, 2012)
but also thermal conductivity e.g., in the context of climate
studies (Slater et al., 2001; Callaghan et al., 2011).

In dry snow and particularly under strong temperature
gradients, metamorphism is essentially driven by water vapor
transport, whereby temperature gradients induce gradients in
saturation water vapor density and pressure that result in
diffusion (Sturm and Benson, 1997; Pfeffer and Mrugala, 2002).
Both microscopic exchange of vapor between grains, and
macroscopic vapor flux between snow layers over the entire
snowpack, occur as a result of these gradients.

This process is especially active in Arctic and sub-arctic
snowpacks, where shallow snow depth and strong temperature
differences between soil and atmosphere lead to significant
kinetic metamorphism, rapidly creating snow layers composed of
depth hoar crystals, which are coarse grained, typically vertically-
oriented and cup-shaped (Pinzer et al., 2012). Depth hoar has
been seen to be dominant in sub-arctic snowpacks (Sturm and
Benson, 1997; Taillandier et al., 2006; Derksen et al., 2009;
Domine et al., 2015). Arctic, and to some extent subarctic
snowpacks, are sometimes in direct contact with permafrost,
which influences the vapor transport. Significant amounts of
mass transferred from one layer to another, and from the
soil into the basal snow layers, have been observed in these
snowpacks (Trabant and Benson, 1972; Alley et al., 1990). Also,
as an evidence of ice mass transfer due to water vapor flux,
observations by Trabant and Benson (1972), Sturm and Benson
(1997), and Domine et al. (2016) indicate a density decrease of
more than 100 kg m−3 for layers close to the ground in thin
snow covers. Domine et al. (2016) also report in some places
about the “near-total disappearance of the basal depth hoar”
due to a possible extreme impact of water vapor transport other
than purely diffusive fluxes. From their measurements, Domine
et al. (2016) also found that density increases in the wind slabs
overlying the depth hoar, which may be attributed to upward
water vapor transfer and its deposition. Sturm and Benson (1997)
estimated that the magnitude of the averaged net layer-to-layer
vapor flux from end-of-winter subarctic snowpacks is in the order
of 10−7 kg m−2 s−1.

As it results notably in the formation of thick depth hoar
layers that generally exhibit a low thermal conductivity, water
vapor transport in high latitude snowpacks carries significant
thermal implications: the ground thermal regime below the snow,
including the permafrost thermal dynamics, is in great part
governed by the thermal insulation of the snowpack (Zhang et al.,
1996; Gouttevin et al., 2012, 2018), with consequences for ecology
(Domine et al., 2018), geo-engineering, snow-atmosphere heat
exchange (Domine et al., 2019) and global climate feedbacks
(Schneider von Deimling et al., 2012). Note that the range
of thermal conductivities of depth hoar snow types is still
not well-known and that local values are influenced by local

conditions (Calonne et al., 2014; Domine et al., 2016; Gouttevin
et al., 2018).

In alpine snowpacks, temperature gradients that can result
from the meteorological conditions over the course of the winter
or early snowfall on unfrozen grounds are responsible for the
formation of faceted snow layers of moderate cohesion. When
covered by more cohesive snow types, faceted crystals form weak
layers in the snowpack, which increases the avalanche risk.

For all these reasons, modeling the vapor transport within
most types of snow covers, and its effects on the properties of
the snow, appears to be of high importance. Some attempts to
study the water vapor transport in snow columns have been done.
The Snow Thermal model, SNTHERM (Jordan, 1991), includes
vapor transport in snow (but not soil). In this model, saturation
was assumed in snow such that the water vapor flux divergence
in each layer was considered to be compensated by phase gains
(deposition) and losses (sublimation) within the medium. Bartelt
et al. (2004) studied the diffusive mass conservation of the
water vapor with interfacial mass transfer term applying the
atmospheric relative humidity as the top boundary condition.
Calonne et al. (2014) applied the macroscopic equivalent
model for heat conduction and vapor diffusion including the
phase change source term. They concluded that for the large
temperature gradient, the impact of these mass and energy
source terms due to phase change cannot be neglected. Recently,
Touzeau et al. (2018) have looked at vapor diffusion in polar firn
and its potential influence on the isotopic composition.

Depending on the snowpack, soil, and meteorological
conditions, water vapor transport may occur through both
diffusion and convection (Trabant and Benson, 1972; Johnson
and Bens, 1987; Alley et al., 1990; Sturm and Johnson, 1991;
Domine et al., 2016, 2018). Trabant and Benson (1972) found
from the measured rates of densification and density changes
for snow in Fairbanks that significant convection must occur to
explain differences with respect to vapor fluxes calculated from
pure diffusion models. On the contrary, Akitaya (1974) found
that convection did not occur in his experimental studies of
depth hoar formation in Hokkaido. In the Fairbanks subarctic
snowpack, Sturm and Johnson (1991) interpreted significant
horizontal thermal gradients and incoherent temporal variations
of horizontal temperature patterns, as a sign of convective
circulation. They estimated that about half of the total heat
transfer at their study site, and for the 3 years withmeasurements,
were caused by convection. Domine et al. (2016) concluded that
the near-total disappearance of basal depth hoar at Bylot Island
could not be caused by just water vapor diffusion alone and also
suggested convection as the possible explanation. Additionally,
Domine et al. (2018) observed almost no depth hoar at Ward
Hunt Island (Canadian high Arctic) in spring 2016 despite
favorable thermal conditions. He proposed that high winds,
which formed hard wind slabs of low permeability, prevented
convection and would be a factor delaying depth hoar formation.

These seminal works suggest that both convection and
diffusion have to be accounted for if a sound modeling of water
vapor transport within the snowpack is to be achieved. As a
first step in this process, we focus here on the modeling of
water transport through diffusion only, which constitutes the
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lower limit for total water vapor transport. It is furthermore
not possible to explicitly model convection in a one-dimensional
model, so that a different, maybe stochastic approach, should
be undertaken for this purpose. As will be shown, the results
from the diffusion vapor model do not contradict most of the
relevant observations from the field. For instance, diffusion vapor
transport alone already reproduces lower densities at the base of
the snowpack in some cases.

2. METHODS

2.1. SNOWPACK Model
SNOWPACK is a 1D physics-based model predicting snowpack
settling, layering, surface energy exchange and mass balance.
It is based on a Lagrangian finite element coordinate system
implementation and governed by the one-dimensional, mass,
energy and momentum conservation equations taking into
account phase change in the snowpack. The Lagrangian
coordinate system allows the snowpack mesh to evolve over time,
i.e keeping track of the layer identities when snow deposition
(snowfall, wind drift) or removal (erosion, sublimation, melt)
events occur. Snow is modeled as a three-component (ice,
water, air) porous material for which phase changes between the
components are simulated. For each layer, several core variables
such as snow bulk temperature, density as well as liquid water
content are calculated.

SNOWPACK requires at minimum 6 parameters: air
temperature, relative humidity, wind speed, incoming shortwave
radiation (or reflected shortwave radiation), incoming long
wave radiation (or surface temperature). The amount of new
snow added to the mesh is obtained from either measured
precipitation rates or measured snow depth (from which snow
precipitation rates are then derived via calculated settling rates)
(Lehning et al., 1999).

Atmospheric forcing governs the development of the snow
cover throughout the season, dictating mass and energy
exchanges at the snow surface. As a result, it determines
upper boundary conditions for e.g., temperature and relative
humidity, at the top node of the snowpack using either
Dirichlet or Neumann formulations. Usage of Dirichlet boundary
conditions imposes measured temperatures at the snowpack
surface, whereas Neumann prescribes the net snowpack surface
energy flux (including long wave radiation, sensible and latent
heat exchange and energy from rain) (Lehning et al., 2002a).
At the snowpack-ground interface, the lower thermal boundary
conditions are either set to a constant ground temperature or, if
soil layers are specified, calculated from soil properties to which
a constant heat flux is applied at the bottom.

Two particularly important and non-linear features of the
model are thermal conductivity and creep viscosity, governing,
respectively, energy transport and snow settlement. They are
formulated as constitutive relations at both macroscopic and
microscopic scales (Lehning et al., 2002b). To model liquid
water flow through the snowpack, the model solves Richards
Equation which describes liquid water movement in variably
saturated porous media. This method is hence able to better
reproduce the formation of capillary barriers (Richards, 1931;

Wever et al., 2014, 2015). Snow microstructure plays a key role
in determining the bulk characteristics in the snowpack such as
temperature distribution, settling rate as well as mechanical and
optical properties. Its representation in SNOWPACK model is
done by determining several microscopic properties including
ice grain size, shape (dendricity, sphericity), and bondings (bond
radius, coordination number) (Lehning et al., 2002b).

Adding explicit vapor transport as described below changes
the SNOWPACK dynamics and affects the non-linearities
discussed above. For example, changes in local density will
strongly impact creep viscosity and thermal conductivity.
However, parameterizations for viscosity or thermal conductivity
have been physically or empirically adjusted for the SNOWPACK
model without explicit vapor transport. At this stage, we chose
not to adjust these formulations to the changes in model behavior
ensuing from the new explicit diffusive vapor transport. Indeed,
as the present study will reveal, the effect of the new diffusive
water vapor transport on e.g., density, is rather small for most
snowpacks, so that effects of inconsistencies will be limited.
Furthermore, adjusting paramaterizations requires major efforts
and should be done as soon as also convective transport
is implemented, which is expected to yield more substantial
changes in e.g., snowpack density.

2.2. Diffusive Water Vapor Transport in
Snow and Soils
2.2.1. General Equations
Layer-to-layer vapor transport is implemented by considering
mass conservation of the water vapor component in the snow or
soil, resulting in a transient diffusion equation written as:

θa
∂ρv

∂t
+

∂

∂z
(θaJv) = Mmm (1a)

Jv = −Deff,a
∂ρv

∂z
(1b)

In Equation (1), ρv (kg m−3) is the water vapor density, Jv (kg
m−2s−1) is the diffusive water vapor flux (it is positive when
is upward), θa is the air volume fraction in snow or soil, Mmm

(kg m−3s−1) is the mass source (or sink) term due to deviation
of vapor pressure from the saturation condition, and finally
Deff,a (m2s−1) is the effective water vapor diffusivity in the air
component of the snow or soil. As pointed out by Hansen and
Foslien (2015), it is distinguished from the effective water vapor
diffusivity in snow or soil by Dv,s = θaDeff,a.

Following Albert and McGilvary (1992), Mmm may be
evaluated as:

Mmm = hmas(ρvs − ρv) (2)

In Equation (2), hm (m s−1) is the mass transfer coefficient, as
(m−1) is the specific surface area of snow, and ρvs (kg m−3) is
the saturation water vapor density at the local snow temperature.
It should be noted that the heat source (or sink) term due
to vapor transport, −MmmLh, is added to the heat transfer
equation in SNOWPACK, with Lh (J kg

−1) being the latent heat
of sublimation.
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Choices of formulations for the mass transfer coefficient and
the effective water vapor diffusivity in snow and soil, will be
detailed in the next subsections.

2.2.2. Mass Transfer Coefficient
Different formulations and quantifications for the mass transfer
coefficient hm have been proposed in the literature. For spheres,
hm may be evaluated as hm = ShDv,a/dp (Bird et al., 1961), using
the definition of the Sherwood number, Sh, and with dp (m), the
sphere diameter, and Dv,a (m

2s−1), the water vapor diffusivity in
air. Theory indicates that for Sh = 2, the mass transfer between
sphere and fluid occurs only through diffusion in still fluids (Bird
et al., 1961). Based on measurements, Thorpe and Mason (1966)
proposed a formulation of Sh for an ice sphere, Shi, when the
sphere is in a moving fluid:

Shi = 1.88+ 0.66Re1/2Sc1/3 (3)

with Re the Reynolds number of the flow based the sphere
diameter and Sc is the Schmidt number. Equation (3) is a simple
sum of the mass transfer contribution from the diffusive flow
(the first term) and from the advective flow (the second term).
For the range of particle diameters between 0.1 and 1 mm,
which are reasonable for snow, both formulations yield mass
transfer coefficients in the range between 0.04 to 0.4 m s−1 for
the diffusion process only.

However, based on a similar formulation for the advective flow
contribution, Albert and McGilvary (1992) quantified hm for the
diffusion process, to values as low as 0.09 m s−1. Combining
measurements of specific surface area and mass changes in
an air-flow experiment, Neumann et al. (2009) inferred from
Equation (2) also low values for hm, between 7.5 × 10−5 and
8×10−3 m s−1 and proposed the following formulation in which
advection is also accounted for:

hm = (0.5Re+ 0.075)× 10−3 (4)

It should be noted that the factor 10−3 in the text of their paper
is missing, however in the plots for hm vs. Re, the factor 10−3 is
correctly represented.

Calonne et al. (2014) and Ebner et al. (2015), respectively,
proposed and relied on another formulation for hm:

hm =
ρi

βρv,s
(5)

where β is the interface kinetic growth coefficient in units of s
m−1. Based on experiments of sublimation and deposition on
the ice structure for one case without advective flow and three
cases with different possible rates of advective flows, Ebner et al.
(2015) inferred β = 9.7× 109 s m−1 with an average normalized
root-mean-square error less than 9.7%. This means an hm value
around 8.07× 10−5 m s−1.

As a result, there is a clear discrepancy in order of magnitude
between the hm values inferred by Neumann et al. (2009) and
Ebner et al. (2015) on the one hand (that lie in the range of
7.5 × 10−5 and 8 × 10−3 m s−1), and the theoretical original
estimations from Bird et al. (1961) and Thorpe andMason (1966)
that reach values from 0.04 to 0.4 m s−1. A plausible explanation

for this apparent contradiction is the fact that part of the snow
grains’ specific surface area may be not active for mass transfer,
hence inducing much lower estimations of hm in the approaches
of Neumann et al. (2009) and Ebner et al. (2015). They considered
all specific surface area is active for mass transport which may
not be the case (Kunii and Levenspiel, 1991). This is analogous to
Crowe (2005) who explained that for a bed of small particles with
low Re (low velocities), due to very large specific surface area, the
gas phase gets saturated already before penetrating further into
the bed of particles.

We made use of both theoretical mass transfer coefficient hm,t

based on Shi = 2.0, and experimental or numerical estimations of
hm, hm,e, by Ebner et al. (2015), to infer the actually active specific
surface area, as,a, to be used in Equation (2) instead of as :

as,a =
ashm,e

hm,t
(6)

Equation (2) now has the form:

Mmm = hm,tas,a(ρvs − ρv) (7)

2.2.3. Specific Surface Area in Snow and Soils
The specific surface area of a dry snow layer (or in general a
porous material layer), as, is defined as the total surface area of
the snow—pore interface per volume of snow layer. Assuming the
dry snow layer is composed of the spherical grains with average
diameter of dp (m), the specific surface area is evaluated as:

as =
6θi

dp
(8)

For wet snow, we use the approximation applied by Gallet et al.
(2014), that wet snow consists of ice cores with radius ri covered
by a water film with outer radius of rw such that the ice core is not
in contact with air. Similarly, for a frozen soil layer which may
have some liquid water, the soil grain with radius rs is assumed to
be covered first by an ice shell with the outer radius of ri and then
covered by a water film with the outer radius of rw if liquid water
is present. Hence, the diameter used in Equation (8) should be
updated as the diameter of the last shell which can be: (1) water
for wet snow, (2) either water for the wet-frozen soil or the ice for
the completely-frozen soil. According to the Appendix of Gallet
et al. (2014), the diameter of the last shell may be evaluated as:

dry snow: → dp = 2ri → as =
6θi

dp
(9a)

wet snow: → dp = 2ri[
θw

θi
+ 1]1/3 → as =

6(θw + θi)

dp
(9b)

completely-frozen soil: → dp = 2rs[
θi

θs
+ 1]1/3 → as

=
6(θi + θs)

dp
(9c)

wet-frozen soil: → dp = 2rs[
θw + θi

θs
+ 1]1/3 → as

=
6(θw + θi + θs)

dp
(9d)
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It should be noted that for dry and wet snow, the radius of the ice
core, ri, is selected as the optical grain size (Calonne et al., 2012).
Obviously, in case there is just a dry soil layer, the mass source (or
sink) term in Equation (1a),Mmm, will be set to zero.

2.2.4. Effective Water Vapor Diffusivity in Snow and

Soils
The measured and calculated values of Dv,s, show an
enhancement compared to the water vapor diffusion coefficient
in air (Dv,a) (Yosida et al., 1955; Sommerfeld et al., 1987;
Colbeck, 1993; Sokratov and Maeno, 2000). Yosida et al. (1955)
have justified this enhancement by “hand-to-hand” way of water
vapor transport which reduces the actual transport distance.
Using a finite element model based on real snow microstructure,
Pinzer et al. (2012) and Calonne et al. (2014) both calculated
the effective water vapor diffusivity in snow in different ways.
Based on results of Pinzer et al. (2012), an enhancement for
the water vapor diffusivity in snow, compared to that in air,
has been observed, ranging between 1.05 and 1.13. Results of
Calonne et al. (2014) show a linear reduction of Dv,s/Dv,a when
the snow density increases to higher values. Hansen and Foslien
(2015) extended an analytical model developed by Foslien (1994)
for the effective water vapor diffusivity in snow, based on two
possible snow microstructures: (1) “pore microstructure” in
which the heat is transferred in parallel through the air and
ice phases, (2) “layered microstructure” in which the heat is
transferred in series through the air and ice layers. Hansen and
Foslien (2015) justified in detail how they combined heat fluxes
resulting from these two microstructures to derive the following
parametrization for effective water vapor diffusivity in snow:

Dv,s = θiθaDv,a + θa
kiDv,a

θi(ka + LhDv,a
dρvs
dT

)+ θaki
(10)

In Equation (10), ki and ka (W m−1K−1), are the thermal
conductivities for the air and ice component of the snow,
respectively, and θi is the volume fraction of the ice component
in snow. Even though this model assumes homogeneous snow,
we believe this model predicts Dv,s with reliable accuracy because
(1) it provides self-consistent values for Dv,s for the limiting
cases of ice and air, (2) the calculated values are in a very good
agreement with values calculated by numerical finite element
results on microscale by Christon et al. (1994) and Pinzer et al.
(2012), (3) it has no empirical coefficients, as developed based
on heat and mass conservation using simple assumptions on
snow microstructures, (4) in this model, the density contribution
is included explicitly through volume fractions of air and ice
and temperature effects are considered implicitly by thermal
conductivity for ice and air. With this formulation, for snow with
different values of θa e.g., 0.2, 0.3, and 0.5, the effective water
vapor diffusivity in snow are estimated as Dv,s = 1.16Dv,air ,
1.21Dv,air , and 1.25Dv,air , respectively.

To estimate the effective water vapor diffusivity in the soil, we
rely on a simple parameterization and standard parameters. We
a posteriori justify this simplified description as a brief sensitivity
study of our results show that soil parameters have a negligible
influence (discussed in section 3.6). Through the soil, the effective

water vapor diffusivity is defined as Dv,soil = θaτDv,air , in which
Deff,a = τDv,air is the effective water vapor diffusivity in the
air component of the soil, θa is the air volume fraction, τ is
the tortuosity factor defined by Millington and Quirk (1961) as

τ = θ
7/3
a /(1 − θs)

2, θs is the soil volume fraction, and Dv,air =

22.0 × 10−6 m2 s−1 is the vapor diffusivity in air. We hence get
the effective water vapor diffusivity in the soil as:

Dv,soil =
θ
10/3
a

(1− θs)2
Dv,air (11)

Similar to the effective diffusivity estimatesmade earlier for snow,
we can use Equation (11) to assess the effective diffusivity for
soils, given our soil setup with θs = 0.625 (see section 2.4):
Maximum water vapor diffusivity in soils is reached for
maximum air content (e.g., completely dry soils), yielding
Dv,soil,max = 0.27Dv,air . Minimum water vapor diffusivity in soil
is reached in completely saturated soils and tends to zero. Based
on the initial soil volumetric content, these estimates show that
vapor diffusivity in snow is at least three orders of magnitude
larger than in the soil.

2.2.5. Discretization
Applying a combination of the forward and backward Euler
methods in time (n is the time index) and the central difference
scheme in space for an internal node (i is space index) excluding
the boundary nodes, the discretized form of Equation (1a) has the
form:
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= 0

(12)

In Equation (12), 1t is the simulation time step, dzd = zi − zi−1,
and dzu = zi+1 − zi. Here, choosing f = 1, a fully implicit
discretization is selected while f = 0.5 refers to the Crank-
Nicolson scheme. Even though the Crank-Nicolson scheme is
unconditionally stable as the fully implicit scheme, it suffers from
numerical oscillations so that the simulation time step should
be limited similar to the criterion applied for the stability of an
explicit scheme as vd1t/1z < 1 (Courant et al., 1928) (with
vD = Jv/ρvs the diffusive water vapor velocity). The system of
equations described by Equation (12) forms a tridiagonal sparse
matrix for which the sparse solvers from the Eigen C++ library
are used (Guennebaud and Jacob, 2010). For the upper boundary
condition the saturation water vapor density at the snow surface
temperature is used, and zero vapor flux is used for the bottom
node of the soil as lower boundary condition. For the new
snow layers added to snowpack due to snowfall, the water vapor
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density is initialized as saturation density based on the new snow
temperature.

2.2.6. Diagnostic Variable: The Cumulative Snow

Density Change Due to Diffusive Vapor Transport
To quantify the effects that water vapor transport has on the
snow layer, the cumulative snow density change due to vapor
transport, 1ρcum, is introduced in Equation (13). This is the
summation of snow density change due to the sublimation and
deposition of water vapor for each element over all time steps.
This is an interesting diagnostic variable since density changes
due to vapor transport will tend to be masked by the highly
non-linear snow settling.

1ρcum(t) =

∫ t

0

dρsnow

dt
(t∗)dt∗ (13)

2.3. Study Sites
The Arctic site is situated at Samoylov Island, Russia. This study
site is located in a zone of continuous permafrost featuring
polygonal tundra landscape in the delta of the Lena river,
Siberia (Boike et al., 2013, 2018). Our simulation for the winter
season 2010–2011 analyzed in section 3.2 characterizes a polygon
center as described in Gouttevin et al. (2018), forcing data are
derived from observations (for snow depth) and reanalysis data
for the other atmospheric variables. It should be noted that
the simulation for the winter season of 2012–2013 is used for
comparison with measured density profile at Samoylov described
in section 3.7.

The Subarctic site is situated in Sodankylä, Finland in a small
clearing in pine plantation with sandy loam soil. The site has
been one of the reference sites for snow studies in the past
(Essery et al., 2016), whereby forcing data are derived from local
meteorological measurements (incoming solar and longwave
radiation, snowfall and rainfall rates, air temperature, humidity,
wind speed, and atmospheric pressure). Winter season of 2007–
2008 is analyzed in this study. Simulated snow density profiles
are compared with observation at Sodankylä for four winter
seasons, 2009–2013, in section 3.7.

The Alpine site, called Weissfluhjoch is located at an altitude
of 2,540 m in the Swiss Alps (Davos, Switzerland). It has been
operated by the WSL Institute for Snow and Avalanche research
(SLF) since 1936. The long time operation of the site results
in a large amount of reliable data. Meteorological parameters
are automatically measured [(Enescu et al., 2018) under doi:
10.16904/1] and forcing data were derived for them for the winter
season 2001–2002 simulated in the present paper.

The SNOWPACK sea ice version introduced by Wever et al.
(2020) has been tested for a point in theWeddell Sea with latitude
−69.4672◦and longitude −42.3728◦. This point represents the
starting location of Snow Buoy 2016S31, for which we here
simulate the snowpack evolution from 16th January 2016 until
25th January 2017. Forcing data are taken from the ERA5
reanalysis except for snow depth which was observed at the buoy.
The trajectory of Snow Buoy 2016S31 from 16th January 2016
until 25th January 2017 is presented at www.meereisportal.de
(Nicolaus and Schwegmann, 2017).

2.4. Model Configurations at Sites
All the simulations performed here rely on the same setup
for the SNOWPACK model. The only exception is the high-
Arctic Samoylov simulation, where additional options were used,
namely the adaptations of the SNOWPACK model developed by
Gouttevin et al. (2018). These include a mechanically reduced
compaction and an enhanced grain growth in basal snow layers,
as well as enhanced wind densification close to the surface.
They were shown by Gouttevin et al. (2018) to provide better
agreement with e.g., density measurements at Samoylov.

To solve the diffusive vapor transport equation discretized in
Equation (12), the fully implicit scheme with a time step of 1 min
is used, while the main simulation time step of SNOWPACK is
15 min. Note that the layer resolution of the simulations was
increased from 2 to 0.1 cm for the thin Arctic snow cover. A
general sensitivity analysis was conducted and it was found that
a finer layer resolution did not qualitatively change the results. A
small effect of stronger density decrease very close to the surface
was observed for higher resolutions (not shown). This, however,
is anyway artificial as the true snow surface is rough and we
therefore assume that the layer resolution of the order of cm is
adequate in general.

For all snow covers over land, a soil column 3 m deep with
the soil volume fraction of 0.625, the air volume fraction of
0.125, and water volume fraction of 0.25 has been considered
except for the layers with sub-zero temperatures. For these layers,
the water content was added to the ice content. Sensitivity tests
regarding this configuration have been performed at Samoylov
and are reported in the section 3. For the heat transfer equation,
the Neumann boundary condition was used at the top surface of
snowpack and a constant heat flux of 0.06Wm−2 is applied at the
bottom of soil layer.

For the sea ice site, initial snow conditions are derived
from observations and assumptions in terms of brine salinity,
temperature, and pore space as described in Wever et al. (2020):
at the beginning of the simulation in January 2016, 2 cm of snow
lies above 274 cm of sea-ice. The boundary conditions applied by
Wever et al. (2020) are also used.

3. RESULTS AND DISCUSSION

In this section, we first present some general features of the new
model for diffusive water vapor transport. Then, we analyse the
effects of diffusive water vapor transport in four diverse snow
covers, ranging from polar to Alpine conditions. These effects are
primarily investigated on the density profiles, via the cumulative
snow density change due to vapor transport. The largest effects
are obtained for the snowpack on sea ice in the Weddell sea, and
for the most shallow snowpack at Samoylov.

3.1. General Model Behavior
First, our simulations reveal that the temporal term in
Equation (1a), ∂ρv/∂t, is very small compared to the other terms:
Its magnitude rarely exceeds 5 × 10−8 kg m−3 s−1 while the
diffusion and source/sink terms reach values of 2× 10−5 kg m−3

s−1 at Samoylov for instance. This means that (i) departure from
saturated conditions within the snowpack is always rather small
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when compared to the changes in water vapor content implied
by inter-layer vapor fluxes, and (ii) that the source/sink term
efficiently compensates for these inter-layer vapor fluxes. In other
words, the sink/source term is generally not a limiting term for
Equation (1a).

As a next observation, the degree of over- or undersaturation,
σ = (ρv − ρv,s)/ρv, is very much related to the divergence of the
vapor flux. It also drives snow density changes as an important
player in sublimation/deposition processes (Equation 2). The
degree of oversaturation is in general small over the whole depth
of the snowpack (e.g., below 2%), except for situations with liquid
water as discussed below.

3.2. Arctic Snowpack—Samoylov Island
Over the 2010–2011 season investigated at Samoylov, the
snowpack gradually developed from early October on, to reach
an height of about 30 cm at maximum accumulation mid-April.
The February and March snowpack only reached 20 cm. The
snowpack melt started on April 20, with positive air temperature
for a few days, then paused for about 15 days. There were renewed
positive temperatures around May 5, and the final meltout
phase started on May 15, steadily up to snow disappearance by
the end of the month. Samoylov is characterized by very low
temperatures and high wind speeds : over the 2010–2011 snow
season, air temperatures were negative from October 4 to late
April; they were very rarely above −20◦C from late November
to early April, with minimum values around −37◦C reached
late February and early April. Mean wind speed from October
to late April was 4.6 m s−1 with frequent winds above 10 m
s−1. Temperature gradients within the snowpack are strong and
negative from October to end of February, as a result of shallow
snow and extremely cold, arctic weather conditions, and polar
night (Figure 1A, to be compared to e.g., alpine conditions,
Figure 7A). These gradients result in a general upward flux of
water vapor (Figure 1B). After this period, temperature gradients
at time reverse, leading also to downward vapor fluxes.

During the first part of the winter, the temperature gradients
within snow and soil are strongest just above the soil, at
the soil-snow interface: this may be due to the specific
conditions at Samoylov, where snow and sedges are intertwined
within the lowest centimeters of the snowpack, which leads to
reduced density and hence thermal conductivity there, enhancing
temperature gradients. As a result of these strong temperature
gradients, vapor fluxes are considerable in these basal snow layers
(e.g., Figure 1B).

Figure 2A also shows considerable undersaturation in the
basal snow layers in the first part of the winter: this is an exception
to the general model behavior described above. We explain this
by two processes: first, there is a sharp change of temperature
gradient at the soil-snow interface, with the temperature gradient
at the snow-side of the interface being larger around one order of
magnitude than that at the soil-side. The gradient for the degree
of undersaturation is dependent on the temperature gradient and
can be given as:

dσ

dz
= (1+ σ )(

1

ρv

dρv

dz
−

1

ρv,s

dρv,s

dz
) = (1+ σ )(

1

ρv

dρv

dz
−

1

ρv,s

dρv,s

dT

dT

dz
)

(14)

This means that the gradient of the saturation water vapor
density, dρv,s/dz = dρv,s/dT × dT/dz (here, dρv,s/dT is always
positive and decreases with temperature), changes one order of
magnitude at the snow-soil interface, and can induce a significant
change of dσ/dz for the first element above the soil-snow
interface. Second, the very low diffusivity of water vapor in the
soil layers limits the contribution of the soil to reduce the water
vapor undersaturation in the basal snow layers (cf. section 2.2.4),
and is a further explanation for undersaturation in these layers.
Above the basal snow layers, e.g., above 3–4 cm height within
the snowpack, the temperature gradients start to decrease and so
does the magnitude of the water vapor diffusive flux, resulting
in local flux convergence. Slight oversaturation occurs there,
fostering moderate deposition (Figure 2). Similarly, a second
sublimation layer occurs in the Samoylov snowpack around 7 cm
height, concomitant to an increase in magnitude of temperature
gradient there (Figure 1A, inset). Until the top of the snowpack,
the alternance of deposition and sublimation layers can be traced
down to convergence or divergence of temperature gradients, as
over and undersaturations remain very low.

In the second part of the winter, e.g., from early March
on, temperature and vapor fluxes mainly reverse as described
earlier, with exception of cold spells that can affect the thermal
structure of the upper snowpack (like in late March-early April,
Figure 1A). Vapor fluxes in the lower half of the snowpack are
mainly downward, and contrary to the first part of the winter,
oversaturation and deposition occur in the basal layers of the
snowpack: this is to be traced down to the same phenomena
than during the first part of the winter, i.e., the much lower
effective diffusivity of water vapor within the soil when compared
to within the snow, that leads to oversaturation and deposition
in the basal snow layers as vapor cannot be efficiently routed
downward in the soil.

The cumulative density change profile introduced in
Equation (13) is shown in Figure 3A. It is important to
emphasize that the cumulative density change is basically
the vapor flux divergence summed up for the individual
layers over their full lifetime, showing the history of the snow
density change over the winter season. This is different from
an actual density difference between simulations with and
without vapor transport, which will be discussed afterwards.
Results at Samoylov show a considerable sublimation layer
attached to the ground, with largest negative cumulative
density changes around −62 kg m−3. Since settling counteracts
the decrease in density in a non-linear way, (Lehning et al.,
2002b), SNOWPACK actually predicts a much smaller
density difference. Above this layer, and according to the
alternation of sublimation and deposition layers described
above, there is a substantial deposition layer with maximum
positive changes around 18 kg m−3. We also note that
the reversal of fluxes from March on, which is especially
marked for the lower half of the snowpack, does not really
change the characteristics of these sublimation and deposition
layers, probably due to lower duration and magnitude of the
involved fluxes.

To show how much the density has changed in the case of
vapor transport, the snow density difference in percentage as,
(ρvapor − ρno vapor)/ρno vapor , is calculated. The snow density
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FIGURE 1 | The weekly time series for Samoylov 2010–2011, (A) the temperature gradient, (B) the diffusive water vapor flux. The insets in (A,B) show the vertical

profiles on 13 December 2010 12:00:00. Black color refers to zero values.

difference is shown in Figure 3B. At the snowpack base
(soil-snow interface), the density difference is negative and
its magnitude starts to increase over the winter season till it
reaches around −21%. Above this layer, the density difference is

positive and it increases over the winter season to reach a value
around 7.5%.

The diffusive latent heat flux at the snow surface may be
calculated as ql,D = Jv,top × Lh, and be compared to the
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FIGURE 2 | The weekly time series for Samoylov 2010–2011, (A) the degree of undersaturation, (B) the snow density change rate due to water vapor transport. The

insets in (A,B) show the vertical profiles on 13 December 2010 12:00:00.

turbulent latent heat flux between atmosphere and the snow
surface, ql. Here, Jv,top is the diffusive water vapor flux at
the snow surface and ql is due to turbulent mixing over
the snow surface and is calculated in SNOWPACK based on
wind speed, relative humidity and temperature in atmosphere.

Larger fluxes are observed in autumn and spring and in
particular during melt. Corresponding to the dynamics of
the surface temperature gradient, there are mostly upward
fluxes (here negative values). The averaged ratio of |ql,D/ql|
is 1.4%.
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FIGURE 3 | The weekly time series for Samoylov 2010–2011, (A) the cumulative density change, (B) the snow density difference in percentage between the case of

vapor transport and the case without vapor transport. The insets in (A,B) show the vertical profiles on 21 March 2010 12:00:00. Black color refers to zero values.

3.3. Subarctic Snowpack–Sodankylä
Over the 2007–2008 snow season investigated at Sodankylä,
the snowpack developed to a height of about 68 cm at peak
accumulation. Two significant melt events from early December

and early January, resulted in a quite thick melt-freeze crust
in the lowest 15 cm of the snowpack that persisted until
the melt season in the SNOWPACK simulations. Over most
of the accumulation season the temperature gradient within
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the snowpack is negative but shows lower magnitude than at
Samoylov (Figure 4A). Especially, the temperature gradient has
low magnitude in the basal snow layers (from 0 to −25 K m−1)
while it increases toward the upper layers to reach values up to

−110 K m−1 below the surface. This structure results from the
modeled stratigraphy described above, where dense, conductive
layers dominate the lowermost snowpack, while more recent and
facetted snow crystals occupy the upper part with lower thermal

FIGURE 4 | The weekly time series for Sodankylä 2007–2008, (A) the temperature gradient, (B) the diffusive water vapor flux. The insets in (A,B) show the vertical

profiles on 28 January 2008 12:00:00. Black color refers to zero values.
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conductivity. Contrary to Samoylov, there is no big change in
temperature-gradient at the soil-snow interface at Sodankylä.

Accordingly, the vapor flux is also quite small at the soil-snow
interface and in the lower part of the snowpack (Figure 4B). Also,
the generally smoother variations of the temperature gradient

leads to less flux divergence and convergence (Figures 5A,B).
Hence in general, the degree of over- or undersaturation is
small at Sodankylä compared to Samoylov, with values around
−2% except for some events at the beginning of the winter
season (Figure 5A). Sublimation and deposition layers exhibit

FIGURE 5 | The weekly time series for Sodankylä 2007–2008, (A) the degree of undersaturation, (B) the snow density change rate due to water vapor transport. The

insets in (A,B) show the vertical profiles on 28 January 2008 12:00:00. Black color refers to zero values.

Frontiers in Earth Science | www.frontiersin.org 12 July 2020 | Volume 8 | Article 249

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Jafari et al. Diffusive Water Vapor Transport in Snowpacks

cumulative snow density changes of lower magnitude than at
Samoylov: Most cumulative density changes are below 5 kg
m−3. Only at the bottom of snowpack, sublimation layers reach
cumulative density changes between −15 and −40 kg m−3

toward the end of the winter (Figure 6A). Within the snow,
SNOWPACK simulates only two main deposition layers at

Sodankylä, with maximum positive changes around 1.3 kg m−3,
hence much smaller absolute changes than the negative ones and
also smaller positive mass changes than simulated at Samoylov.

In the top layers of the snowpack however, the magnitude of
the water vapor flux, its vertical change (flux divergence), and the
degree of undersaturation, can reach large values, comparable or

FIGURE 6 | The weekly time series for Sodankylä 2007–2008, (A) the cumulative density change, (B) the snow density difference in percentage between the case of

vapor transport and the case without vapor transport. The insets in (A,B) show the vertical profiles on 3 March 2008 12:00:00. Black color refers to zero values.
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larger than at Samoylov (Figure 1B). Toward the snowpack top at
Sodankylä, the temperature gradient decreases at times very fast
and reaches very low values similar to minimal values occurring
at Samoylov and the higher temperatures at Sodankylä lead to
higher diffusive fluxes.

The snow density difference between a simulation with and
a simulation without diffusive vapor transport is shown in
Figure 6B. Some layers in the central, upper and basal parts of
Sodankylä snowpack exhibit a larger density (by a few percent)
in the case of vapor transport, sometimes for layers that did
not show a positive cumulative density change due to vapor
transport (Figure 6A). Actually, local sublimation and changes
in density lead to complex feed-back effects affecting the final
density of the snowpack. Lower density induced by sublimation
does, for example, decrease the thermal conductivity, which may
lead to higher temperatures and decreased viscosity, enhancing
snowpack compaction. Viscosity is also directly sensitive to ice
content. The melt-refreeze processes that occur at Sodankylä
early in the winter season may also be affected by differences
in snow density due to sublimation/deposition. This is especially
visible for the layer between 5 and 10 cm, influenced by a melt-
refreeze event in early January. In this layer, water vapor transport
leads to a change in density of around −20 to −30%. In the end,
not only the vapor transport changes the snow density by direct
deposition and sublimation processes but it also leads to side
effects on the temperature profile, snow viscosity (compaction
rate), percolation, and the rate of melt-refreezing in a highly non-
linear way, which may change the final density more significantly
than just by direct deposition and sublimation.

The ratio of the diffusive latent heat flux at the snow surface
to the turbulent latent heat flux between atmosphere and the
snow surface, |ql,D/ql|, is calculated over the winter season for
Sodankylä as 4% which is more significant than at Samoylov. As
explained above, this is because the diffusive vapor flux of top
layers for Sodankylä is larger than at Samoylov.

3.4. Alpine Snowpack–Weissfluhjoch
The seasonal snowpack at Weissfluhjoch builds up to a height
of 2 m reached in mid March, when it features a typical multi-
layered structure of alpine, high altitude snowpack as shown in
Figure S23 of Wever et al. (2015): the lower half features mainly
an alternation of shallow depth hoar layers, and wider layers
of faceted crystals with rounded grains still present. A small
melt-freeze crust persists at about 50 cm height, from an early-
winter melt event. In the upper half, layers of rounded grains are
more present, intertwined with some very thin melt-freeze crusts
from late February. More recent snow types can be found at the
snowpack’s top until early April.

The temperature gradient at Weissfluhjoch is shown in
Figure 7A. For most of the snowpack with exception of the
uppermost layers, it takes moderate, negative values rarely
reaching below −40 K m−1. This gradient is considerably
smaller than at Sodankylä and Samoylov, as the snow height
for Weissfluhjoch is much higher and winter air temperature
are also less extreme. The temperature gradient is larger at
the beginning of the winter season, which corresponds to the
coldest air temperatures at Weissfluhjoch for this snow-season.

At this time the gradient is also stronger in the upper half of the
snowpack, where more recent snow of low thermal conductivity
dominates. The temperature gradient then decreases gradually
in magnitude over the winter season to reach a value around
zero in the melting period. However, for top layers, its sign
changes frequently based on the diurnal variations of the air and
snow temperatures.

Figure 7B shows the weekly time series of the water vapor
flux. It follows perfectly the pattern of the temperature gradient in
terms of magnitude and direction. As a matter of fact, the degree
of undersaturation is very small at Weissfluhjoch (Figure 8A):
usually smaller than 0.1% except for a thin layer at the snowpack
base and few elements on top, which are affected by the strong,
cyclic temperature gradients mentioned above. As a result of
lower temperature gradients than at Samoylov or Sodankylä
(except close to the snow surface), the magnitude of the upward
water vapor flux at Weissfluhjoch is also much lower, reaching
only values comparable to Arctic or subarctic snowpacks in early
winter when air temperature is the coldest, occasionally as low
as −20◦C. Later in the winter, between January and March, the
upward vapor flux is much lower. This can be attributed both
to milder air temperatures around −5◦C for this period, and to
the daily cycles of surface temperature under the Alpine climate
which frequently changes the sign of the temperature gradient
near the surface.

The snow density change rate, shown in Figure 8B, has the
same behavior as the degree of undersaturation (Figure 8A). A
small sublimation layer forms at the snowpack base, and so do a
few deposition or sublimation layers close to the snowpack top,
which exhibit quite significant density changes rates as a result
of abrupt changes or inversions of the temperature gradients
there. For the snowpack core, there are many small and less
significant deposition or sublimation layers due to small changes
in magnitude of the water vapor flux.

The cumulative density change for Weissfluhjoch is shown
in Figure 9A. Most density changes (positive and negative) are
small and below 2.5 kg m−3. For the snowpack base (soil-snow
interface), the cumulative density change has a value around −5
to −26 kg m−3, resulting from sustained temperature gradients
there at the interface of amore isothermal soil of lower diffusivity.
In the upper layers, density decrease can be stronger in the
melting period amounting to 5 to 10 kg m−3.

The density change in percentage for Weissfluhjoch 2001 in
Figure 9B confirms the dominance of density reduction, even
though of low magnitude. For a few centimeters above the
snowpack base (soil-snow interface), the density is decreased
around 10%.

For Weissfluhjoch, the averaged ratio of the diffusive to the
turbulent heat flux over the winter season, |ql,D/ql|, is 8.4%
indicating that for the mass and energy balance of the snow
surface, the diffusive latent heat flux is not negligible and should
be considered.

3.5. Sea Ice–Snow Buoy 2016S31 (Buoy
S31)
Vapor transport in sea ice is expected to be important as
(often) very low surface temperatures during the polar
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FIGURE 7 | The weekly time series for Weissfluhjoch 2001–2002, (A) the temperature gradient, (B) the diffusive water vapor flux. The insets in (A,B) show the vertical

profiles on 28 January 2002 12:00:00. Black color refers to zero values.

night generate large temperature gradients through the
snow-ice pack, given that the liquid water at the at the
ice base remains always close to −1.8◦C. Density profiles
that may be affected are crucial to understand specific

sea-ice processes related to brine dynamics and salinity
transport. It is therefore interesting to analyze the effect of
macroscopic vapor transport for the density profiles of snow on
sea ice.
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FIGURE 8 | The weekly time series for Weissfluhjoch 2001–2002, (A) the degree of undersaturation, (B) the snow density change rate due to water vapor transport.

The insets in (A,B) show the vertical profiles on 28 January 2002 12:00:00. Black color refers to zero values.

The snowpack over sea ice at Buoy S31 is here followed
over one full year, from January to January. The coldest
part of the year occurs between March and September; air
temperatures are steadily below −20◦C from April to early July.

From January to July, precipitation are also very low, resulting
in a shallow snowpack (approx. 20 cm in July): very strong
temperature gradients develop during this period (Figure 10A),
resulting in significant upward vapor fluxes (Figure 10B) and
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FIGURE 9 | The weekly time series for Weissfluhjoch 2001–2002, (A) the cumulative density change, (B) the snow density difference in percentage between the case

of vapor transport and the case without vapor transport. The insets in (A,B) show the vertical profiles on 4 March 2002 12:00:00. Black color refers to zero values.

temperature-gradient metamorphism. As a result, during this
period, the snowpack features mostly depth-hoar overlain by
faceted crystals in the SNOWPACK simulations (Figure 11
of Wever et al., 2020). From August to early October, more

precipitation occurs and the snowpack reaches 60 cm while
air temperatures get milder, around −5◦C on average. The
temperature gradients within the snowpack reduce with respect
to the previous period, being generally lower than 40 K m−1
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FIGURE 10 | The weekly time series for Snow Buoy 2016S31, (A) the temperature gradient, (B) the diffusive water vapor flux. The insets in (A,B) show the vertical

profiles on 4 July 2016 12:00:00. The zero-level height is the sea ice-snow interface.

in magnitude (Figure 10A) and so does the upward vapor
flux (Figure 10B). As presented in Figure 11 of Wever et al.
(2020), the snowpack further builds up, with new layers rapidly
transforming into faceted crystals or toward October, rounded

grains. Sustained melt occurs from November until mid or
late January.

The degree of undersaturation and the snow density change
rate at Buoy S31 are shown in Figure 11A and Figure 11B,
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FIGURE 11 | The weekly time series for Snow Buoy 2016S31, (A) the degree of undersaturation, (B) the snow density change rate due to water vapor transport. The

insets in (A,B) show the vertical profiles on 4 July 2016 12:00:00. The zero-level height is the sea ice-snow interface.

respectively. Similar to Samoylov, they are high at the base
of the snowpack, i.e. for few centimeters above the sea ice-
snow interface, from March until late July. Over this period the
magnitude of temperature gradient through the ice underlying

the snowpack is relatively constant and less than 10 K m−1.
Again similar to Samoylov, there is a sharp change of temperature
gradient at the sea ice-snow interface. This sharp change, in
association with a reduced diffusivity of water vapor in ice when
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FIGURE 12 | The weekly time series for Snow Buoy 2016S31, (A) the cumulative density change, (B) the snow density difference in percentage between the case of

vapor transport and the case without vapor transport. The insets in (A,B) show the vertical profiles on 22 August 2016 12:00:00. Black color refers to zero values. The

zero-level height is the sea ice-snow interface.

compared to snow, creates the basal layer of undersaturation.
The cumulative density change due to vapor transport for Buoy
S31 is shown in Figure 12A. Similar to Samoylov, there is a
strong sublimation layer attached to the sea ice-snow interface
with the largest negative change around−66 kg m−3. Deposition
layers occur in the Buoy S31 snowpack with a pattern close to

the one of oversaturation. They are related to vertical variations
in the temperature gradient that drive vapor flux convergence
(Figure 10B) and reach cumulative deposition around 11 kgm−3

at most. This makes Buoy S31 the snow cover with the highest
overall magnitude of cumulative density change as a result of
water vapor transport.
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The density profiles for Buoy S31 for the case of vapor
transport and the case of no vapor transport are compared
in Figure 12B. As expected, due to the stronger effect of the
vapor transport in the bottom layers above the sea ice, strongest
differences can be seen in these snow layers, which are around
−20% for the first sublimation layer and around 5% for the
main deposition layer that develops from March to August. As
for the other snow covers analyzed before, the differences in
the density profiles for top layers in the accumulation period
and also in general for all layers during the melting period, are
not consistent with cumulative density changes due to diffusive
water vapor fluxes. Therefore they are not the direct result of
sublimation/deposition from the water vapor transport, but are
mainly due to side effects of diffusion on the compaction and
melting-refreezing rates via changes in temperature, density and
viscosity described above.

The averaged ratio of the diffusive to the turbulent latent heat
flux over the season, |ql,D/ql|, is calculated as 6.8% for Buoy S31,
hence being the second largest among our 4 study sites after
Weissfluhjoch (8.4%).

3.6. Sensitivity of Diffusion Effects to Soil
Characteristics at Samoylov
Given the important role of soil in the formation of a basal
sublimation layer, highlighted most strikingly at Samoylov, but
also visible at Sodankylä and Weissfluhjoch, we evaluated the
impact of the soil characteristics on the simulation results at
Samoylov. The following sensitivity tests were performed:

(i) Enhanced diffusion in the soil was considered by changing
the tortuosity parameter τ to 1 and then 5. Indeed,
diffusivity in the soil is debated in the literature with
some authors suggesting significant enhancement (e.g., Ho
and Webb, 1998; Shokri et al., 2009). τ = 1 means no
enhancement but getting rid off the effect of tortuosity,
which actually changes the effective water vapor diffusivity
in the soil by a factor of 18 with respect to the original
formulation of diffusion in soils described in section 2.2.4.

(ii) The effect of the soil porosity was tested by setting a very
porous (62.5% of porosity) soil layer in the uppermost 5 cm
of the soil while keeping the default water fraction. A very
porous organic soil layer can indeed be found at the top of
Arctic permafrost soils (e.g., Boike et al., 2013).

(iii) The effect of soil water content was tested by considering a
saturated soil in the default setup, as low-centered polygons
at Samoylov can be saturated at the beginning of the winter
season (Boike et al., 2013).

The results of the tests were the following, using the example of
Samoylov:

(i) The increase of soil effective diffusivity leads to enhanced
vapor flux from the soil to the snow basal layer. Therefore
the (negative) density change in the basal snow layers is
reduced, from −62 to −54 and −40 kg m−3 for cumulative
density changes from default setup to enhanced setups with
τ = 1 and τ = 5, respectively. The additional vapor
flux is mainly deposited in the first deposition layer above

the basal snow layer, which experiences an increase in its
(positive) cumulative density change. This increase is of
lower magnitude than the change in basal depletion. Overall
we see a moderate sensitivity of snow density changes to
diffusion enhancement in the soil with effects restricted to
the lower half of the snowpack and mainly affecting basal
depletion. Qualitatively, the results obtained with default
setup remain valid for increased soil diffusivity.

(ii) A very porous uppermost soil layer has qualitatively
and quantitatively an effect similar to the enhanced soil
diffusivity tested in (i): vapor flux from the soil is increased,
leading to less flux divergence in the basal snow layer
and therefore less depletion there, while the soil is more
depleted. Some enhanced deposition in the first deposition
layer also occurs.

(iii) Saturated soil conditions at Samoylov did not noticeably
change the density changes induced by water vapor
diffusion in the snowpack.

As a conclusion, the effects of water vapor diffusion in the
snowpack can be quantitatively affected by porosity and diffusive
properties in the soil, but the general behavior depicted by our
Samoylov simulations remains qualitatively valid.

3.7. Comparison With Measured Density
Profiles
Since Samoylov showed the strongest response of the density
profile to vapor transport of all snow covers over land
investigated, a limited comparison with measured density profile
is presented in Figure 13. This comparison is limited in the

FIGURE 13 | The comparison of simulated snow density profile with

measured one for Samoylov on 20 April 2013.
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sense that few density profile data are available at the site,
and they show a significant spatial variability which is in part
linked to the local micro-topography. Figure 13 compares our
simulations with a density profile from a polygon center, that was
selected as representative for the snow conditions in the centers
of the tundra polygons (Gouttevin et al., 2018). The comparison
confirms that vapor transport is helping to generate a low-density
for the base of this Arctic snow cover. For the middle and upper
part, the effect is still small compared to the general error between

observations and model. The effect of diffusive vapor transport
on density for deep snow covers is weak because of the lower
temperature gradients compared to thin snow covers (Samoylov).
This is shown in Figure 14, which has a minor density reduction
at the base due to diffusive vapor flux. The density reduction
slightly improves the agreement between simulations and in-situ
observations. These comparisons also show that vapor transport
as simulated by the model is not a sufficient explanation for
the observed density changes. This does not necessarily indicate

FIGURE 14 | The comparison of simulated snow density profile with measured one for four winter seasons at Sodankylä, (A) on 25 March 2010, (B) on 29 March

2011, (C) on 27 March 2012, and (D) on 19 March 2013.
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an underestimation of diffusive vapor fluxes in the simulation,
because other processes, such as fresh snow density and wind
compaction also impact density profiles. However, our result
is also in agreement with experimental studies (Domine et al.,
2016, 2018), pointing to the significance of convective transport.
We conducted a Rayleigh number analysis for all snow covers
investigated and found that for Samoylov, based on maximum
(Ra∗ = 40) and minimum (Ra∗ = 4) critical Rayleigh numbers
from literature (Palm and Tveitereid, 1979; Powers et al., 1985;
Sturm and Johnson, 1991), the time for which free convection can
occur over the winter season is 29.9 and 77.2%, respectively. The
other snow covers are less susceptible to convection forminimum
critical Rayleigh number but still show significant time fractions,
over which convection is possible. Thus, other processes such as
convective vapor transport but also (non-)settling of depth hoar
need to be improved in SNOWPACK and other snowmodels.We
will attempt a more complete model validation against measured
density profiles in future, after introducing convective transport
in SNOWPACK.

4. CONCLUSIONS, LIMITATIONS, AND
OUTLOOK

In our analysis, the effects of diffusive vapor transport through
four different types of snow covers, from thin Arctic and
Antarctic (on sea ice) to thick Alpine, have been investigated
numerically. To do so, a model to account for diffusive water
vapor transport through soil and snow has been implemented in
the detailed, multi-layered snowpack model SNOWPACK.

In the shallow Arctic snowpack at Samoylov, strong and
sustained temperature gradients develop and the vapor transport
has significant effects on the simulated density profile with a
significant density decrease in the snowpack at the soil-snow
interface that reaches a value of −21%. Above this layer, the
density of the snowpack is generally increased up to around 7.5%
by the end of season, as a result of deposition, which occurs over
a larger depth of the snow cover.

At the other sites studied here, the highly non-linear side
effects of original density changes induced by diffusion, on
conductivity, temperature profiles, snow viscosity, compaction
rate and melt-freeze processes, may change the final snowpack
density more significantly than just by direct deposition and
sublimation. At Sodankylä, typically, the density at the snowpack
base is decreased by about 5% with dominating sublimation
there, while other layers in the middle of snow cover feature
a density decrease around −20 to −30%. At Weissfluhjoch,
significant direct effects of diffusion happen near the surface or
the base with moderate magnitude; they are even smaller in the
core of the snowpack. For the sea ice, Snow Buoy 2016S31, it is
found that the density decreased at the sea ice-snow interface
by −20% while there is a deposition layer above it with increase
in density around 5%. This result for the sea ice from Antarctic
is qualitatively and quantitatively similar to Arctic snowpack
at Samoylov as very low surface temperatures generate large
temperature gradients through snowpack in both cases.

The simulations presented yield plausible results but
validation against measurements is difficult. In general, the new
simulations for thin snow covers reproduce the weak snow
cover base often observed in Arctic environments better than
the version without vapor transport (Sturm and Johnson, 1991;
Gouttevin et al., 2012; Domine et al., 2016; Barrere et al., 2017).
Errors in the density measurements are typically larger than the
effect of vapor transport on density, especially in close to ground
depth hoar layers in Arctic snow covers (Proksch et al., 2016).
Since the settling routines in SNOWPACK have been calibrated
to reproduce observed densities at Weissfluhjoch (Lehning et al.,
2002a) without vapor transport, future work should construct
micro-structure based snow settling laws independent of vapor
transport. It should be noted that we did not change the thermal
conductivity calculation in SNOWPACK in case of vapor
transport despite the fact that the parameterization contains a
term for the heat effect of that transport (Lehning et al., 2002b).
This will be done in the future but is expected to have a very
small impact on results.

The effect of vapor transport on density as discussed here is
considered to be conservative and expected to be significantly
larger in reality as we do not consider convective motion of
vapor in the pore space (Sturm and Johnson, 1991) and neglect
also arising anisotropy (Loewe et al., 2013), both of which are
expected to increase vapor flux as well as effects on density. In
summary, we see that diffusive transport has more local effects
than what we expect from observations. It changes snow density
significantly in a thin layer above ground in thin snow covers and
mostly adds mass to upper layers. It will be interesting to see, how
this patterns changes if convection is considered.

Future work will therefore include attempts to quantify
convection and improve microstructure modeling. This should
generate a solid basis for assessing isotope dynamics in snow
deposition and metamorphism (Ebner et al., 2017; Touzeau et al.,
2018). This paper only looked at the density effects of diffusive
water vapor transport and has shown that it can affect the density
profile in particular in thin snow covers.
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